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Abstract—Accurate state estimation is essential for correct 

supervision of power grids. With the existence of cyber-attacks, 

state estimation may become inaccurate which can eventually lead 

to wrong supervisory decision making. To detect cyber-attacks in 

power grids equipped with PMUs, a new intrusion detection 

system based on clustering approach (PMUIDS) is proposed in this 

paper. After solving the optimal PMU placement in N-1 

contingency, several static state estimations are obtained by 

removing the measurements of one PMU in each time. The 

resulting state vectors are clustered in two steps: 1- Subtractive 

clustering is employed to obtain the number of clusters which 

determines the number of integrity attacks, 2- Fuzzy C-means 

clustering assigns the state vectors to the corresponding clusters 

which determines the attacked PMUs. In addition, two theorems 

are proved which indicate that the attacker cannot coordinate 

successful stealth attacks in cases that by removing attacked PMUs 

from state estimation, the power system still remains fully 

observable. Furthermore, in the case of possible stealth attacks, 

the attacker cannot falsify the estimation of any arbitrary state 

variable. The hardware-in-the-loop (HiL) results on a sample 

power system show that the proposed approach can detect 

integrity attacks, determine the number of attacks, obtain the 

correct state vector, and localize the attacks, even in case of 

multiple simultaneous attacks. 

Index Terms—Attack localization, intrusion detection, 

measurement correction, PMU network, static state estimation 

I. INTRODUCTION 

ecure state estimation is a challenging issue in future smart 

grids equipped with PMUs [1]–[5]. The PMU network is 

based on Information Technology (IT) networks and protocols 

which are vulnerable to a variety of cyber-attacks [6]. These 

attacks may impose false information to the control center, 

which could lead to false control decisions [7]–[9].  

Among the cyber-attacks, those attacks that make power 

system state estimation inaccurate, are especially dangerous 

since they can lead to wrong supervisory decision makings. 

Attacks in this class are usually referred to as false (bad) data 

injection (or integrity) attacks [10]-[11]. Such attacks are 

usually detected by a number of bad data detection methods 

[12]–[14] such as sum detector [15], 𝜒2 detector [16], and 

learning-based methods [17], [18]. However, these approaches 
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only detect the attack and they fail to localize the attack and 

present correct measurements. On the other hand, invaders can 

orchestrate coordinated false data injection attacks (such as 

those in [19]–[21]) to make them unobservable by conventional 

detection methods. Such attacks are called stealth (or 

interacting) attacks. 

In order to detect stealth attacks, a number of methods have 

been proposed in the literature [1], [22]–[25]. It should be noted 

that in addition to these researches, several methods are 

available to mitigate the stealth attacks using authentication, 

multi-path routing or encryption devices. However, they  

increase the implementation cost and complexity, and also 

impose additional delay [26], [27].  

In this paper, a new intrusion detection system based on 

clustering techniques, called PMUIDS, is proposed which has 

some advantages over the previous researches, which are 

described next. In PMUIDS, first the optimal PMU placement 

is employed such that the network still remains full observable 

even if a single contingency happens (observability in N-1 

contingency). Then, in each time step, measurements of one 

PMU are removed and the state vector is calculated. In the next 

step, the resulting state vectors are clustered. For this purpose, 

subtractive clustering obtains the number of clusters and, fuzzy 

C-means clustering assigns the state vectors to the correct 

cluster. The number of one-member clusters indicates the 

number of integrity attacks. These one-member clusters are also 

used to determine the attacked PMUs and obtain the correct 

state vector. 

In this paper, the most related works on stealth attack 

detection are also reviewed and quantitatively compared with 

the proposed method. For this purpose, the following properties 

are checked for each of the algorithms: (1) Obtaining Correct 

Measurement (OCM): The capability of the attack detection 

methods in obtaining the correct value of state vector is checked 

through this property. (2) Attack Localization (AL): This 

feature checks whether the algorithm is able to determine the 

location of attacks or not. (3) Concurrent Random Attacks 

Detection (CRAD): This property shows the capability of the 

algorithm in detecting several random (non-coordinated) 
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attacks. (4) Stealth Attack Detection (SAD): Obviously, this 

feature investigates the ability of detection methods in detecting 

stealth attacks. (5) Obtaining the Number of Attacks (ONA): 

The ability of attack detection methods in obtaining the number 

of random (or coordinated) attacks is shown through this 

feature. (6) Requiring Non-Electrical Information (RNEI): This 

feature deals with this property that whether an attack detection 

method requires non-electrical (e.g. cyber security) information 

to detect stealth attacks or not. For example, in addition to 

power grid information, [28] needs security information such as 

data collected from intrusion detection sensors or a database of 

firewall rules. However, this approach causes the design 

process to be more complicated and imposes additional delays.  

By specifying the above properties in Table I, comparison 

between the previous researches and PMUIDS is 

straightforward. Results in Table I demonstrate that methods 

proposed in [25] and [28] are more similar to PMUIDS. 

However, as discussed earlier, method of [28] requires non-

electrical information and the method proposed in [25] requires 

secure PMUs for detecting stealth attacks. Secure PMUs need 

security controls such as encryption and authentication which 

impose additional delays [25]. 

In summary, the PMUIDS features are as follows: (1) 

Detecting integrity attacks on power grids using a novel 

clustering approach. (2) Localizing the attacks. (3) Obtaining 

the correct state vector when by removing the measurements of 

attacked PMUs, the power system still remains full observable. 

(4) Requiring only electrical information (by placing additional 

PMUs) which does not cause additional delay. (5) Decreasing 

the probability of successful stealth attacks. The main 

contributions of this paper are the novel PMUIDS based on 

clustering technique with the above features, and two theorems 

that one mathematically proves by an appropriate PMU 

placement, the successful interacting attack cannot happen, and 

the other one proves if PMUs are not placed appropriately, then 

the successful interacting attack can happen. However, even in 

this situation, the measurements of some parts of the power 

system can be corrected by the PMUIDS. 

The rest of the paper is organized as follows: Section II 

reviews the overall structure of PMU networks and static state 

estimation algorithm. In addition, two theorems about 

coordination of interacting attacks are presented in this section. 

Section III presents the suggested PMUIDS and the clustering-

based approach. The HiL results on a sample power system is 

given in Section IV. Finally, conclusions of this research are 

given in Section V. 

II. INTEGRITY ATTACK DETECTION IN PMU NETWORKS 

EXPLOITING STATIC STATE ESTIMATION  

PMU networks are set up on the IT-based protocols. They are 

constituted from PMUs, Phasor Data Concentrators (PDCs) and 

communication networks for data transmission in a hierarchical 

structure which is expanded in a wide area measurement system 

(WAMS) and at the top level, transfers data to the control center 

[33], [34]. The network has two different parts; regional and 

backbone networks (Fig. 1). While the regional networks are 

responsible for transferring data from each PMU to the related 

PDC [3], the backbone network has the main role of 

communication in a higher level among PDCs and the control 

center. The received data in the control center can be exploited 

for different studies, i.e., state estimation, stability assessment, 

etc. [35]. The main difference between the PMU and SCADA 

systems is that in the PMU system, the real and imaginary parts 

of the voltages and currents are available and the measurement 

model is inherently linear. Moreover, the PMU systems are 

more resilient against attacks. Though, they are still vulnerable 

to some kinds of attacks [36].  

 
Fig. 1. Hierarchical structure of PMU networks [34]. 
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TABLE I. PROPERTIES OF PMUIDS AND SOME METHODS IN LITERATURE FOR FALSE DATA INJECTION ATTACK DETECTION 

Method OCM AL CRAD SAD Main idea for detecting stealth attack ONA RNEI 

[1] No No Yes (at most four attacks) Partially • Using Redundant PMUs No No 

[16] No No Yes No • Kalman Filter and 𝜒2 detector No No 

[18] No No Yes Yes • Comparing the error with pre-defined threshold No No 

[22] No No Yes Partially • Perturbing grid topology No No 

[23] No Yes To some extent Partially • Employing distributed state estimation using power system decomposition No No 

[25] Yes Yes Yes Partially • Optimal placement of secure PMUs (i.e. PMUs that cannot be attacked) No Yes 

[26] No Partially Yes Partially • Using a fully distributed algorithm for power system state estimation No No 

[28] Yes Yes Yes Yes • Combining cyber data with power grid information No Yes 

[29] No Partially Yes Partially • Distance between probability distribution function of measurement variation No No 

[30] Yes No Yes Yes • Adding protected meters to be sure about some measurements No Yes 

[31] Yes No Yes Yes • Needs some meters to be absolutely protected No Yes 

[32] Yes No Yes Yes • Increases the number of PMUs so that FDI cannot impact estimation No No 

PMUIDS Yes Yes Yes Partially • Optimal placement of PMUs in N-1 contingency Yes No 
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equipped with PMUs is studied and by exploiting static state 

estimation, the voltages in the power system are estimated. 

Then, some solutions (such as redundant PMU) are suggested 

to avoid load shedding in the power system. Similarly, in [32], 

FDIA on WAMSs is considered and an algorithmic solution is 

proposed to address the issue of additional PMU installation 

and placement with cyber security consideration. However, 

those approaches do not offer all properties of the suggested 

PMUIDS listed in Table I. For detecting integrity attacks in 

such networks, this paper combines the theories of static state 

estimation and data clustering approaches. In the static state 

estimation and static attack detection method, the system 

operating point changes slowly that the fast transient response 

is negligible [37]. Then, the values of currents and voltages for 

that operating point are used.  

In the following, the theory is briefly reviewed and its 

capability in integrity attack detection is discussed. 

Furthermore, two theorems about the possibility of interacting 

attacks in PMU networks are presented. 

A. Static State Estimation 

In general, the measurement equation for an 𝑛 –bus system 

is as follows [38]: 

𝑍𝑛 = 𝐻𝑉 + 𝑒 = (𝐻𝑟 + 𝑗𝐻𝑚). (𝐸𝑣 + 𝑗𝐹𝑣) + 𝑒  (1) 

where (𝐻𝑟 + 𝑗𝐻𝑚 ) ∈ 𝐶𝑚×𝑛 is the Jacobian matrix of 

measurements, 𝑒 =  (𝑒1,  … ,  𝑒𝑚)𝑇 is the measurement noise 

vector and 𝑉 = (𝐸𝑣 + 𝑗𝐹𝑣) ∈ 𝐶𝑛×1 and 𝑍𝑛 = (𝐴 + 𝑗𝐵) ∈ 𝐶𝑚×1 

are the state vector and the measurements vector, respectively 

and 𝐴 = 𝐻𝑟𝐸𝑣 − 𝐻𝑚𝐹𝑣,   𝐵 = 𝐻𝑚𝐸𝑣 + 𝐻𝑟𝐹𝑣. 

Define a new measurement vector 𝑍 as follows [38]: 

𝑍 = [
𝐴
𝐵

] = [
𝐻𝑟 −𝐻𝑚

𝐻𝑚 𝐻𝑟
] [

𝐸𝑣

𝐹𝑣
] + 𝑒 = 𝐻𝑋 + 𝑒 (2) 

where 𝑋 ∈ ℝ(2𝑛−1)×1 is the new state vector and 𝐻 ∈
ℝ2𝑚×(2𝑛−1) is the new linear measurement Jacobian matrix. 

The estimation of state vector 𝑋̂  is procured as follows [39]: 

𝑋̂ = [
𝐸̂𝑣

𝐹̂𝑣

] = (𝐻𝑇𝑅𝐻)−1𝐻𝑇𝑅 [
𝐴
𝐵

] = (𝐻𝑇𝑅𝐻)−1𝐻𝑇𝑅𝑍 (3) 

where R is the covariance matrix and determines the weight of 

each array in the measurement vector 𝑍. Without loss of 

generality, in the rest of this paper, it is assumed that R is equal 

to I. It means that we used the known least square method to 

find the optimal static state estimation. Additionally, the matrix 

𝐻 should be non-singular, so that 𝐻𝑇𝑅𝐻 is inversible. This 

issue is treated by the so-called numerical observability [38], in 

which not only the system is topological observable, but also as 

much PMUs are allocated as needed to make the system fully 

observable. 

B. Interacting Attack Detection 

Assume that an integrity attack happens in the PMU network 

and some measurements are altered. The vector of observed 

measurements after attack is 𝑍𝑎 = 𝑍 + 𝑎 which consists of two 

parts; the real measurements 𝑍 = (𝑧1,  … ,  𝑧2𝑚)𝑇and the false 

data added to the real measurements 𝑎 = (𝑎1,  … ,  𝑎2𝑚)𝑇that is 

called the attack vector. Assume that, 𝑋̂𝑎 refers to false 

estimation of state vector, 𝑋̂𝑎 = 𝑋̂ + 𝑊, in which, 𝑊 is the state 

estimation error due to the vector injected by the attacker. 

In [12]–[14], for detection of bad data (such as attack) the 

constraint is to check ‖𝑍 − 𝐻𝑋̂‖
2
with a threshold and if this 

norm is less than the predefined threshold, it is concluded that 

there is no bad data in measurements. A category of attacks is 

interacting attacks, in which the attack vector has the specific 

form 𝑎 = 𝐻𝑊 and do not result in a large deviation from 

threshold and cannot be detected by these methods. This kind 

of attack can be organized in two ways [20]: 

• The attacker’s only intention is to deceive the result of state 

estimation. Therefore, 𝑊 is assumed to be a random vector.  

• The attacker aims to add specific errors to the estimation of 

particular state variables. Consequently, this kind of attack 

is called targeted false data injection attack. In other words, 

in targeted attacks, 𝑊 is not a random vector. 

Assume that the attacker wants to orchestrate random 

interacting attack. The matrices 𝑄 and 𝐾 are defined as follows: 

𝑄 = 𝐻(𝐻𝑇𝐻)−1𝐻𝑇       ,          𝐾 = 𝑄 − 𝐼 (4) 

Notice that 𝑄𝐻 = 𝐻. Multiplying this equation and 𝑎 = 𝐻𝑊 

by W and Q respectively, it can be concluded: 

 
𝑎 = 𝐻𝑊 → 𝑄𝑎 = 𝑄𝐻𝑊     

𝑄𝐻 = 𝐻 → 𝑄𝐻𝑊 = 𝐻𝑊 = 𝑎
} ⇒ 𝑄𝑎 = 𝑎

→ (𝑄 − 𝐼)𝑎 = 𝐾𝑎 = 0 
(5) 

Solving (5), the attack vector can be obtained. 

Assume that the attacker’s access is limited and he can only 

forge few PMU’s data. Therefore, only the elements of vector 𝑎 

that correspond to falsified PMUs, can be non-zero. Showing 

the nonzero elements of 𝑎 with vector 𝑎′and the corresponding 

columns of matrix K with matrix 𝐾 ′, (5) results in:  

𝐾 ′𝑎′ = 0 (6) 

If 𝐾 ′ is a full rank matrix, (6) has a unique solution 𝑎′ = 0. 

Therefore, it is highly unlikely for successful interacting attacks 

to happen. Otherwise, the equation has infinite number of non-

zero solutions with the following general form [20]: 

𝑎′ = (𝐼 − 𝐾 ′+𝐾 ′)𝜂 (7) 

where 𝜂 is an arbitrary non-zero vector with the same length as 

𝑎′ and 𝐾 ′+ is pseudo inverse of matrix 𝐾 ′. Consequently, when 

the attacker only has access to the measurements of few PMUs, 

the interacting attack may be detectable in some cases. 

In the following, two theorems are presented to determine 

whether or not a successful random interacting attack can be 

organized in PMU networks. In addition, if possible interacting 

attack happens, it is significant to know how the affected state 

variables are limited (successful targeted interacting attacks are 

restricted). Before mentioning the theorems, some definitions 

are given as follows: 

• 𝜑1 & 𝜑2: The number of PMUs to guarantee full 

observability (topologically and numerically) in normal 

condition and 𝑁 − 1 contingency, respectively (𝜑2 > 𝜑1) 

• 𝐿 = {𝑙1, … , 𝑙𝜑2
}: The set of buses which define the locations 

of installed PMUs in 𝑁 − 1 contingency condition. 

• 𝑜𝑖: Each subset of L, which makes power system full 

observable (observable set). 

• 𝑂 = {𝑜𝑖|𝑖 = 1, . . . , 𝑁𝑜}: The set of observable sets. 

• 𝑢𝑖: Each subset of L, which cannot make power system full 

observable (unobservable set). 
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• 𝑈 = {𝑢𝑖|𝑖 = 1, . . . , 𝑁𝑢}: The set of unobservable sets. 

• 𝑆 = {𝑠𝑖|𝑠𝑖 =𝐿 − 𝑜𝑖 , 𝑖 = 1,2, . . . 𝑁𝑜}, where 𝑠𝑖 is a set of 

PMUs which omitting their measurements’ still makes the 

power system full observable. 

• 𝑆̄ = {𝑠̄𝑖|𝑠̄𝑖 =𝐿 − 𝑢𝑖, 𝑖 = 1,2, . . . 𝑁𝑢}, where 𝑠̄𝑖 is a set of 

PMUs that omitting their measurements’ results in the power 

system not be full observable anymore. 

• 𝐿𝐴: The set of buses that the attacker gain access to the 

measurements of their PMUs. 

• m: the number of all measurements obtained from 𝜑2 PMUs. 

Theorem 1: Assume that 𝜑2 PMUs are installed in the 

system. If the attacker only has access to a set of PMUs which 

belong to 𝑆 (i.e. 𝐿 − 𝐿𝐴 ∈ 𝑂), the matrix 𝐾 ′ is full rank and 

successful interacting attacks will not happen.  

Proof: Select one observable set 𝑜𝑖  from the set O. The 

number of measurements related to eliminated PMUs (𝑠𝑖) is 

shown by 𝑚𝑒. These measurements are the ones that the 

attacker has access to them and can falsify them. The number 

of remaining PMU measurements which cannot be altered by 

the attacker is equal to 𝑚𝑟 = (𝑚 − 𝑚𝑒) ≥ 𝑛. Since, 

interchanging rows or columns of a matrix doesn’t change the 

rank of matrix, without loss of generality, the matrix 𝐻 can be 

considered as follows: 

𝐻2𝑚 × (2𝑛−1) = [𝐻𝑟
𝑇     𝐻𝑒

𝑇]𝑇 (8) 

where 𝐻𝑒  is a 2𝑚𝑒 × (2𝑛 − 1) matrix and consists of the rows 

of 𝐻 that correspond to measurements of eliminated PMUs and 

𝐻𝑟  is a 2𝑚𝑟 × (2𝑛 − 1) matrix which is related to the 

remaining PMUs. The full observability (topologically and 

numerically) of power system before and after elimination of 

the specified PMUs (𝑠𝑖), results in: 

𝑟𝑜𝑤𝑠𝑝𝑎𝑐𝑒(𝐻) = 𝑟𝑜𝑤𝑠𝑝𝑎𝑐𝑒(𝐻𝑟) = ℝ2𝑛−1 (9) 

𝑟𝑎𝑛𝑘 (𝐻) =  𝑟𝑎𝑛𝑘 (𝐻𝑟) = 2𝑛 − 1 

In other words, any vector in ℝ2𝑛−1can be written as a linear 

combination of rows of 𝐻 or 𝐻𝑟 . Define matrix 𝑌 as follows: 

𝑌 = (𝐻𝑇𝐻)−1 = ([𝐻𝑟
𝑇  𝐻𝑒

𝑇] [
𝐻𝑟

𝐻𝑒
])

−1

 (10) 

The matrix 𝑄 will be obtained as the following: 

𝑄 = 𝐻(𝐻𝑇𝐻)−1𝐻𝑇 = [
𝐻𝑟𝑌𝐻𝑟

𝑇 𝐻𝑟𝑌𝐻𝑒
𝑇

𝐻𝑒𝑌𝐻𝑟
𝑇 𝐻𝑒𝑌𝐻𝑒

𝑇] (11) 

Therefore, the matrix 𝐾 will be represented as follows: 

𝐾 = 𝑄 − 𝐼 = [
𝐻𝑟𝑌𝐻𝑟

𝑇 − 𝐼2(𝑚−𝑚𝑒) 𝐻𝑟𝑌𝐻𝑒
𝑇

𝐻𝑒𝑌𝐻𝑟
𝑇 𝐻𝑒𝑌𝐻𝑒

𝑇 − 𝐼2𝑚𝑒

] (12) 

Here, vector 𝑎′ consists of the last 2𝑚𝑒  elements of vector 𝑎 

(those elements that the attacker has access to). Therefore, 

matrix 𝐾2𝑚×2𝑚𝑒
′ is as follows: 

𝐾 ′ = [
𝐻𝑟𝑌𝐻𝑒

𝑇

𝐻𝑒𝑌𝐻𝑒
𝑇 − 𝐼2𝑚𝑒

] (13) 

As it is mentioned before, if 𝐾′ is a full rank matrix, the 

successful interacting attacks will not happen. If each vector in 

ℝ2𝑚𝑒  is presented as a linear combination of rows of matrix 𝐾′, 

then the row space of 𝐾′ is ℝ2𝑚𝑒  and this matrix is full rank. 

Therefore, to prove the nonexistence of successful interacting 

attack, we need to prove that for each vector 𝐹 ∈ ℝ2𝑚𝑒 the 

equation 𝐺𝑇𝐾′ = 𝐹𝑇 has an appropriate solution. Partitioning 

vector 𝐺𝑇as 𝐺𝑇 = [𝑔1
𝑇 𝑔2

𝑇], where 𝑔1 and 𝑔2 are (2𝑚𝑟 × 1) 

and (2𝑚𝑒 × 1) vectors respectively, concludes: 

𝐺𝑇𝐾 ′ = 𝑔1
𝑇𝐻𝑟𝑌𝐻𝑒

𝑇 + 𝑔2
𝑇𝐻𝑒𝑌𝐻𝑒

𝑇 − 𝑔2
𝑇 (14) 

On the other hand, each arbitrary vector 𝐹𝑇𝐻𝑒 ∈ ℝ2𝑛−1 can be 

written as a linear combination of rows of 𝐻𝑟 . Therefore, for 

each arbitrary vector F, the equation 𝑔1
𝑇𝐻𝑟 = 𝐹𝑇𝐻𝑒  has a 

solution that is called 𝑔̄1. As it is shown in the following, for 

each arbitrary vector F, the vector
TT T

1G g F=   −  is a 

solution for the equation 𝐺𝑇𝐾 ′ = 𝐹𝑇: 

𝐺̄𝑇𝐾 ′ = 𝑔̄1
𝑇𝐻𝑟𝑌𝐻𝑒

𝑇 − 𝐹𝑇𝐻𝑒𝑌𝐻𝑒
𝑇 + 𝐹𝑇

𝑔̄1
𝑇𝐻𝑟 = 𝐹𝑇𝐻𝑒

} ⇒ 𝐺̄𝑇𝐾 ′ = 𝐹𝑇 (15) 

Therefore, it is shown that if the attacker has access to the 

measurements of a set of PMUs that belongs to S, each vector 

𝐹 ∈ ℝ2𝑚𝑒  can be presented as a linear combination of rows of 

𝐾′ which means that the matrix 𝐾′ is full rank. Therefore, the 

equation 𝐾′𝑎′ = 0 has a unique solution 𝑎′ = 0 and the 

successful interacting attacks will not happen.  ■ 

Theorem 2: Assume that the attacker only gain access to a 

set of PMUs which belongs to 𝑆̄ (i.e. 𝐿 − 𝐿𝐴 ∈ 𝑈) and can 

organize an interacting attack in the form of 𝑎 = 𝐻𝑊. In this 

case, the estimation error vector (W) will have a specified 

structure and all of its elements related to the buses that are still 

observable after removing the attacked PMUs (𝐿𝐴), are zero. 

Therefore, the attacker can only falsify estimation of buses that 

become unobservable after omitting 𝐿𝐴 

Proof: Consider the case that the attacker gain access to a set 

of PMUs that belongs to 𝑆̄ and can manage a successful 

interacting attack 𝑎 = 𝐻𝑊. The estimation of state vector using 

all measurements after the attack is as follows: 

𝑋̂𝑎 =  (𝐻𝑇𝐻)−1𝐻𝑇𝑍𝑎 =  (𝐻𝑇𝐻)−1𝐻𝑇(𝑍 + 𝐻𝑊)
= 𝑋̂ +  𝑊 

(16) 

Since 𝐿 − 𝐿𝐴 ∈ 𝑈, omitting measurements of attacked 

PMUs, makes some buses unobservable. Those elements of 

vectors W, 𝑋̂ and 𝑋̂𝑎 that are related to observable buses are 

shown by 𝑊𝑜, 𝑋̂𝑜 and 𝑋̂𝑎𝑜
. Define vector 𝑎𝑟  by removing the 

elements related to 𝐿𝐴 from 𝑎. In addition, define matrix 𝐻𝑟  by 

removing the corresponding rows of 𝐻. Therefore, the equation 

𝑎𝑟 = 𝐻𝑟𝑊 still holds. 

Assume that matrix 𝐻𝑟𝑐 is obtained by removing the zero 

columns related to unobservable state variables from matrix 𝐻𝑟 . 

Since these zero columns have no effect on the value of vector 

𝑎𝑟 , after removing them, the equation 𝑎𝑟 = 𝐻𝑟𝑐𝑊𝑜 still holds. 

Although the power system is not full observable after omitting 

the measurements related to 𝐿𝐴, the voltages of observable 

buses can be estimated as follows: 

𝑋̂𝑎𝑜
= (𝐻𝑟𝑐

𝑇 𝐻𝑟𝑐)−1𝐻𝑟𝑐
𝑇 𝑍𝑎𝑟

= (𝐻𝑟𝑐
𝑇 𝐻𝑟𝑐)−1𝐻𝑟𝑐

𝑇 (𝑍𝑟 + 𝑎𝑟)

= (𝐻𝑟𝑐
𝑇 𝐻𝑟𝑐)−1𝐻𝑟𝑐

𝑇 (𝑍𝑟 + 𝐻𝑟𝑐𝑊𝑜)
= 𝑋̂𝑜 + 𝑊𝑜 

(17) 

On the other hand, the remaining measurements after 

omitting the attacked PMUs (𝐿𝐴) are correct. Therefore, the 

 estimation of observable buses will be correct, too. 

𝑍𝑎𝑟
= 𝑍𝑟 ⇒ 𝑋̂𝑎𝑜

 = (𝐻𝑟𝑐
𝑇 𝐻𝑟𝑐)−1𝐻𝑟𝑐

𝑇 𝑍𝑟 = 𝑋̂𝑜 (18) 

Comparing (17) to (18), it is concluded that 𝑊𝑜 = 0. 

Therefore, the attacker can’t target any arbitrary bus and only 

estimation of buses that become unobservable by removing 

measurements of attacked PMUs may be wrong.  ■ 
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In Theorems 1 and 2, the PMUs belong to the sets 𝑆 and 𝑆̅, 

respectively. Depending the attacker access to the sets 𝑆 and 𝑆̅, 
the attack success changes. From Theorem 1, one infers that 

gaining access to the measurement of those PMUs that belong 

to 𝑆, does not result in successful interacting attacks. Based on 

Theorem 2, gaining access to those PMUs that belong to 𝑆̅ may 

falsify the estimation of buses that become unobservable after 

omitting the attacked PMUs. By using these two theorems, all 

set of PMUs that by gaining access to their measurements, 

organizing a successful interacting attack might be possible 

(i.e. 𝑆̄) can be determined and the buses that falsifying their 

estimation is much easier than other buses (i.e. buses that 

become unobservable in most cases) can be identified.  

III. PMUIDS 

In this section, the steps of PMUIDS for detecting attacks, 

localizing them, determining the number of attacks and 

obtaining the correct measurements are presented. In the 

suggested approach, different state estimation vectors are 

calculated and compared in the control center. The redundancy 

of PMUs is increased to make it possible to obtain several 

solutions for the state estimation problem. Then, clustering is 

employed to detect the number and location of attacks and 

obtain the correct estimation of state vector. Notice that in case 

of multiple simultaneous attacks, if by omitting measurements 

of falsified PMUs, the power system remains fully observable, 

the state vector can be estimated correctly. Otherwise, only the 

correct voltages of observable buses will be obtained. 

The PMUIDS algorithm is as follows: 

1) Perform PMU placement by taking 𝑁 − 1 contingency 

conditions into account. 

2) Install PMUs on the buses determined in the previous step. 

3) Omit the measurements received from one of the PMUs and 

calculate the estimation of the state vector V1 by using the 

measurements of other PMUs. 

4) In a row, consider each PMU data to be omitted once and 

exploit the other measurements for the required estimation data. 

After elimination of  𝑖𝑡ℎ PMU data, go to Step 3 and calculate 

state vector Vi and 𝜑2. Thus, different estimation results 

(𝑉1,  𝑉2 … ,  𝑉 𝜑2
) will be acquired. 

5) Use the following formula to calculate the mean of all state 

vectors: 

𝑉𝐴𝑣𝑒 = 𝑚𝑒𝑎𝑛(𝑉1, 𝑉2 … , 𝑉 𝜑2
) =

1

 𝜑2

∑ 𝑉𝑖

 𝜑2

𝑖=1

   (19) 

6) Choose Euclidean norm as an appropriate measure to find 

the distance between each state and the mean.  

𝐷𝑖𝑠𝑖 = ‖ 𝑉𝑖 − 𝑉𝐴𝑣𝑒 ‖2  (20) 

7) Find the state vector with the largest distance from the mean. 

𝐷𝑖𝑠∗ = 𝑚𝑎𝑥
𝑖

(𝐷𝑖𝑠𝑖)  (21) 

If this distance is smaller than a threshold, ε, PMUIDS 

ignores it and concludes that no attack has occurred. Otherwise, 

if the largest distance from the mean is larger than a threshold, 

it can be concluded that an attack has occurred. The threshold ε 

is considered to remove the effect of measurement noises and it 

is the key to identify the integrity attack from the noisy 

measurements. 

8) In this step, the number and locations of the attacks will be 

detected. First, by using subtractive clustering algorithm, the 

number of clusters will be obtained. Then, by using fuzzy c-

mean clustering, each state vector will be assigned to the right 

cluster. The number of single-member clusters shows the 

number of attacks. In addition, those PMUs that their data was 

omitted in calculating the state vectors associated with single-

member clusters are the attacked ones.  

9) For single-attack cases, the state vector with maximum 

distance from the mean which was found in Step 7 shows the 

correct measurements. For multiple simultaneous attacks, the 

measurements of detected attacked PMUs will be omitted and 

state estimation will be done based on the remaining 

measurements. If the remaining measurements make the power 

system fully observable, the correct estimation of state vector 

will be obtained. Otherwise, only the correct voltages of 

observable buses will be estimated. 

To prove the capability of PMUIDS, assume that only 

measurements of 𝑃𝑀𝑈𝑖  are forged. Implementing the above 

algorithm, it is obvious that when data of 𝑃𝑀𝑈𝑖  is omitted, the 

state estimation result is correct (Estimation1). All the other 

cases contain the forged data and will lead to wrong 

estimations. Since the forged data affect all these estimated 

state vectors similarly, their results will be very close to each 

other, but different from Estimation1. In other words, the state 

estimation results will form two clusters, where one of them is 

a single member cluster (Estimation1). This scheme can be 

extended to the cases that measurements of more PMUs are 

altered by attackers.  

It should be noted that the proposed algorithm does   not have 

any limitation for 𝑁 − 2 or further assumption. Furthermore, 

the algorithm does not have any limitation for large-scale 

systems. It is just needed to have enough measurement to be 

sure that the matrix 𝐻 of (3) is nonsingular. Thereby, it is 

required to install as much PMUs as they guarantee the matrix 

non-singularity, which is the limitation of all static state 

estimation approaches.  

IV. HIL RESULTS 

The approach proposed in Section III is applied on the known 

IEEE 14-bus test system though the OPAL-RT HiL 

environment, shown in Fig. 2. The structure of the HiL setup 

consists of an OPAL-RT as a Real-Time Simulator (RTS) 

which simulates the IEEE 14-bus grid, seven virtual Phasor 

PMUs, and the static attack detection; a PC as the programming 

host; an amplifier that generates the current and voltage for the 

PMUs; two real PMU devices; and a satellite-synchronized 

clock. The optimal PMU locations are found by the method 

introduced in [40]–[41]. The optimal numbers of PMUs in 

normal and 𝑁 − 1 contingency conditions are equal to 4 and 9, 

respectively. The locations of PMUs in 𝑁 − 1 contingency 

condition is shown with S2 = {2,4,5,6,7,8,9,11,13}. In Fig. 3, 

the modified version of the IEEE 14-bus system benchmark 

with the assumption of no connection between the buses 5 and 

6 is shown. The PMU network is designed and 9 PMUs (PMUA, 
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PMUB , … , PMUI) are allocated. Additionally, the network for 

transferring data from PMU to PDC and the CC are selected. It 

is assumed that the network requires 3 PDCs, corresponding 

regional networks (R1, R2, & R3) and Ring Interface Units 

(RIU) and a back-bone network.  

In the part of the static attack detection, initially an integrity 

attack is generated and added to data of the attacked real/virtual 

PMU devices to falsify the measurements. Then, the static 

attack detection method is performed. 

 
Fig. 2. The OPAL-RT HiL setup for testing the attack detection method on an 

IEEE 14-bus system. 

 

Fig. 3. PMU-PDC-CC network of IEEE 14- bus test system 

A. Analyzing the results of Theorems 1 and 2  

In this part, it is considered that the proposed PMUIDS 

detects the attacked PMUs and the applicability of Theorems 1 

and 2 is investigated. These theorems facilitate analyzing the 

feasibility of successful interacting attacks. To do this, the sets 

𝑆 (or 𝑂) and 𝑆̅ (or 𝑈) are required and can be obtained based on 

the topology of IEEE 14-bus and the places of PMUs and PDC. 

Table II shows the number of observable and unobservable sets 

for different PMU numbers 4 ≤ 𝛾 ≤ 9.  

TABLE II. THE NUMBER OF OBSERVABLE AND UNOBSERVABLE SETS  

PMU Numbers (𝛾) Number of 𝑢𝑖 Number of 𝑜𝑖 

9 0 1 

8 0 9 

7 7 29 

6 45 39 

5 106 20 

4 125 1 

These sets are utilized in Theorems 1 and 2 to analyze the 

possible attacks. The results are as follows: 

• (Single attack): Since 9 PMUs are placed in the grid, if one 

random PMU is attacked, (and detected by the PMUIDS), 

still 8 PMUs measurements are available. Based on Table II, 

there is no set of unobservable set (i.e. 𝑈 ∈ ∅) and all 

possible sets are observable. Thereby, based on Theorem 1, 

the system is fully observable; and no successful attack can 

be performed.  

• (Two attacks): If two random PMUs are attacked, they are 

detected and the power system still has 7 available PMUs. 

In this case, 29 sets out of 36 sets are fully observable and 

based on Theorem 1, system states are fully observable; and, 

7 sets out of 36 sets are unobservable and based on Theorem 

2, their corresponding states are lost, meanwhile the other 

states are observable. This shows that only 7 out of 36 

possible sets of two simultaneous attacks can be a successful 

interacting attack, which results into the loss of some buses’ 

states. Consequently, the probability of organizing targeted 

false data injection attack is highly unlikely. The possible 

interacting attacks on two PMUs and the buses that their 

estimation could be wrong are shown in Table III. 

Moreover: 

1) No one can deceive the estimation of buses (2, 4, 5, 6, 7, 

and 9) without being detected. 

2) To deceive the estimation of bus 10 without being 

detected, the attacker should have access to the 

measurements of buses 9 and 11, otherwise successful 

interacting attack is impossible. 

TABLE III. POSSIBLE INTERACTING ATTACK ON TWO PMUS 

𝑢𝑖 Falsified PMUs 
Buses with wrong estimation 

(unobservable buses) 

{5,6,7,8,9,11,13} {2,4} 3 

{4,6,7,8,9,11,13} {2 ,5} 1 

{2,4,5,7,8,9,13} {6,11} 11 

{2,4,5,7,8,9,11} {6,13} {12,13} 

{2,4,5,6,9,11,13} {7,8} 8 

{2,4,5,6,7,8,13} {9,11} 10 

{2,4,5,6,7,8,11} {9,13} 14 

• (Three attacks): In this case, 6 available PMUs’ 

measurements are available. Based on Table II, this means 

that only 45 out of 83 possible sets of three simultaneous 

attacks can be a successful interacting attack. Furthermore:  
1) No one can falsify the estimation of buses (4, 5, 6, and 7) 

without being detected. 

2) To falsify the estimation of bus 9 without being detected, 

the attacker should have access to the data of buses 4, 7 and 

9, otherwise successful interacting attack is impossible. 

B. Evaluating the proposed PMUIDS 

In this part, three scenarios are considered for evaluating 

PMUIDS on IEEE 14-bus system. In the first Scenario, the 

power system is working normal and no attack is carried out. 

This scenario indicates whether PMUIDS produces any false 

results or not. In the second scenario, one integrity attack is 

carried out. Results of this scenario show whether PMUIDS can 

successfully detect the attack, obtain the correct measurements, 

and localize the attack in case of one attack at a time or not. 
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Finally, in the third scenario, three attacks are simultaneously 

orchestrated on the IEEE 14-bus system. This test investigates 

whether PMUIDS can still detect intrusion, determine the 

number and location of attacks and correct estimation in case of 

simultaneous attacks or not. It should be noted that since 

PMUIDS employs mathematically proven techniques, in 

similar scenarios, similar results will be obtained. 

B.1. Scenario 1: No Attack 

First, consider the case that no attack happened in the PMU 
network. At each step, 8 out of 9 PMUs are selected and the 
state vector is estimated based on the method described in 
section III.A. Therefore, for calculating VA, all measurements 
except information gathered from PMUA is used. Similarly, this 
procedure is repeated for all PMUs. Therefore, nine solutions 
(VA, VB…., VI) are obtained for different state estimation 
problems which are shown in Fig. 4. It is obvious that all 
solutions are very close to each other. The small differences 
between the state vectors in this case is due to measurement 
noises. The Euclidean distance of each state vector to the Vave is 
presented in Table IV. 

 
Fig. 4. The estimation results prior to experiencing any attack 

B.2. Scenario 2: One Attack  

Assume that the measurements of PMUA (shown in Fig. 3) are 

falsified to simulate an integrity attack. This PMU transfers the 

information to PDC1. Here, a series of actions are needed to 

check whether integrity attack (Man-in-the-Middle (MitM)) 

modified the PMU data. A similar procedure to Section IV.B.1 

is repeated to find 9 state vectors while data from one of the 

PMUs is eliminated. The Euclidean distance of computed state 

vectors to Vave are presented in Table IV. 

According to the Results, VA has the largest Euclidean 

distance to Vave which is greater than ε = 0.05. Therefore, 

PMUIDS can effectively detect the attack. The subtractive and 

fuzzy c-means clustering methods are exploited to determine 

the clustering information which is useful in attack 

determination.  

The number of clusters that is calculated by subtractive 

clustering algorithm equals to 2. One of these clusters consists 

of 8 vectors (VB, VC…., VI) and the second one, is a single-

member cluster (VA) shown in Fig. 5. Thus, there is only one 

attack and PMUA that wasn’t used in calculation of VA contains 

the falsified data and its data is compromised. Since only one 

attack is happened in the network, state vector VA represents the 

accurate estimations.  

 
Fig. 5. All solutions for the state estimation problem after one attack 

B.3. Scenario 3: Three Attacks  

Assume that the measurements of PMUA, PMUD and PMUG 

are altered to simulate three integrity attacks. The same 

detection procedure is used here. The estimation results (VA ,VB, 

VC…., VI) are presented in Fig. 6 and the corresponding 

Euclidean distance is presented in Table IV. The results show 

that the norm of difference between VD and Vave is the largest 

value, equal to 0.84103. Therefore, the attack is detected 

properly. The number of clusters in this case equals to 4. Three 

of these clusters, which are marked with dashed lines in Fig. 6, 

only consist of one state vector. Other state vectors (VB, VC, VE, 

VF, VH, VI) form a cluster together. Therefore, the number of 

attacks is identified correctly. The PMUs, whose data were 

omitted in calculating the state vectors associated with single-

member clusters, will be effectively determined as the location 

of attacks. Since after removing the detected forged PMUs, the 

power system remains full observable, the true values of bus 

voltages can be obtained. 

By using the proposed PMUIDS, the system state vector is 

estimated and clustered via the approach presented in the 

Appendix. If one gets no specific cluster, it shows that all 

solutions are very close to each other and no attack does happen, 

which is evident in Scenario A. However, if more clusters are 

achieved, an attack is detected. Based on the number of clusters, 

it is possible to determine the number of simultaneous attacks. 

As can be seen in Scenarios B and C, one and three clusters are 

obtained, respectively which is in consistent with the number of 
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TABLE IV. NORM OF THE DIFFERENCE BETWEEN ESTIMATED VECTORS AND THE MEAN VALUE  

 Dis1 Dis2 Dis3 Dis4 Dis5 Dis6 Dis7 Dis8 Dis9 

Before Attack 0.00349 0.00045 0.00048 0.00058 0.00049 0.00079 0.00108 0.00092 0.00084 

One Attack  0.58452 0.0599 0.10686 0.07179 0.06906 0.07292 0.07069 0.07576 0.07542 

Three Attacks 0.49932 0.14472 0.1602 0.84103 0.13346 0.1371 0.39936 0.15263 0.15551 
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the simultaneous attacks. 

 
Fig. 6. All solutions for the state estimation problem after three attacks 

V. CONCLUSION 

In this paper, integrity attack on power systems was studied 

and a procedure based on the static state estimation and data 

clustering algorithms was presented to accurately detect the 

number and location of attacks and determine which PMU in 

the network contained malicious data. This detection can be 

done in the control center by comparing different state 

estimation results and data clustering approaches and it was 

called PMUIDS. The theory of detecting attacks by PMUIDS is 

proved by two theorems. The theorems show that in most cases, 

the successful interacting attacks cannot happen and PMUIDS 

can effectively detect any arbitrary false data that is added to 

the measurements. However, in some special cases that many 

PMUs are forged and the remained ones cannot make the whole 

power system observable, the successful interacting attacks can 

happen. Even in such a case, the algorithm is still able to 

provide correct measurements for some parts of the system 

based on the number of unfalsified PMUs. The HiL results on a 

sample power system prove the PMUIDS capability in finding 

the forged PMU data. For future work, considering more 

complex large-scale systems is suggested. Further, considering 

the issue of PMU faulty measurements and distinguishing it 

from the attacked PMUs can be an interesting work.  

APPENDIX: DATA CLUSTERING ALGORITHM 

Each clustering analysis has two pre-requisites; determining 

the number of clusters and the clustering method. Here, for 

determining the number of clusters, subtractive clustering 

technique is utilized [42]. In each step of this iterative 

algorithm, the potential to be a cluster center is evaluated for all 

points in the data set and the point with the highest potential 

value, which has more data in its neighborhood, will be found. 

Then, by using some criteria, it is determined whether that point 

is a new cluster center or not. After obtaining a new cluster 

center, the potential values of the remaining data points will be 

modified and the process repeats for the remaining points till no 

new cluster center can be found. Based on subtractive 

clustering, the number of clusters and a good initial guess for 

cluster centers are obtained. However, data points of each 

cluster cannot be found in this method. This information can be 

derived by utilizing fuzzy c-mean (FCM) clustering. The FCM 

algorithm iteratively minimizes the following objective 

function [43]: 

𝐽 = ∑ ∑ 𝜇𝑖𝑗
2 ‖𝑑𝑗 − 𝑐𝑖‖

2

𝑛𝑐

𝑖=1

𝑛𝑑

𝑗=1

 (22) 

where 𝑛𝑑 refers to the number of data samples, 𝑛𝑐 refers to 

number of clusters determined by subtracting clustering 

method, 𝑑𝑗  is the 𝑗-th data point, 𝑐𝑖 is the 𝑖-th cluster center, 𝜇𝑖𝑗 

refers to the membership degree of 𝑗-th data in the 𝑖-th cluster 

and is computed as follows:  

𝜇𝑖𝑗 =
1

∑ (
‖𝑑𝑗 − 𝑐𝑖‖

‖𝑑𝑗 − 𝑐𝑙‖
)

2

𝑛𝑐
𝑙=1

 
(23) 

In the initial step of FCM algorithm, pre-fixed 𝑛𝑐 and initial 

values for cluster centers are determined. Then, the optimum 

value of the cluster centers and membership degrees are 

procured iteratively by minimizing the objective function. 
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