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Abstract—For the digitally controlled Buck converters, 
the nonlinearity and time-periodicity, caused by the 
pulse-width modulator (PWM) and sample-and-hold, make 
the accurate frequency-domain analysis intractable. In this 
paper, based on the harmonic transfer function (HTF) 
approach, a precise small-signal continuous-time 
modeling for the digitally controlled Buck converter 
operating in continuous-conduction mode (CCM) under 
constant-frequency voltage-mode control is presented. 
The sideband components on the closed-loop control are 
embedded in the model. Thus, this model is accurate within 
the full frequency domain region, which breaks the limit of 
Nyquist frequency. Furthermore, by overcoming the barrier 
of infinite series introduced by the sideband effects, the 
analytical loop gain expression is derived, which 
contributes to accurate stability assessment and reduction 
of computation burden. In addition, the proposed exact 
small-signal model has explained the reasons why 
different information injection points lead to different 
measured loop gains. Simulations and experimental 
results are conducted to verify the effectiveness of the 
proposed method. 

 
Index Terms—Digital control, loop gain measurement, 

sideband effects, time-periodicity. 

I. INTRODUCTION 

HE REDUCED PRICES and improved performance of 

digital controllers have been paid increasing attention for 

switching power converters [1]. The digital control possesses 
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some advantages including noise immunity, programmability, 

as well as the possibility to implement sophisticated control [2]. 

Owing to the application of Pulse-Width Modulator (PWM) 

and sample-and-hold, the digitally controlled switching power 

converter systems are characterized by nonlinearity and 

time-periodicity [3]. 

In order to deal with nonlinearity and time-periodicity, many 

modeling techniques of power converters have been developed. 

The discrete-time modeling technique, which was introduced in 

[4], is a popular choice. The discrete-time model is accurate for 

stability prediction, which is mainly used to analyze nonlinear 

phenomena such as chaos and bifurcation [5]. However, the 

discrete-time model has abandoned the usual continuous-time 

representation, no information concerning the intra-cycle 

waveform propagation is retained. As a result, the discrete-time 

models approximate the time domain response of the system 

[6]. 

In another direction, continuous-time modeling methods 

have also been greatly developed, which have been 

successfully applied in circuit and controller design [7]. The 

averaging technique is the most widely used method for 

deriving the continuous-time transfer function of PWM 

converters, proposed by Middlebrook and Cuk in [8], which 

only considered the DC component over a switching cycle. The 

averaging technique is easy to be implemented, and it permits 

the Linear-Time-Invariant (LTI) theory to be used for the 

nonlinear system analysis [9]. However, due to the neglect of 

switching details, the average model fails to provide accurate 

stability prediction of the closed-loop PWM converters, laying 

a potential risk for system operation [10]. 

In order to improve the accuracy of the continuous-time 

model, the coupling dynamics of sideband components should 

be incorporated into the closed-loop modeling. The 

Generalized State-Space Averaging (GSSA) modeling method 

is an efficient approach to capture the high-order harmonics of 

the switching power converters [11]. After being validated, 

GSSA has been successfully extended to study the sideband 

effects of PWM converters [12]-[14]. Most of these studies rely 

on computer programs because of a lot of calculations. In order 

to obtain a result with physical insight, simplified versions of 

this method have been developed. Besides the component at the 

fundamental perturbed frequency, the two-frequency model in 

[15]-[16] considered the sideband component at another 

perturbed frequency. An extension, denoted as the 

four-frequency model, took four sideband components into 
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consideration, which improved the model accuracy in the 

high-frequency regions [17]. In [18], a matrix-based 

multi-frequency model is proposed, which is able to capture all 

the sideband components. Multi-Input Multi-Output (MIMO) 

analysis tools are required for the matrix-based model. In order 

to achieve high accuracy while preserving Single-Input 

Single-Output (SISO) form, an extended-frequency modeling 

method is proposed by Li in [19]. However, the accurate 

analytical form of the extended-frequency model is not given. 

By selecting optimally the dominant sideband component, a 

satisfied balance between complexity and accuracy can be 

achieved by the generalized multi-frequency small-signal 

model in [20]. 

Existing studies are mostly focused on modeling PWM 

converters under analog control, where only the PWM 

produces the sideband effects [12]-[20]. However, the inherent 

sample-and-hold in digital control also results in sideband 

effects, which strongly complicates converter modeling. 

Although the discrete-time modeling technique is mature in 

modeling digitally controlled converters, an accurate 

continuous-time model of the digitally controlled converter is 

still missing here, therefore this paper aims to bridge this gap. 

The conventional controller design method based on the cutoff 

frequency and phase margin can be applied directly to the 

continuous-time model. 

Moreover, in the experiment, it was observed that for a 

simple digitally controlled converter, different injection points 

led to different loop gain measurement results [21]-[22]. 

However, due to the lack of an accurate continuous-time model 

of the digitally controlled converter, the difference in loop gain 

measurement results caused by different injection points has 

not been clearly understood [23]. The details are discussed in 

Section III-D. This is also one reason motivating the authors to 

do the work of this paper. 

Considering the time-periodicity caused by the PWM and 

sample-and-hold, a more general modeling method is required. 

In this aspect, the Harmonic-State-Space (HSS) modeling 

method [24] and the Harmonic-Transfer-Function (HTF) 

modeling method [25], rested on Linear-Time-Periodic (LTP) 

theory, are promising choices. The HSS modeling method has 

been widely adopted to study the interactions between different 

sideband components [26]-[27]. The HSS model maps the LTP 

model into an infinite-dimensional LTI model with a 

state-space-like form. And the model accuracy is improved by 

expanding the dimensions of the HSS model. Because of the 

large dimensions of the HSS model, it is difficult to transform 

the HSS model into a transfer-function-like model directly [28]. 

In this regard, the HTF approach is the appropriate one to 

derive the frequency-domain model of the LTP system, which 

uses a transfer function matrix to describe the relationship 

between inputs and outputs in different frequency domains 

[29]-[30]. Compared with existing modeling methods, the HTF 

approach is more general and retains clear physical insights. 

Based on the discussion aforementioned, the HTF approach is 

adopted in this paper for modeling the digitally controlled Buck 

system with consideration of the sideband effects. 

The main contributions of the paper are summarized as: 

1) The small-signal continuous-time modeling of digitally 

controlled Buck converters operating in Continuous 

Conduction Mode (CCM) under constant-frequency 

voltage-mode control, which considers the sideband effects, is 

presented. The obtained loop gain model is accurate within the 

full frequency domain region, which breaks the limit of Nyquist 

frequency. 

2) The analytical loop gain expression is derived by 

overcoming the barrier of infinite series resulted from the 

sideband effects, laying the foundation for accurate stability 

assessment and a significant reduction in computation burden. 

3) The reason that different information injection points lead 

to different measured loop gains is revealed. And the conditions 

for the right loop gain measurement are given. 

The rest of the paper is organized as follows. In Section II, a 

brief review of the basic concepts of the harmonic transfer 

function approach is reported. In Section III, the 

continuous-time small-signal models of the PWM and 

sampling holder are derived, considering all the sideband 

components. Moreover, the loop gain of the digitally controlled 

Buck system is deduced, and the loop gain measurement 

schemes with different information injection points are 

analyzed. In Section IV, an analytical loop gain expression is 

derived and the conditions that the measured results are equal to 

the actual loop gain are given. In Section V, experiments are 

carried out, which shows in all cases good agreement with the 

analytical and simulation results. In Section VI, the conclusions 

of this paper are drawn. 

II. BASIC CONCEPT OF HARMONIC TRANSFER FUNCTION 

The harmonic transfer function approach established on the 

basis of LTP theory is one efficient tool to analyze the 

small-signal behavior of time-periodic systems. In order to 

capture all the possible frequency couplings, Exponential 

Modulated Periodic (EMP) signal is introduced in the HTF 

framework, which is defined as [24] 

 ( ) 0jk t st

k

k

U e eu t




=−

=   (1) 

ω0 is the fundamental frequency of the system and s=jω where 

ω denotes the frequency variable. The most important feature 

of EMP is that an LTP system maps EMP signals onto EMP 

signals, which contributes to the derivation of the 

transfer-function-like model as an LTI system. 

A general LTP system can be represented by its impulse 

response h(t, τ) with its periodicity as 

 ( ) ( )0 0, ,h t h t T T = + +  (2) 

where T0=2π/ω0. When an EMP signal is given as input to the 

LTP system, this gives the following output 

 ( ) ( )0 0,
jk t jkst s

k

k

y t U e e h t e e d
    

 
− −

−
=−

=    (3) 

The time-periodic transfer function is defined as 

 ( ) ( ), , sH t s h t e d 


−

−
=   (4) 

Then, the output can be rewritten as 

 ( ) ( )0

0,
jk t st

k

k

y t U e e H t s jk
 



=−

= +  (5) 
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According to Fourier transform, it gives that 

 

( ) ( )

( ) ( )

0

0
0

0 0

0 0
0

0

,

1
,

jm t

m

m

T
jm t

m

H t s jk H s jk e

H s jk H t s jk e dt
T





 

 



=−

−


+ = +



 + = +






 (6) 

Substituting (6) into (5), it can lead to 

 ( ) ( ) 0

0

jn t st

k n k

n k

y t U H s jk e e


 

−

=− =−

= +   (7) 

It is worth noting that the output signal is also an EMP signal 

 ( ) 0jn t st

n

n

y t Y e e




=−

=   (8) 

Rewriting (7) by matrix form yields 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

1 0 0 1 2 0 1

0 1 0 0 1 0 0

1 2 0 1 0 0 1

s

Y H s j H s H s j U

Y H s j H s H s j U

Y H s j H s H s j U

 

 

 

− − − −

−

     
     

− +     
     = − +
     

− +     
     
     

 
(9) 

where (s) is called the HTF of the LTP system. And HTF 

describes the input-output relation for an LTP system in 

different frequency domains. 

Property 1: Given a general T0-periodic multiplication 

operator 

 ( ) ( ) ( )y t A t u t=  (10) 

where A(t)=A(t+T0). Then the corresponding HTF is given as 

 ( )
0 1 2

1 0 1

2 1 0

A A A

A t A A A

A A A

− −

−

 
 
 
 = =  
 
 
  

 (11) 

where [·] represents the Toeplitz transform and Ak is the kth 

Fourier coefficient of A(t).  is called the Toeplitz matrix with 

respect to A(t), which is a doubly infinite matrix. 

Property 2: For an LTI system 

 ( ) ( ) ( )y t g u t d  


−
= −  (12) 

where  

 ( ) ( )
1

2

j
st

j
g t G s e ds

j





+ 

− 
=   (13) 

The resulting HTF format can be expressed as 

 ( )
( )

( )

( )

0

0

0 0

0 0

0 0

G s j

s G s

G s j





 
 

−
 
 =
 

+ 
  

 (14) 

As seen, the HTF of an LTI system only contains diagonal 

elements, which agrees with the fact that no frequency coupling 

exists in the LTI system. 

Unlike the conventional LTI transfer function, the HTF is an 

infinite order transfer function matrix that captures the coupling 

among different frequencies that arise due to the periodic 

dynamics. Since the HTF maps an LTP system into an 

infinite-dimensional LTI space, the conventional analysis tools 

based on LTI theory can also be applicable to assess 

time-periodic systems. 

III. SMALL-SIGNAL MODEL OF DIGITALLY CONTROLLED 

PWM BUCK CONVERTERS 

A. Pulse-Width Modulator Modeling 

t

t

Vcm

1

0

0

usaw(t)

u

(k+2)Ts

( )p t

( )modu t

( )modu t

kt

kt kt

p(t)

kTs (k+1)Ts

 
Fig. 1.  Illustration of the pulse-width modulator. 

Fig. 1 illustrates the input and output waveforms of the 

pulse-width modulator. At the kth intersecting point of umod and 

usaw, it satisfies the following equation 

 ( ) ( )mod k saw ku t u t=  (15) 

where tk denotes the time instant of the intersection. And umod(t) 

and usaw(t) are the modulation signal and carrier signal, 

respectively. 

Suppose that the modulation signal umod(t) consists of a 

steady-state part and a small-signal term 

 ( ) ( ) ( )mod mod modu t u t u t= +  (16) 

where the superscript ‘~’ and ‘-’ represent the small-signal and 

steady-state quantities, respectively. Similarly, at the kth cycle, 

if the steady-state intersecting time instant is kt  , and the time 

instant perturbation is kt  , we have 

 k k kt t t= +  (17) 

where 

 k s s st kT D T= +  (18) 

and Ds is the steady-state duty cycle. 

Substituting (17) and (18) into (16), it is derived that 

 ( ) ( ) ( )cm

mod k k mod k k k k

s

V
u t t u t t t t

T
+ + + = +  (19) 

where Vcm and Ts denote the amplitude and period of the carrier, 

respectively.  

By taking the Taylor-series expansion of (19) and truncating 

at first order in small terms, it is straightforward to show that 

 ( ) ( )
( )

( )mod kcm

mod k k mod kk k

s

du tV
u t t u tt t

T dt
= + ++  (20) 

Eliminating the quiescent terms of (20) yields 

 ( ) ( )mod cm

k k mod k k

s

du V
t t u t t

dt T
+ =  (21) 

Then the intersection time perturbation at kth cycle can be 
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derived as 

 
( )

( )s

k mod k

mod
cm s k

T
t u t

du
V T t

dt

=

−

 
(22) 

The PWM pulse trains can be expressed as 

 ( ) ( ) ( )
0

s k

k

p t t kT t t 


=

= − − −    (23) 

where ε(x) is the step function [31]. Similarly, linearizing (23) 

and eliminating the quiescent terms of both sides give 

 ( ) ( )
0

k k

k

p t t t t


=

= −  (24) 

where δ(x) is the unit impulse function [31]. By substituting (22) 

into (24), an LTP mapping relationship is obtained as 

 
( )

( )
( ) ( )s

s s s mod

mod k
cm s k

T
p t t D T kT u t

du
V T t

dt




=−

= − −

−
  

(25) 

According to Property 1, (25) is rewritten as 

 ( ) ( )mod mods s=   (26) 

The HTF mod of the modulator is 

 

2 4

2 2

4 2

1

1

1

s s

s s

s s

j D j D

j D j D

mod m

j D j D

e e

F e e

e e

 

 

 

−

− −

 
 
 
 =
 
 
  

 (27) 

where 

 
( )

1
m

mod
cm s k

F
du

V T t
dt

=

−

 
(28) 

The spectra vectors are defined as 

 ( ) ( ) ( ) ( ), , , ,
T

s ss p s j p s p s j = − +    (29) 

 
( ) ( ) ( ) ( ), , , ,

T

mod mod s mod mod ss u s j u s u s j = − +  

 
(30) 

where ωs=2π/Ts, and others follow the same notation [25].  

From (26), the following equations are established 

 ( ) ( )2 sjk D

m mod s

k

p s F e u s jk
 



=−

= +  (31) 

 ( ) ( )2 sjn D

sp s jn e p s
 −

+ =  (32) 

Remark 1: In a DC-DC converter under analog control [19], 

the gain of feedback loops is expressed as 

 ( ) ( ) ( )mod s c s su s jk T s jk p s jk  + = − + +  (33) 

where Tc(s) denotes the gain of the complete loop except for the 

modulator. By substituting (32) and (33) into (31), the SISO 

type transfer function of the modulator can be derived as 

 
( )

( )

( ) ( )
0

1

m

PWM

mod
m c s

k
k

p s F
G s

u s
F T s jk




=−

= =

+ +
 

(34) 

Clearly, the obtained result of GPWM(s) is consistent with [19]. 

Benefiting from the adoption of the HTF approach, the transfer 

function of the modulator is derived more concisely. 

B. Sample-and-Hold Modeling 

t

t0

0

u

(k+2)TskTs (k+1)Ts

( )inu t

( )shu t

( )inu t

( )shu t

 
Fig. 2.  Key waveforms of the sample-and-hold. 

Besides the modulator, the sample-and-hold would also 

generate the sideband components in a digitally controlled 

system, whose key waveforms are shown in Fig. 2. uin(t) 

represents the continuous-time input, and ush(t) is the discrete 

form of uin(t) by the sample-and-hold. The relationship between 

uin(t) and ush(t) is expressed as 

 ( ) ( ) ( ) ( )( )
0

1sh in s s s

k

u t u kT t kT t k T 


=

 = − − − +   (35) 

From (35), the sample-and-hold describes an LTP mapping 

relationship. Writing uin(kTs) in an integral form gives 

 ( ) ( ) ( )in s s inu kT kT u d   


−
= −  (36) 

A convolution expression is obtained by substituting (36) 

into (35) 

 ( ) ( ) ( ),sh sh inu t h t u d  


−
=   (37) 

where 

 ( ) ( ) ( )( ) ( )
0

, 1sh s s s

k

h t t kT t k T kT    


=

 = − − − + −   (38) 

According to the definition, the time-periodic transfer 

function is calculated as 

 ( ) ( ) ( )( ) ( )

0

, 1 ss t kT

sh s s

k

H t s t kT t k T e 


− −

=

 = − − − +   (39) 

Taking the Fourier transform to (39), the nth Fourier 

coefficient of Hsh(t, s) is derived as 

 ( )
( )

( )
,

1 s ss jn T

sh n

s s

e
H s

T s jn





− +
−

=
+

 (40) 

Therefore, the HTF of sample-and-hold is 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
zoh s zoh s zoh s

sh zoh zoh zoh

s

zoh s zoh s zoh s

G s j G s j G s j

s G s G s G s
T

G s j G s j G s j

  

  

 
 

− − − 
 =
 

+ + + 
 
 

 (41) 

where 

 ( )
1 ssT

zoh

e
G s

s

−
−

=  (42) 

The following small-signal relationships can be found by 

sh(s) that 
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 ( )
( )

( )zoh

sh in s

ks

G s
u s u s jk

T




=−

= +  (43) 

 ( )
( )

( )
( )zoh s

sh s sh

zoh

G s jn
u s jn u s

G s




+
+ =  (44) 

C. Loop Gain Modeling 

DPWM

Sample-and-Hold

uref

ush

Gc(z) z-1
umod

Gp(s)
p uo

uin Gsv(s)

Digital Control System Plant

 
Fig. 3.  Control block diagram of a digitally-controlled DC-DC converter. 

The system diagram of a digitally controlled Buck converter 

with single loop feedback control is depicted in Fig. 3. Gc(z) 

denotes the discrete-time digital controller, Gp(s) and Gsv(s) are 

the continuous transfer functions of controlled target and 

pre-ADC filter, respectively. 

From Fig. 3, the mapping relationship from ( )shu s  to 

( )modu s  is obtained as 

 ( ) ( ) ( )mod i shu s H s u s= −  (45) 

where 

 ( ) ( ) 1

sTsi c
z e

H s G z z−

=
  =    (46) 

In different frequency domains, (45) can be rewritten as 

 ( ) ( ) ( )mod s i s sh su s jn H s jn u s jn  + = − + +  (47) 

Based on (44), (45), and (47), modu  at different frequency 

domains satisfy 

 ( )
( )

( )
( )i s

mod s mod

i

H s jn
u s jn u s

H s




+
+ =  (48) 

where 

 ( ) ( ) ( )i i zohH s H s G s=  (49) 

Due to the sample-and-hold effect in digital control, ( )modu t  

remains constant during one switching cycle, i.e., 

 ( ) 0mod

k

du
t

dt
=  (50) 

Based on (31), (48), and (50), the SISO type transfer function 

of Digital Pulse-Width Modulator (DPWM) is derived as 

 ( )
( )

( )

( )

( )

1 i

DPWM

mod cm i

p s S s
G s

u s V H s
= =  (51) 

where 

 ( ) ( ) 2 sjk D

i i s

k

S s H s jk e




=−

= +  (52) 

It is found that the exact transfer function of DPWM is equal to 

the multiplication of conventional average gain 1/Vcm and the 

complex gain Si(s)/Hi(s) determined by the digital control loop. 

The SISO type transfer function of sample-and-hold can be 

deduced in a similar way. Inspection of Fig. 3 gives that 

 ( ) ( ) ( )in ou s H s p s=  (53) 

where  

 ( ) ( ) ( )o sv pH s G s G s=  (54) 

Frequency shifting (53) at s+jnωs yields 

 ( ) ( ) ( )in s o s su s jn H s jn p s jn  + = + +  (55) 

According to (32), (53), and (55), it is derived that 

 ( )
( )

( )
( )

2 sjn D

o s

in s in

o

H s jn e
u s jn u s

H s




−
+

+ =  (56) 

Putting (56) into (43) leads to 

 ( )
( )

( )

( ) ( )

( )
&

sh zoh o

S H

in s o

u s G s S s
G s

u s T H s
= =  (57) 

where 

 ( ) ( ) 2 sjk D

o o s

k

S s H s jk e



−

=−

= +  (58) 

The complex gain of sample-and-hold considering sideband 

effects is equal to the multiplication of conventional average 

gain Gzoh(s)/Ts and the complex gain So(s)/Ho(s) decided by the 

circuit dynamics. 

H' (s) GDPWM(s) Gp(s)

Gsv(s)GS&H(s)

modurefu p ou

shu

inu

 
Fig. 4.  Simplified small-signal structure of a digitally-controlled DC-DC 
converter. 

Using (51) and (57), the block diagram of Fig. 3 can be 

simplified to Fig. 4. The whole system with the digital 

controller is represented in a continuous-time form rather than a 

discrete-time form.  

The complete loop gain expression is given by 

 ( ) ( ) ( )
1

i o

cm s

T s S s S s
V T

=  (59) 

which includes two infinite series introduced by DPWM and 

sample-and-hold. While in the conventional average model, the 

loop gain is 

 ( ) ( ) ( )
1

avg i o

cm s

T s H s H s
V T

=  (60) 

It is shown that the transfer function Hi(s) and Ho(s) will be 

extended to the infinite series Si(s) and So(s) when the sideband 

effects are taken into consideration. 

D. Loop Gain Measurement 

The loop gain of a given closed-loop system provides 

essential information for stability assessment [32]-[34]. In the 

digitally controlled systems, it has been observed that different 

perturbation injection points lead to different measurement 

results of the loop gain [21]-[22]. However, the reason for the 

measurement discrepancy has not been explained so far [23]. 

There are two main reasons which hamper the analysis of loop 

gain measurement in digitally controlled systems. On one hand, 

the sample-and-hold in digital control brings an extra 

time-periodic link. On the other hand, due to the intrinsic 

continuous-time nature of measuring equipment, continuous 

dynamics of the system should be preserved in the model, 

which is abandoned by the discrete-time model. 

The perturbation can be injected into the loop through (I) the 

sampling path or (II) the modulation path, as shown in Fig. 5. A 

sample-and-hold exists in case (II) due to digital control.  
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Fig. 5.  Different perturbation schemes of a digitally-controlled system. 

When the perturbation is injected into (I), according to 

Property 1 and Property 2, the harmonic transfer function from 

rsu  to tsu  is deduced as 

 ( ) ( ) ( ) ( ) ( )ts o mod i sh rss s s s s= −   (61) 

where 

 ( )
( )

( )
( )

0 0

0 0

0 0

i s

i i

i s

H s j

s H s

H s j





 
  −
 
  =
 

 + 
 
 

 (62.a) 

 ( )
( )

( )

( )

0 0

0 0

0 0

o s

o o

o s

H s j

s H s
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−
 
 =
 

+ 
 
 

 (62.b) 

By solving (61), it is derived that 

 ( )
( )

( ) ( )
2 sj n D

o s

ts s i rs s

mcm s

H s jn e
u s jn S s u s jm

V T


 

− 

=−

+
+ = − +  (63) 

which implies that 

 ( )
( )

( )
( )

2 sj n D

o s

ts s ts

o

H s jn e
u s jn u s

H s




−
+

+ =  (64) 

From Fig. 5, the following relationships hold 

 
( ) ( ) ( )

( ) ( )
( ), \ 0

rs ts sin

rs s ts s

u s u s u s
n

u s jn u s jn 

 = +


+ = +
 (65) 

According to (63)-(65), it is deduced that 

 
( )

( )

( ) ( )

( )1

ts i o

sin cm s

u s S s H s

u s V T T s
= −

+  
 (66) 

 ( )
( )

( )

( ) ( )

( ) ( ) ( )
I

1

ts i o

rs cm s i o

u s S s H s
T s

u s V T T s S s H s
= − =

+ −  
 (67) 

It is found that TI(s) is equal to T(s) if Ho(s)=So(s) which 

means that this measurement scheme is applicable under small 

switching ripples. 

Similarly, the corresponding results of injecting perturbation 

into the point (II) can be obtained as 

 
( )

( )

( ) ( ) ( )

( )1

tm o i zoh

sin cm s

u s S s H s S s

u s V T T s
= −

+  
 (68) 

and (69) shown at the bottom of the page. The Szoh(s) is 

represented as 

 ( ) ( ) 2 sj m D

zoh zoh s

m

S s G s jm e




=−

= +  (70) 

When Si(s)Gzoh(s)=Hi(s)Szoh(s) is satisfied, the measured TII(s) 

is equal to T(s). 

Remark 2: In the sense of average modeling (i.e., the 

sideband effects are neglected), Si(s)=Hi(s) and So(s)=Ho(s) 

hold. Thus, it is traditionally considered that loop gain 

measurement is independent of the injection points in the 

digitally controlled system with single loop feedback control. 

However, when considering sideband effects, it is found that 

TI(s) is not the same as TII(s), which implies that the measured 

loop gain depends on the locations of information injection. 

Moreover, TI(s) and TII(s) are not directly equal to the real loop 

gain T(s). And only under certain conditions can the right loop 

gain be measured. 

E. Discussion 

According to the definition, the loop gain is the product of 

the gains around the forward and feedback paths of the loop at 

the same frequency [32]. In this paper, the derivation of the 

loop gain T(s) follows strictly the definition. Compared with 

the loop gain Tavg(s) in the average sense, the main difference is 

that the modulator model and the sample-and-hold model in the 

accurate loop gain take into account the sideband effect. Under 

the proposed modeling framework, the modulator model 

GDPWM(s) depends on the equivalent digital control transfer 

function Hi(s) while the sample-and-hold model GS&H(s) is 

influenced by the equivalent plant transfer function Ho(s). This 

coupling phenomenon results from the time-periodic dynamics, 

which cannot be reflected by the average model. 

Moreover, as observed from (66) and (68), the stability of 

closed-loop response to disturbance is determined by 1+T(s). 

Therefore, the calculated loop gain T(s) can be used for stability 

assessment. In summary, the loop gain T(s) with capturing the 

sideband effect can be regarded as the generalized loop gain. 

IV. ANALYTICAL CONTINUOUS-TIME MODEL DERIVATION 

OF DIGITALLY CONTROLLED BUCK SYSTEM 

In (59), two infinite series are contained in the loop gain, 

which makes it inconvenient to apply in practical analysis. Two 

basic formulas for calculating the sum of infinite series are 

given as follows. 

Lemma 1: For given constant ωx and D, in which D is a real 

number with D∈(0,1). Then, the following relationship holds 

 

22 2 x x

x x

D s sjn D

s s
n x x

e e e

s jn e e

   

   



 

−

−
=−

=
+ −

  (71) 

Proof of Lemma 1 is given in the Appendix. 

Lemma 2: For given constant γ, ωx, and D, in which the 

real-part of γ is greater than zero and D is a real number with D

∈(0,1). Then, the following relationship holds 

 

( ) ( )

( ) ( )

22 2 x x

x x

D s sjn D

s s
n x s

e e e

s jn e e

    

    



  

−+ +−

−+ +
=−

=
+ + −

  (72) 

Proof of Lemma 2 is given in the Appendix. 

 ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
II

1

tm o i zoh

rm cm s zoh o i zoh

u s S s H s S s
T s

u s V T G s T s S s H s S s
= − =

 + − 
 (69) 
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Fig. 6.  Circuit diagram of digitally-controlled Buck converter. 

A. Analytical Form of the Loop Gain Model 

In order to illustrate this modeling method clearly, a digitally 

controlled Buck converter depicted in Fig. 6 is taken for 

example. This circuit diagram is composed of the main circuit, 

the digital controller, the sample-and-hold, and the digital 

pulse-width modulator. In the main circuit, Q is an active 

switch, D is a diode, Ro is the load resistor, L is the inductor in 

series with the resistor RL, C is the output filter capacitor, RC is 

the Equivalent Series Resistor (ESR) of the output capacitor, E 

is the input DC voltage and uo is the output voltage. iL and uC 

denote the inductor current and capacitor voltage, respectively. 

According to Fig. 6, the transfer function of the PI controller 

in the z-domain is 

 ( )
11

i s

c p

k T
G z k

z−
= +

−
 (73) 

Then, (49) can be expressed as 

 ( ) ( )1
s

s

sT
sT

i p i s

e
H s k e k T

s

−
− = − +

 
 (74) 

where kp and ki are the proportional gain and integral gain of the 

PI controller, respectively. 

The infinite series Si(s) can then be described as 

 ( ) ( )
2

1
s

s s

jm D
sT sT

i p i s

m s

e
S s e k e k T

s jm






− −

=−

 = − +
  +

  (75) 

Applying Lemma 1 to (75) yields 

 ( ) ( )
2

2
1

s s s

s s

s s

D s s
sT sT

i p i s s s

s

e e
S s e e k k T

e e

   

   





−
− −

−
 = − +
  −

 (76) 

In the main circuit, the sampling delay is modeled as 

 ( ) sam

sv

sam

G s
s




=

+
 (77) 

where ωsam is the cutoff frequency of the anti-aliasing filter for 

voltage measurement. And the transfer function Gp(s) from 

pulse trains p to output voltage uo is represented in (78) shown 

at the bottom of the page. Then the factorization form of Ho(s) 

is provided as 

 ( )
3

1

k

o

k k

A
H s

s =

=
+

  (79) 

where 

 ( ) ( )( )1 1 2 1 3 11sam o CA ER CR a     = − − −    (80.a) 

 ( ) ( )( )2 2 1 2 3 21sam o CA ER CR a     = − − −    (80.b) 

 ( ) ( )( )3 3 1 3 2 31sam o CA ER CR a     = − − −    (80.c) 

 1 sam =  (80.d) 

 ( ) ( )2

2 4 2b b ac a = − − + −  (80.e) 

 ( ) ( )2

3 4 2b b ac a = − − − −  (80.f) 

 ( )C oa LC R R= +  (80.g) 

 ( )L C o o Cb L CR R R CR R= + + +  (80.h) 

 L oc R R= +  (80.i) 

Similarly, according to Lemma 2, the following infinite 

series sum is given as 

 ( )
( ) ( )

( ) ( )

23

1

2 s k s k s

k s k s

D s s

k

o s s
k s

A e e
S s

e e

     

     





+ − +

+ − +
=

=
−

  (81) 

Based on the calculations above, it is found that the poles of 

T(s) are 0±jnωs and -γk±jnωs (n=0, ±1, ±2, …), which are the 

translated copies of Tavg(s) with shifting proportional to the 

switching angular frequency ωs. This means that the number of 

Right-Half Plane (RHP) poles of T(s) can be easily determined 

by Tavg(s). And substituting (76) and (81) into (59), the 

analytical expression of loop gain can be obtained. 

B. Controller Design Method 

In order to introduce the reader to a few possible applications 

of the proposed model in controller parameter design, a brief 

example is given as follows. 

Suppose ωc is the cutoff angular frequency and PM/deg is the 

phase margin of the system. Then, it gives 

 ( ) 180

PM
j

cT j e


 = −  (82) 

By separating the real part and imaginary part of (82), the 

expressions of kp and ki are derived as 

 
1 3 2 1

4 1 2 3

p

m m
k

 

   

+
=

−
 (83) 

 
( ) ( )

( )
2 1 2 1 4 3

2 3 4 1

i

s

m m
k

T

   

   

− − −
=

−
 (84) 

where 

 1

2 90
sin cos

180

cm c

c s

s s

V PM
m T

T


  



  − 
= +   

  
 (85.a) 

 2

2 90
sin sin

180
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c s

s s
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  − 
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 (85.b) 

 ( )
3

1

1
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s s
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k s
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−
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  (85.c) 
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  (85.d) 
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TABLE II 
COMPARISON OF THE EXISTING SMALL-SIGNAL MODELS AND THE PROPOSED MODELS FOR BUCK CONVERTERS 

 
Two-frequency 

model[15]-[16] 
Four-frequency 

model[17] 

Matrix-Based 

multi-frequency 

model[18] 

Extended-frequency 
model[19] 

Generalized 

multi-frequency 

model[20] 

Proposed model 

Control mode Analog Analog Analog Analog Analog Digital 

Time-periodic 

components 
Modulator Modulator Modulator Modulator Modulator 

Modulator 

Sample-and-hold 

Sideband 

frequencies 
ω-ωs 

ω-ωs 

ω+ωs 
All All 

ω-ωs 

ω+ωs or ω-2ωs 
All 

Steady-state 
operating points 

DC 
DC 

First-order harmonic 
DC All 

DC 
First-order harmonic 

All 

Model form SISO SISO MIMO SISO SISO/MIMO SISO/MIMO 

Analyticity Good Good Good Medium Good Good 

TABLE I 
PARAMETERS OF THE BUCK SYSTEM 

Symbol Description Value 

E Input voltage 50 V 

Ro Load resistance 5 Ω 
L Inductance 0.5 mH 

RL Inductor resistance 0.3 Ω 

C Output capacitance 20 μF 
RC Capacitor ESR 0.003 Ω 

Vcm Amplitude of carrier signal 50 V 

ωsam ADC cutoff frequency 47.4×103π rad/s 
fs Switching frequency 5 kHz 

fsam Sampling frequency 5 kHz 
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Fig. 7.  Bode diagrams of the loop gain with calculated controller 
parameters. 
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  (85.f) 

 

1

2

2 2

2cos 2

k s s

k k

s s

D T

k

k

c

s

A e

e e



 
 

 







 
− 

 

−

=
 

+ −  
 

 
(85.g) 

The main parameters are given in Table I. Choosing 

ωc=1400π rad/s and PM=40°, the controller parameters are 

calculated as kp=0.3835 and ki=2531 with the steady-state duty 

ratio Ds=0.5. The calculated controller parameters are used in 

this paper. The Bode diagram under the calculated controller 

parameters is plotted as Fig. 7. As observed, the controller 

meets the design objectives, providing the validity of the 

proposed model in the controller parameter design. 

C. Influence of Sideband Effects on Loop Gain 
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Fig. 8.  Bode diagrams of the loop gain with different Ds. 

The focus of this paper is to reveal the unknown phenomena 

in loop gain measurement; thus, the system parameters are 

purposely chosen to introduce substantial ripple components so 

as to maximally demanding on the prediction model. Moreover, 

in high-power applications, the selected low switching 

frequency is reasonable due to the constraint of efficiency or 

power devices. 

As shown in Fig. 8, the loop gain derived from the average 

model is basically the same as the exact model in the regions of 

frequencies below fs/5. The amplitude gain of T(s) is 

symmetrical with respect to f=fs/2, which conforms to the 

aliasing effect in the digitally controlled systems [31]. The 

symmetry results in the cutoff frequencies to occur in pairs. 

And the phase derived by T(s) may be either lead or lag the 

phase estimated by the average model. 

Applying Lemma 1 to (70), the Szoh(s) is solved as 

 ( ) ( )
2

2
1

s s s

s

s s

D s s
sT

zoh s s

s

e e
S s e

e e

   

   





−
−

−
= −

−
 (86) 

Based on the above calculations, it is found that 

Si(s)Gzoh(s)=Hi(s)Szoh(s) is established, which implies that TII(s) 

is equal to the exact loop gain T(s). While injecting into the 

sampling path, the measured result TI(s) is not the real loop gain 

T(s) because of Ho(s)≠So(s). 
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Fig. 9.  Bode diagrams of TI(s) and TII(s) with different Ds. (a) Ds=0.2; (b) Ds=0.5; (c) Ds=0.8. 

Fig. 9 gives the Bode diagram of TI(s) and TII(s) with 

different Ds. TI(s) matches well with TII(s) only in the middle 

frequency regions, indicating that the information injection 

point plays an important role in the measured result. And the 

deviation between these two measurement schemes is related to 

the steady-state duty cycle Ds. Based on the discussions before, 

the loop gain measurement by perturbing the sampling signal is 

failed to obtain the real loop gain. 

D. Comparison Between the Existing Small-Signal 
Models and the Proposed Analytical Model 

Table II summarizes the comparison results of the existing 

small-signal models and the proposed model. As shown in 

Table II, existing studies are mostly focused on modeling Buck 

converters under analog control, where only the PWM 

produces the sideband effects [15]-[20]. In digitally controlled 

systems, the sample-and-hold also results in sideband effects, 

which complicates the system model. Up to now, no accurate 

continuous-time small-signal model of digitally controlled 

Buck converters has been presented for sideband effects 

analysis. 

On the other hand, the two-frequency model, four-frequency 

model, and the generalized multi-frequency model do improve 

the model accuracy by considering a finite number of sideband 

components, but the accuracy of these models is verified from a 

practical rather than a theoretical perspective. The matrix-based 

multi-frequency model does not consider the ripple gradient in 

the modulation signal, which may be a potential limitation for 

model accuracy. The extended-frequency model achieves 

extremely high accuracy, but the lack of analytical form makes 

it inconvenient in practical analysis. The proposed model has 

an analytical form while considering all the sideband 

components; thus, it is a promising choice for sideband effects 

analysis. 

V. EXPERIMENTAL VERIFICATION 

In this section, a prototype of the digitally controlled Buck 

converter is built to verify the correctness of the proposed 

models, as shown in Fig. 10. In the prototype, the used active 

switch is IRFP140PBF (100 V/31 A, Vishay) and the diode is 

FEP30BP (100 V/30 A, Vishay). The system specifications are 

the same as the simulation parameters in Table I. The control 

platform is based on a floating-point Digital Signal Processor 

(DSP) TMS320F28335. The injected small perturbation from 

10 Hz to 5 kHz is generated by Agitek ATA-122D Wide Band 

Amplifier with an isolation transformer. And the measured 

signals are sent to the frequency response analyzer Bode 100. 

Oscilloscope

Bode 100

ATA-122D

Control Board

Isolation Transformer

Drive Board

Semiconductors

 
Fig. 10.  Experimental setup for loop gain measurement verification. 

The implementations of the two measurement schemes are 

illustrated in Fig. 11. The measured loop gain is obtained by 

plotting the Bode diagram of -Test/Ref. In the sampling path 

perturbation scheme, the sampled output voltage of DSP is the 

sum of perturbation and the actual capacitor voltage. The actual 

capacitor voltage is the returned signal sending into the Test 

port, while the sampled output voltage is the feedforward signal 

to the Ref port. In the modulation path perturbation scheme, the 

perturbed modulation signal consists of the actual modulation 

signal and perturbation. The perturbed modulation signal sends 

to the Ref port, and the actual modulation signal transmits to the 

Test port. 
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Fig. 11.  Implementation diagram of loop gain measurement scheme. 
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Fig. 12.  Bode diagrams of the calculated and measured TI(s) together with Tavg(s) and T(s). (a) uref=10 V; (b) uref=20 V; (c) uref=30 V. 
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Fig. 13.  Bode diagrams of the calculated and measured TII(s) together with Tavg(s) and T(s). (a) uref=10 V; (b) uref=20 V; (c) uref=30 V. 
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Fig. 14.  Nyquist plots of the loop gains calculated by different models. 

When the point of information injection is placed on the 

sampling path, the calculated and measured Bode diagrams of 

TI(s) with different output voltage references uref are shown in 

Fig. 12. Similarly, the calculated responses and measured 

responses of TII(s) are plotted as shown in Fig. 13. As seen, all 

the measured responses are matched well with the calculated 

responses up to the switching frequency, which verifies the 

validity of the developed small-signal continuous-time model 

of digitally controlled Buck system. And the frequency 

responses are different along with different steady-state 

operating points. 

Clearly, the frequency responses of TI(s) are not the same as 

TII(s), which demonstrates that the measured loop gain is 

dependent on the point of injection even with the simplest 

single loop feedback control. From Fig. 12, TI(s) resembles the 

actual loop gain T(s) only in the middle frequency regions. 

From Fig. 13, TII(s) is in accord well with T(s). The fact gives 

the conclusion that the right loop gain can be measured when 

the injection point is in the modulation path but the sampling 

path perturbation scheme fails to do that. Moreover, the average 

loop gain Tavg(s) is close to the actual loop gain T(s) in the 

low-frequency regions, but the deviation enlarges as the 

frequency of interest increases. 

 : 10V/ divou

 : 5 / divLi A

 : 25V/ divpu

Trig

 
Fig. 15.  Experimental waveforms of output voltage uo, inductor current iL 
and drive voltage up with a sudden change of control parameters. 

As discussed before, no RHP pole exists in T(s). Therefore, 

Nyquist criterion is adopted here for stability prediction rather 

than Bode diagram criterion due to the presence of multiple 

cutoff frequencies. When uref=30 V, the Nyquist plots of T(s) 

and Tavg(s) with kp=0.9273 and ki=400.9 are shown in Fig. 14. 

The blue Nyquist curve encircles the critical point (-1, j0), 

which means that the system is unstable. In contrast, the system 

is predicted to be stable by the average model. In Fig. 15, the 

experimental waveforms of the converter under this case are 

presented. When the signal Trig represented by the green line 

steps into a high level, the controller parameters are changed to 

kp=0.9273 and ki=400.9. As a result, both the output voltage uo 

and inductor current iL begin to fluctuate. Finally, the system 

exhibits unstable phenomena in steady-state, verifying the 

credibility of the proposed model in offering accurate stability 

information. It is worth noting that this instability cannot be 

predicted by the conventional average model. 

VI. CONCLUSION 

An accurate small-signal continuous-time model of digitally 

controlled Buck system operating in continuous-conduction 

mode under constant-frequency voltage-mode control is 
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developed and experimentally verified. All the sideband 

components (ω±kωs, k∈) introduced by the PWM and the 

sample-and-hold are explicitly incorporated into the 

small-signal model. No approximation was made in the 

modeling process so that the model is completely accurate in 

the full frequency domain, which breaks the limit of Nyquist 

frequency. Also, the analytical form of the loop gain expression, 

which consists of two infinite series, was derived. 

On the other hand, a quantitative relation between the 

measured loop gain and the location of the injection point can 

be derived, by using the harmonic transfer function model. It 

has been theoretically proved and experimentally verified that 

the modulation path perturbation scheme and the sampling path 

perturbation scheme lead to different loop gain measurement 

results. The measurement results of different perturbation 

schemes only match well in the area around the cutoff 

frequency. Besides, the conditions that the measured loop gain 

is the actual loop gain are given. 

The proposed small-signal model can be generalized to the 

case of the double-edge modulator. A detailed analysis of the 

influence of different modulation strategies on system stability 

in different digitally controlled DC/DC converters will be the 

topic of a follow-up paper. 

APPENDIX 

PROOF OF LEMMA 1 

Choose    and define a function with a period of 2π 

 ( ) ( )cos ,Tf t t t  = −    (A1) 

Applying Fourier transform to fT(t), the Fourier coefficients 

(n=0, 1, 2, …) are 
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Then, fT(t) can be represented as 
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Selecting t=π yields 
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Therefore, the following equation is established 
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Choose ( )0,2x    and define two sum functions 
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Taking the derivatives of (A7) and (A8) yield 
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Based on the following relationships 
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(A9) and (A10) can be rewritten as 

 ( ) ( ) ( )
( )sin cos

2
cos cos

sin
2

K

x
Kx

S x x Kx
x



  
  
   = +

  
    

 (A13) 

 ( ) ( ) ( )
( )sin cos

2
sin cos

sin
2

K

x
Kx

P x x Kx
x



  
  
   = − +

  
    

 (A14) 

According to Riemann-Lebesgue Lemma [35], it is derived that 
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which implies that S∞(x) and P∞(x) are constants. 

Selecting x=1 and K=∞ yields 
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Define a function χ1(t)∈L1
[-π, π] with a period of 2π 
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The Fourier coefficients of χ1(t) are deduced as 
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Therefore, χ1(t) can be represented as 
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Choosing t=0 gives 
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which implies that 

 ( )S x  =  (A22) 

Similarly, when x=1 and K=∞, 
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Define a function χ2(t)∈L1
[-π, π] with a period of 2π 
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The Fourier coefficients of χ2(t) are calculated as 
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Then, χ2(t) is represented by the Fourier series as 
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Based on χ2(0)=0 and (A6), it is derived that 
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Therefore, 
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Considering the following series 
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it can be rewritten by Euler formula, 
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According to (A22) and (A28), (A30) can be rewritten as 

 ( ) ( )cot 2
j

j j

e
B x j j

e e



 
   

−
= + =

−
 (A31) 

Then, the following equation is established 
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The infinite series can be represented as 
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According to (A32), (A33) can be deduced as 
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Proof is completed. 

 

PROOF OF LEMMA 2 
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with ( )0 1 2f = .  y  denotes the real-part of the complex 

number y. The nth Fourier coefficient is obtained as  
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According to Poisson Summation Formula [36], the following 

equation is established 
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Substituting (B1) into (B3) yields 
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The infinite series can be expressed as 
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Based on (B4), (B5) can be rewritten as 
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The sum of an infinite series of exponential functions is easily 

derived as 
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Therefore, (B6) can be further simplified as 
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Proof is completed. 
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