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Abstract—The instability of power systems comprising 
multiple LCL-filtered grid-connected DC/AC inverters connected 
in parallel, can be caused by any individual inverter due to mutual 
coupling through the grid impedance. For the stability analysis of 
a multi-paralleled DC/AC inverters system, an effective technique 
capable to diagnose which particular inverter (i.e. “trouble 
maker”) causes instability to the overall system has not yet been 
developed. In this paper, a novel auto-identification method is 
proposed to detect the “trouble maker(s)” of instability in a multi-
paralleled inverters system, based on the comparison between the 
Root Mean Square (RMS) value of harmonic voltage at the point 
of common coupling (PCC) and the harmonic voltages across the 
filters capacitors. The theoretical analysis of the proposed 
identification method is presented in details in this paper. Also, 
simulation and experimental results are provided for verification 
of the effectiveness of the proposed technique. 

Index Terms--Grid-connected DC/AC inverter, Multi-
paralleled inverters, Internal instability, Auto-identification 
method, LCL-filter. 

I.  INTRODUCTION 
With the rapid development of renewable energy sources, 

grid-connected DC/AC inverters have been researched widely 
as interfaces connecting the renewable energy sources to the 
electric grid [1]. The DC/AC inverters with an LCL-type 
output filter are considered as a preferred choice, due to better 
suppression of switching harmonics and lower cost [2]. 
However, the inherent resonance of LCL filters may cause 
instability to the overall system. Different damping methods 
have been studied to address this challenge, e.g. [3], [4]. The 
stability of an inverter system has been analyzed by an  
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impedance-based approach in [5] and a state-space-based 
method in [6]. Utilizing these methods, many measures can be 
used to improve the system stability [7],[8]. 

However, even if an inverter is individually well designed 
and stable, when multiple inverters are connected in parallel to 
the electric grid, new problems may still appear. Especially, the 
interaction between the multi-paralleled inverters system and 
the electric grid may lead to resonance and even instability [8]-
[11]. The interactive instability (i.e. instability caused by the 
interaction between the multi-paralleled inverters and the grid) 
often occurs under weak grid conditions. In [13], [14], and [15], 
the authors analyzed the interactive stability of DC/AC 
inverters systems by applying the impedance-based method. 
The interactive instability results from the interactions between 
the inner current or voltage control loops and the network 
passive components and the grid impedance. The interactive 
instability of multi-paralleled grid-connected inverters systems 
is closely related to the electric grid impedance and the number 
of paralleled inverters. However, this method has been 
established based on the precondition that each inverter system 
is internally stable under an ideal grid state condition. 

Meanwhile, the internal stability of a multi-paralleled 
inverters system has also been studied extensively. Differently 
from the interactive instability, the internal instability may 
occur even under stiff grid conditions. It results from the 
DC/AC inverter parameters drift, improper design or internal 
errors. In [16], [17], and [18], the internal stability of multi-
paralleled grid-connected inverters systems has been analyzed 
and it was concluded that the internal stability is only 
determined by the loop gain of the current control loop of the 
inverter, independently of the grid impedance and the number 
of paralleled inverters. This means that the internal instability 
of the inverter system may be caused by improper controller 
parameters, incorrect current sampling, and unreasonable filter 
design. 

Different measures have been taken to improve the stability 
of multi-parallel inverter systems [18]-[21]. In [18], the LCL 
filter and control parameters were redesigned to meet the 
requirements of internal and interactive stability, while the 
active damper literature [19], [20] and improved notch filter 
[21] were used to solve the stability problem of multiple 
parallel inverters system. 

In real industrial applications, it is important to exactly 
identify the inverter (named as “trouble maker”) that causes 
instability [20], [23], [24], when the overall multi-paralleled 
grid-connected inverters system is unstable. The state-space-
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based method can be used to tackle this problem through the 
participation factor (PF) by using the space-state matrix [20]. 
Nevertheless, this method is not appropriate in a large-scale 
power system with a large number of DC/AC converters 
connected, due to the complex formulation of the state matrices. 
Wang et al.[23] analyzed that the contribution of a given 
inverter on system stability can be determined by the ratio of 
inverter output admittance to the equivalent admittance of the 
rest of the system. Cao et al. in [24] proposed a method to 
determine the responsibility of each inverter on system 
harmonic instability quantitatively, based on global admittance. 
However, these two methods in [22] and [23] can be only used 
subject to the assumption that each inverter in the overall 
system is internally stable. Thus, when the overall multi-
paralleled grid-connected inverters system is in internal 
instability conditions, it is important to apply a method for the 
identification of the particular “trouble maker(s)” DC/AC 
inverter(s). However, such an effective method is currently not 
available. 

In order to fill this gap, in this paper, a simple and effective 
method is proposed to diagnose which inverter(s) is (are) the 
“trouble maker(s)”, when internal instability has been 
developed in a multi-paralleled grid-connected inverters system. 
It is based on comparison between the RMS value of harmonic 
voltage at the point of common coupling (PCC) and the 
harmonic voltage across the filters capacitors when the internal 
instability occurs in the overall interconnected system.  

The rest of this paper is organized as follows. The instability 
contribution analysis based on impedance methods is carried 
out in Section II. In Section III, the proposed method to 
automatically identify the “trouble maker(s)” of internal 
instability is introduced. Then, the simulation results based on 
the MATLAB/ Simulink platform, as well as the experimental 
results based on the control hardware of dSPACE DS1202 are 
presented in Section IV in order to verify the effectiveness of 
the proposed method. Finally, conclusions are drawn in Section 
V. 

II.  MODELING OF MULTI-PARALLELED GRID-CONNECTED 
INVERTERS SYSTEM 
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Fig.1. Topology of the multi-paralleled grid-connected inverters system. 

Fig. 1 shows N paralleled inverters are connected to the 
electric grid at the PCC. Vbi is the output voltage of #i inverter. 
Vci represents the capacitor voltage of the LCL-filter of the #i 
inverter. The voltage of PCC is represented as VPCC . Li1 , 
Li2 and Ci(i=1, 2,…, N) represent the inverter-side inductor, 
grid-side inductor, and filter capacitor, respectively. Lg is the 
grid inductor. igi , igtotal  represent the grid-injected current of 
Inverter #i and the total grid-injected current of the multi-
paralleled grid-connected inverters system, respectively. In 
this paper, the PLL bandwidth is designed to be 14 Hz to 
ensure that the system does not have synchronization 
instability under weak grid conditions [25]. The current 
control structure of each DC/AC inverter is shown in Fig. 2. 
The grid-injected current ig is controlled to track its reference 
igref . Gcሺsሻ  represents the transfer function of the current 
controller. The gain of the inverter, Ginv(s) is equal to 1, when 
the Space Vector Pulse Width Modulation (SVPWM) is used. 
Gd(s) is the delay time of the DC/AC inverter, which includes 
the computational delay and the modulation delay. Yf1(s) and 
Yf2(s) are the transfer functions of the LCL filter. 

VPCC

−

−
+

+
Vb

Ginv(s)
igref ig

Yf2( )s

Yf1( )sGd(s)Gc(s)

 
Fig.2. Current control block diagram of a grid-connected DC/AC inverter. 

A PR controller in the stationary reference frame (the α-β 
frame) is chosen as current controller in this paper. The 
transfer function of the PR controller is described by 

 r
c P 2 2

f

( ) K sG s K
s ω

= +
+

 (1)

where ωf  is the fundamental angular frequency, while KP and 
Kr are the proportional gain and the resonant gain, respectively, 
of the PR controller. 

The transfer function of the delay time of the DC/AC 
inverter is described by a third-order Pade approximation, 
which is written as:  

 s

3 2
1.5 s s s

d 3 2
s s s

(1.5 ) 12(1.5 ) 60(1.5 ) 120( )
(1.5 ) 12(1.5 ) 60(1.5 ) 120

T T s T s T sG s e
T s T s T s

− − + − += ≈
+ + + (2)

where Ts is the sampling period. 
Yf1(s)and Yf2(s)  are the transfer functions from the grid-

connected current ig to the inverter output voltage Vb and from 
the grid-connected current ig  to the voltage of PCC, 
respectively. Yf1(s) and Yf2(s) are expressed as: 

 

C
f1

11 C 11 12 12 C

11 C
f 2

11 C 11 12 12 C

( )( )  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

Z sY s
Z s Z s Z s Z s Z s Z s

Z s Z sY s
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=
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+=
+ +

(3)

Then, the grid-injected current can be derived as follows: 

 f 2
g gref PCC

( ) ( )( ) ( ) ( )
1 ( ) 1 ( )

T s Y si s i s V s
T s T s

= −
+ + (4)

where T(s) is the open-loop gain of the current loop. T(s) is 
described as: 
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Fig.3.  (a) Impedance model of a grid-connected DC/AC inverter, (b) 
impedance model of a multi-parallel grid-connected inverters system. 

The current control block of the grid-injected current is 
equivalent to the Norton model, which is shown in Fig. 3(a). 
Gcigref and Yo are the controlled current source and equivalent 
output admittance of the inverter, respectively. They are given 
by: 

 f 2
c gref gref o

( ) ( )( ) ( ),   ( )
1 ( ) 1 ( )

T s Y sG i s i s Y s
T s T s

= =
+ + . 

(6)

Then, the Norton models of N-paralleled grid-connected 
inverters are presented in Fig. 3(b). Yo1 , Yo2 ,…, YoN are the 
inverter output admittances and Yg is the grid admittance. The 
grid-injected currents of the individual inverters, ig1, ig2,…, igN 
are deduced as: 
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where Gii and Mi,j represent the influence of the Gciigrefi of the 
#i inverter and of theGcjigrefj of the #j inverter, respectively, on 
the value of  igi, respectively. The influence of the electric grid 
on igi is described by Ri. 

The same denominator polynomials appear in (8). Thus, the 
stability of the grid-injected currents of the individual 
inverters, ig1 ,ig2 ,…, igN , are determined by the roots of the 
denominator polynomial in (8). Furthermore, with the 
polynomial in (8) divided by Yg, a common polynomial (9) 
can be derived: 

 oi o1 o2 oN
i m

m g

 =
1+

Y Y Y YS T
T Y

+ + += 
，

 
(9)

It is assumed that each controlled current source Gciigrefi is 
stable and the output admittances of the individual inverters do 
not include poles in the right half-plane. Then, the stability of 
the grid-injected current of each individual inverter also 

depends on Tm . When Tm satisfies the Nyquist stability 
criterion, then the grid-injected current is stable, otherwise it is 
unstable. 

Since the non-diagonal elements of (7) are not zero, the 
multi-paralleled grid-connected inverters are always coupled 
[10]. The coupling between the DC/AC inverters becomes 
stronger, as the grid impedance increases. Thus, the instability 
in a multi-paralleled inverters system finally results in that 
each of the grid-injected currents of the inverters and the 
voltage at the PCC are oscillating. From the waveforms of 
output voltage and current, it is difficult to identify which 
inverter (or inverters) causes the instability in the overall 
interconnected system.  

III.  PROPOSED METHOD TO AUTOMATICALLY IDENTIFY THE 
UNSTABLE INVERTER WITHIN A MULTI-PARALLELED 

INVERTERS SYSTEM 
When oscillations and instabilities have been developed in a 

multi-paralleled DC/AC inverters system, each inverter of the 
system will not be providing power to the PCC. This may lead 
to an energy deficit in the electric grid and the inability to 
supply power to the grid consumers. Thus, a method for the 
automatic identification of the unstable inverter is useful and 
meaningful. 

According to Fig. 1, assuming that Inverter #i operates 
under internal instability conditions, then an unstable control 
signal will cause an unstable voltage Vbi, which further causes 
oscillation in the capacitor voltage Vci and in the voltage of the 
PCC through the LCL-filter, since the following equations 
apply:  

 bi i1 Li1 ci

PCC ci i2 gi

,V sL i V
V V sL i

= +
= −  (10)

Thus, as a source of oscillation and instability, Inverter #i 
delivers the unstable currents to the grid and other inverters, 
causing instability of the entire multi-paralleled grid-connected 
inverters system. 

When the system is in steady state, the voltage of inductor 
Li2 is significantly lower than VPCC and then Vci can be viewed 
as almost equal to VPCC. If Inverter #i causes system internal 
instability, then more high order harmonic currents of igiwill 
exist in the grid inductor Li2 , causing more higher order 
harmonic voltages across inductor Li2, which can be derived as 
 PCCh cih i2 gihV V sL i= −  (11)
where VPCCh and Vcih are the root mean square (RMS) values of 
high order harmonic voltages in VPCC and Vci, respectively, not 
including the fundamental component and dominant lower 
harmonics. According to [13]-[14], when the switching 
frequency of the DC/AC inverters is 10 kHz, then the unstable 
resonances of the multi-paralleled inverter system caused by 
the internal current control loop, exhibits a frequency that is up 
to several kHz. Thus, the high order harmonic current passing 
through the grid-side inductor Li2 comprises an important 
indication for the internal instability of the system. 

When the system is in instability, the voltage of inductor Li2 
is much higher than the voltage in stability and then Vci is not 
equal to VPCC.Thus, if any DC/AC inverter is operating under 
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internal instability conditions in a large multi-paralleled 
inverters system, it can be diagnosed as a “trouble maker” 
inverter from the overall inverters system by comparing the 
values of Vch and 𝑉PCCh developed in each individual inverter. 
In the following of this paper, the relationship between Vch and 𝑉PCCh is analyzed in details, when the system includes a single 
inverter (A) and N-paralleled inverters (B), respectively. Based 
on the analysis of (A) and (B), five steps used to automatically 
detect the “trouble maker(s)” DC/AC inverter(s) are proposed. 
A.  Comparison between Vch  and VPCCh  in a Single Inverter 
System 
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C
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Zg

Vg

+
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+
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Fig.4 Simplified model of inverter when analyzing the relationship 

between Vch and VPCCh. 

When comparing the capacitor voltage Vc and the voltage at 
PCC, a simplified model of the DC/AC inverter shown in Fig. 
4 is used for further analysis. Pure inductance is chosen as grid 
impedance. A single-phase grid-connected inverter system is 
used to derive the relationship between VPCC and Vc, which is 
also extended to a three-phase inverter system. The 
relationship between VPCC and Vc is written as: 

 
c 12 g PCC

c 12 g g g( )
V Z i V
V Z Z i V

= +

= + +
 (12)

Further simplified, the relationship between VPCC  and Vc is 
rewritten as: 

 

gPCC 12

c c 12 g

ghPCCh 12

ch ch 12 g

=1 (1 )

=1 (1 )

VV Z
V V Z Z

VV Z
V V Z Z
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+
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 (13)

When the multi-paralleled grid-connected inverter system 
is in instability, VPCCh and Vch , which are the parts of high 
frequency harmonics of VPCC  and Vc , are much higher than 
their corresponding values in the stable state. Moreover, the 
grid voltage Vg  is pure and doesn’t include high frequency 
harmonics. Then, the grid voltage at high frequency, Vgh  is 
equal to 0. Therefore, equation (13) is rewritten as: 

 PCCh 12 12

ch 12 g 12

=1 =1 1
g

V Z L
V Z Z L L

− − <
+ +

 (14)

Equation (14) indicates that the oscillating high frequency 
voltage is attenuated from Vc  to VPCC , when the DC/AC 
inverter is under the internal instability condition. Otherwise, 
VPCCh is closer to Vch as Lg improving is increased to higher 
values. 

B.  Comparison between Vchi (i=1,2,…,N) and VPCCh in the 
Paralleled Grid-connected Inverters System 

When analyzing the relationship between Vcih (i=1,2,…,N) 
and VPCCh, the N-paralleled grid-connected inverters system is 
equivalent to the model presented Fig. 5. The N-paralleled 
inverters have identical parameters of LCL output filter. 
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Fig. 5. Simplified model of an N-paralleled grid-connected inverters system 

when analyzing the relationship between Vchi (i=1, 2, …, N) and VPCCh. 

According to Fig. 5, the relationship between the filter 
capacitor voltages, the grid currents and voltage at PCC can  
be derived as: 
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In (17), the symbol “||” represents the parallel combination 
of impedances. Since G11=G21=…=GN1, G12 = G22 =…= GN2, 
…, G1N = G2N = … = GNN, G1(N+1) = G2(N+1) = … = GN(N+1), the 
ratio of VPCC to Vc1  can be derived as (18) and the ratio of 
VPCCh and Vc1h can be derived as (19): 

PCC c2 cN

22 N2c1 c1 c1

12 32 N2 g 12 22 (N 1)2 g

g

g 22 32 N2 gc1

12 22 N2 12

1 11 ( + +
1 1

|| || || || || || || ||

1 1 )|| || || ||
1 1

|| || ||

V V V
Z ZV V V

Z Z Z Z Z Z Z Z
V

Z Z Z Z ZV
Z Z Z Z

−

= +
+ +

+ −
+ +



 




(18)
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(19)

Similarly, when the N-paralleled grid-connected inverters 
system is in stability, very small high frequency harmonics are 
developed in Vc1 ,Vc2 ,…, VcN  and VPCC . Then, the values of 
Vc1,Vc2,…, VcN at the fundamental frequency can be regarded 
as equal to Vg. Utilizing an identical equation shown in (20) 
and combining (18), the ratio of Vc1toVPCC is equal to 1.  

 

22 N2

12 32 N2 g 12 22 (N 1)2 g
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|| || || || || || || ||
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

 
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

 (20)

Therefore, the values of VPCC and Vc1 are equal when the 
system of N-paralleled grid-connected inverters is in stability.  

When the N-paralleled grid-connected inverters system is 
in instability, it is assumed that Inverter #1 is internal 
instability and the rest Inverters #i (i=2, 3,… , N) are under 
internal stable operating conditions. Since Inverter #1 is 
internal instability, then it holds that Vc1h>Vc2h,…,Vc1h>VcNh. 
As assumed above, Vgh is equal to 0. Therefore, together with 
(19) and (20), the ratio of  Vc1h to VPCCh can be derived as 
follows: 

 PCCh

c1h

1V
V

<  (21).

Equation (21) indicates that the oscillating high frequency 
voltage is attenuated from Vc1 to VPCC, when Inverter #1 is in 
internal instability. 
C.  The Proposed Method to Automatically Identify the 
“Trouble Maker(s)” within the Inverters System 

Five steps are used in the proposed method to detect the 
“trouble maker(s)” of instability in the multi-paralleled 
inverters system, when internal instability occurs. For the 
analyzed cases in this paper, the grid voltage is set equal to 
110V. The flowchart of the proposed diagnosis process is 
shown in Fig. 6.  
Step1: Calculate the values of Vcih and VPCCh. According to 
the IEEE Std 519-2014, if the rated PCC voltage is below 1 
kV, the total harmonic distortion (THD) of the PCC voltage 
should be within 8%. This paper chooses the THD value of 
VPCC greater at 8% as the unstable condition. Thus, if 
Vcih< 8.8 V,VPCCh< 8.8 V, then the multi-paralleled inverters 
system is stable and the process ends. Otherwise, the multi-
paralleled inverters system is unstable and the diagnosis 
process continues to Step 2 described next, in order to detect 
the “trouble maker” inverter(s). 
Step2: Calculate the values of Vcih-VPCCh , and record the 
Inverter #k with the maximum value of Vcih-VPCCh. According 
to (21), the Inverter #k is generally found from the inverters 
with the value of Vcih-VPCCh  higher than 0. 

Step 3: Disconnect Inverter #k from the multi-paralleled 
inverters system and operate only the remaining system. 
Recalculate the values of Vcih,VPCCh. 
Step 4: Investigate whether Vcih< 8.8 V,VPCCh< 8.8 V is met. 
If these conditions are not satisfied, then the remaining system 
is still unstable and the proposed diagnosis process returns to 
Step 2 in order to calculate Vcih-VPCCh again and disable the 
operation of Inverter #k until the overall system becomes 
stable. 
Step 5: If Vcih< 8.8 V,VPCCh< 8.8 V, then this implies that the 
multi-paralleled inverters system is stable. All disabled 
Inverters #k are recorded and they constitute the set of 
“trouble makers” in the multi-paralleled inverters system.  

IV.  SIMULATION AND EXPERIMENTAL VERIFICATION 
In order to verify the effectiveness of the proposed method, 

four 3kW/3-phase/110V paralleled inverters were modeled for 
simulations in the MATLAB/Simulink platform, where the 
parameters of system are listed in Table I. Also, three 
paralleled DC/AC inverter prototypes of 2.4kW/3-phase/110V 
were constructed for experiments.  
 

Record all unstable Inverter(s) 
#k (trouble maker(s))

Start

Calculate  Vcih, VPCCh 

 

Yes

No

Yes

No

End

Calculate the values of Vcih -VPCCh, 
and record the Inverter #k with the 

maximum value of Vcih-VPCCh

Remove Inverter #k from system

Run the system, calculate Vcih, 
VPCCh again

Is inverters system stable?

Is inverters system stable?

 
Fig. 6. The flowchart of the proposed auto-identification method. 

110 V(RMS)
50 Hz，10 kHz

1.2 mH
6 uF

0.8 mH, 2 mH
350 V

1.2 mH

TABLE Ⅰ 
SIMULATION AND EXPERIMENT PARAMETERS 

Symbols Description Value

Grid voltage
Grid, Switching and sampling frequency

Inverter side inductor

Grid side inductor
Filter capacitor

Grid inductor
DC bus voltage

Vg

f , fs

L1

L2

Lg

C

Udc
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A.  Simulation Verification 
The main simulation parameters of the DC/AC inverters are 

listed in Table I. Fig. 7 shows the closed-loop pole-zero 
movement of T(s) with the control proportional gain of KP in 
variation. It can be seen that the inverter is unstable, when KP 
is 24 or 30. 
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Fig.7. Closed-loop pole-zero movement of T(s) under KPvariation.  

Two different operating cases were investigated: 
Case Ι: Only one unstable inverter in the multi-paralleled 
inverters system (Lg=0.8 mH)  

Case Ι shows how to identify the unstable inverter within a 
multi-paralleled inverters system interconnected with a stiff 
grid. The main control parameters are shown in Table II. The 
simulated PCC voltage and the total grid-injected currents of 
the entire inverters system is shown in Fig. 8 (a) and (b), 

TABLE Ⅱ 
CONTROLLER PARAMETERS in CASE Ⅰ 

Inverter number

Inverter #1

Inverter #2

Inverter #3

Inverter #4

The value of PR controller Stability

KP1

KP2

KP3

KP4

Kr1

Kr2

Kr3

Kr4

30

10

10

10

1000

1000

1000

1000

unstable

stable

stable

stable  
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(c)  
Fig.8. Simulation results in Case Ι: (a) waveform of the PCC voltage when 
disconnecting Inverter #1. (b) waveform of the total grid-injected current of 

the inverters system when disconnecting Inverter #1. (c) waveform of the total 
grid-injected current of the inverters system when disconnecting Inverter #2. 

respectively. The filtered RMS values Vc1h,Vc2h, Vc3h,Vc4h and 
VPCCh are shown in Fig. 9. Before the time instant of 0.3 s, it 
holds that Vc1h > 8.8 V, Vc2h > 8.8 V, Vc3h > 8.8 V, Vc4h > 8.8 V 
and VPCCh > 8.8 V, indicating that the system is unstable. 
According to Fig.9, Vc1h-VPCCh ≈ 80 V, Vc2h-VPCCh ≈ -5 V, Vc3h-
VPCCh ≈ -5 V, Vc4h-VPCCh ≈ -5 V. The Inverter #1 is 
disconnected from the multi-paralleled inverters system at 0.3 
s and the remaining system continues to operate. Then, it 
holds that Vc1h < 8.8 V, Vc2h< 8.8 V, Vc3h< 8.8 V, Vc4h< 8.8 V 
and VPCCh < 8.8 V. It is concluded that DC/AC Inverter #1 is in 
internal instability and it can be identified as a “trouble 
maker”.  

According to equation (9), Tm (with Inverter #1) or Tm’ 
(without Inverter #1), the ratio of the output admittances of 
inverters to grid admittance, can be used to judge the stability 
of inverters system. If Tm or Tm’ satisfies the Nyquist stability 
criteria, then the inverters system is stable, otherwise it is 
unstable. As shown in Fig. 10(a), the Nyquist curve of Tm and 
Tm’ does not cross from the left side of (-1, j0). In Fig. 10(b), 
pole-zero plot of Tm (with Inverter #1) includes two right-half-
plane poles and pole-zero plot of Tm’ (without Inverter #1) has 
no poles in the right half plane. Because the number of turns 
of the Nyquist curve of Tm around the (-1, j0) point 
counterclockwise is equal to 0, the number of poles of Tm in 
the right half plane is equal to 2. It means that Tm does not 
meet the Nyquist stability criteria. Similarly, Tm’ meets the 
Nyquist stability criteria. Therefore, when Inverter #1 is 
disconnected, the inverters system becomes stable again. Fig. 
8 (a) and (b) also demonstrate that the multi-paralleled 
inverters system becomes stable again, when Inverter #1 is 
disconnected after the time instant of 0.3 s. 
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Fig.9. The RMS values of Vc1h, Vc2h, Vc3h, Vc4h and VPCCh in Case Ι. 
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Fig. 10. （a）Nyquist plot of Tm and Tm’ (Tm=( Y01+Y02+Y03+Y04)/Yg , 

Tm’=(Y02+Y03+Y04)/Yg), (b) pole-zero plot of Tm and Tm’. 

In contrast, as shown in Fig. 8(c), the multi-paralleled 
inverters system is still unstable when the operation of Inverter 
#2 is disabled after the time instant of 0.3 s. 
Case II: Multi-unstable inverters in system (Lg=2mH) 

TABLE Ⅲ  
CONTROLLER PARAMETERS in CASE Ⅱ  

Inverter number

Inverter #1

Inverter #2

Inverter #3

Inverter #4

The value of PR controller Stability

KP1

KP2

KP3

KP4

Kr1

Kr2

Kr3

Kr4

30

24

10

10

1000

1000

1000

1000

unstable

unstable

stable

stable
 

Case II corresponds to an example where the proposed 
method is utilized to identify two unstable inverters within a 
multi-paralleled inverters system. The controller parameters in 
Case II are shown in Table Ⅲ. Fig. 11 shows the simulated 
PCC voltage and the total grid-injected current of the inverters 
system. Fig. 12 shows the filtered RMS values of Vc1h, Vc2h, 

Vc3h ,Vc4h and VPCCh . Before the time instant of 0.3 s, the 
voltage of PCC and the total grid-injected current of the 
inverters system are oscillating. Meanwhile, Fig. 12 shows 
that Vc1h > 8.8 V, Vc2h > 8.8 V, Vc3h > 8.8 V, Vc4h > 8.8 V, and 
VPCCh > 8.8 V, which indicates that the multi-paralleled 
inverters system is unstable. At the same time, Vc1h-VPCCh ≈ 73 
V, Vc2h-VPCCh ≈ 67 V, Vc3h-VPCCh ≈ 2 V, and Vc4h-VPCCh ≈ 2V. 
Then, Inverter #1 with the maximum of Vcih-VPCCh is 
disconnected from the inverters system at 0.3 s and only the 
remaining system continues to operate. After the time of 0.3 s 
Vc2h > 8V, Vc3h > 8V, Vc4h > 8V, VPCCh > 8V, indicating that the 
remaining inverters system is still unstable. Fig. 11(a) and (b) 
also show that the remaining inverters system is unstable 
between 0.3 s and 0.4 s, due to Vc2h-VPCCh≈ 61 V >0 V, Vc3h-
VPCCh≈ -13 V <0 V , Vc4h-VPCCh≈ -13 V < 0 V . At 0.4 s, the   
Inverter #2 is disconnected and the remaining system turns 
back to stable, where from Fig. 12, the filters capacitors 
harmonic voltages and the PCC voltage become Vc1h < 8.8 V, 
Vc2h < 8.8 V, Vc3h < 8.8 V, Vc4h < 8.8 V, and VPCCh < 8.8 V. 
Therefore, the Inverter #1 and #2 can be identified as “trouble 
makers”.  
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Fig.11. Simulation results in Case II: (a) waveform of the PCC voltage when 
disconnecting Inverter #1 and #2, respectively.  (b) waveform of the total grid-
injected current of the inverters system when disconnecting Inverter #1 and #2, 

respectively.  
 

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:44:12 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2021.3053881, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10
20
30
40
50
60
70
80
90

100
110

VC1h

VC2h

VC3h VC4h～ 

VPCCh

Time(s)

 R
M

S 
va

lu
e(

V
)

 
Fig.12. RMS values of Vc1h, Vc2h, Vc3h, Vc4h and VPCCh in Case II. 

 

Inverter #1 Inverter #2 Inverter #3

 
Fig. 13. Experimental Setup. 

B.  Experimental Verification 
In order to further verify the effectiveness of the proposed 

method, three paralleled experimental DC/AC inverter 
prototypes of 110V/50Hz/2.4kW were implemented based on 
the dSPACE DS1202 control unit, the Danfoss-FC320 AC 
power drive and the Chroma 62150H-600S power supply. All 
the experimental waveforms were captured using a Yokogawa 
DL 1640 digital oscilloscope.  The photo of the experimental 
setup is shown in Fig. 13. 
     During the experiment, the parameters (except for the 
reference currents) of the inverters in run are the same as those 
in the simulation. 
Case Ι: Only one unstable inverter in the multi-paralleled 
inverters system (Lg=0.8 mH) 
     Fig. 14 shows the measured PCC voltage and total grid-
injected currents of the entire inverters system. 

As shown in Fig. 14, before T1, the PCC voltage and the 
total grid-injected currents are unstable. Additionally, it holds 
that Vc1h- VPCCh≈ 50 V, Vc2h- VPCCh≈ -16 V, and Vc2h- VPCCh≈ -
17 V. Then, at the time instant of T1, Inverter #1 is 
disconnected from the multi-paralleled inverters system and 
only the remaining system continues to operate, resulting in 
Vc1h < 8.8 V, Vc2h < 8.8 V, Vc3h < 8.8 V, and VPCCh < 8.8 V. 
Therefore, it is indicated that Inverter #1 is under internal 
instability operating condition and can be identified as a 
“trouble maker”.  
Case II: Multi-unstable inverters in system (Lg=2mH) 

Fig. 15 shows that the PCC voltage and the total grid-
injected currents of the entire inverters system, where it can be 
seen that before the time instant of T2, the system is unstable 
sinceVc1h-VPCCh ≈ 40 V, Vc2h-VPCCh ≈ 35 V and Vc3h-VPCCh ≈ 2 V. 

Next, at time of T2, Inverter #1 with the maximum of Vcih -
VPCCh is disconnected from the multi-paralleled inverters 
system and only the remaining system keeps operation. It can 
be seen that Vc2h > 8.8 V, Vc3h > 8.8 V and VPCCh > 8.8 V , 
indicating that the remaining inverters system is still unstable. 
At time of T3, Inverter #2 is removed further, where it can be 
seen that Vc3h < 8.8 V and VPCCh < 8.8 V , showing that 
inverters system with only Inverter #3 becomes stable. Thus, 
Inverter #1 and #2 can be identified as “trouble makers”. 
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T1  
Fig.14. Experimental results of the system in Case Ι: waveforms of the PCC 
voltage of phase A and the total grid-injected current of the inverters system. 
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Fig.15. Experimental results of the system in Case Ⅱ: waveforms of the 

PCC voltage of phase A and the total grid-injected current of the inverters 
system. 

V.  CONCLUSION 
In this paper, a novel method to automatically identify the 

“trouble maker(s)” for internal instability in a multi-paralleled 
grid-connected inverters system has been proposed. The 
proposed diagnosis technique is based on the comparison 
between the RMS value of harmonic voltage at the PCC and 
the harmonic voltages across the filters capacitors. It 
comprises five steps to detect which individual inverter (or 
inverters) causes the instability of the overall multi-paralleled 
inverters system. The effectiveness of the proposed method 
has been verified by simulations and experiments exactly.  

In future work it will be verified whether the proposed 
auto-identification method can also be used for the 
identification of the interactive instability that appears in a 
power -electronics-based AC Grid. Certainly, the auto-
identification method of the instability that caused by the 
improperly designed PLL need be further explored. 
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