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Wavelet Package Energy Transmissibility Function
and Its Application to Wind Turbine Blade Fault

Detection
Xuefei Wang, Student Member, IEEE, Zepeng Liu, Member, IEEE,
Long Zhang, Member, IEEE, and William P. Heath, Member, IEEE

Abstract—To harvest wind energy from nature, wind turbines
are increasingly installed globally, and the blades are the most
essential components within the turbine system. The blades
usually suffer from time-varying non-stationary wind loads, and
the load information is normally unknown or difficult to collect.
This poses significant challenges to the blade assessment and
damage detection. Transmissibility Function (TF) methods have
the potential to address this challenge as they do not require
loading information. In this paper, a novel Wavelet Package
Energy TF (WPETF) method is proposed to increase the high
frequency resolution while maintaining its low sensitivity to noise
and it is further used for wind turbine blade fault detection.
Compared with the existing Fourier TF (FTF) method, the
proposed method is immune to the external loading impacts,
does not require excitation knowledge, and is robust to noise.
Compared with the existing Wavelet Energy TF (WETF) method,
the novel one uses Wavelet Package Decomposition (WPD)
instead of Wavelet Decomposition (WD) to further increase the
high frequency resolution which provides richer damage-induced
information. The effectiveness of the WPETF method for wind
turbine blade condition assessment is first verified numerically
and then on three industrial-scale wind turbine blades with both
naturally (uncontrolled) and artificially-introduced (controlled)
damage. Its advantages over a number of existing methods are
also demonstrated.

Index Terms—Wind turbine blade, Condition monitoring,
Fault detection, Vibration analysis, Wavelet transmissibility
function

I. INTRODUCTION

IN wind power systems, wind turbines are essential to
transform kinetic energy to electricity, and the blades play

a crucial role in capturing natural wind energy and are costly
components [1]. Especially, for a modern 10 megawatt wind
turbine, the length of its blade has reached 88.4m which is
longer than the wingspan of any current aircraft including
Boeing 787 [2]. However, the blades usually work under
time-varying wind loads and may also suffer from extreme
weather conditions such as wind gusts, storms and lightning,
in particular for those turbines in harsh remote areas including
offshore sites [3]. This may shorten their fatigue life and
even lead to premature damage. Typical wind turbine blade
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faults occur during both production and operation stages.
Production defects appear during the design and manufacture
stage, including cracks, delamination, debonding, wrinkle and
buckling. Operational failures are identified mainly during the
in-service period, and these failures are usually caused by
external environmental factors. Operational defects include ice
or sand accumulation, erosion, corrosion, lightning damage,
dust and insect contamination [4]. It is noteworthy that some
production defects could also occur during the operational
stage, such as cracks and delamination. If the incipient damage
is not found at an early stage, it could propagate and further
result in severe malfunction, fatal damage, or the worst
case of the whole turbine collapse, which usually causes a
significant financial loss [4]. Statistics show that the blades
are easily exposed to damage and have a high failure rate
[5]. The development of corresponding wind turbine blades
damage detection techniques is hence essential to prevent
severe damage, associated economic loss, and further reduce
the operation and maintenance cost.

Various wind turbine blade damage detection techniques
have been developed over the past two decades. The primary
state-of-the-art methods are the non-destructive detection
solutions, such as acoustic emission [6], strain [7] or
bending moment measurement [8], infrared thermography
[9], ultrasonic detection [10], and vibration analysis [11].
However, the majority of these attempts still remain at the
laboratory stage and have not been widely tested and installed
into in-situ applications yet. Vibration-based methods are
extensively studied to detect the blade faults, with natural
wind force or external force like hammer tapping [12].
These dynamic vibration responses are often used as features
for blade condition assessment [11]. Machine/deep learning
methods are applied to vibration-based online rotational blade
fault detection [13], [14]. Signal processing techniques, such
as frequency domain analysis, time domain analysis, and
frequency-time analysis, are used to abstract blade damage
signatures from vibrational responses [15], [16]. Support
vector machines (SVM), hidden Markov Models (HMM),
finite element method (FEM) are also used as the vibrational
signal processing tools to identify blade damage [17], [18].
A more comprehensive review of vibration-based blade fault
detection techniques can be found in [19], and this paper
mainly focuses on vibration-based detection methods.

It is essential to address the following challenges when
detecting wind turbine blade faults. Firstly, in-service blades
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are subjected to the non-stationary time-varying wind loads
[19]. Normally, the external loading information is unknown
or sometimes difficult to measure [20]. Secondly, both
environmental and machine noise may dramatically reduce
the blade faults detection accuracy [3]. Finally, the detection
technique has to be sensitive enough to various modes of
defects and applicable to different types of blades while
remaining insensitive to noise [21].

As a promising method, Frequency Response Function
(FRF) is able to eliminate the loading impact which is
defined as the spectra ratio between the measurement
responses and excitation pairs. The excitation or input
loading effects are therefore removed by the ratio operation
[22]. However, the input loading information of the blades
is often not available, which makes the FRF hard to
be applied for condition assessment purposes. Similar to
FRF, Transmissibility Function (TF) is defined as the ratio
of two individual output responses, which only requires
system responses without the usage of loading or excitation
information [4]. Conventionally, TF is estimated using Fourier
transform, however, the Fourier TF (FTF) method is sensitive
to noise and is not fully immune to loading variations
[23]. To deal with these two issues, a Wavelet Energy TF
(WETF) method has been proposed, which carries out wavelet
decomposition (WD) of two individual measured responses
and then calculates the ratio of the wavelet energy. WETF
shares the same time-frequency resolutions with WD [24].
For WD, it has higher resolution in low frequency zones
but has lower resolutions in high frequency zones. For
some applications such as blade fault detection, their fault
condition features may exist in a certain high frequency range.
The WETF may have limitations in detecting those defects
effectively. To deal with this issue, the main contributions of
this paper are summarized as follows:

• A novel algorithm, the Wavelet Package Energy TF
(WPETF) method, is proposed as a new time-frequency
function. The new function is estimated using output only
information and it does not require loading or excitation
information. Compared to the original WETF method, the
new method has a higher frequency resolution. When it is
used for fault detection, it will provide richer information
of fault and make it easier to distinguish healthy and
damaged conditions.

• The new method can be used for a wide range of
engineering systems or structure fault detection. The
superiority of the new method over the existing WETF
in terms of sensitivity to system property change is first
demonstrated using a numerical mass-damping-spring
system. The higher sensitivity could avoid missing early
fault detection or provide better fault detection accuracy.

• To demonstrate the practical use of the new method, it is
applied to three industrial-scale wind turbine blade fault
detection. Extensive results from both naturally damaged
(cracks and delamination) and controlled damaged (local
and large area ice/sand accretions) cases demonstrate the
reliability and effectiveness of the new method in terms
of both accuracy and robustness.

Fig. 1 3-layer wavelet decomposition tree structure

The rest of this paper is organized as follows: Section II
introduces the WETF methods, and section III proposes the
new WPETF method. Section IV demonstrates the superiority
of WPETF over WETF via numerical example simulations.
Section V shows the experiments setup, procedures, results
analysis and validations. Section VI lists some related
discussions. Section VII concludes the paper.

II. WAVELET ENERGY TRANSMISSIBILITY FUNCTIONS

The wavelet transform decomposes the measured signal into
a series of wavelet functions acting as low pass and high
pass filters [25]. For a Multiple Degrees of Freedom (MDOF)
linear system, for example, a wind turbine blade structure, its
dynamic representation can be delivered as [26]

Ms̈+ Pṡ+ Qs = S (1)

where s denotes the displacement responses along the blade.
M, P, and Q represent the mass, damping and stiffness
matrices of the blade structure respectively. Suppose the
system has n responses, denoted as S = [S1, ..., Si, ..., Sn]

T

with
Si = [si1, ..., s

i
r, ...s

i
N ] (2)

Each si stands for the single system output from the ith output
response. N is the data length within each response.

For 1-layer wavelet decomposition, the original signal Si

can be decomposed into a detailed part Di
1 with a high pass

filter g, and an approximation part Ai
1 with a low pass filter

h. This process can be denoted as

Di
1 =

{∑
k
sikgq−k, q = 1, ..., N

}
↓ 2 (3)

Ai
1 =

{∑
k
sikhq−k, q = 1, ..., N

}
↓ 2 (4)

where ↓ 2 indicates that the filtered results are downsampled
by a factor of 2. For 2-layer decomposition, the approximation
Ai

1 is further decomposed with the same procedure. The
procedure can continue for J-layer decomposition. As an
example, Fig.1 displays the tree structure of a 3-layer WD,
where S stands for the initial raw signal. For a J-level
decomposition, the coefficients are given as

W i = {Ai
J , D

i
J , D

i
J−1, ..., D

i
1}

= {νir, r = 1, ..., R} (5)

The WETF is defined as the ratio of wavelet energy between
the WD of two independent measured responses. The wavelet
energy is defined as the Root Mean Squares (RMS) of a series
of WD coefficients.

The total R wavelet coefficients in equation (5) are first
divided into Z segments and each segment has m coefficients,
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therefore, R = Zm. The wavelet energy eiz for the zth segment
is the RMS value of wavelet coefficients from the zth segment
data, where z = 1, ..., Z.

eiz = RMS
(
νi(z−1)m+1, ..., ν

i
zm

)
=

√√√√ 1

m

zm∑
h=(z−1)m+1

(
νih
)2 (6)

The WETF, defined as the ratio of wavelet energy from two
different measured responses, say ith and jth responses (i, j =
1, ..., n, i 6= j), is given by

T ij =

[
ei1

ej1
, ...,

eiz

ejz
, ...,

eiZ
ejZ

]
= [µp

1, ..., µ
p
z, ..., µ

p
Z ] (7)

where p = 1, ..., P , and the total number of WETF is P =
(n − 1)n/2. The values of all the transmissibility functions
can be rewritten as a matrix form:

T =


µ1

1 µ1
2 · · · µ1

Z

µ2
1 µ2

2 · · · µ2
Z

...
...

...
...

µP
1 µP

2 · · · µP
Z

 (8)

For damage detection, it is necessary to compare the operating
TFs with the reference TFs (i.e. from the healthy conditions).
The transmissibility correlation TCz is used to quantify the
damage severities between healthy condition µ and operational
condition µ̄ at data segment z, which is given by

TCz =

∣∣∣∣∣ P∑
p=1

µp
zµ̄

p
z

∣∣∣∣∣
2

P∑
p=1

µp
zµ

p
z

P∑
p=1

µ̄p
zµ̄

p
z

(9)

Algorithm 1 briefly summarizes the procedure of the WETF
method.

Algorithm 1 Wavelet Energy Transmissibility Function
Input: Spectra of system response outputs R

1: Use J-level WD to decompose the original signal Si into
detailed part Di

J and approximation part Ai
J .

2: Gather the wavelet coefficients Di
J and Ai

J together to a
sequence W i.

3: Divide W i into Z data groups and calculate the RMS eiz
for each group.

4: Calculate WETF between ith and jth measured responses.
5: Calculate the correlation value between the reference and

in-service WETFs.

III. WAVELET PACKAGE ENERGY
TRANSMISSIBILITY FUNCTION METHOD

For the WETF method, its resolution in high frequencies is
lower than those in low frequencies. This is essentially the
same with the results of the original wavelet transform as
the WETF method uses WD as its time-frequency analysis.
The popular fast WD method uses low pass and high pass

Fig. 2 Relation between newly proposed method and the existing
transmissibility methods

Fig. 3 3-layer wavelet packet decomposition tree structure

filters to separate the signal and carry out fewer levels of
decomposition for high frequency signals and therefore it gives
lower resolutions for high frequency parts. This could meet
the needs of most engineering applications where the noisy
information lies in the high frequencies and does not need
the same resolution as the low frequencies. However, if the
applications, such as the wind turbine blade fault diagnosis
with different types of faults, may have useful information in
the high frequency parts, the high frequency resolution has to
be improved. The Wavelet Packet Decomposition (WPD) can
improve the high frequency resolution as it produces the same
number of decompositions for both low and high frequencies.
In this paper, an extended method, the Wavelet Packet Energy
TF (WPETF) method, is proposed to increase the resolution of
high frequency ranges of the WETF method. Fig.2 illustrates
the relation between the WPETF and the WETF method.

The mechanism for WPD is to decompose both
approximated and detailed parts in each layer of
decomposition, instead of solely approximated part for
WD. Mathematical definition and associated theories of
WPD can be found in [27]. Fig.3 illustrates a 3-layer WPD
progress. Therefore, for a J-layer decomposition, WD only
generates J + 1 frequency zones, but WPD generates 2J

frequency zones. For high frequency zones, the detailed WPD
parts are given by

Di
J =

{∑
k
sikγq−k, q = 1, ..., N

}
↓ 2 (10)

where γ represents a WPD filter synthesized by high pass filter
g and low pass filter h [27].

To further illustrate the difference, Fig.4(a) indicates that
for the same decomposition layers, the resolution in the low
frequency range remains the same, but WPD has higher
resolution than WD in the high frequency range. If both WETF
and WPETF produce the same number of frequency zones,
as shown in Fig.4(b) with the case of 4 frequency zones. It
is worth highlighting that the WPETF needs to have 2-layer
decomposition and produce evenly distributed frequency
zones, while the WETF can have 3-layer decomposition but
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(a) Same number of decomposition layers

(b) Same number of frequency zones

Fig. 4 Resolution comparison between wavelet and wavelet packet
decomposition with (a) same layers and (b) same frequency zone numbers

has unevenly distributed zones with more zones in the low
frequencies.

A J-layer WPD coefficients are gathered in a sequence,
similar as equation (5):

WP i =
{
WP i

1,WP i
2, ...,WP i

2J

}
=
{
βi
r, r = 1, ..., R

} (11)

where R represents the number of WPD coefficients. These R
coefficients are divided into Z groups with m coefficients per
group, namely, R = Zm. The RMS value for each group as
the wavelet energy is calculated by where the RMS is detailed
as

diz = RMS
(
βi

(z−1)m+1, ..., β
i
zm

)
=

√√√√ 1

m

zm∑
r=(z−1)m+1

(βi
r)

2
(12)

The WPETF, defined as the ratio of wavelet package energy
from two different measured responses, say ith and jth
responses (i, j = 1, ..., n, i 6= j), is given by

T ′
ij

=

[
di1

dj1
, ...,

diz

djz
, ...,

diZ
djZ

]
= [ξp1 , ..., ξ

p
z , ..., ξ

p
Z ] (13)

where p = 1, ..., P and P = (n − 1)n/2 as the total number
of WPETFs. Similarly, the two-dimension WPETFs can be
expressed in a matrix form as:

T ′ =


ξ1
1 ξ1

2 · · · ξ1
Z

ξ2
1 ξ2

2 · · · ξ2
Z

...
...

...
...

ξP1 ξP2 · · · ξPZ

 (14)

The WPETF method is proposed to add higher resolution
to the frequency zones of interest which may provide richer
information related to blade damage. Algorithm 2 briefly
summarizes the procedure of the WPETF method.

Algorithm 2 Wavelet Package Energy TF
Input: Spectra of system response outputs R

1: Use J-level WPD to decompose the original signal Si into
detailed wavelet package coefficients WP i.

2: Divide WP i into Z data groups and calculate the RMS
diz for each group.

3: Calculate WPETF between the ith and jth measured
responses.

4: Calculate the correlation value between the reference and
in-service WPETFs.

The main advantage of the new WPETF method lies in the
increased resolutions for the high frequency parts. Meanwhile,
the WPETF inherits the advantage of WETF regarding to
the low sensitivity to noise. An analysis for this is provided
in Appendix. In addition, the computational complexity
comparison between WETF and WPETF is provided here.
As the major computations of these two methods are related
to WD and WPD, the computational complexity of WD
and WPD are directly compared. Assume the computations
consumed for a single layer wavelet decomposition is ∆
(∆ > 0). Note that for one layer decomposition, WPD and
WD consume the same computations.
• Same decomposition layers: For a J-layer decomposition

(J ≥ 2), WPD carries out the decomposition for both
detailed and approximated parts in each layer, and it
consumes WPDcs = J∆. However, WD only carries
out the decomposition for the detailed parts in each layer
and its computational consumption is

WDcs =
∑J

j=1

∆

2j−1
(15)

The difference between them is:

WPDcs −WDcs = ∆

[
(J − 2) +

1

2J−1

]
> 0 (16)

Equation (16) shows that the increased computations are
proportional to the number of the decomposition layers.
For example, WPD requires 1.25∆ more computations
for a 3-layer decomposition while it consumes 2.125∆
more computations for a 4-layer decomposition. The
increased computations for WPD are mainly used to
increase the high frequency resolutions,since WPD has
2J frequency zones and WD only has J + 1 zones for
the same J-layer decomposition.

• Same number of frequency zones: For the 2J (J ≥
2) frequency zones, WPD has J layers decomposition
leading to WPD′cs = J∆ computations. However,
WD needs 2J − 1 layers decomposition, and the
corresponding computations are

WD′cs =

2J−1∑
j=1

∆

2j−1
(17)

The difference between two decomposition is:

WPD′cs −WD′cs = ∆

[
(J − 2) +

1

22J−1

]
> 0 (18)
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TABLE I Comparisons between FTF, WETF and WPETF methods

Criteria FTF WETF WPETF

High frequency resolution highest low higher
Noise rejection poor good good

Computational complexity most complex complex more complex

Since 2J − 1 > J , for the same number of frequency
zones, WD requires more decomposition layers. For
example, for a 3-layer WPD, WD needs 7 layers
decomposition to reach the same 8 frequency zones, and
WPD consumes approximately ∆ more resources. For
a 4-layer WPD, WD needs 15 layers to generate 16
frequency zones, and WPD increases the computational
burden by approximately 2∆.

To understand the new WPETF method better, Table I presents
the comparisons between FTF, WETF and WPETF in terms
of three criteria including high frequency noise rejection,
computational complexity and high frequency resolution. The
new WPETF enjoys the high resolutions of high frequencies
and remains low sensitivity to noise, but uses some additional
computations.

IV. SIMULATION ANALYSIS

To demonstrate the effectiveness of WPETF method, a
mass-damping-spring system is introduced as a numerical
example to illustrate the superiority over conventional TF
methods. Suppose one TF in Laplace domain describing the
relation between two individual responses [28]:

TF (s) =
36s+ 400

s2 + 36s+ 400
(19)

The first measurement is set by a combination of a series
of sine waves over the frequency range from 0Hz to 50Hz
with a resolution of 0.2Hz. The sampling frequency and data
sampling number are set to be 1.2k/s and 600, respectively.
The second measurement is the response of the TF function
given the input of the first measurement. The WETF and
WPETF methods are used to estimate the given TF using the
two measurements. To produce results of WETF and WPETF,
the filters used in both methods have to be chosen. The
low-pass h and high-pass decomposition filter g is set to be
[0, 0, 0, 0, 0.1768, 0.5303, 0.5303, 0.1768, 0, 0, 0, 0] and
[0.0138, 0.0414, -0.0525, -0.2679, 0.0718, 0.9667, -0.9667,
-0.0718, 0.2679, 0.0525, -0.0414, -0.0138], respectively. The
γ filter for WPD is set to be [0.0362, 0.0461, -0.0325,
-0.0749, 0.0422, 0.0676, -0.0105, -0.0356, 0.0747, 0.0661,
-0.0537, -0.0889]. To apply the energy concept, the resultant
wavelet coefficients are grouped. Here, the number of the
wavelet coefficients in each group, m, is chosen as 1000.
The RMS values of each group and the ratio of RMS values
between two different measurements are then calculated within
5-layer decomposition of WD and WPD. Fig.5(a) and Fig.5(b)
demonstrates the results of WETF and WPETF methods of the
given numerical example. Six different levels are classified in
terms of the WETF method. However, within high frequency
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Fig. 5 Numerical example: WETF and WPETF methods simulation results

zones, levels vary slightly from each other. WPETF method
is then proposed to divide the high frequency zone into
more detailed sub-frequency zones with more resolution levels,
which offers richer details and information. It can be seen that
the WPETF result contains more details of the high frequency
range and adds more resolutions which could provide more
information than the WETF method. To further demonstrate
the advantage of the WPETF technique, a second-order is
added to the original numerical example to simulate a damaged
scenario:

TFdamage(s) =
36s+ 400

s2 + 36s+ 400︸ ︷︷ ︸
system

× 90000

s2 + 60s+ 90000︸ ︷︷ ︸
damage

(20)

Fig.5(c) and Fig.5(d) illustrates the comparison results of
both normal and damaged cases. Clearly, due to the fact
that WPETF provides higher resolution in high frequency
range, the WPETF method is able to produce more significant
amplitude changes due to the damage in the high frequency
range than the WETF method.

V. EXPERIMENTS AND RESULTS ANALYSIS

The following experiments are designed and conducted
to demonstrate the effectiveness of the proposed WPETF
method for wind turbine blade condition assessment. The
experiments use three naturally damaged industrial-scale
blades (per length: 7.75m; per weight: 139kg) from the Wind
Turbine Laboratory at the University of Manchester, where
blade #1 is in relatively healthy condition and blade #2
& #3 are damaged. The three blades (type: MOC15150)
were manufactured by NOI Scotland Ltd. company in 2002.
Fig.6(a)-6(b) show the configuration of the integrated test-rig.
The hammer used in the experiments is RS PRO Medium
Carbon Steel Lump Hammer (1.8kg), and the accelerometer
type vibration sensor is Hansford HS-100-type sensor with
the following parameters: the frequency response of 2 Hz-10
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kHz, the sensitivity of 1000 mV/g and the bias voltage of
10-12 VDC . The vibration amplifier HS-511 is responsible
for sensor powering, bias voltage and measured responses
stripping off. Also, the HS-511 is wired to a high-speed
Data Acquisition (DA) device. In this work, we use DAQami
software and hardware system to collect the vibration signals,
and MATLAB to analyze the measured data. Two different
damage cases, namely, uncontrolled naturally damage and
controlled damage with additional mass and beam, are used
to test the performance of the proposed method.

Case 1: Uncontrolled damage detection

The experiments are carried out in three stages. First of
all, a sensor array including three vibrational transducers is
implemented at the root region of every blade. Secondly,
hammer tappings are consistently applied to three individual
locations at every blade which produces arbitrary excitation
inputs. Thirdly, the vibration signals are measured through the
DA devices with a sampling rate of 100kHz. The identical
procedure is repeated for the other two blades of which the
sensor array and the hammer tapping locations remain the
same. Fig.6 also shows the experiment setup, the detailed
position of the sensor array and the hammer tapping locations.
To demonstrate the performance of the proposed WPETF
method, the FTF and WETF methods are compared. For the
wavelet-based WETF and WPETF methods, db4 (the order
4 Daubechies) is chosen as the wavelet filter function, and
a 4-layer decomposition is used. Further, the wavelet energy
calculation uses the same setting with the simulation example,
namely, 1000 wavelet coefficients as a group.

The results of the FTF, the WETF and the WPETF methods
for the three blades are shown in Fig.7. The first row
presents the FTF results, showing that the low frequency
zone has smooth curves and similar amplitudes. However, the
high frequency curves contain significant variations, which
may indicate that these parts are very sensitive to noise.
Further, the FTF results do not show the visible differences
among the healthy Blade #1 and the damaged Blades #2
& #3. The second row presents the WETF results, clearly
showing that both low and high frequency parts behave
smoothly. High amplitude occurs at low frequencies, while
the amplitude dramatically decreases with frequency increases.
This result is expected as the dynamic properties of the blade
structure are intrinsically expressed at low frequencies. The
blades with different damage levels produce different dynamic
properties, namely, different amplitudes in the low and middle
frequency zones. When comparing the results from Blade #1
(healthy condition), Blade #2 (slightly damaged) and Blade #3
(severely damaged), it can be seen that the results from Blade
#2 and #3 have additional spikes enclosed in green rectangles.
These additional spikes are the damage indicators since
the damage can change the transmissibility functions. These
unique spikes also result in lower correlation values compared
with the healthy Blade #1, and enable to distinguish the
damaged blades from the healthy one. The third row shows the
result of WPETF methods. Clearly this technique adds higher
resolution in the middle and high frequency zones. Compared

with the WETF method, the WPETF method also provides
another spike related to damage in the middle frequency zone,
but it has more detailed amplitude variations in the second
spike, which enables to distinguish the healthy, less damaged,
and severely damaged blades easily. Additionally, compared
with FTF, the WETF and WPETF methods have clearly less
oscillations in high frequency range, which demonstrates the
low sensitivity to noise.

TABLE II Mean correlations with mean variances between the three blades

Methods
Blade #1 Blade #2 Blade #3
(healthy) (defective) (defective)

FTF 0.952±0.023 0.895±0.017 0.840±0.049
WETF 0.969±0.027 0.692±0.083 0.412±0.123

WPETF 0.983±0.010 0.714±0.019 0.554±0.097

Results Reference Less damaged Severe damaged

To further quantify the blade fault detection results, 6
repeated experiments are conducted. Table II shows the mean
correlation with mean variances from six more experiments
between the healthy blade (Blade #1) and the damaged
blades (Blade #2 & #3). It is clear that the FTF method
has similar correlation values with no significant differences
among healthy and damaged blades. These two damaged
blades may easily be mis-classified as the healthy ones.
However, for WETF and WPETF, the correlations for Blade
#2 & #3 are obviously smaller than that of Blade #1. This
indicates that these two blades are in unhealthy conditions.
Namely, the wavelet-based methods including both WETF and
WPETF perform better than FTF. Furthermore, the correlation
value for Blade #3 is smaller than that of Blade #2, which
means Blade #3 has severer damage compared with Blade #2.
Apart from that, the new WPETF has smaller mean variances
for all three blade results compared with WETF. Therefore, the
new method can produce more consistent and robust results
and this may benefit from the middle and high frequency
resolutions and the low sensitivity to noise.

The real blade damage evidences are collected to validate
diagnosis results. Fig.8 shows the observed damage evidences
including cracks and delaminations taken from blade #2 & #3.
These real damages match the previous diagnostic results that
Blade #3 has worse defects compared with Blade #2. This
validates that the proposed WPETF method can serve as a
wind turbine blade damage indicator.

Case 2: Controlled damage detection

As one of the common failure modes of an in-service
wind turbine blade, ice or sand accretion impairs the
blade’s structural integrity and further affects the aerodynamic
performance negatively. Even slight accumulation issues may
change the blade surface roughness and lead to complete
turbine shutdown [3]. Case 2 is designed to test the
effectiveness of the proposed WPETF method in detecting
the accumulated icing/sanding conditions with two scenarios.
Scenario A focuses on simulating local accretion conditions,
and Scenario B extends the simulation to a large blade surface
icing/sanding accumulation conditions.
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(a) Test-rig front view (b) Overall view of the test-rig

Fig. 6 Integrated test-rig setup with front and overall view

Fig. 7 FTF, WETF and WPETF results of three wind turbine blades

Fig. 8 Damage occurring within test region of WT blade #2 and #3

Scenario A: local icing/sanding accretion: Three weights
of masses (2kg, 4kg, 6kg) are mounted on the surface of the
healthy blade between sensors to simulate local accretion of
different damage levels. Hammer tapping at the tip of the
blade to generate arbitrary excitation signals. Fig.9 shows 6
individual tests result of the WETF method. The results present
high repeatability which verifies the reliability of the measured
signals. Clearly, additional mass results in unique spikes which
indicates the damage. With the adding weight of masses, the
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Fig. 9 WETF results of 6 individual tests under additional mass cases

TABLE III Mean correlations with mean variances between the three masses

Methods Healthy
Mass #1 Mass #2 Mass #3

(2kg) (4kg) (6kg)

WETF 0.935±0.087 0.747±0.090 0.502±0.077 0.395±0.063
WPETF 0.844±0.014 0.645±0.020 0.491±0.059 0.334±0.048

Damage Level Reference Minor Medium Severe

amplitude of the spike increase as the mass is increased.
Fig.10 displays the results of the WPETF method for the
same experiments. By comparison, we can draw a similar
conclusion that the mass levels can be revealed explicitly
by both the WETF and WPETF methods. However, WPETF
provides multiple spikes due to the higher resolution which
may provide richer information for icing/sanding detection.

To quantify the identified damage severity, Table III shows
the mean correlations with mean variances between the
three mass cases. It is clear that both the WPETF and
WETF methods can indicate icing/sanding conditions and
their relative levels with difference masses. Compared with
WETF, WPETF generates consistent results with smaller mean
variances values, indicating robust diagnostic results and better
noise rejection performance.

Scenario B: large area icing/sanding accretion: As icing
or sanding accumulation typically happens alongside the span
of the blade and along the leading edge, this scenario uses
a beam (length: 1.00m; width: 0.30m; thickness: 0.02m)
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Fig. 10 WPETF results of 6 individual tests under additional mass cases

TABLE IV Mean correlations with mean variances of the covered beam

Methods Healthy Beam Region

WETF 0.943±0.041 0.770±0.069
WPETF 0.881±0.057 0.505±0.057
HHTF 0.937±0.094 0.848±0.053

HHETF 0.819±0.069 0.438±0.061

mounted at the blade leading edge to simulate the large
area accretion conditions. Hammer tapping also provides
arbitrary excitation at the blade tip. This scenario not only
compares the new WPETF with WETF but also with another
popular time-frequency method, the Hilbert-Huang Transform
(HHT). In addition, the energy transmissibility function is
extended to HHT transform, producing the new Hilbert-Huang
Energy TF (HHETF) method, for additional comparison.
Hilbert-Huang transform performs using both Empirical Mode
Decomposition (EMD) and Hilbert Transform [29].

Fig.11 presents 6 individual results of the WETF and
WPETF methods for large area damage detection. By
comparison, they both present unique spikes which indicates
the beam-covered damage. The WPETF result shows multiple
spikes rather than a single spike of the WETF method.
This also verifies the WPETF’s ability to enhance the
resolutions. Fig. 12 shows the 6 individual damage detection
results for HHT and HHETF methods. Clearly, HHT is not
able to detect the blade damage. With the integration of
energy transmissibility function with HHT, the new HHETF
method presents the differences between healthy and damaged
conditions and therefore it can detect the blade faults.
However, it has multiple and overlapped spikes and has
less robust results compared with that of WPETF. Table
IV provides the mean correlations with mean variances of
the beam-covered tests. Scenario B has the same conclusion
with Scenario A where the proposed WPETF produces more
consistent and robust results than other three methods.
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Fig. 11 WETF and WPETF results of 6 individual tests of large area icing
accretion detection
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Fig. 12 HHTF and HHETF results of 6 individual tests of large area icing
accretion detection

VI. DISCUSSION

Some discussions related to the use of the proposed method
and its wide applications are listed as follows.

• Choose of wavelet basis functions: Compared with the
db4 wavelet basis function used in this paper, other
functions such as Haar and Mexican Hat essentially
are band-pass filters. Hence, they can also produce
similar results with slight differences in transmissibility
functions.

• Computational complexity: RMS is applied to different
segments of data when calculating WPETF, which leads
to less numerical operation compared with conventional
FTF methods. Thus, the WPETF performs faster than
FTF and demands less computational resources. It can
be implemented off or online for operational in-situ wind
turbine blades. For online condition monitoring, wireless
transmission techniques are preferred for sensing data
collection to avoid cable connection.

• Other applications: Although this paper considers the
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application in wind turbine blade fault detection, the
proposed method can be used and easily transferred
to other similar condition assessment scenarios such as
airfoil, rails or bridges.

• Future work: In this paper, the WPETF method is
proposed to detect the blade damage and identify damage
severity levels. It has the potential to identify different
failure modes of the blade due to the fact that various
blade fault types produce different amplitudes in certain
frequency ranges of the energy TF functions. Future
work will investigate the diagnosis of failure modes,
qualification of damage levels and estimation of the blade
remaining lifespan with the proposed framework.

VII. CONCLUSION

In this paper, a novel Wavelet Package Energy
Transmissibility Function (WPETF) method is proposed for
wind turbine blade damage detection. A mass-damping-spring
system is introduced as a numerical example to illustrate that
compared with conventional Transmissibility Function (TF)
methods including Fourier TF (FTF) and Wavelet Energy TF
(WETF) methods, the WPETF method adds more resolution
to high frequency range and maintain low sensitivity to
noise. Further, uncontrolled damage experiments use three
naturally-damaged industrial-scale wind turbine blades to
demonstrate the performance of the WPETF methods for
damage detection. Controlled damage experiments using
additional mass simulate the practical blade surface ice/sand
accretions. In both cases, the proposed WPETF method
effectively detects the blade faults and clearly indicate
damage levels. Compared with the WETF method, WPETF
provides richer information in interested frequency zones and
produces more consistent and robust diagnosis results.

APPENDIX

Analysis of low sensitivity to noise: Assume x =
[x1, ..., xi, ..., xm] and y = [y1, ...yi, ..., ym], are WD (or
WPD) of two segments of wavelet coefficients from two
different measured responses, where z, z = 1, ..., Z, and m
is the data length. Firstly, consider noise-free wavelet energy
TF of the two responses for this specific segment:

T =
RMS(x)

RMS(y)
=
‖x‖2
‖y‖2

(21)

Then consider the noisy wavelet energy TF:

T̃ =
‖x + Θ‖2
‖y + Θ′‖2

(22)

where Θ = [θ1, ..., θi, ..., θm] is a Gaussian white noise
vector with zero mean and variance σ2 = 1

m

∑m
i=1 θ

2
i , and

Θ′ = [θ′1, ..., θ
′
i, ..., θ

′
m] is also a Gaussian white noise vector

with zero mean and variance σ′
2

= 1
m

∑m
i=1 θ

′
i
2, namely,

‖Θ‖2 = mσ2 and ‖Θ′‖2 = mσ′
2. Let ∆T denote the

difference between noise-free wavelet energy TF T and noisy
wavelet energy TF T̃ , then

|∆T | =
∣∣∣T̃ − T ∣∣∣ =

T̃ 2 − T 2∣∣∣T̃ + T
∣∣∣ (23)

|∆T | =

∣∣∣∣∣ m∑i=1

m∑
j=1

(xi + θi)
2
y2
j −

m∑
i=1

m∑
j=1

(yj + θ′j)
2
x2
i

∣∣∣∣∣∣∣∣T̃ + T
∣∣∣ ‖y + Θ′‖2‖y‖2

=

∣∣∣∣∣ m∑i=1

m∑
j=1

(2xiyj + θiyj + θ′jxi)(θiyj − θ′jxi)

∣∣∣∣∣∣∣∣T̃ + T
∣∣∣ ‖y + Θ′‖2‖y‖2

(24)
For simplicity, denote the denominator of equation (24) as
Ω =

∣∣∣T̃ + T
∣∣∣ ‖y + Θ′‖2‖y‖2. Since x and y are all bounded,

let X ≥ x2
i , and Y ≥ y2

j , where i, j = 1, ...,m, i 6= j and
X > 0, Y > 0. Since Θ and Θ′ are bounded, let XΘ ≥
(xi + θi)

2 and YΘ′ ≥ (yj + θ′j)
2, XΘ > 0, YΘ′ > 0. Denote

the minimal value of Ω as Π, then

‖y + Θ′‖2 ≤
√
mYΘ′ (25)

‖y‖2 ≤
√
mY (26)

Ω =
∣∣∣T̃ + T

∣∣∣ ‖y + Θ′‖2‖y‖2

≥

(√
XΘ

YΘ′
+

√
X

Y

)
YΘ′Y = Π

(27)

Let Ξ = |2xiyj + θiyj + θ′jxi|, where i, j = 1, ...,m and
denote the maximal absolute value of Ξ is Γ. Since Θ, Θ′, x
and y are all bounded, their maximum values are denoted as
θ∗, θ′∗, X∗ and Y ∗ respectively. Then,

Ξ ≤ 2X∗Y ∗ + θ∗Y ∗ + θ′
∗
X∗ = Γ (28)

Equation (24) is then bounded by

|∆T | ≤ Γ

Π
|Θ · y −Θ′ · x| ≤ Γ

Π
(|Θ|Y ∗ + |Θ′|X∗) (29)

In other words, the difference between noise-free and noisy
case is bounded. Some discussions related to the noise
rejection properties are given below:
• Although the above analysis of noise rejection is suitable

for the noise in both low and high frequency ranges, the
high frequency noise is often more significant as most
of the engineering applications have large signals in the
low frequency parts, but have smaller signals in the high
frequency parts.

• For the wavelet energy TF method, as it uses the RMS
value of a group of wavelet coefficients, the associated
noise is also grouped and the final noise influence is
related to the variance of the grouped noise instead of
each single noise. However, for the FTF method, it uses
single frequency component when estimating the TFs,
and its results vary with each single noise. Therefore,
the FTF method has more oscillating results. This is also
demonstrated in both simulated and experimental results.
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