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Abstract—Within electrical distribution networks, sub-
station constraints management requires that aggregated
power demand from residential users is kept within suitable
bounds. Efficiency of substation constraints management
can be measured as the reduction of constraints violations
w.r.t. unmanaged demand. Home batteries hold the promise
of enabling efficient and user-oblivious substation con-
straints management. Centralized control of home batter-
ies would achieve optimal efficiency. However, it is hardly
acceptable by users, since service providers (e.g., utilities
or aggregators) would directly control batteries at user
premises. Unfortunately, devising efficient hierarchical con-
trol strategies, thus overcoming the above problem, is far
from easy. We present a novel two-layer control strategy for
home batteries that avoids direct control of home devices
by the service provider and at the same time yields near-
optimal substation constraints management efficiency. Our
simulation results on field data from 62 households in Den-
mark show that the substation constraints management
efficiency achieved with our approach is at least 82% of the
one obtained with a theoretical optimal centralized strategy.

NOMENCLATURE

s EDN substation
Ts set of time slots for substation s
U set of houses (users)
t time slot (element of T )
u house (element of U )
Tu set of time slots for house u; note that, for all notation de-

pending on an house index u, if the house is understood,
u is not shown

Tu,P set of time slots in Tu in which the EV is plugged-in
on house u

τl duration (in minutes) of time slots in Ts
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τs time (in minutes) between two optimisation decisions on
substation

Hs = τs
τl

optimisation horizon for substation
τ time (in minutes) between two optimisation decisions on

houses
Qu,E ,mu,E ,Mu,E , αE , βE maximum capacity (in kWh),

minimum and maximum power rate (in kW), charge and
discharge efficiency of ESS in u

Qu,P ,mu,P ,Mu,P , αP , βP maximum capacity (in kWh),
minimum and maximum power rate (in kW), charge and
discharge efficiency of battery EV in u

Clowu , Chighu minimum and maximum power demand (in kW)
from energy contract of u

Hi, H,Hδ initial optimisation horizon, current optimization
horizon and optimization horizon changing step for com-
putation in houses

ζ deadline (in minutes) to complete a single optimisation
computation in houses

P lows (t), Phighs (t) lower and upper desired power bounds (in
kW) for substation s in t

Q̃u,E , Q̃u,P current SoC (in kWh) of ESS and EV in u
Du,P deadline (in minutes) for EV complete recharge in u
du(t) forecasted power demand (in kW) of u in t
bu,E(t) SoC (in kWh) of ESS in u at t
au,E(t) charge or discharge action (in kW) for the ESS in u

at t
P lowu (t), Phighu (t) lower and upper power limits (in kW) for

u in t
∆low(t),∆high(t) aggregated power (in kW) which exceeds

substation lower and upper bounds in t
eu(t) resulting power demand (in kW) in u at t
ach
u,E(t), adis

u,E(t) charge and discharge actions (in kW) for the
ESS in u at t

ach
u,P (t), adis

u,P (t) charge and discharge actions (in kW) for the
EV in u at t

zu(t) overall power demand exceeding power limits (in kW)
for u at t

yu,E(t), yu,P (t) binary variables, true if ESS and EV of u are
charged in t and false otherwise

ylowu (t), yhighu (t), yin
u (t) binary variables, true if overall power

eu(t) is greater than lower limit P lowu (t), less than upper
limit Phighu (t), inside lower and upper limits (resp.) in u
at t
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I. INTRODUCTION

In an Electrical Distribution Network (EDN), many elec-
trical substations provide electricity to the residential users
connected to such substations. On each substation s, one of
the main goals for a Distribution System Operator (DSO) is
Substation Constraints Management (SCM), that is, enforcing
suitable desired lower and upper bounds on the aggregated
power demand resulting from the houses connected to s. In
fact, SCM enables savings for the DSO, e.g., in substations
maintenance and energy peak production [1]. In the context
of smart grids, computational services may be used to enforce
efficient and effective SCM. Namely, efficiency is measured
as the reduction of bounds violations w.r.t. the unmanaged
aggregated power demand, i.e., the complement to 1 of the
time average of the ratio between managed w.r.t. unmanaged
demand outside bounds. On the other hand, SCM is effective
if it minimizes user discomfort and is technically viable.
The main obstacles for efficient and effective computational
services for SCM are the following: 1) using Autonomous
Demand Response (ADR), i.e., relying on residential users to
autonomously respond to price incentives, is often ineffective,
as users tend to ignore price signals [2]; 2) using Direct Load
Control (DLC), i.e., active power curtailment and reactive
power control, is ineffective as well, as it may lead to a loss
of useful energy [3]. A promising way of achieving efficient
and effective SCM is to install low-cost batteries at each user
premises, and then automatically controlling them. In this way,
bounds violations can be reduced by automatically shifting
user demand, which also minimizes user discomfort. Although
centralized control of such batteries would achieve optimal
efficiency, it faces the following main obstacles: 1) reliability
of communication lines, as every few minutes a command
for each home battery must be sent to each user (we note
that, typically, home electricity mains can transmit, but not
receive); 2) above all, for security and privacy reasons, many
users would not accept such a centralized solution, as a service
provider (e.g., a utility or an aggregator) is demanded of
controlling the storage at the user premises. Thus, we have
to rely on hierarchical control strategies for home batteries.

Related work. Many single-layer, as well as hierarchical
methodologies, have been proposed in the context of smart
grids, with different goals. As for single-layers methodologies,
in [2], [4] individualized Inclining Block Rate (IBR) and Time
of Use (ToU) price policies for residential houses connected to
a substation s are investigated, to perform peak shaving. In [5]
a data analytical ADR management scheme for residential load
is proposed to reduce the peak load demand. In [6], a privacy-
aware stochastic multiobjective optimization framework that
considers the objectives of both consumers and utility compa-
nies in an ADR scheme. Unfortunately, users tend to ignore
price signals [2]. This motivates the goal of this paper, i.e.,
automatically shifting user demand.

A single-layer approach involving DLC of Heating, Venti-
lation and Air Conditioning (HVAC) appliances is proposed
in [7]. Unfortunately, demanding DSO of controlling devices
at user premises is hardly accepted by users. Furthermore, here
we focus on actuating home batteries. In [8], a methodology is

presented to allow a storage aggregator to invest and operate a
central physical storage unit, by virtualizing it into separable
virtual capacities and selling it to users. In [9], an intelligent
multi-microgrid energy management method is proposed based
on artificial intelligence techniques, to protect user privacy. In
our setting, we only use the information from user mains,
which is already available to DSOs. In [10], a methodology
for optimal residential battery operation in a single house is
proposed, to minimize electricity costs. Finally, the approaches
in [11], [12] focus on the scheduling of Electric Vehicles (EVs)
only. However, in our setting, we are interested in SCM, which
is not addressed in [9], [8], [10], [11], [12].

The methodologies described above mainly rely on the
charge/discharge of home batteries to perform power demand
shifting. Many other methodologies (see, e.g., [13], [14] and
citations thereof) have also been proposed which rely on
scheduling appliances usage, to be either automatically or
manually applied. However, such approaches require either
modern smart appliances, which may not be available in many
houses, or rely on users manually applying the scheduling,
which is ineffective [2]. In our setting, we focus on batteries
as they allow both 1) more widespread applicability, as it is
simpler, especially in non-modern houses, to install a home
battery than many smart appliances, and 2) to always rely on
a completely automatic approach.

As for hierarchical methodologies, in [15] a hierarchical
distributed Model Predictive Control (MPC) approach is pre-
sented to solve the energy management problem in the multi-
time frame and multilayer optimization strategy. In [16] a hier-
archical day-ahead Demand Side Management (DSM) model
is proposed, where renewable energy sources are integrated.
In [17] a hierarchical approach is presented for distributed volt-
age optimization in high-voltage and medium-voltage EDNs.
In [18] a two-layer distributed cooperative control method for
islanded networked microgrid systems is described. In [19]
an optimal multiobjective control methodology is discussed
for power flow regulation and compensation of reactive power
and unbalance in AC microgrids. In [20] a bilevel optimization
framework is presented to minimize energy cost for com-
mercial building HVAC systems. In [21] a distributed energy
management strategy for the optimal operation of microgrids
is described. In [22] a distributed consensus-based approach
is proposed to solve the grid welfare problem by deriving an
real-time pricing scheme that facilitates an automated ADR.
problem by deriving a real-time pricing scheme that facilitates
an automated ADR. In [23] a hierarchical MPC of smart grid
systems is described to balance demand and supply. Such
methodologies cannot be applied to our setting, as they do not
address the problem of constraining the aggregated demand of
residential users within given desired bounds. In [24], a two-
layer control framework is proposed to perform peak shaving
(i.e., keeping the aggregated power demand below a given
upper threshold). However, in our setting, we are interested in
acting on domestic batteries, which allows a more widespread
use, while [24] focuses on (smart) HVAC only.

Finally, “adaptive” MPC often refers to techniques able to
automatically adjust, at run-time, the model parameters [25],
e.g., the weights of some constraints (see [26] and citations
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Fig. 1: The proposed architecture

thereof). In [27], a lightweight MPC scheme able to adjust its
prediction horizon has been presented and evaluated on a sim-
ple industrial process plant. However, in [27] horizon changes
are driven by the need of tuning the reference trajectory of
the model. Instead, in our work, we vary the horizon so as to
keep the house inside given power bounds.

Summing up, to achieve efficient and effective SCM, we
need a framework that avoids centralized solutions (typically
not accepted by users for privacy and security reasons) and
rely neither on user autonomously changing their habits nor
in (possibly expensive) smart appliances.

Main Contributions. To overcome the obstructions de-
scribed above, in this paper we propose a novel hierarchical
two-layer computational service for efficient and effective
SCM. We call such a service Demand-Aware Network Con-
straint mAnager (DANCA, see Figure 1). In the following, we
list the main contributions of our approach.

1) DANCA encloses two services, each running at different
levels of the EDN (substations and houses) and with different
periodicity (orders of days w.r.t. orders of minutes).
• The first layer is the

DemAnD–Aware Power limiT (ADAPT) service (based
on [2]), which is executed independently for each EDN
substation s. The ADAPT goal is to maintain the aggregated
power demand of s within the desired range given in input,
by computing individualized and time-dependent lower and
upper bounds on the power demand of each house connected
to s. The duration of such bounds must be long enough to
allow users to actually shift their power demand (one day in
our experiments).
• The second layer is the Lightweight Adaptive Home

Energy Management System (LAHEMS) service, which must
be run independently on each residential user u. The LAHEMS
goal is to maintain the demand of u within the power bounds
decided for u by ADAPT. Namely, LAHEMS acts as a Home
Energy Management System (HEMS) which is able to control
the charge and discharge of home batteries, thus shifting the
demand of u to stay inside the given power bounds. To this
aim, LAHEMS must compute actions on home batteries with
a sufficiently short periodicity (5 minutes in our experiments),
to catch up with variations in the demand of u.

2) DANCA may be either directly employed by the DSO
itself or offered by a Demand Side Response Aggregator
(DSRA). In this latter case, the DSO provides the DSRA with

the desired bounds on the aggregated demand of s and will pay
the DSRA so that violations on such bounds are minimized.
In the following, we will refer to the entity running DANCA
as DANCA provider.

3) ADAPT only requires in input the bounds on the
substation (always provided by the DSO) and the residen-
tial user power demand (already provided by the electricity
main in each house), thus it is executed at the DANCA
provider premises, possibly using powerful computing de-
vices. On the other hand, LAHEMS is responsible to actuate
charge/discharge of home batteries with real-time require-
ments, thus it is executed at each user premises. Communica-
tion between the two services takes place when ADAPT sends
to LAHEMS the lower and upper bounds for the given user
power demand: this happens only once a day without real-time
constraints, thus it can rely, e.g., on a typical home Internet
connection.

4) Running LAHEMS at each user premises entails that an
inexpensive and small microcomputer with limited computa-
tional resources, i.e., small RAM and low CPU frequency (in
our experiments, we used a Raspberry Pi), can be used.

5) Both ADAPT and LAHEMS are based on the MPC
methodology [28], [29]. That is, with the given periodicity (1
day and 5 minutes, respectively), ADAPT and LAHEMS solve
a suitable optimization problem which, depending on forecasts
for the user power demand, minimizes the power outside the
given bounds. From the solution to the optimization problem,
ADAPT extracts the bounds for each user, while LAHEMS
extracts the charge/discharge actions for batteries. The main
parameter for the MPC methodology is the receding horizon
used for the optimization problem, i.e., how many hours
in the future must be considered. While ADAPT receding
horizon is typically one day (as it is standard in the day-ahead
energy market), for real-time-constrained LAHEMS it should
be experimentally estimated in an initialization phase, which
may be costly. To this aim, for each user, the detailed power
demand on a past period (e.g., one year) is needed, which
may be unavailable. Furthermore, such initialization could not
catch up with modifications in user power demand habits,
which would diminish LAHEMS effectiveness. LAHEMS
solves such a problem by employing an adaptive algorithm,
which automatically adjusts, at run-time, the receding horizon.
Moreover, LAHEMS succeeds in doing this without violating
real-time requirements. To the best of our knowledge, this is
the first time that such an algorithm is presented.

Experimental Results. We experimentally evaluate the
efficiency and effectiveness of DANCA using data collected
from sensors in 62 Danish households connected to the same
substation during the SmartHG project [30]. As a result:
1) DANCA is able to achieve a 50% efficiency (i.e., reduction
of substation bounds violations w.r.t. the unmanaged demand).
This is a near-optimal solution, as a theoretical optimal
centralized approach on the same scenario would achieve
61% efficiency, i.e., our solution is 82% as effective as the
theoretical optimal one. We remark that the results obtained
in the centralized version of our approach cannot be actually
achieved in our setting for the previously explained reasons
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(i.e., lack of reliability of communication lines and users
security and privacy reasons). 2) LAHEMS can be run on a
Raspberry Pi, meeting the required hard-real-time deadlines.
As for ADAPT, it may easily be run by a desktop computer.

II. PROBLEM FORMULATION AND SYSTEM
ARCHITECTURE

In our setting, a set of residential houses U are connected
to the same substation s. The DSO D is able to compute,
basing on documentation and recorded power demand data,
desired power bounds for the substation P lows (t), Phighs (t)
(in kW) for suitable time slots t ∈ Ts (in our experiments,
each t lasts one hour and all t ∈ Ts refer to the next
day). Let du(t) be the power requested to the grid by house
u ∈ U in time slot t ∈ Ts, and let d(t) =

∑
u∈U du(t)

be the aggregated power demand in t (in kW). Furthermore,
let ∆(d, t) = ∆low(d, t) + ∆high(d, t) = max{P lows (t) −
d(t), 0} + max{d(t) − Phighs (t), 0} be the power (in kW)
outside P lows (t), Phighs (t), if any, when the aggregated demand
is d. If D is able to keep the overall aggregated power outside
the desired substation bounds ∆(d) =

∑
t∈Ts

∆(d, t) as low
as possible, then it will save in substation maintenance and
energy peak production [1]. Given this, we want to devise a
software framework to shift power demand du of each u ∈ U ,
so as to obtain a power demand e =

∑
u∈U eu =

∑
u∈U du +

au s.t. the aggregated power outside bounds ∆(e) is minimized
over a long-enough period (e.g., one year). We want such
a framework to have the following properties: 1) It must
be completely automatic, by shifting each household power
demand without involving residential user direct actions, to
minimize user discomfort. Note that demand shifting must not
entail power curtailment [3]. 2) It must be easily applicable to
most houses, with as low hardware installations as possible.
3) It must be technically viable. That is, the aggregated
demand which results from the power shifts must reduce the
peaks outside the substation desired bounds. Moreover, we
have to show that real-time requirements arising from the
hardware-software interaction are met. Figure 2 (left) shows
an example of our problem formulation, in which we only
consider the upper bound on the substation by using input
and output selected from the most demanding day in our
experiments (see Section IV). Note that shifts may be positive
(e.g., from 0 AM to 5 AM, where the resulting demand green
curve is above the historical demand blue curve) as well as
negative (e.g., from 8 AM to 11 AM). In the day depicted in
Figure 2, the reduction is about 50%, measured as 1− ∆(e)

∆(d) .
In our proposed framework, each house u ∈ U is provided

with a battery (and related circuitry/inverters). This allows us
to implement demand shifts via charge/discharge commands
to such batteries (see, e.g., [10]). This also allows us to easily
apply our methodology to most houses, given the widespread
availability and low costs of modern home batteries (appli-
cability). As we want a fully automatic framework, we need
software computing such charge/discharge commands. How-
ever, this cannot be done at the DSO premises, as having the
utility directly acting on batteries at user premises would not
be acceptable for users. Furthermore, commands for batteries

need to be computed at a high rate (e.g., every 5 minutes) and
to be reliably delivered. To this aim, using Internet links may
entail delays or even missed communication, whilst using new
dedicated communication lines would be too expensive.

In order to solve such issues, we organize our framework as
a two-layer architecture named Demand-Aware Network Con-
straint mAnager (DANCA) (see Figure 1). Namely, layer 1 is
a centralized software service called ADAPT [2]. One instance
of ADAPT has to be run for each substation, with a periodicity
of one day. This entails that ADAPT instances are run at
the DSO premises, possibly using powerful workstations. The
main goal of ADAPT is to acquire power demands from all
houses and compute individualized power bounds P lowu , Phighu

for the next day. If all houses u ∈ U are able to keep their
resulting demand eu(t) inside the bounds [P lowu (t), Phighu (t)]
for all t ∈ Ts, then the aggregated power outside of the desired
substation power profile ∆(e) is minimized. Note that power
bounds P lowu , Phighu may be sent via the Internet to each house
u, as such communication takes place only once a day and
may be delayed. Finally, we note that ADAPT uses coarse-
grained time slots (i.e., one hour). Layer 2 is a decentralized
software called LAHEMS. One instance of LAHEMS must be
run on each house u ∈ U . This entails that LAHEMS must
be run on inexpensive low-resources hardware (a Raspberry
Pi in our experiments). The main goal of LAHEMS is to
acquire the current power demand and State of Charge (SoC)
of the battery in house u, and to compute the charge/discharge
actions for the battery itself. Such actions will modify the
home demand eu(t) = du(t) + au(t), by either increasing it
(charge action au(t) > 0, e.g., from 7 to 8 AM in Figure 2
(right)) or decreasing it (discharge action au(t) < 0, e.g., from
8 to 9 AM in Figure 2 (right)). The objective is to minimize
the power outside the bounds [P lowu (t), Phighu (t)] provided
by the ADAPT service, without compressing or increasing
the user demand in the full period. Furthermore, if an EV
is also present, then LAHEMS may also be used to drive
the EV charge/discharge (thus employing the so-called V2H).
Note that: 1) The battery is always plugged-in and ready to
accept charge/discharge commands. On the contrary, the EV
is plugged-in only when the residential user decides to do
so. 2) There are no restrictions, other than the physical ones
(e.g., do not exceed the maximum power rate), on battery
usage. On the contrary, the EV, once plugged-in, must be
fully charged within a given deadline. 3) Both battery and EV
must be equipped with a Battery Energy Manager (BEM) [31],
[32], [33], [34], accepting (wireless) commands to: 1) read the
current SoC; 2) charge/discharge the battery/EV. In this latter
case, the BEM receives a software signal a ∈ R, and the
battery/EV is charged (if a ≥ 0) or discharged (otherwise)
with a kW rate until the next signal a′ is received.

III. METHODOLOGY

In this section, we describe our DANCA service, by giving
details of ADAPT and LAHEMS (for a high-level view,
see Figure 1). In the following, for both services, we will
distinguish between configuration input and online input. That
is, configuration input must be given once and for all when
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Fig. 2: Input and output for layer 1 (left) and layer 2 (right) in the most demanding day of our experiments (2014-01-29,
see Section IV). Left figure shows aggregated power demand before (“historical”) and after (“DANCA resulting”) applying
DANCA, right figure shows power demand of the most demanding house before (“historical”) and after (“LAHEMS resulting”)
applying LAHEMS on that house

starting a service for the first time, while online input needs
to be periodically acquired.

ADAPT Input and Output. The main configuration input
consists of the following: 1) Duration τl ∈ R+, in minutes, of
the power limits output from ADAPT. 2) Period τs ∈ R+, in
minutes, of ADAPT invocations (i.e., ADAPT computes output
power limits every τs minutes). Note that time slots duration τl
must divide τs. This also defines the horizon length Hs = τs

τl
of the MPC methodology used by ADAPT. 3) For each house
u ∈ U , battery maximum capacity Qu,E (in kWh) and battery
maximum and minimum power rates Mu,E and mu,E , in kW
(see, e.g., [2], [10]). 4) For each house u ∈ U , minimum and
maximum power demand (in kW) Clowu , Chighu ∈ R+, as from
the electricity contract.

The online input consists of the following: 1) (Ordered)
set Ts = {t1, . . . , tHs} of the future time slots, each lasting
τl minutes. 2) Desired bounds for the substation s to which
houses in U are connected P lows , Phighs : Ts → R (in kW).
3) For each house u ∈ U , power demand d̃u (in kW), as
the difference between consumption (from appliances and EV)
and production (from Photovoltaic Panels), taken at intervals
at least τl. This is used to compute du : Ts → R (in kW) as
power demand forecasted for the next period Ts. Here we are
interested in computing the forecast in negligible time, thus,
for a given time slot t, the forecast is computed by a discounted
average on the demands in the same time slot t in the past days
(in our experiments, we consider 10 days in the past). For an
overview of demand forecasting methods, see [35], [36]. Note
that, as ADAPT cannot directly drive EVs, the power used on
each house to recharge the EV is included in du.

Finally, the ADAPT output consists, for each house u ∈ U ,
of two power profiles P lowu , Phighu : Ts → R. Such power pro-
files will be given as input to LAHEMS. Namely LAHEMS,
executed at u premises, will have to keep the resulting power
demand eu inside [P lowu (t), Phighu (t)] as most as possible, for
all time slots t. If each LAHEMS running on each house
u ∈ U succeeds in this task, then the overall aggregated power
outside the desired substation bounds ∆(e) will be minimized.

LAHEMS Input and Output. In the following, we focus
on a given house u ∈ U , thus we will assume index u to
be understood. The main configuration input of LAHEMS
consists of: 1) The starting horizon length Hi ∈ N and

horizon length changing step Hδ ∈ N used for the Adaptive
Model Predictive Control (AMPC) methodology employed by
LAHEMS. 2) The period τ ∈ R+, in minutes, of LAHEMS
invocations (i.e., LAHEMS decides an action every τ minutes).
We also require EV and battery actions to be computed within
ζ minutes. This allows LAHEMS to correctly assume that
computed actions will be held for τ−ζ minutes. Namely, if ζ is
sufficiently low, computed actions will be actually held by EV
and battery for almost τ minutes. 3) EV maximum capacity
QP (in kWh) and EV maximum and minimum power rates
MP and mP (in kW). Furthermore, battery and EV efficiency
for charge αE , αP and discharge βE , βP , respectively.

On the other hand, the online input consists of the following:
1) The (ordered) set T = {t1, . . . , tH} of the future time slots.
All time slots except t1 last τl minutes, i.e., the frequency of
changes in power limits. Duration of t1 is defined so as t2
starts at a multiple of τl. E.g., if power limits change every
hour (τl = 60) and the current time-stamp is 10:15, t1 will
last 45 minutes. 2) The power limits for u as an output from
ADAPT. 3) Power demand d̃ currently being requested to
the grid (excluding EV, which is managed separately). Using
the same techniques of ADAPT, the forecast for the demand
d : T → R on the next H periods of τl minutes is computed.
4) Current state of charge for both the battery Q̃E and the
EV Q̃P (Q̃P = −1 if it is currently not plugged-in). 5) If
Q̃P 6= −1, the deadline for EV recharging DP ∈ N, s.t.
DP = i ≥ 0 iff the EV must be completely recharged in at
most i minutes. We assume that the residential user manually
specifies the deadline for the complete EV recharge when
plugging the EV.

Finally, the LAHEMS output consists of commands
aE , aP ∈ R. Namely, aE is the charge (if aE ≥ 0) or
discharge (aE < 0) command, in kW, for the battery in the
current time slot. Analogously, if the EV is plugged-in (i.e.,
if Q̃P ≥ 0) then aP is the charge/discharge command for the
EV.

ADAPT Base Algorithm. Both ADAPT and LAHEMS
algorithms are based on the MPC methodology. As for the
system model (e.g., batteries and power demand) as well as
for the underlining MPC scheme, we follow well-established
approaches from the literature, e.g., [2], [10]. Every τs min-
utes, the ADAPT algorithm computes the power limits for
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Every hour, collect power 
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Fig. 3: Simplified control-flow diagram for ADAPT (left) and
LAHEMS (right), also showing the main variables used

all houses u ∈ U . To this aim, a Linear Programming (LP)
problem L1 (designed by suitably extending [2]) with receding
horizon Hs for layer 1 is generated and solved. Namely,
L1 contains 6|U ||Ts| + 3|Ts| + |U | constraints, defined over
4|U ||Ts|+|U |+2|Ts| real-valued variables, which are detailed
in the following.

∀u ∈ U, t ∈ Ts. bu,E(t+ 1) = bu,E(t) +
τl
60
au,E(t) (1)

Constraint (1) states that the SoC bu,E(t + 1) (in kWh) of
the battery in house u at a given time slot t+1 is the result of
applying action au,E(t) (in kW) to SoC bu,E(t) at the previous
time slot t, also considering time slot duration in minutes τl.

∀u ∈ U. bu,E(t1) = bu,E(t|Ts| + 1) =
Qu,E

2
(2)

Constraint (2) states that the behavior of the battery must be
cyclic, i.e., the starting and ending SoC of the battery (within
time slots set Ts, which lasts one day in our experiments) in
a given house u must be both half of the battery maximum
capacity Qu,E . In this way, there are no preferences among
different executions of ADAPT in different days.

∀u ∈ U, t ∈ Ts. P lowu (t) ≤ au,E(t) + du(t) ≤ Phighu (t) (3)

Constraint (3) states that the collaborative power profile for
each u ∈ U must always be inside the bounds P lowu , Phighu

to be output for user u. Note that, following the nomencla-
ture in [2], “collaborative power profile” does not refer to
collaborations between users, but to the fact that each user
is willing to follow the price policies decided by DSO using
ADAPT. Namely, such collaborative power profile is defined
by applying an action on the battery au,E(t) to the current
demand du(t), thus obtaining au,E(t) + du(t).

∀u ∈ U, t ∈ Ts. 0 ≤ bu,E(t) ≤ Qu,E (4)

∀u ∈ U, t ∈ Ts. mu,E ≤ au,E(t) ≤Mu,E (5)

Constraints (4) and (5) require that the power demand shift
au,E for user u is within the limits of user u flexibility, i.e.,
within the power rate and capacity of the battery in house u
(also Constraint (1) is involved, as it defines the future SoC).

∀u ∈ U, t ∈ Ts. Clowu ≤ P lowu (t) ≤ Phighu (t) ≤ Chighu (6)

Constraint (6) requires that the output bounds P lowu , Phighu

for user u must be within the electricity contract of u.

∀t ∈ Ts. ∆high(t) ≥ 0,∆low(t) ≥ 0 (7)

∀t ∈ Ts.
∑
u∈U

Phighu (t) ≤ Phighs (t) + ∆high(t) (8)

∀t ∈ Ts.
∑
u∈U

P lowu (t) ≥ P lows (t)−∆low(t) (9)

Constraints (7)–(9) define the worst-case aggregated powers
∆high exceeding Phighs and ∆low going below P lows . The
objective function of L1 is to minimize all such aggregated
power exceeding substation bounds, i.e.,

∑
t∈Ts

∆high(t) +∑
t∈Ts

∆low(t).
Finally, every τs minutes, the ADAPT output values for

power limits P lowu (t), Phighu (t), for all u ∈ U, t ∈ Ts, are
computed by solving, every τs minutes, the LP problem
L1 via a LP solver and then extracting, from the obtained
solution, the values for decision variables P lowu (t), Phighu (t)
(the corresponding control-flow diagram is shown in the left
part of Figure 3).

LAHEMS Base Algorithm. In each house u ∈ U ,
every τ minutes, the main LAHEMS algorithm computes
charge/discharge decisions on battery and/or EV, basing on
the battery and/or EV current SoC, on the current household
power demand, on forecasted future power demand, and on
the known future power limits P lowu , Phighu from ADAPT. In
order to compute the charge/discharge commands, a Mixed In-
teger Linear Programming (MILP) problem L2 with receding
horizon H for layer 2 is generated and solved. L2 consists of
two separate sets L2E , L2P of constraints. Constraints in L2E

deal with fixed battery dynamics and thus are always present.
Constraints in L2P are defined only when the EV is plugged-
in. We have that L2E is defined by 22H + 2 constraints on
5H+ 1 continuous decision variables and 4H binary decision
variables. On the other hand, L2P is defined by at most 6H+2
constraints on at most 3H continuous decision variables and
H binary decision variables, depending on |TP |, being TP the
subset of time slots in T in which the EV will stay plugged-in.
In the following, we describe such constraints in more detail.
We recall that we focus on a given house u ∈ U , thus we will
assume index u to be understood.

∀t ∈ T.e(t)=d(t)+achE (t)−βEadisE (t)+η(t)(achP (t)−βPadisP (t))
(10)

∀t ∈ T. Clow ≤ e(t) ≤ Chigh (11)

Constraint (10) defines the power e(t) requested or gener-
ated by the house in time slot t ∈ T as the sum of all houses
power consumption (power demand d(t), charge commands
for battery and EV achE (t), achP (t)) and power production
(discharge commands for battery and EV adisE (t), adisP (t)). All
such values are in kW. Battery and EV discharge commands
also take into account round-trip inefficiencies 0 < βE , βP <
1. Constant η(t) is defined, for a given time slot t, as the
fraction of t in which the EV is plugged-in. Constraint (11)
requires such resulting power demand e(t) to be inside the
ranges of the household electricity contract.

bE(t1) = Q̃E , 0 ≤ bE(tH + 1) ≤ QE (12)
∀t ∈ T. bE(t+ 1) = bE(t) +

|t|
60

(αEa
ch
E (t)− adisE (t)) (13)

∀t ∈ T. yE(t)→ achE (t) = 0,¬yE(t)→ adisE (t) = 0 (14)

∀t ∈ T. 0 ≤ bE(t) ≤ QE , 0 ≤ achE (t) ≤ME , 0 ≤ adisE (t) ≤ mE

(15)
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Constraints (12) and (13) define the behavior of the battery,
i.e., the starting SoC Q̃E (in kWh) is read from sensors, and
the SoC at time t+1 is obtained by adding to the SoC at time
t the action taken at time slot t, multiplied by the time slot du-
ration |t|. In case of a charge action, the efficiency coefficient
0 < αE < 1 is also considered. Constraint (14) allows us to
distinguish between a charge and a discharge action, which
is required to apply the known battery efficiencies αE , βE .
Furthermore, the battery physical constraints on power rate
and capacity are taken into account by Constraint (15). Note
that the Constraints (14) are guarded constraints of the form
γ → L(X ) ≤ K or ¬γ → L(X ) ≤ K, where L is a linear
function, X is a set of bounded variables (i.e., all variables in
X are defined on a suitable bounded interval), γ is a binary
variable not in X and K is a constant. Since all our decision
variables are bounded, such constraints are translated into
linear constraints as follows: γ → L(X ) ≤ K is equivalent
to (sup(L(X )) − K)γ + L(X ) ≤ sup(L(X )), while ¬γ →
L(X ) ≤ K is equivalent to (K− sup(L(X )))γ+L(X ) ≤ K.
In such formulas, sup(L(X )) may be easily computed as L
is linear and all variables in X are bounded [2].

bP (t1) = Q̃P (16)

∀t ∈ TP . bP (t+ 1) = bP (t) + η(t)
|t|
60

(αPa
ch
P (t)− adisP (t))

(17)
∀t ∈ TP . yP (t)→ achP (t) = 0,¬yP (t)→ adisP (t) = 0 (18)

∀t ∈ TP . 0 ≤ bP (t) ≤ QP , 0 ≤ achP (t) ≤MP , 0 ≤ adisP (t) ≤ mP

(19)
Constraints (16)–(19) define the analogous behavior for

the EV. Note that such constraints are defined on the set
TP = {t1, . . . , t̃} of the time slots in which the EV is actually
plugged-in. This implies that Constraints (16)–(19) are only
present when the EV is currently plugged-in, thus they are in
L2,P . Note that the Constraints (18) are guarded constraints
(see above).

bP (t̃+ 1) = min{QP , Q̃P + αPMPDP }min

{
1,

∑
t∈T |t|
DP

}
(20)

To define the goal for EV recharging, we have to consider
two aspects, both handled by Constraint (20) in L2,P . On the
one hand, the input deadline specified by the user for the EV
complete recharge may be infeasible w.r.t. the current SoC
(e.g., it is infeasible to completely recharge the EV from 0
kWh in 1 hour). In order to avoid L2 to turn out infeasible only
because of this, LAHEMS first computes the SoC attainable
with the currently specified deadline, i.e., Q̃P + αPMPDP .
On the other hand, the EV may be expected to be unplugged
at time slot t̃ within the current time horizon, or in a time slot
that will be considered in a future MILP. In the former case,
the EV must be completely charged at t̃. In the latter case, we
require the final charge of the EV to be proportional to the
remaining time before unplugging the EV, i.e.,

∑
t∈T |t|
DP

.

∀t ∈ T. yhigh(t)→ e(t) ≤ Phigh(t) (21)

∀t ∈ T. ¬yhigh(t)→ e(t) ≥ Phigh(t) (22)

∀t ∈ T. ylow(t)→ e(t) ≥ P low(t) (23)

∀t ∈ T. ¬ylow(t)→ e(t) ≤ P low(t) (24)

∀t ∈ T. yin(t)→ yhigh(t) + ylow(t) ≥ 2 (25)

∀t ∈ T. ¬yin(t)→ yhigh(t) + ylow(t) ≤ 1 (26)

∀t ∈ T. yin(t)→ z(t) = 0 (27)

∀t ∈ T. ¬yhigh(t)→ z(t) = e(t)− Phigh(t) (28)

∀t ∈ T. ¬ylow(t)→ z(t) = −e(t) + P low(t) (29)
∀t ∈ T. 0 ≤ z(t) ≤ max{P low(t)−Clow, Chigh − Phigh(t)}

(30)
The objective function of L2 minimizes the power outside

the limits decided by ADAPT for the given house. To this
aim, such exceeding power in time slot t ∈ T is modeled by
variable z(t) (having bounds as in Constraint (30)), thus the
objective function to be minimized is

∑
t∈T z(t). By using

guarded constraints (see above), the decision variables z(t)
are defined by:
• Constraints (21) and (22), where binary variable yhigh(t)

is set to true iff the resulting power e(t) exceeds the upper
bound Phigh(t);

• Constraints (23) and (24), where binary variable ylow(t)
is set to true iff the resulting power e(t) is below the
lower bound P low(t);

• Constraints (25) and (26), where binary variable yin(t)
is set to true iff the resulting power e(t) is inside the
bounds interval [P low(t), Phigh(t)];

• Constraints (27)–(29), where, exploiting the binary vari-
ables defined in Constraints (21)–(26), the real variable
z(t) is defined to be 0 iff e(t) ∈ [P low(t), Phigh(t)],
and to be the power outside the bounds interval
[P low(t), Phigh(t)] otherwise.

Finally, every τ minutes, the LAHEMS output values for
battery and/or EV charging/discharging actions are computed
by solving the MILP problem L2 via a MILP solver and
then extracting, from the obtained solution, the actions for
the first time slot in T . If L is infeasible, then a de-
fault action is selected, which is designed to minimize user
discomfort. That is, if the EV is not currently plugged-
in or is already fully charged, then no action is taken,
i.e., (aE , aP ) = (0, 0). Otherwise, the EV is charged as
much as possible, also discharging the battery as much
as possible, i.e., aP = min{MP ,

QP−Q̃P

τ , Chigh − d(t1)+

βE min{mE ,
QE−Q̃E

τ }}, aE = −min{mE ,
QE−Q̃E

τ , aPβE
}. In-

stead, if L is feasible, then, for x ∈ {E,P}, ax = achx (t1) if
achx (t1) ≥ 0, and ax = adisx (t1) otherwise. The corresponding
control-flow diagram is shown in the right part of Figure 3.

LAHEMS Adaptive Algorithm. Our adaptive algorithm is
based on the fact that using a high value for the horizon H does
not imply that we obtain better exceeding power minimization.
This is due to: i) uncertainties stemming from power demand
forecasting, which are worse for higher values of the horizon,
and ii) higher computation time typically required to solve
MILPs with higher horizons, as the number of both constraints
and decision variables linearly depends on H . Thus, our adap-
tive algorithm works as follows. Instead of setting up only one
MILP L with fixed receding horizon H , as it is done in the
literature, LAHEMS sets up and separately solves 3 different
MILPs with receding horizon h ∈ {H,H − Hδ, H + Hδ}
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Fig. 4: Net topology of the substation and connected houses

respectively. For each of such MILPs, LAHEMS maintains
the current objective function value ĉ(h) (i.e., by accumulating
the values of the MILP objective functions as computed by the
MILP solver). When, for some h 6= H , the value for h is better
than the value for the current horizon H , i.e., ĉ(h) < ĉ(H), the
current horizon H is updated to h and all objective function
values ĉ(h) are reset to 0. Note that only the actions computed
with the current horizon H (which are computed first) are
sent to batteries actuators. Namely, MILP problems with other
horizons are only used to automatically adjust the current
horizon, so that the exceeding power is further minimized.

In order to meet real-time requirements, LAHEMS uses a
twofold strategy. First of all, LAHEMS stops MILP solver
execution if it exceeds ζ minutes. In this case, the current
MILP problem L is handled as if it were infeasible (i.e.,
minimizing user discomfort). This entails that battery actions
are held for τ − ζ minutes. Since, for small values of ζ,
τ − ζ ≈ τ , this is in agreement with MILP constraints which
assume computed actions for battery and EV to be held for all
current time slot duration τ . Second, after having computed the
actions for battery and EV, LAHEMS would be idle till the
end of the current time slot duration τ (neglecting periodic
tasks such as downloading new power limits or reading the
current power demand). LAHEMS exploits such although idle
time to compute the actions with horizons H −Hδ, H +Hδ ,
thus achieving horizon adjustment without overhead.

IV. EXPERIMENTAL SETUP

In this section, we describe how we organize our exper-
iments, in order to show the feasibility of our approach. To
this aim, we implemented both the ADAPT and the LAHEMS
algorithm by using the Python language, and we use GNU Lin-
ear Programming Kit (GLPK) to solve MILP problems. The
following results have been obtained by simulating ADAPT
operation for one year on an Intel i7 2.5 GHz with 8GB
of RAM, and by simulating LAHEMS operation for the
same period, also considering output from ADAPT, on a
Raspberry Pi Model B+ 700 MHz with 512 MB of RAM.
Our experiments are organized as follows.

Key Performance Indicators. In order to evaluate our
DANCA methodology, we define a set of meaningful Key
Performance Indicators (KPIs), which are listed and explained
in Table I.
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Substation, households and EVs. In order to accurately
simulate ADAPT and LAHEMS operation for a long enough
period, we need power demand data, taken at intervals of at
least one hour, of each residential house connected to a given
substation. To this aim, we use power demand recorded, from
the beginning of September 2013 to the end of August 2014,
in 62 households in a suburban area in Denmark. All such
houses are connected to the same substation s (see Figure 4).
Such data were recorded during the European Commission
project “SmartHG” [37], [30] and consists, for each of the 62
houses, in the power demand recorded from house electricity
main, with a resolution of 1 hour. We point out that Danish
households use district heating for house heating and elec-
tricity for house appliances. We also use Photovoltaic Panel
(PVP) energy production recorded in the same period and area.
Such recorded data consider 6 kWp PVP installations, with
highly seasonal productivity ranging from 200 kWh/month in
December and above 1200 kWh/month from April to July.
To assess the validity of our case study, we show that, with
high probability, any operational scenario will be very close
to one of those entailed by the houses U considered in our
case study. To this end, we divide each day into 4 time
slots t1, . . . , t4 of 6 hours each, with ti = [6(i − 1), 6i)
(i = 1, . . . , 4). Let Du(ti) be the total electricity demand (for
a whole year, in our case study) of house u within time slot ti,
let Dtot

u =
∑4
i=1Du(ti) be the total (whole year) demand of

house u and let D̃u(ti) be the fraction of the demand of house
u within time slot ti, i.e., D̃u(ti) = Du(ti)

Dtot
u

. On such a base,
we define the demand distribution D̃u for house u as D̃u =(
D̃u(t1), D̃u(t2), D̃u(t3), D̃u(t4)

)
. Figure 5 shows the set of

demand distributions D̃ = {D̃u | u ∈ U}. Our goal is to show
that any reasonable demand distribution will not be too differ-
ent from one of those in D̃. Accordingly, our set of admissible
demand distributions is D∗ = {(p1, p2, p3, p4) | (∧4

i=1pi ∈
[0.1, 0.3]) ∧ (

∑4
i=1 pi = 1)}. Given a demand profile p =

(p1, p2, p3, p4) ∈ D∗, we define the distance rmse(p) of
p from D̃ as the minimum root mean square error, i.e.,

rmse(p) = 1
2 min

{√∑4
i=1(pi − D̃u(ti))2 | u ∈ U

}
. Note

that rmse(p) = 0 for p ∈ D̃. Using MonteCarlo-based
statistical model checking techniques (e.g., as in [4]), we
can show that, with probability at least 0.99, for a randomly
selected p ∈ D∗ we have rmse(p) ≤ 0.08. That is, with high
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TABLE I: List of KPIs used for DANCA evaluation

KPI Description

AvgSolTime Average MILP Solving Time (in seconds), i.e., the average delay due to MILPs solution computation
MissDeadl Missed Deadline for MILP Solving, i.e., the fraction of MILPs not solved within the ζ = 0.5 mins deadline
HorChange Horizon Changes. For user u, given N(u) (number of times the adaptive algorithm decided to change the MPC receding

horizon) and T (u) (total number of MILPs), then HorChange = N(u)/T (u)
UserDiscomfort Missed EV Deadlines. For user u, given R(u) (number of times the EV was plugged) and M(u) (number of times LAHEMS

failed to fully re-charge the EV within the deadline), then UserDiscomfort = M(u)/R(u)
DemOutRed DANCA (Hierarchical) Aggregated Demand Outside Bounds Reduction w.r.t. Historical Demand, i.e., DemOutRed

= 1− ∆(e)
∆(d)

(see Section II).
DemOutRedOpt Optimal (Centralised) Aggregated Demand Outside Bounds Reduction w.r.t. Historical Demand. Let ∆(c) be the overall

aggregated ADAPT collaborative profile (see Section III) power outside the desired substation bounds. Then, DemOutRedOpt
= 1− ∆(c)

∆(d)
.

TABLE II: Parameters for DANCA evaluation

Param Value Explanation
|U | 62 Number of houses
τs 1 day Gap between two MILP solver invocations for

ADAPT
τl 1 hour Duration of time slots for power limits output

by ADAPT
τ 5 min Gap between two MILP solver invocations for

LAHEMS
ζ 30 sec Deadline for each MILP solver invocation in

LAHEMS
Hi 6 Starting value for receding horizon in LA-

HEMS
Hδ 7 Changing step for receding horizon in LA-

HEMS
QE 13.5 kWh Battery capacity on each house
ME ,mE 3.3 kW Battery power rate
α1, β1 0.9 Battery round-trip efficiencies
QP 16 kWh EV capacity on each house
MP ,mP 3.6 kW EV power rate
α2, β2 0.876 EV round-trip efficiencies

probability, any admissible demand distribution will be very
close to one of those considered in our case study. This shows
that conclusions drawn from our case study can be safely
generalized to other situations.

Furthermore, we virtually equip each house with EVs
charging data taken from the “Test-an-EV” project [37]. Such
data consists in plug-in time, SoC at plug-in time and unplug
time for 184 EVs Mitsubishi i-MiEV, ranging from 2012 to
2013. The matching between a house and an EV has been
done randomly. We remark that, in ADAPT experiments, EVs
charging data is considered a further load for each house u,
thus the power demand in a time slot t is incremented by the
historical charging data of the EV connected to u. In LAHEMS
experiments, we only take into account the starting time and
starting SoC of each recharge, as well as its unplug time.
Then, it is LAHEMS responsibility to decide charge/discharge
actions for the EV.

Substation Bounds. We split our experiments into 3 sce-
narios, each corresponding to different values for the desired
bounds on substation s required in input by ADAPT. In order
to set up challenging scenarios for our DANCA methodol-
ogy, we compute, from the historical data on houses power
consumption described above (also considering EV recharging
data), the daily average A(D) and daily maximum M(D) on
the aggregated power demand, being D a given day. A scenario
S is defined by setting, for each day D and all time slots t
of D, [P lows (t), Phighs (t)] = [0, A(D) + S(M(D) − A(D))].

That is, we set the lower bound to be 0, as reverse power
flows may damage any installed electrical equipment in the
grid [3]. Instead, for the upper bound, we have that for S = 0 it
coincides with the daily average, whilst for S = 1 it coincides
with the daily maximum. The lower S, the more challenging
our scenario is. In the following, we will consider 3 values for
S, each defining a scenario, i.e., S ∈ {0, 0.25, 0.5}.

All other experimental parameters are shown in Table II.
Simulation of ADAPT in a given day D is carried out by
taking as input the historical data on power demand of all
houses u ∈ U in day D−1, as well as the substation bounds for
day D as discussed above. For each house u ∈ U , simulation
of LAHEMS in time slot t is carried out by taking as input
the power limits output by ADAPT for u in Ts, the power
demand of u in t from historical data, and the estimated SoC
of battery and EV in t. Such SoC is computed from the SoC
and the charge/discharge action of the previous time slot t−1,
using the first time slot of (13) and (17).

V. EXPERIMENTAL RESULTS

Given the experimental setting described in Section IV, in
this section we show our experimental results. Namely, in Fig-
ure 6 we present, for each KPI of LAHEMS (see Table I), the
corresponding statistics as Box-and-Whiskers plots [38]. Since
each KPI is measured for every house, the plots in Figure 6
provide, for each KPI, the statistics (i.e., average, interquartile
range, outliers) on all houses. Furthermore, Table III shows
the results for the overall evaluation of the DANCA service.
In the following, we discuss the results of the given KPIs.

Demand Outside Bounds Reduction and Users Dis-
comfort. The main result of our DANCA service consists
in the fact that we achieve a high reduction on the peaks
outside substation desired bounds, without user discomfort.
Table III shows that the demand peaks outside the substation
desired bounds (considering both demands higher than the
upper bound and lower than the lower bound) are halved in
all our experimental scenarios. This is achieved with a Missed
EV Deadlines (UserDiscomfort) equal to 0 in all houses, i.e.,
deadlines for EV recharging are never missed. Furthermore,
the theoretical optimal reduction achieved in ideal conditions
by the ADAPT collaborative profile computed in a centralised
way is about 60% in all scenarios, thus our near-optimal
approach is at least 82% as efficient as the theoretical optimal
one.
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(a) Average MILP Solving Time (b) Missed Deadline for MILP Solving (c) Horizon Changes

Fig. 6: Box-and-Whisker plots [38] for the main KPIs of LAHEMS. In each plot, the box boundaries are the farthest points
that are not outliers (i.e., that are within 1.5 the interquartile range), the line inside the box is the statistical median, and the
circles are data more than 1.5 times the interquartile range from the end of a box.

We remark that these results have been achieved by using
the same inexpensive hardware that would have been needed
by a non-MPC-based strategy. For the sake of comparison,
consider a simple strategy where there is only one layer, con-
sisting in a computational service acting on each house. The
input of such service, call it Simple Demand-Aware Network
Constraint mAnager (SDANCA), is the same as LAHEMS, but
instead of the power bounds computed by ADAPT, SDANCA
is directly fed with the desired substation bounds P lows , Phighs

and the number of houses |U |. Given this, SDANCA first
computes the house power bounds as P low

s

|U | ,
Phigh

s

|U | . Then,
SDANCA computes battery and EV actions in a greedy way,
i.e., the battery is charged (within its physical limits) when
the current demand is below the upper bound Phigh

s

|U | , and dis-
charged otherwise. Such a simple strategy, while requiring the
same hardware as DANCA, achieves a reduction of substation
constraint management violation of about 38%, compared to
50% obtained with our approach.

Computation Time. We recall that LAHEMS is designed
to compute each battery and/or EV action in at most ζ = 30
seconds. First of all, we point out that MILP deadlines viola-
tions are very few, as shown in Figure 6b. Namely, Figure 6b
shows that, for most houses, at most 5% (and 2% on average)
of all MILP problems solved require more than 30 seconds to
be solved, thus missing the real-time deadline. Furthermore,
also considering statistical outliers, the percentage of missed
deadlines is always below 13% in all houses. On the other
hand, Figure 6a shows that most MILP solver invocations,
on average, require much lower computation time than 30
seconds. Namely, for most houses, the average of the times
needed to solve all MILP problems (given there is one
MILP solved every 5 minutes over one year, such average is
computed on about 105,000 values on each house) turns out to
be between 1 and 3 seconds in all scenarios. Furthermore, also
considering the statistical outliers, for all houses the average
MILP solving time is at most 5 seconds. Such results show
that LAHEMS is indeed a lightweight application as required
and fully meets the requirements for real-time computation

TABLE III: Results for DANCA evaluation

s DemOutRed DemOutRedOpt DemOutRed
DemOutRedOpt

0 0.5 0.61 0.82
0.25 0.53 0.63 0.83
0.5 0.48 0.58 0.83

on the target low-resource device (Raspberry Pi). Finally, as
for ADAPT computation time, it typically requires at most
1 second, which is negligible w.r.t. ADAPT periodicity (1
day). This is not surprising, as the MILP problems defined
in ADAPT are actually LP problems (i.e., they do not involve
binary decision variables).

Adaptive Algorithm Effectiveness. In order to show the
effectiveness of the adaptive algorithm employed by LA-
HEMS, Figure 6c shows the results for the Horizon Changes
(HorChange) KPI (see Table I). Namely, in all scenarios and
all houses, there are 4 horizon changes every 1000 MILP
solver invocations on average. This shows that our adaptive
algorithm is effective, as it is able to adapt to very different
conditions, depending on the scenario and the current home
behaviour.

VI. CONCLUSIONS

In this paper, we presented Demand-Aware Network Con-
straint mAnager, a two-layer computing service that is able
to enforce aggregated power demand constraints on Elec-
trical Distribution Network substations. Demand-Aware Net-
work Constraint mAnager is composed of two services,
both based on the Model Predictive Control methodology:
DemAnD–Aware Power limiT, operating once a day at the
substation level and at utility premises, and Lightweight
Adaptive Home Energy Management System (also employing
a novel adaptive Model Predictive Control), operating once
every 5 minutes at user premises on hardware with limited
computational resources. More in detail, such services act as
a hierarchical controller: DemAnD–Aware Power limiT sets
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up the long-term goal for Lightweight Adaptive Home En-
ergy Management System, which directly controls local home
batteries via charge/discharge commands to meet such goals.
Users privacy is also preserved, as only their overall demand is
sent to the Distribution System Operator, as it already happens
with home mains, and home batteries are not actuated by the
Distribution System Operator.

Using power demands recorded in 62 houses in Denmark by
the EU project SmartHG [30], we experimentally showed that
Demand-Aware Network Constraint mAnager is able to reduce
aggregated demand bounds violations w.r.t. the unmanaged
demand by about 50% on average (w.r.t. 61% reduction
obtained by a theoretical optimal centralized solution). This is
achieved while meeting real-time requirements on the available
hardware, both at the substation and at the houses level.

Our Demand-Aware Network Constraint mAnager frame-
work currently focuses on satisfying the substation (feeder)
power bounds. As future work, we plan to investigate how to
extend it to enforce other network-level restrictions, e.g., on
power flow.
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