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Abstract—Magnetic levitation positioning technology has at-
tracted considerable research efforts and dedicated attention due
to its extremely attractive features. The technology offers high-
precision, contactless, dust/lubricant-free, multi-axis, and large-
stroke positioning. In this work, we focus on the accurate and
smooth tracking problem of a multi-axis magnetically levitated
(maglev) planar positioning system for a specific S-curve refer-
ence trajectory. The floating characteristics and the multi-axis
coupling make accurate identification of the system dynamics
difficult, which lead to a challenge to design a high performance
control system. Here, the tracking task is achieved by a 2-
Degree of Freedom (DoF) controller consisting of a feedforward
controller and a robust stabilizing feedback controller with
a prescribed sparsity pattern. The approach proposed in this
paper utilizes the basis of an H∞ controller formulation and a
suitably established convex inner approximation. Particularly, a
subset of robust stabilizable controllers with prescribed structural
constraints is characterized in the parameter space, and so thus
the re-formulated convex optimization problem can be easily
solved by several powerful numerical algorithms and solvers.
With this approach, the robust stability of the overall system
is ensured with a satisfactory system performance despite the
presence of parametric uncertainties. Furthermore, experimental
results clearly demonstrate the effectiveness of the proposed
approach.

Index Terms—Magnetic levitation, maglev, positioning, convex
optimization, convex inner approximation, H∞ control, robust
control, parametric uncertainty, sparsity.

I. INTRODUCTION

MAGNETIC levitation is a promising motion solution
methodology to provide integrated bearing and ac-

tuation for a positioning system [1]–[3], and it is char-
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acterized by the merits of high-precision, multi-axis, large-
stroke, non-contact, frictionless, dust/lubricant-free, vacuum
compatible and so on. As a result, such magnetically levitated
(maglev) planar positioning systems are suitable for many
applications with extremely high requirements. For exam-
ple, in semiconductor manufacturing, the Extreme Ultraviolet
(EUV) lithography procedure requires a vacuum environment
and ultra-high motion precision in a large stroke. Also, for
certain applications that the friction is a concern of high-
accuracy tracking [4], the maglev technology can certainly
avoid its undesirable effect. Furthermore, some manufacturing
processes, such as pharmaceutical manufacturing, are sensitive
to the contaminating dust generated by the traditional motion
systems equipped with contact bearings, etc.; and thus the
dust/lubricant-free, vacuum compatible feature of the maglev
motion system is desirable.

For a typical precision motion system such as the maglev
planar positioning stages, high-performance tracking of a
specific reference profile is an essential objective pursued
by motion control researchers and engineers, where stringent
tracking performance is required to be ensured in terms of
both accuracy and smoothness [5]–[7]. Consequently, various
research efforts have been carried out to improve the tracking
performance via, say, the model-based approaches [8]–[10] or
the data-driven approaches [11]–[13]. However, in many of the
existing available works, the tracking controller is designed
and synthesized for essentially rather general situations. For
instance, some of the works would consider the general full-
frequency H2/H∞ specifications; and also, the optimization
in some of such works is not catered to a specific reference
trajectory (even though such specificity may be present). It is
pertinent to note that in numerous actual applications such as
in various scanning processes, the motion profile is normally
well designed for each particular process. Under these cir-
cumstances, such an attempted optimization controller design
approach considering only general situations may not yield a
resulting outcome specifically optimal for the given reference
trajectory, and then the tracking performance could actually
be downgraded. Therefore, an integrated tracking controller
optimization approach instead with respect to a given reference
is a promising solution to further improve the tracking per-
formance. Generally, an optimal control problem targeting at
tracking a specific reference trajectory is challenging, because
the augmentation of the reference dynamics and the system
model leads to structural constraints in the controller. Conse-
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quently, some of the existing optimal control theories cannot
be employed directly due to these constraints. Considering the
linear quadratic regulator (LQR) problem as an example, the
well-known Riccati equation is no longer effective when the
controller is under structural constraints [14]. Indeed, these
constraints make the optimization problem more challenging
than its unconstrained counterpart because of the non-convex
characteristics [15].

It is well known that a reliable optimization result usu-
ally needs an accurate system model as a prerequisite [16].
However, for the 6-Degree of Freedom (DoF) maglev planar
positioning stage in this work, the floating characteristics
and the multi-axis coupling make it tough to identify the
plant model accurately. Therefore, it is of vital importance
to develop a robust control approach to accommodate such
parametric uncertainties [17]. Adaptive robust control has been
researched extensively to reduce the effect of parametric varia-
tions through online parameter adaptation, and uncompensated
uncertainties can be handled via certain robust control laws.
For example, the neural network learning based adaptive
robust controller has been designed to deal with the unexpected
disturbances in the maglev stage motion control, but due
to the black-box property, it is difficult to properly ensure
the stability mathematically, and the computational effort is
extremely large so that it cannot be widely applied to the
existing industrial controllers. Similar works addressing this
problem can also be found in [18], [19]. To guarantee the
robustness, an integrator-augmented linear quadratic control
scheme is implemented on a 6-DoF maglev positioner [20],
and the learning adaptive robust control (LARC) is proposed
in [21] to improve the tracking performance. Another vital
methodology in robust control is the H∞ control approach,
which relates the system performance to the γ disturbance
attenuation level [22]. Notably, the problem of finding the
minimal disturbance attenuation level is typically defined as
the optimal H∞ control problem [23]. Unfortunately, the
approach does not explicitly take the parametric uncertainties
into consideration, and thus it may possibly lead to controllers
that are not sufficiently robust; and then control failures may
occur due to the existence of parametric uncertainties. To
cater to the effect of parametric uncertainties and derive a
stabilizing controller, the extended state observer (ESO) and
the disturbance observer (DOB) are very powerful tools in
control applications [24]–[27]. Particularly, [25] presents an
adaptive robust control method for DC motors with the ESO,
and this approach accounts for not only the structured uncer-
tainties (i.e., parametric uncertainties) but also the unstructured
uncertainties (i.e., nonlinear friction, external disturbances, un-
modeled dynamics). Some remarkable results have also been
reported in [26] to handle both parametric uncertainties and
disturbances, with the original contribution to invent a non-
linear interactive mechanism of disturbance observation and
parametric adaptation. A disturbance compensation scheme
is proposed in [27], which alters the reference profile and
compensates for the disturbance using the DOB, such that
improved tracking performance is attained in the tray indexing
application. Also, considerable attention is commonly drawn
towards the use of parameterization techniques, for example,

the Youla-Kucera parameterization [28], and alternative pa-
rameterization techniques based on the positive real lemma and
the bounded real lemma [29], [30]. However, these methods
still require various further developments and modifications
before they can be accepted as effective solutions in the
presence of parametric uncertainties and structural constraints,
and especially also as solutions with attendant manageable
numerical computation.

In this work, an effective robust control synthesis approach
is developed for motion control of a maglev planar positioning
stage, with the primary objective of achieving an accurate
and smooth S-curve tracking task with suppressed control
input chattering. This is developed and attained through a
well-accepted structure of a 2-DoF controller architecture
consisting of a feedforward controller and a feedback con-
troller. Specifically, for the feedback controller design, an H∞
optimal control problem with a prescribed sparse-structured
controller gain is formulated with the existence of parametric
uncertainties. Through the construction of a convex parameter-
ization (which can be considered as a variant of Youla-Kucera
parameterization), all the feasible extreme models perturbed
by the parametric uncertainties are explicitly considered in
the parameter space, over which a set of robust stabilizing
feedback controllers with the prescribed sparsity pattern are
parameterized. Then, a resulting convex programming problem
is formulated and efficiently solved.

The main contributions of this paper are listed below. With
appropriate consideration of the tracking error signal and the
feedback control input chattering, the prescribed accurate and
smooth tracking task for the maglev planar positioning stage
is formulated as an H∞ control related problem. A convex
parameterization technique is presented (based on a variant of
Youla-Kucera parameterization and convex restriction), such
that the optimal H∞ control problem in the presence of
parametric uncertainties is transformed into a convex opti-
mization problem. This then enables the efficient determi-
nation of the feedback controller parameters for the maglev
planar positioning stage. Furthermore, the designed controller
ensures the required closed-loop stability and also maintains
the system performance to be at the optimal level despite
the presence of parametric uncertainties in the maglev planar
positioning stage. Through a series of real-time experiments,
the system performance of the maglev planar positioning stage
is enhanced in terms of the accuracy and smoothness in the
tracking problem.

The remainder of this paper is organized as follows. In Sec-
tion II, system design and problem formulation of the tracking
problem in the maglev planar positioning stage are given. To
achieve the accurate and smooth S-curve tracking task, Section
III presents the robust controller synthesis approach by convex
parameterization. Next, in Section IV, to validate the proposed
approach, optimization and experiments are conducted with
detailed analysis. Finally, conclusions are drawn in Section V.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System Description
The schematic illustration of the 6-DoF maglev planar

positioning system is shown in Fig. 1(a). Basically, the whole
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Fig. 1. (a) Schematic illustration of the 6-DoF maglev planar positioning
system in this work and (b) Working principle of the actuation in each forcer.

motion system consists of two parts, i.e. the stator and the
translator. The stator is fixed on the ground, and it has
four square coil arrays, which are placed crosswise on their
platforms as shown in Fig. 1(a). Each coil array has 15 square
coils, which has a motion range of 30 mm×30 mm with ideal
force generation. The translator is the movable stage to deliver
the 6-DoF positioning with centimeter-level planar motion,
which is actually a panel carrying four Halbach magnet arrays.
Each Halbach magnet array is placed on the top of the square
coil array as shown in Fig. 1(a), and each pair forms a forcer
to provide both the controllable levitation force vertically and
thrust force horizontally, where each of the forcers is shown
in Fig. 1(b). The coils in each forcer are grouped into two
phases denoted by C1 and C2, where the adjunct two coils in
each phase are injected with the same current magnitude but
opposite directions.

In this work, the 6-DoF position feedback is provided by
three channels of laser interferometers and three channels of
capacitive sensors as indicated in Fig. 1(a), and two reflective
mirrors are installed together with the translator as the inter-
ferometer targets. As a result, the translator can be levitated
during the motion without any physical contact with the stator.
The 6-DoF motion of this maglev planar positioning system
is controlled by the total levitation forces and thrust torques
generated from the four forcers as mentioned above, which
are determined by the 8-phase current inputs. The total forces
and torques can be decoupled mathematically through the
modelling for each channel of translation or rotation along x−,
y−, and z−axes, where the detailed analysis on the system
modelling can be found in [1].

It is worthwhile to mention that as detailed in [1], the
6-DoF maglev motion is a decoupled mechanism, and this
is attained already and directly from the mechanism design
level. As shown in Fig. 1, in our 6-DoF maglev design, eight
local forces (F1x, F2y , F3x, F4y in the horizontal direction

and F1z , F2z , F3z , F4z in the vertical direction) are used
to generate the 6-DoF force and torque for delivering the
6-DoF motion. Indeed, it is an over-actuated system and
the 6-DoF global force and torque can be represented by
Fg = MFl, where Fg =

[
Fx Fy Fz Tx Ty Tz

]T
,

Fl =
[
F1x F1z F2y F2z F3x F3z F4y F4z

]T
, and

M =


0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1
0 0 0 −L 0 0 0 L
0 −L 0 0 0 L 0 0
L 0 −L 0 −L 0 L 0

 . (1)

Note that Fx, Fy , and Fz represent the global forces in x−,
y−, and z−axes, respectively, Tx, Ty , and Tz represent the
global torque in x−, y−, and z−axes, respectively, and L
denotes the length from platform center to the magnet array.
Using the decoupling mechanism Fl = (MTM)−1MTFg , the
force and torque are decoupled and individually controlled for
each channel of DoF. As the remaining coupling effects are not
significant essentially, the 6-DoF maglev positioning system is
considered as a 6-channel Single-Input-Single-Output (SISO)
system in this work. In our approach, we treat the coupling
effects passively by improving the controller’s disturbance
rejection capability to suppress the remaining coupling effects.

B. Problem Formulation

In this work, our control target focuses on the tracking
performance of the planar motion. Individually, each axis of
motion can be viewed as a SISO system. As there is no
mechanical stiffness in the system (no mechanical bearing and
contact), the plant model of the x−, y−axes motion without
consideration of the external disturbance can be expressed as
a standard second-order motion system given by

mÿ + dẏ = u, (2)

where m and d denote the lumped mass and damping for
the motion system, u and y represent the control input and
the system output (actual position) of the maglev planar
positioning system, respectively. Note that although there is
no friction, the eddy current force generated by the moving
magnetic field is the important source of damping in (2).

For the maglev positioning system, the rigid moving plat-
form is directly driven by the controlled 6-DoF force and
torque to deliver the 6-DoF motion, without any guiding mech-
anism or contacted support. As a result, it can be generally
viewed as an ideal mass-damper system (no stiffness). Com-
pared with other multi-DoF systems such as the flexure-based
motion systems, there are much less unmodeled dynamics
in the maglev motion system, because it doesn’t have the
flexible structure that introduces the unmodeled dynamics or
uncertainties. Therefore, it is reasonable to model the maglev
system as a second-order system.

It is essentially useful to take parametric uncertainties
into consideration for the proposed control problem. First of
all, the floating characteristics and the multi-axis coupling
make accurate identification of the system dynamics difficult,
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and undesired uncertainties in the measured data inevitably
lead to challenges of deriving an extremely accurate system
model. Secondly, the maglev planar positioning system is
always subjected to perturbations, such as applied loadings,
levitation height variation, etc, which can also be formulated
as parametric uncertainties.

Here, it is assumed that in the system (2), m and d are sub-
jected to parametric uncertainties ∆m and ∆d, respectively,
then it is generalized to a perturbed model characterized by

(m+ ∆m)ÿ + (d+ ∆d)ẏ = u, (3)

where u and y represent the control input and the actual
position of the maglev planar positioning stage, respectively.

In this work, the maglev planar positioning stage is aimed
at following a point-to-point reference profile accurately and
smoothly. To design a smooth reference profile r, the following
differential equation is proposed under certain initial condi-
tions, where

dn

dtn
r + z1

dn−1

dtn−1
r + · · ·+ znr = 0, (4)

for a given degree n and a set of coefficients zi, ∀i =
1, 2, · · · , n.

Here we set n = 3, and thus a third-order reference
profile is implemented, which can be further expressed in the
observability canonical form of the state-space representation:

ρ̇ = Azρ, r = Czρ, (5)

with ρ =
[
p ṗ p̈

]T
, Az =

 0 1 0
0 0 1
z1 z2 z3

 and Cz =[
1 0 0

]
, thus it follows that r = p.

Remark 1. The entries of the state matrix Az are zero
except for a super-diagonal of 1’s and the bottom row of
coefficients, and (5) is referred to as a command-generator
system. Also, due to its special shape, it is considered as an
S-curve trajectory.

Remark 2. S-curve reference trajectories are widely used in
motion control problems because of its smoothness, and a well
designed S-curve trajectory can suppress residual vibrations
induced to the system rather effectively. Generally, the S-curve
trajectory is predefined by the user depending on the specific
industrial application (for different applications, the objective
varies, because they may need different order of the S-curve
trajectory with different speed of response in position, velocity,
and acceleration profiles) [31]. In our case, the reason that we
set n to be 3 is that there are 3 state variables in terms of the
system (e, ė, and ë) which would be used in the state vector
(the state vector is to be defined later for constructing the PID
control architecture). If a reference signal with an order of less
than 3 is chosen, the reference jerk will not be bounded, which
could induce residual vibrations to the system. If a reference
signal with an order of higher than 3 is selected, extra state
variables for the S-curve trajectory would be augmented in
the state-space system, which are redundant for the tracking
problem formulation and optimization. Therefore, we set n to
be 3.

Define the position error e = r−y, and then (3) is expressed
as

(m+ ∆m)(r̈ − ë) + (d+ ∆d)(ṙ − ė) = u. (6)

A 2-DoF control scheme is employed in this work, which com-
prises a feedforward controller uff and a feedback controller
ufb, which means

u = uff + ufb. (7)

Here, the feedforward controller is designed as

uff = mr̈ + dṙ, (8)

and then (6) gives

(m+ ∆m)ë+ (d+ ∆d)ė−∆mr̈ −∆dṙ + ufb = 0. (9)

Since smooth tracking is required in our problem, the
feedback control input chattering needs to be suppressed to
an adequate level with no strong vibration incurred in the
experiment. To build a model that considers the feedback
control input chattering as the fictitious control input, we take
the derivative of (9), then

(m+ ∆m)
...
e + (d+ ∆d)ë−∆m

...
r −∆dr̈ + u̇fb = 0.(10)

From the S-curve reference trajectory (5), we have
...
r =

...
p = z1p+ z2ṗ+ z3p̈. (11)

Plug (11) into (10), we have

(m+ ∆m)
...
e + (d+ ∆d)ë

−∆m(z1p+ z2ṗ+ z3p̈)−∆dp̈+ u̇fb = 0. (12)

Define the state vector x =
[
p ṗ p̈ e ė ë

]T
, and

then we aim to build an augmented model by integrating the
reference trajectory with the plant model. Assume the exper-
iments are conducted under certain exogenous disturbances,
then a disturbance vector w is added into the augmented
model, and thus the state-space representation of the system
is given by

ẋ = Ax+B2u̇fb +B1w, (13)

where

A =


0 1 0 0 0 0
0 0 1 0 0 0
z1 z2 z3 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

z1∆m
m+∆m

z2∆m
m+∆m

z3∆m+∆d
m+∆m 0 0 − d+∆d

m+∆m

 ,

B2 =
[

0 0 0 0 0 − 1
m+∆m

]T
.

Remarkably, it is a common practice to assume B1 to be a
matrix with diagonal elements equal to 1 where necessary.

Since the state variables p, ṗ, and p̈ are not controlled
(these state variables are only used to construct the augmented
system), then the controlled output vector is defined as

z = Cx+Du̇fb, (14)
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where C =


0 0 0 q1 0 0
0 0 0 0 q2 0
0 0 0 0 0 q3

0 0 0 0 0 0

 and D =


0
0
0
r

. The

parameters q1, q2, q3, and r are considered as the weighting
factors to be chosen according to the requirements.

The fictitious static state feedback controller is designed as

u̇fb = −Kx, (15)

where the gain matrix is given by

K =
[
0 0 0 −ki −kp −kd

]
, (16)

such that (15) can be re-stored to the standard PID form

ufb = −K
∫ t

0

x dτ = kpe+ ki

∫ t

0

e dτ + kdė, (17)

where kp, ki, and kd represent the proportional gain, integral
gain, and derivative gain in the PID controller, respectively.

Remark 3. The proposed controller has a 2-DoF architecture.
Particularly, (8) is a feedforward controller that is designed
based on the reference trajectory and the nominal system
model. Additionally, to make sure that the fictitious static state
feedback controller (15) can be restored to a PID controller
in the implementation, K is constrained to be a sparse matrix
as in (16). Due to the existence of parametric uncertainties,
the following development mainly focuses on the design of a
robust stabilizing feedback controller (17) with a prescribed
sparsity pattern (16) that contributes to the accuracy and
smoothness in the reference tracking problem.

Remark 4. In regulation problems such as LQR, the sys-
tem (13) can be simplified to a model with a lower dimension.
The reason is that there is no dynamics for the reference
signal (where the reference is essentially a step function
for such regulation problems), and thus it is straightforward
to derive an error model for PID control through a state
feedback framework. Noting such situations, it is pertinent
then to be aware that for tracking problems (for example,
with the S-curve signal as the reference), augmentation is then
compulsory because one cannot derive an error state space
model easily due to the dynamics of the reference. In this
case, involving the dynamic model of the reference signal has
to be done for the optimization with respect to the a specific
reference trajectory, and indeed, this augmentation would lead
to extra structural constraints to the controller structure [7],
such as sparse constraint, equality constraint, etc.

On the basis of the H∞ control formulation, we define a
transfer function from w to z, which is given by

H(s) = (C −DK)(sI −A+B2K)−1B1, (18)

with its H∞-norm defined as

‖H(s)‖∞ = sup
ω

σM[H(jω)], (19)

where σM(·) returns the maximum singular value. It is worth
stating that the objective of the optimal H∞ control problem
in the presence of parametric uncertainties is to keep the
H∞-norm at the optimal level to ensure satisfying tracking

performance, while maintaining good robustness at the same
time, with the consideration of all feasible models.

III. ROBUST CONTROLLER SYNTHESIS WITH CONVEX
PARAMETERIZATION

In the remaining text, Rm×n (Rn) denotes the real matrix
with m rows and n columns (n dimensional real column vec-
tor), Sn represents the n dimensional real symmetric matrix,
Sn+ (Sn++) denote the n dimensional positive semi-definite
(positive definite) real symmetric matrix. First, we consider
the case without parametric uncertainty, then as an alternative
representation of the open-loop system [32], the following
matrices are defined:

F =

[
A −B2

01×6 0

]
, G =

[
06×1

1

]
,

Q =

[
B1B

T
1 06×1

01×6 0

]
, R =

[
CTC 06×1

01×6 DTD

]
, (20)

with ∆m = ∆d = 0. Then, define the matrix

W =

[
W1 W2

WT
2 W3

]
, (21)

where W1 ∈ S6
++, W2 ∈ R6, W3 ∈ R, and the matrical

function

Θ(W,µ) = FW +WFT +WRW + µQ, (22)

with µ = 1/γ2, with γ represents the disturbance attenuation
level in the H∞ control formulation. Furthermore, Θ(W,µ) is
partitioned as

Θ(W,µ) =

[
Θ1(W,µ) Θ2(W )
ΘT

2 (W ) Θ3(W )

]
, (23)

with Θ1(W,µ) ∈ S6,Θ2(W ) ∈ R6,Θ3(W ) ∈ R.
The following theorem defines a feasible set in the parame-

ter space, and the mapping between W and K is constructed,
which exhibits some important properties on the stability and
performance guarantee of the closed-loop system.

Theorem 1. Define the set C = {(W,µ) ∈ S7 × R : W �
0,Θ1(W,µ) � 0, µ > 0}. Then the following statements hold:
(a) Any (W,µ) ∈ C generates a stabilizing gain K =

WT
2 W

−1
1 that guarantees ‖H(s)‖∞ ≤ γ with γ =

1/
√
µ > 0.

(b) At optimality, (W ∗, µ∗) = argmax{µ : (W,µ) ∈ C } gives
the optimal solution to the optimal H∞ control problem,
with K∗ = W ∗2

TW ∗1
−1 and ‖H(s)‖∗∞ = γ∗ = 1/

√
µ∗.

Proof of Theorem 1: To prove Statement (a), the following
lemma is used.

Lemma 1. [33] Given γ > 0, if the closed-loop is observable,
it is asymptotically stable and ‖H(s)‖∞ ≤ γ if and only if
the Riccati inequality

(A−B2K)TP + P (A−B2K)

+γ−2PB1B
T
1 P + (C −DK)T (C −DK) � 0, (24)

has a symmetric positive definite solution P = PT � 0.
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From Lemma 1, there exists a symmetric positive definite
solution P = PT � 0 such that

(A−B2K)TP + P (A−B2K)

+µPB1B
T
1 P + CTC +KTDTDK � 0. (25)

Since P is nonsingular, we have

P−1(A−B2K)T + (A−B2K)P−1 + µB1B
T
1

+P−1CTCP−1 + P−1KTDTDKP−1 � 0. (26)

Denote Wp = P−1, (26) is equivalent to

(A−B2K)Wp +Wp(A−B2K)T +WpC
TCWp

+WpK
TDTDKWp + µB1B

T
1 � 0. (27)

From (23), we have

Θ1(W,µ) = AW1 −B2W
T
2 +W1A

T −W2B
T
2

+W1C
TCW1 +W2D

TDW2 + µB1B
T
1 . (28)

Then, by setting W1 = Wp and WT
2 = KWp, then we

have K = WT
2 W

−1
1 and Θ1(W,µ) � 0. Therefore, we can

construct W =

[
W1 W1K

T

KW1 W3

]
. By Schur’s complement,

we can ensure W � 0 by choosing W3 � KW1K
T ,

which provides a norm bound for the gain matrix. Hence,
K = WT

2 W
−1
1 is a stabilizing feedback controller gain

generated from (W,µ) ∈ C , and it follows from Lemma
1 that ‖H(s)‖∞ ≤ γ is guaranteed. Statement (b) is direct
consequence of Statement (a).

Theorem 1 determines the optimal H∞ controller gain
K without any additional structural constraint or parametric
uncertainties. However, as indicated in (16), K is a sparse
matrix with three zero elements, certain structural constraints
need to be imposed on W such that the resulting K satisfies
the sparsity requirement, thus Theorem 2 is presented, and then
Theorem 3 extends the results to be applicable to uncertain
systems.

Theorem 2. Define the set CS = {(W,µ) ∈ S7 × R : W �
0,L(W ) = 0,Θ1(W,µ) � 0, µ > 0}, where L : R7×7 →
R3×4 defines a linear operator L(W ) = V1WV2 with V1 =[
I3 03×4

]
and V2 =

[
03×4

I4

]
, then the following statements

hold:

(a) Any (W,µ) ∈ CS generates a stabilizing gain K =
WT

2 W
−1
1 with the sparsity pattern as in (16) that guar-

antees ‖H(s)‖∞ ≤ γ with γ = 1/
√
µ > 0.

(b) At optimality, (W ∗, µ∗) = argmax{µ : (W,µ) ∈ CS}
gives the optimal solution to the sparse optimal H∞
control problem, with K∗ = W ∗2

TW ∗1
−1 and ‖H(s)‖∗∞ =

γ∗ = 1/
√
µ∗.

Proof of Theorem 2: For Statement (a), W1 and W2 are split
as

W1 =

[
W1,1 W1,2

WT
1,2 W1,3

]
, W2 =

[
W2,1

W2,2

]
, (29)

where W1,1 ∈ S3, W1,2 ∈ R3×3, W1,3 ∈ S3, W2,1 ∈ R3,
W2,2 ∈ R3. Then,

L(W ) =
[
I3 03×4

] W1,1 W1,2 W2,1

WT
1,2 W1,3 W2,2

WT
2,1 WT

2,2 W3

[03×4

I4

]
=
[
W1,2 W2,1

]
. (30)

So L(W ) = 0 implies W1,2 = 0 and W2,1 = 0. Then,

K =
[
01×3 WT

2,2

] [W−1
1,1 03×3

03×3 W−1
1,3

]
=
[
01×3 WT

2,2W
−1
1,3

]
.

Since W1,1 and W1,3 are non-singular, thus the prescribed
sparsity pattern of K is ensured as shown in (16). Statement
(b) proceeds along the same proof as Theorem 1(b).

Then, it suffices to extend the above results to uncertain
systems, where ∆m 6= 0 and ∆d 6= 0. For convex-bounded
parametric uncertainties, F belongs to a polyhedral domain
which can be expressed as a convex combination of the
extreme matrices Fi, then

F =

4∑
i=1

ξiFi, (31)

with Fi =

[
Ai −B2i

01×6 0

]
, ξi ≥ 0,

4∑
i=1

ξi = 1. Then, for

i = 1, 2, . . . , 4, define

Θi(W,µ) = FiW +WFTi +WRW + µQ, (32)

and further partition it as

Θi(W,µ) =

[
Θ1i(W,µ) Θ2i(W )
ΘT

2i(W ) Θ3i(W )

]
, (33)

with Θ1i(W,µ) ∈ S6,Θ2i(W ) ∈ R6,Θ3i(W ) ∈ R. Conse-
quently, a mapping between W and K with the prescribed
sparsity pattern can be constructed in the presence of para-
metric uncertainties, and the results are shown in Theorem 3.

Theorem 3. Define the set CRi = {(W,µ) ∈ S7 × R : W �
0,L(W ) = 0,Θ1i(W,µ) � 0,∀i = 1, 2, · · · , 4, µ > 0}, and

CR =
4⋂
i=1

CRi, then the following statements hold:

(a) Any (W,µ) ∈ CR generates a robust stabilizing gain
K = WT

2 W
−1
1 with the sparsity pattern as in (16)

that guarantees ‖Hi(s)‖∞ ≤ γ with γ = 1/
√
µ > 0

under convex-bounded parametric uncertainties, where
‖Hi(s)‖∞ represents the H∞-norm of the ith extreme
system.

(b) At optimality, (W ∗, µ∗) = argmax{µ : (W,µ) ∈ CR}
gives the optimal solution to the sparse optimal H∞ con-
trol problem in the presence of parametric uncertainties,
with K∗ = W ∗2

TW ∗1
−1 and γ∗ = 1/

√
µ∗.

Proof of Theorem 3: The proof is straightforward as it is an
extension of Theorem 1 and Theorem 2.

Essentially, Theorem 1 considers the case without consid-
ering imposed structural constraints and parametric uncer-
tainties, and Theorem 2 addresses the structural constraints.
Furthermore, Theorem 3 extends these results by considering
both the structural constraints and parametric uncertainties. By
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defining the set CRi, all the extreme systems are suitably taken
into consideration. Additionally, it is notable that the robust
stability for the entire uncertain domain is checked at only the
vertices of the convex polyhedron as defined in (31). On the
other hand, for the robust performance, γ∗ is the upper bound
to H∞-norm by taking all the extreme models into considera-
tion. Thus if γ∗ is optimal, the system performance is attained
at optimality in the presence of parametric uncertainties.

Based on the development and analysis above, the following
optimization problem is formulated.

Problem 1.

maximize
(W,µ)∈S7×R

µ

subject to W � 0

L(W ) = 0

Θ1i(W,µ) � 0, ∀i = 1, 2, · · · , 4
µ > 0. (34)

Remark 5. Because of the convexity of Problem 1, several ef-
ficient numerical algorithms and solvers can be used to obtain
the global optimum, for example, interior-point method [34],
augmented Lagrangian method (ALM) [35], etc.

IV. EXPERIMENT VALIDATION

A. Optimization Implementation and Results

In order to conduct the optimization, the nominal model of
the maglev planar positioning stage is identified, where the
system identification is carried out in x axis by letting the x-
axis motion track the sweeping-frequency sinusoidal signals
with the frequency ranging from 1 Hz to 1000 Hz. For each
point in the frequency range, the frequency response from the
reference to the system output can be obtained respectively by
using the Fast Fourier Transform (FFT). The identification is
conducted in the case where the levitation height is 1 mm, and
finally, a second-order system is fitted and given as P (s) =
1/(ms2 + ds), where m = 1/400, d = 1/200.

To solve the robust sparse optimization problem as formu-
lated in the last section, many efficient optimization methods
can be implemented. Furthermore, as Problem 1 is a convex
optimization problem, the global optimum can be obtained.
However, note that there is a quadratic term WRW included
in the constraint Θ1i(W,µ) � 0, ∀i = 1, 2, · · · , 4, which
impedes the solving of Problem 1, because most of the
numerical algorithms and solvers are not capable of handling
the quadratic constraints. Hence, the Schur complement is
used to derive an equivalent expression of the constraint
Θ1i(W,µ) � 0, ∀i = 1, 2, · · · , 4, such that the quadratic
term can be transformed into the linear conic form. Thus the
constraint Θ1i(W,µ) � 0, ∀i = 1, 2, · · · , 4 in Problem 1 is
equivalently denoted by[
−V FiWV T − VWFTi V

T − µV QV T VWR
1
2

R
1
2WV T I7

]
� 0,

(35)

where V =
[
I6 06×1

]
. In summary, Problem 2 is given

below, which serves as an equivalent expression of Problem 1.

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0 0.5 1 1.5 2 2.5 3
-0.05

0
0.05
0.1

0.15

Fig. 2. Reference profile used in the experiment.

Problem 2.

maximize
(W,µ)∈S7×R

µ

subject to W � 0

L(W ) = 0[
−V Fi
R

1
2

]
W
[
V T 07×7

]
+

[
V

07×7

]
W
[
−FTi V T R

1
2

]
+µ

[
−V QV T 06×7

07×6 07×7

]
+

[
06×6 06×7

07×6 I7

]
� 0

∀i = 1, 2, · · · , 4
µ > 0. (36)

In this work, the parametric uncertainties are assumed such
that −30%m ≤ ∆m ≤ 30%m and −30%d ≤ ∆d ≤ 30%d.
Also, the weighting parameters are given as q1 = 104, q2 =
102, q3 = 0, and r = 1. Notice that q3 is set to be zero because
our primitive objective is to ensure the accurate tracking (q1

penalizes e) and smooth tracking (q2 penalizes ė and r pe-
nalizes u̇fb). As a standard practice, the weighting factors are
usually user-defined in view of different control objectives and
scenarios. The user is always able to make further adjustments
if the optimization results based on these weighting parameters
do not meet the specific requirement. The parameters of the
S-curve reference trajectory are chosen as z1 = −125, z2 =
−75, and z3 = −15, and the initial condition of the state vector
is defined as ρ0 =

[
−0.02 mm 0 mm/s 0 mm/s2

]T
. Then,

the S-curve reference trajectory is shifted up for 0.02 mm such
that the reference position starts from zero and the set-point
is 0.02 mm, as shown in Fig. 2. Note that the result of the
optimal controller is independent of the initial condition of
the S-curve reference trajectory [9]. Furthermore, since the
order of the reference profile is three, the reference position,
velocity, and acceleration are all bounded.
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Fig. 3. Prototype of the maglev planar positioning system used in this work.

The optimization is implemented on a desktop with the CPU
Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz, based on
the python optimization package CVXPY with the CVXOPT
solver. At optimality, W ∗ and µ∗ are obtained, where W ∗ is
shown in (38) and µ∗ = 1.0764×10−5. Then, γ∗ = 304.7995,
and the optimal controller gain matrix K∗ is given by

K∗ =
[
0 0 0 −1664.71 −47.71 −0.50

]
. (37)

As can be seen from (37), the prescribed sparsity pattern of
the feedback controller gain matrix is preserved.

B. Experimental Results

For control of the 6-DoF motion, three Renishaw fiber optic
laser interferometers are used to measure the in-plane motions
with a count resolution of 40 nm, and three Lion Precision
capacitive sensors with the root mean square (RMS) resolution
of 150 nm are used to measure the out-of-plane motions. Trust
TA320 and TA115 linear amplifiers are used to actuate the 8-
phase coils with an upper limit of 1.2 A. For all experiments
conducted in this work, the levitation height is fixed at 1 mm
constantly with zero rotation angles with respect to x−, y−,
and z−axes.

The 2-DoF controller is implemented in the maglev planar
positioning system shown in Fig. 3. As in (8), the feedforward
control input is calculated and implemented based on the
parameters of the nominal model, and the feedback controller
is implemented using the optimized results. Notice that the
controller is discretized in a sampling frequency of 2.5 kHz.
Real-time experiments are conducted for validation of our pro-
posed method (denoted by Method 1), where one experiment
is implemented without any load, and the other experiment
is implemented with a given load of 0.6 kg. Additionally,
comparative experiments are carried out using the loop shaping
method as proposed in [36] for the similar maglev planar
positioning system (denoted by Method 2).

For the experiment without any load, Fig. 4 shows the
position error and its derivative, where the root-mean-square
(RMS) values of them are documented in Table I. The ex-
perimental results show that, compared with Method 2, our
proposed approach gives better tracking performance in terms
of precision and smoothness. Fig. 5 shows the control input as
well as the chattering of the feedback control input. Note that
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0.5

1

1.5
10-4

Method 1
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Fig. 4. Position error and its derivative in the experiment without the load.
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-100

-50
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50
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Fig. 5. Control input and feedback control input chattering in the experiment
without the load.

in this work, ė and u̇fb are derived by passing the signals e
and ufb through a differentiator and a low-pass filter given by
100s/(s + 100). It is interesting to see that the control input
and its chattering at t = 0 are not zero, and this phenomenon
arises from the integration of error signals before the start
of the motion control experiment, because the stage needs
to be floated beforehand. Additionally, as can be seen from
Fig. 5, the feedback control input chattering is suppressed
within an adequate level without strong vibration incurred in
the experiment, and the chattering in the proposed method is
less than Method 2. Besides, the RMS values of the feedback
control input chattering are given in Table I, which further
validates our proposed approach.

After the load is placed, the tracking performance of the
system is shown in Fig. 6. It can be observed that the maglev
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W ∗ =

1.81× 10−1 −3.19× 10−1 5.34× 10−2 0 0 0 0
−3.19× 10−1 7.06× 10−1 −6.90× 10−1 0 0 0 0

5.34× 10−2 −6.90× 10−1 3.12 0 0 0 0
0 0 0 4.16× 10−7 −1.62× 10−5 3.54× 10−5 5.60× 10−5

0 0 0 −1.62× 10−5 1.00× 10−3 −2.95× 10−2 −5.87× 10−3

0 0 0 3.54× 10−5 −2.95× 10−2 2.74 −3.62× 10−2

0 0 0 5.60× 10−5 −5.87× 10−3 −3.62× 10−2 7.21


.

(38)

TABLE I
COMPARATIVE EXPERIMENTAL RESULTS

Method 1
(RMS Value)

Method 2
(RMS Value)

Without Load
e (m) 1.16× 10−6 2.47× 10−6

ė (m/s) 1.17× 10−5 2.01× 10−5

u̇fb (A/s) 3.45 5.22

With Load
e (m) 1.14× 10−6 2.62× 10−6

ė (m/s) 1.34× 10−5 2.18× 10−5

u̇fb (A/s) 4.33 5.67

planar positioning stage can still track the reference profile
rather accurately and smoothly. Fig. 7 depicts the control input
and the feedback control input chattering. Besides, the RMS
values of the position error, the derivative of the position
error, and the feedback control input chattering are provided in
Table I. With our method, the RMS value of e is decreased by
1.75% by applying the load. On the other hand, the RMS value
of ė and u̇fb is increased by 14.53% and 25.51%, respectively.
With Method 2, the RMS value of e, ė and u̇fb is increased by
6.07%, 8.46%, and 8.62%, respectively, by applying the load.
Thus it can be clearly observed the robustness of our proposed
approach. Based on these data, we think our improvement is
significant enough in this maglev application. It can be clearly
seen that, with the proposed method, the effect caused by the
applied loading is less significant than the method adopted
in [36].

Additionally, to test the disturbance rejection capability of
the proposed method, noises with a uniformly distribution in
the range [-0.05 N, 0.05 N] are added to the decoupled axis.
The position error of the system and its derivative are shown in
Fig. 8. Also, Fig. 9 shows the control input and the feedback
control input chattering. In this experiment, the RMS value
of e, ė, and u̇fb are given by 1.17 × 10−6 m, 1.22 × 10−5

m/s, and 3.76 A/s, respectively. Compared with the results
attained without the addition of noises, the performance is
slightly worse, but the maglev planar positioning stage still
gives satisfying performance despite the existence of noises.
Hence, the disturbance rejection capability of the proposed
method is successfully validated.

To conclude, the experimental results clearly show that the
proposed controller design approach is able to accommodate
the parametric uncertainties and external noises in the maglev
planar positioning stage, and attain good robust stability and
system performance such that an accurate and smooth tracking
task is successfully achieved.
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Fig. 6. Position error and its derivative in the experiment with the load.

V. CONCLUSION

In this paper, the accurate and smooth tracking problem of
a maglev planar positioning stage is presented with a pre-
defined S-curve reference trajectory. First, the feedforward
component of the controller is designed according to the
S-curve reference trajectory and the nominal model of the
maglev system. Second, through the H∞ control formulation
and the invoked convex parameterization, a set of robust
stabilizing feedback controllers with the prescribed sparsity
pattern are rather elegantly parameterized over a convex set,
and thus a convex optimization problem is formulated. The
optimization problem is efficiently solved and a global optimal
solution of the feedback controller is obtained. With the
calculated parameters, the 2-DoF controller is implemented.
The experimental results on the maglev planar positioning
stage successfully validate the effectiveness and practicability
of the proposed methodology, where the stringent requirements
on robust stability and system performance are all very well
achieved despite the existence of parametric uncertainties.
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