
 
 

Delft University of Technology

Efficient MSPSO Sampling for Object Detection and 6D Pose Estimation in 3D Scenes

Xing, Xuejun; Guo, Jianwei; Nan, Liangliang; Gu, Qingyi; Zhang, Xiaopeng; Yan, Dong Ming

DOI
10.1109/TIE.2021.3121721
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Industrial Electronics

Citation (APA)
Xing, X., Guo, J., Nan, L., Gu, Q., Zhang, X., & Yan, D. M. (2022). Efficient MSPSO Sampling for Object
Detection and 6D Pose Estimation in 3D Scenes. IEEE Transactions on Industrial Electronics, 69(10),
10281-10291. Article 10281. https://doi.org/10.1109/TIE.2021.3121721

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TIE.2021.3121721
https://doi.org/10.1109/TIE.2021.3121721


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 69, NO. 10, OCTOBER 2022 10281

Efficient MSPSO Sampling for Object Detection
and 6-D Pose Estimation in 3-D Scenes

Xuejun Xing, Jianwei Guo , Liangliang Nan , Qingyi Gu , Member, IEEE,
Xiaopeng Zhang , Member, IEEE, and Dong-Ming Yan

Abstract—The point pair feature (PPF) is widely used in
manufacturing for estimating 6-D poses. The key to the
success of PPF matching is to establish correct 3-D corre-
spondences between the object and the scene, i.e., finding
as many valid similar point pairs as possible. However,
efficient sampling of point pairs has been overlooked in
existing frameworks. In this article, we propose a revised
PPF matching pipeline to improve the efficiency of 6-D pose
estimation. Our basic idea is that the valid scene reference
points are lying on the object’s surface and the previously
sampled reference points can provide prior information for
locating new reference points. The novelty of our approach
is a new sampling algorithm for selecting scene reference
points based on the multisubpopulation particle swarm op-
timization guided by a probability map. We also introduce
an effective pose clustering and hypotheses verification
method to obtain the optimal pose. Moreover, we optimize
the progressive sampling for multiframe point clouds to im-
prove processing efficiency. The experimental results show
that our method outperforms previous methods by 6.6%,
3.9% in terms of accuracy on the public DTU and LineMOD
datasets, respectively. We further validate our approach by
applying it in a real robot grasping task.
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I. INTRODUCTION

OBJECT detection and 6-D pose estimation is a key compo-
nent of various applications in intelligent manufacturing

and industrial robotics. The purpose of 6-D pose estimation is to
determine an object pose that is represented by a 3× 3 rotation
matrix R and a 3-D translation vector t. In particular, the object
pose is the transformation that converts a 3-D point po in the
local object coordinate system into the corresponding 3-D point
ps in the scene coordinate system, i.e., ps = Rpo + t.

Researchers in the machine vision and robotics communities
have presented many methods on 6-D pose estimation. In gen-
eral, the key technologies are based on three directions.

A. Template Matching

The template matching method converts the object into a
series of templates and searches the position of each template
on the entire scene to obtain the object pose [1]–[7]. These
methods have the advantages of strong real-time performance
and easy implementation [5], [7]. However, their performance
of instances detection and pose estimation in complex scenes is
compromised due to changes in light and scene occlusion [4],
[8]–[10].

B. Deep-Learning-Based Methods

In recent years, deep learning has been developed rapidly in
the field of image processing and analysis [11]–[15]. Similarly,
many pose estimation methods based on deep learning are
proposed for point cloud [16]–[19], RGB [7], [10], [20]–[24], or
RGB-D images [25]–[32]. These methods show great potential
in 6-D pose estimation. However, so far there are few methods
focusing on unstructured point clouds. Hagelskjaer et al. [16]
performed semantic segmentation on the input point cloud based
on PointNet, then used traditional methods to estimate the 6-D
pose of the segmented instances. The methods of [17]–[19]
require a segmented point cloud as input, which depends on the
segmentation using RGB images. Furthermore, the accuracy of
these methods is still lower than that of deep learning models
based on RGB-D images and is not yet saturated [18], [19]. On
the other hand, the combination of deep learning models and

0278-0046 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Illustration of the proposed pipeline. (a) In preprocessing, the input object and scene point cloud are downsampled. (b) Model PPF hash
map is generated using the point pairs of the object. (c) We progressively sample scene reference points by the MSPSO algorithm based on a
probability cloud map, then perform PPF matching and Hough voting to generate pose hypotheses. (d) Improved pose clustering and verification is
conducted to return final poses by filtering out duplicated and invalid poses.

traditional methods for 6-D pose estimation has also achieved
competitive results [7], [10], [16], [31], [32].

C. Feature Descriptor Matching

Another kind of methods mainly used local feature descrip-
tors [33]–[35] to establish similar point pairs between object and
scene, which are used to generate the approximate 6-D poses.
These methods has poor prediction performance when the object
has indistinguishable local shape features, such as planar and
regular surfaces.

Drost et al. [36] proposed a well-known 6-D pose estimation
method, which uses point pair feature (PPF) to achieve global
model description and local matching. The method firstly de-
scribes the 3-D object as a PPF Hash table, then samples the
reference points in the scene and votes on them to generate
hypothetical poses by finding the similar features in the Hash
table, and finally generates the optimal pose by a clustering.
Since the method was proposed, many variants [9], [37]–[41]
have extended it to obtain better performance. In the PPF-based
approach, the voting process is the key to the success of finding
optimal poses, but this process is computationally expensive
with a complexity of O(n2)[9], [34] where n is the number
of scene points. Previous PPF-based methods usually gener-
ate a large number of reference points by uniform or random
sampling. They do not consider the voting information of the
reference points, thus, reducing the efficiency of the entire voting
process. Besides, invalid scene reference points have a negative
impact on the robustness to noise, occlusion, and cluttered
scenes, as well as increasing calculation time for pose clustering
and hypotheses verification. Second, PPF-based approaches are
imperfect for multiframe point clouds that contain a sequence
of point clouds in a time series and are often encountered
in industrial applications. The consistency information between
frames is often ignored by the previous 6-D pose estimation
approaches for point clouds.

In this article, we propose a new PPF-based framework for 6-D
pose estimation with an emphasis on intelligent scene reference
points sampling. Our observation is based on that a large number
of votes indicates that the points around the reference point have
a high probability on the instance’s surface, while a few votes
indicate low probability. Thus, the number of votes can be used
to construct a probability map of the instance position in the
scene. We propose to use the MSPSO algorithm [42], [43] for
finding valid reference points which are located on the instance’s
surface. As a result, we propose the method which can combine
MSPSO and probability map to iteratively sample scene ref-
erence points [see Fig. 1(c)]. In this way, we can improve the
robustness of our algorithm to occlusion and complex scenes and
reduce the computational burden. Besides, we further extend this
framework to multiframe point clouds by considering similar
object information between adjacent scene frames. It can utilize
the prior knowledge in previous frames to improve the matching
efficiency in real industrial applications. In summary, the main
contributions of this work include the following.

1) A novel MSPSO sampling approach based on a probabil-
ity map for progressively selecting valid scene reference
points, which can simultaneously improve the efficiency
and accuracy of 6-D pose estimation.

2) An effective pose clustering and hypothesis verification
strategy to improve the robustness of 6-D pose estimation
of point clouds.

3) A simple probability map-based approach for object de-
tection from multiframe point clouds, which exploits the
correlation between frames and can significantly reduce
the number of invalid scene reference points, thus, speed
up the matching process.

II. METHODOLOGY OVERVIEW

Our input includes an objectO represented by either a surface
mesh or a point cloud, and a real-scanned scene point cloud S .
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Each occurrence of the object in the scene is referred to one
of its instances I. The goal of our approach is to correctly
determine the 6-D poses of all instances in the scene. We first
shortly explain the main underlying ideas and concepts of the
original Drost-PPFM method [36].

A. Pose Estimation Based on Point Pair Features

1) Point Pair Feature: It is a global feature descriptor,
which describes the relative relationship between the position
and direction of the two points. Given a reference point pr and
a target point pt with normal nr and nt, respectively, the PPF
is a 4-D vector which is defined as

PPF(pr,pt) =
(||d||2,∠(nr,d),∠(nt,d),∠(nr,nt)

)
(1)

whered = pt − pr,∠(a,b) denotes the angle between vectors.
2) Drost-PPFM: It detects instances and estimates their

poses via two main phases: offline global model description and
online matching. In the offline phase, the object is described by a
model PPF hash table, which is created from PPFs between each
points pair. Specifically, this method calculates the PPF of each
point pair and discretizes the distance and angle elements in PPF
with a quantization step size of Δdist and Δangle, respectively.
Then the point pairs with equal discrete feature vectors are
recorded in the same hash node.

In the online phase, Drost-PPFM mainly performs feature
matching and pose clustering. First, the scene point cloud is
down-sampled to generate a point set S′, of which 1/5 points are
uniformly sampled as the scene reference points. To generate
hypothetical poses, the scene PPFs, which are calculated by each
scene reference point and all other points in S′, are matched by
the object model PPF hash map and the pose votes are cast by
performing Hough voting. Finally, the hypothetical poses are
clustered to improve robustness and the pose in the cluster with
the highest accumulated weight is returned as the optimal pose.
More details about these procedures can be found in the original
paper [36].

B. Overview of Our Approach

We present a new 6-D pose estimation algorithm, called
PPFM-MSPSO, which consists of three main components (see
Fig. 1). First, we down-sample the input model and scene point
cloud, then generate a model description hash map. Second, we
generate the hypothetical poses by progressively sampling scene
reference points based on an MSPSO algorithm and a probability
map. The sampling method can exploit the voting information
of each reference point to guide the search direction of MSPSO
and significantly improve the accuracy of pose estimation by
increasing the ratio of valid scene reference points. Finally, a
pose verification operation is performed to filter out false poses
due to the interference of noise and background and predict
appropriate 6-D poses of the target object.

III. METHOD

A. Preprocessing

Generally, the input 3-D object and scene point clouds have
a high density with a large number of points. The input is

usually downsampled to obtain a spare set of points to speed
up the matching process. However, traditional randomly or
uniformly downsampling methods based on voxelization may
ignore some important geometrical shape features. To solve this
problem, we adopt an adaptive multiscale voxel downsampling
method [9], which takes the normal vectors of the point cloud
into account. Specifically, we first discretize the point cloud by
creating a multiresolution grid structure. Then in each voxel
cell at each level (in a fine-to-coarse order), the similar points,
whose normals angle difference is less than a threshold θ, are
merged. As a result, the geometrical features (e.g., edges or large
curvature surface) are more preserved to sample discriminative
points.

B. MSPSO Voting Module

The selection of scene PPFs has a great influence on the
performance of the algorithm. With the unknown number and
locations of the object instances in the scene, a large number
of reference scene points need to be sampled to cover as many
instances as possible, leading to a high computational cost of vot-
ing. In addition, invalid reference points generate many invalid
votes that increase the amount of calculation for hypothetical
poses clustering and verification, as well as reduce the matching
accuracy.

Instead, we present a new voting module where the scene
reference points are progressively sampled with the MSPSO
algorithm to better exploit the knowledge obtained in the previ-
ous voting. A probability map is utilized to guide the MSPSO
sampling. Thus, the MSPSO voting process includes three steps
[see Fig. 1(c)]: the probability map initializing and updating,
MSPSO sampling, and scene PPFs voting. We first initialize
the probability map for scene sampling. Then, we search the
optimal particle position based on the probability map for each
subpopulation and select the scene point where the particle is
located as a reference point for Hough voting. In the voting
process, those reference points generate hypothetical poses by
Hough voting [36] and update the probability map with the
maximum number of votes to motivate or punish the search path
of MSPSO.

We next introduce the probability map and MSPSO sampling
in detail.

Probability map: The probability map Pmap assigns a value
ρi to each point in the down-sampled point cloud S′, where
ρi indicates the probability that this point is located on one
of the real instances. Initially, each value ρi of the probabil-
ity map is set to a constant. After a selected reference scene
point sr generates votes, the probability of sr is calculated as
following:

ρsr =
Vsr − Vmin

Vmax − Vmin
(2)

where Vsr is the maximum number of votes cast by sr, Vmax and
Vmin are the number of votes when the probability is 1 and 0,
respectively. Afterward, the probability ρi for other point in S′
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Fig. 2. Visual results of our generated pose estimation guided by the
cloud probability map. Left: Final pose estimation where the detected
objects are highlighted in color. Right: Probability map where the warmer
color indicates a higher probability for locating the objects.

is updated according to ρsr

ρi =

∑Ns

j=1 ωj,sr ∗ ρj,sr
∑Ns

j=1 ωj,sr

(3)

where Ns is the number of scene reference points that have
been voted. ρj,sr is the probability obtained by voting with jth
scene reference point. ωj,sr is determined by a Gaussian kernel

function, ωj,sr = exp(−||pj,sr−pi||2
2∗σ2 ), where σ is the width pa-

rameter that is set to σ = 0.25dobj (dobj is the diagonal length
of the object’s bounding box).

However, updating ρi for all points is time consuming. To
speed it up, we only update the neighboring points around sr,
i.e., the points whose distance to sr is less than rmax ∗ dobj, and
rmax is the update radius coefficient. Several examples of the
resulting probability map are shown in Fig. 2.

MSPSO sampling: Different from Drost-PPFM, we present
a novel MSPSO sampling algorithm to increase the sampling
ratio of valid scene reference points and reduce the number of
sampling points. We solve this problem by iteratively optimizing
the position of the scene reference point in the search space with
regard to the above probability map.

Here, we choose the MSPSO algorithm instead of the tradi-
tional particle swarm optimization (PSO) [44], [45], which has
better global search ability than PSO and is more suitable for
searching the best scene reference point on the probability map.
In MSPSO, a scene reference point is regard as a particle, and
each particle has a flying velocity, which is composed of three
parts: the upper flying velocity, the optimal historical position
of the particle, and the subpopulation

vd,t+1
sr

= ω ∗ vd,tsr
+ c1 ∗ r1 ∗ (pbestdsr − xd,t

sr
)

+ c2 ∗ r2 ∗ (gbestds − xd,t
sr

) (4)

where vd,tsr
and xd,t

sr
are, respectively, the velocity and position

value of the dth dimension of the particle sr in the s subpopu-
lation in the tth iteration time. ω is the inertia factor between 0
and 1 (set to 0.7 by default), which controls the tradeoff between

Algorithm 1: MSPSO Voting With Probability Map Pmap.
Input: Model PPF hash table, downsampled scene could

S′, MSPSO iteration numbers tmax,
subpopulation size N , and scene reference point
sampling rate τ .

Output: a set of hypothetical poses
1: initialize Pmap;
2: ns ← |S′| ∗ τ ; G← int(ns/(tmax ∗N)) + 1;
3: for each subpopulation s ∈ {si|i = [1, G]} do
4: s← rejection sampling of Pmap on S′;
5: Initialize pbestsr and gbests;
6: for t← 1 to tmax do
7: for each particle sr ∈ s do
8: sr votes and produces hypothetical poses;
9: update pbestsr and gbests;

10: update Pmap with (2) and (3);
11: end for
12: for each particle sr ∈ s do
13: for k ← 1 to ku do
14: calculate velocity vsr with (4);
15: calculate position xsr with (5);
16: s,r ← the nearest point of xsr ;
17: r ← rand(0, 1);
18: if r < ρs,r then
19: sr ← s,r; break;
20: end if
21: end for
22: if k > ku then
23: sr ← rejection sampling of Pmap on S′;
24: end if
25: end for
26: end for
27: end for

global and local experience. pbestdsr is the dth dimension per-
sonal best position of particle sr in s subpopulation found, and
gbestds is the dth dimension best position found by any particle
in s subpopulation; c1 is the cognitive acceleration constant, c2 is
the social acceleration constant, usually c1=c2=2; r1 and r2 are
two random numbers uniformly distributed in the range [0,1).
Therefore, the new position of the particle is updated by

xd,t+1
sr

= xd,t
sr

+ vd,t+1
sr

. (5)

MSPSO voting: The detailed MSPSO voting process is shown
in Algorithm 1. Specifically, given the downsampled scene cloud
S′, we first calculate the number of subpopulation G

G = int(ns/(tmax ∗N)) + 1 (6)

where ns = |S′| ∗ τ , tmax is the number of iterations, N is
the size of the subpopulation, and τ is scene reference point
sampling rate (line 2). Then, we sample and vote on each
subpopulation in turn (lines 3-27). In each subpopulation s,
we first initialize each particle sr by the rejection sampling
algorithm based on the probability map Pmap (line 4). Then,
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we iteratively perform tmax times of optimization voting, which
includes three steps: sr as scene reference point exercising PPFs
Hough voting to generate hypothetical poses (line 8), updating
Pmap (line 10), and optimizing positions of the particles (lines
12–25).

In addition, (5) cannot be directly applied to optimize parti-
cles’ positions, because the search space of traditional MSPSO
is continuous, while the point cloud S′ is a discrete point set in
the 3-D space. In our algorithm, we first calculate the updated
position xsr of the particle sr with (4) and (5) (lines 14–15).
Then we find the nearest scene point s,r of xsr (line 16). Finally,
we judge whether s,r is the new position of the particle sr (lines
17–20). In general, these steps can be iterated until the particle sr
is updated. To improve the global optimization performance, we
stop this iteration and sample sr on S′ by the rejection sampling
of Pmap if the particle sr is not updated after two iterations.

C. Pose Generation and Verification

The above MSPSO voting scheme produces a set of pose
votes. Unfortunately, the candidate object poses contain a sig-
nificant fraction of incorrect poses, thus, the hypothetical pose
with the highest vote is not necessarily the correct match. Next,
we conduct a pose verification step to search for the optimal
pose in the hypothetical poses set.

1) Pose Clustering: The candidate object poses are redun-
dant because the poses of the reference points on the same
instance are similar. Grouping similar poses can improve the
efficiency of pose verification. To measure the similarity of
poses, we define a point triplet FPc

obj, which consists of the
center point cobj = (cx, cy, cz) of the object’s bounding box
and two auxiliary points p1

aux = (cx − dobj , cy, cz) and p2
aux =

(cx, cy − dobj, cz). Specifically, the similarity of the poses are
calculated as following:

ei,j = DChebyshev((Ti ∗ FPc
obj), (Tj ∗ FPc

obj)). (7)

In the clustering process, we first sort the hypothetical poses
set T in descending order with respect to the number of votes.
Then we consider each pose in T and judge whether they
are similar to one of the subsequent poses. If it is true, we
add the latter pose to the group of former poses, and the
votes are accumulated. Finally, the poses in each cluster are
averaged.

2) Hypotheses Verification: After pose clustering, we ob-
tain a set of new pose hypotheses with voting scores. Due to
sensor noise and background clutter, the poses with the highest
voting score may not be the correct pose, therefore further
verification is still required. Our verification indicator is the
degree of overlap between the transformed model and the scene.
Specifically, if one transformed model point p′m and its closest
scene point ps meet the condition: ||p′m − ps||2 < εD and
∠(np′m ,nps

) < εA, where εD is a distance threshold and εA
is an angle threshold, we call these two points are overlapping.
To recalculate the pose score, we first transform the object
model into the scene with the pose, and find the nearest point
of each model point in the scene and determine whether they

are overlapping, and finally denote the pose verification score
as the ratio of the number of overlapping points to the number
of model points. Among all pose hypotheses, the pose with the
highest verification score is the optimal matching pose.

D. Multiinstances, Multiobjects, and Multiframes
Detection

To detect multiple instances in the scene, if only the top k
cluster center poses are returned, this will easily lead to duplicate
or missing poses. We apply a nonmaximum suppression (NMS)
algorithm to filter out duplicate poses. In our implementation, we
return the pose with the highest score as the first instance pose.
Then we visit other poses in descending order and calculate the
intersection over union (IOU) of the visited pose and the already
returned instance poses. If the IOU is smaller than a threshold
(e.g., 0.4), we accept the pose as a new instance pose, otherwise,
we discard it. We iterate this process until k instance poses are
retrieved.

To solve the multiple object detection, we first vote to generate
hypothetical poses and cluster them for all objects, then merge
the hypothetical poses of all objects and sort them by overlapping
area size. Finally, we filter out inaccurate poses based on the
aforementioned NMS algorithm.

Furthermore, in most industrial applications (such as the bin-
picking task), we usually need to capture the scene and detect
objects in successive frames. Such multiframe data are often
overlooked in previous literature. Since the object information
is similar between adjacent frames, using the prior knowledge in
previous frames can significantly reduce the number of invalid
scene reference points, thus, speed up the matching process. To
make full use of such information, we propose a strategy for
initializing and updating the probability map, which is different
from the single-frame case. In the initialization phase of the
probability map, we first transform the model point cloud into
the current scene through

Oc = Tp→c ∗Tp ∗ O (8)

where Tp→c is the rigid transformation from the previous frame
to the current frame. Tp is the instance pose estimated in
the previous frame. Then, the probability ρi,m of scene points
that overlap with the transformed model Oc are assigned ρoi,m
(default as 0.9), and the points without overlap are assigned ρoi,m
(default as 0.1). Furthermore, we set the scene reference point
sampling rate τ to 1/80.

Finally, different from the lack of prior knowledge when we
assign the initial value of the probability map in a single frame
application, the prior knowledge obtained in the previous frame
has high credibility and is helpful for scene reference point
sampling. To exploit the prior knowledge, we merge the initial
value into the updating process of the probability map, which is
formulated as

ρi =
ρi,m +

∑Ns

j=1 ωj,sr ∗ ρj,sr
1 +

∑Ns

j=1 ωj,sr

. (9)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:38:52 UTC from IEEE Xplore.  Restrictions apply. 



10286 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 69, NO. 10, OCTOBER 2022

E. Computational Complexity

Our approach includes three stages: preprocessing, MSPSO
voting, and pose verification. The preprocessing uses the voxel
downsampling algorithm, and its time complexity isO(n)where
n is the number of points in the input point cloud. In the MSPSO
voting phase, the most complicated calculation is the PPF Hough
voting. The PPF target point sampling adopts the smart sampling
strategy of Hinterstoisser et al. [9], and the PPF reference point is
sampled by our MSPSO based on the probability map. The time
complexity of this stage isO(kns), wherek is usually at least one
magnitude smaller than nS′ (please refer to [9] for details), nS′
is the number of points in the down-sampled scene point clouds,
and ns = nS′ ∗ τ . Our experiments have suggested that the best
accuracy can be achieved when τ is set to 1/10. Finally, the time

complexity of the pose verification is O(nT ′nO′n
2
3

S′), where nT ′

is the number of poses after clustering hypothetical poses, and
nO′ is the number of points in the object down-sampled point
clouds. The operation at this stage is mainly to find the nearest
neighbors by using a KD-tree. In general, the scale of the down-
sampled point cloud is around 2000 or less, and the number of
hypothetical poses is about 500 or less, so the verification can
be done quite efficiently.

F. Discussion

Our work has two differences from the previous studies. First,
we present a new voting module where the scene reference points
are progressively sampled to better exploit the knowledge ob-
tained in the previous voting. It can increase the inlier rate, retain
more instance surface information, and improve computational
efficiency and robustness of the algorithm. The sampling rate
of reference points is reduced from 20% of Dorst et al. [36]
to 10%, while we can still achieve better accuracy. Note that
Hinterstoisser et al. [9] proposed a smart sampling algorithm
for sampling the second point in each point pair and achieved
satisfactory results. However, we have a different purpose, where
our probability map-based MSPSO is to effectively sample the
scene reference points, while the smart sampling algorithm aims
to optimize the sampling for the PPF target points.

Second, previous 6-D pose estimation methods based on pure
point clouds have not yet considered the correlation between
frames. In our method, we novelly transfer the information
from the previous frame to the current frame with probabil-
ity, which significantly reduces the number of invalid scene
reference points, and thus, speeds up the matching process.
Our experiments show that under the premise of ensuring the
recognition rate, the sampling rate of the scene reference points
can be reduced to 1.25% or even lower.

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate the proposed algorithm and
verify its effectiveness by conducting ablation studies. Then
we demonstrate the performance qualitatively and quantitatively
through visually inspecting our results and conducting a com-
parison with state-of-the-art approaches.

A. Experimental Setup

Datasets: We first carry out experiments on a real-scanning
dataset, DTU [46], in which there are many cylindrical and flat
3-D object models that are more challenging for pose estimation.
To show our application on real industrial data, we also built a
small-scale dataset, called RIPCD, which consists of 9 objects
and 100 scenes. This dataset also contains multiple instances and
multiple objects. In addition, although our algorithm focuses
on pose estimation of unorganized 3-D point clouds, we also
compare with some state-of-the-art deep learning-based meth-
ods on two RGBD datasets, including LineMOD (LM) [2] and
LineMOD occlusion (LM-O)[47].

Evaluation metric: Given an estimated 6-D object pose T̂ and
the ground-truth pose T̄, we use the average distance metric
(ADM) to measure the L2 distance between the model points
transformed by T̂ and T̄. We define the pose error eADM as

eADM =

max(avgx1∈M min
x2∈M

||T̄x1 − T̂x2||2, ||T̄cobj − T̂cobj||2)
(10)

whereM is the template model of the object, and we consider
the distance between transformed object centers cobj.

We regard an estimated pose as positive if the pose error is
less than a threshold ξe. Then the performance for detecting each
object is quantitatively measured by using recognition rate (RR)
that is the ratio of the number of true positive poses compared
to the number of all its ground-truth poses. We also calculate
the mean recall (MR) as the mean of the per-object recognition
rates to evaluate the overall performance on one dataset

MR = avgo∈O

∑
s∈S |P (o, s)|

∑
s∈S |G(o, s)| (11)

where O and S are sets of templates and test scenes. |P (o, s)|
is the number of correctly detected poses and |G(o, s)| is the
number of ground-truth poses of object o in scene s.

Competitors: We select a commercial machine vision soft-
ware MVTec HALCON1 as a competitor because it contains
the optimized and significantly improved implementation of the
original Drost-PPFM. We denote it Drost-PPFM∗. We also com-
pare to an open-source method Buch-17 [34], which presents a
new pose voting and clustering method by integrating a local
feature-based recognition pipeline. Here, we test several repre-
sentative 3-D local feature descriptors, including PPF [35], spin
images (SI)[33], FPFH [48], and SHOT[49].

B. Evaluation

Parameter settings: We conduct experiments with different
parameter settings to evaluate their influence on recognition
accuracy. In this section, we mainly analyze the eight parameters
of the MSPSO sampling algorithm. The results of detailed
parameter analysis are illustrated in Fig. 3, where we vary one
parameter while all other parameters are fixed. We also show the

1[Online]. Available: https://www.mvtec.com/products/halcon/
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Fig. 3. Parameter analysis using a model from DTU [46]. To analyze each parameter, we set all other parameters as fixed values, which are
the optimal values selected through experiments. If not specified, all parameters of our approach are set as default values: the sampling rates
τ = 1/10, the normal angle threshold for downsampling θ = 20◦, the iteration numbers tmax = 4, the subpopulation size N = 8, the initial value of
the probability map ρi = 0.1, the number of votes with probability 1.0 (Vmax = 50), the number of votes with probability 0.0 (Vmin = 10), and the
update radius coefficient rmax = 1.0.

running times with different sampling rates τ . From the figure,
we can observe that the parameter τ affects the performance of
our method, where the recognition rate and running efficiency
are reduced when the number of sampled scene reference points
decreases. We find that when τ = 1/10, the recognition accuracy
and running time can be well balanced. Next, we can observe that
the recognition rate has reached the best value when rmax = 1.0,
and the running time increases with the increase of the update
radius coefficient in the early stage and remains stable in the later
stage. Similarly, parameters θ and Vmin affect our performance,
and we can achieve the best performance when θ = 20◦ and
Vmin = 10. In addition, our method is robust to tmax, N , ρi, and
Vmax.

Ablation studies: We now investigate the influence of differ-
ent components of our method. We test five configurations as
follows.

1) Random sampling: We randomly sample |S′| ∗ τ scene
reference points in the down-sampled scene cloud S′.

2) Uniform sampling: We uniformly sample the scene ref-
erence points, i.e., every ith (i = 1/τ in default) scene
point is selected as a reference scene point.

3) MSPSO: The scene reference points are progressively
sampled with MSPSO but without the guidance of the
probability map.

4) PSO+Probability map: We replace the MSPSO with
PSO.

5) MSPSO+Probability map: This is our full method.
First, Fig. 4 shows the inlier ratio of these algorithms at

different sampling rates. Here, the inlier ratio represents the ratio
of valid reference points on the instance’s surface to the total
scene reference points. We observe that using particle swarm
optimization (MSPSO or PSO) increases the inlier ratio, while

Fig. 4. Ablation studies of five sampling configurations.

MSPSO+Probability map and PSO+Probability map guided by
the probability map could further improve the performance,
which is approximately 3 to 5 times that of random and uniform
sampling. In comparison, our MSPSO is more effective than
PSO.

Further, we analyze the recognition rate of these methods at
different sampling rates. The experimental results are shown
in Table I. We see that we obtain the best performance with
MSPSO+Probability map, while the performance of conven-
tional random and uniform sampling is the worst.

Multi-instance and multiobject detection: Fig. 5 verifies the
feasibility of our method for solving multi-instances and mul-
tiobjects detection and pose estimation problem. In Fig. 5, the
input object point cloud is sampled from CAD models, while the
input scene point cloud is captured by a structured-light scanner.
If a scene consists of more than one object, we perform the
steps of MSPSO sampling, PPF voting, pose clustering, and
verification in parallel for all objects (this way we can also
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TABLE I
RESULTS OF ABLATION EXPERIMENTS USING TWO MODELS FROM DTU DATASET [46]. THE BEST RESULT OF EACH MEASUREMENT IS MARKED IN BOLD.

Fig. 5. Given one or more objects and a 3-D point cloud scene, our
method detects all instances in the scene and estimates the 6-D pose
for each instance.

TABLE II
AVERAGE RUNNING TIME(S) OF GRASPING 20 OBJECTS IN THE ROBOTIC

ARM GRASPING SYSTEM. MF IS THE ABBREVIATION FOR OUR MULTIFRAME
POINT CLOUD DETECTION ALGORITHM

distinguish different objects). Then in the final step of returning
appropriate poses, we put the pose hypotheses of all objects
together and rank them according to the overlapping information
of each pose in the scene. From Fig. 5 we see that our method
detects all of the instances for each kind of object and returns
their correct 6-D poses.

Multiframe scenes: Finally, to demonstrate that we can speed
up the matching process using multiframe data, we conduct tests
on the robotic-arm grasping system. For comparison, we also
report the running time without multiframe data as well as the
time of Drost-PPFM∗. The experimental results are shown in Ta-
ble II. In a single-threaded environment, our method can obtain
similar efficiency to Drost-PPFM∗. Furthermore, we achieve the
best performance through simple multicore parallel processing
using the OpenMP library.

C. Comparisons

Comparison on DTU dataset: Table III shows the quantitative
comparison of the performance score and timing on DTU,

where the recognition rate of each object and each method is
reported. The DTU dataset is quite challenging because of its
high occlusion and clutter. We further avoid testing the simple
feature-rich objects and select flat, cylindrical, and thin-edge
objects without many local distinguishable features. The results
show that our algorithm outperforms other competitors for most
of the test objects. In terms of running time, the commercial
software HALCON (Drost-PPFM∗) is the fastest because it takes
advantage of the hardware and each step is also fully optimized.
Comparing to Buch-17, our method is reasonably faster, but each
step can still be further accelerated on GPU to meet the needs
of industrial applications.

Comparison on real industrial scenes: Next, we conduct a
comparison on our proposed RIPCD dataset which is collected
from real industrial scenes. Fig. 6 shows a qualitative comparison
using several complex scenes for a robotic gripping task. The
grasping objects involve common housings, polyhedrons, and
threaded industrial devices. Similarly, we see that Drost-PPFM∗

and our approach achieve good performance on these scenes, but
ours is still slightly better. Table IV reports the recognition rate
on all of 9 objects in 100 scenes. This quantitative comparison
verifies that our algorithm achieves the best-performing results
on this dataset.

The surface geometric elements of industrial objects are sim-
ple. The local features of the point cloud are less discriminative.
It is difficult to accurately estimate the pose for methods based
on local features. The key to the success of Drost-PPFM∗ and
our method is the excellent global description performance of
PPF. Our method optimizes the algorithm for sampled scene
reference points and hypothetical poses verification, which is
more robust than Drost-PPFM∗.

Comparison on LM and LM-O: Even though our method is
not specially designed for RGB-D data, we compare to a series of
state-of-the-art deep learning-based methods, including depth-
only, RGB-only, and RGB-D methods. Table V shows the com-
parison results. Our method, which does not use multiframe in-
formation, obtains the best performance among the methods us-
ing only depth information. It outperforms CloudAEE+ICP [18]
by 3.9% and 13.0% on LM and LM-O, respectively. Moreover,
we achieve the same performance as PVN3D [28] on LM, which
is one of state-of-the-art works using both RGB and depth
information.

The objects in LM-O [47] are heavily occluded, making pose
estimation more difficult. As expected, we observe a significant
performance drop for each method. However, our algorithm still
outperforms other competitors.
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TABLE III
QUANTITATIVE COMPARISON ON DTU DATASET. THE POSE ERROR THRESHOLD IS SET TO 0.1

Fig. 6. Qualitative comparison using five scenes from our proposed RIPCD dataset.

TABLE IV
QUANTITATIVE COMPARISON ON RIPCD DATASET. THE POSE ERROR THRESHOLD IS SET TO 0.1

TABLE V
QUANTITATIVE EVALUATION OF 6-D POSE ON ADD(S) [50] METRIC ON THE LINEMOD [2] AND LINEMOD OCCLUSION DATASET [47]. THE BEST RESULT OF

EACH MEASUREMENT IS MARKED IN BOLD. THE NAMES OF SYMMETRIC OBJECTS ARE ALSO IN BOLD
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V. CONCLUSION

We presented an improved approach based on Drost-PPFM
for 6-D pose estimation of disordered objects in 3-D point
cloud scenes. We achieved major improvements in terms of
efficiency and robustness by improving the sampling strategy
for scene reference points. A new MSPSO algorithm based
on the probability map could effectively improve the sampling
of scene reference points. At the same time, the method of
initializing the probability map with multiframe data was also
proposed to improve the efficiency of object pose estimation.
We demonstrated our advantages by comparing it to the SOTA
methods on several datasets.

Future work will be to explore more efficient object detec-
tion and pose estimation methods. A possible direction is to
design an end-to-end deep neural network based on the middle-
level structural analysis or high-level semantic information. For
example, instead of using point correspondences, we could ex-
tract middle-level geometric primitives (such as plane, cylinder,
sphere, cone) from objects and scenes to build feature correspon-
dences. Besides, using object detection or segmentation maybe
also improve the estimation performance. In addition, we will
further improve our algorithm to adapt it to structured RGB-D
scenes.
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