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Robust Iterative Learning Control for Pneumatic

Muscle with Uncertainties and State Constraints
Kun Qian, Zhenhong Li, Samit Chakrabarty, Zhiqiang Zhang, Member, IEEE,

and Sheng Quan Xie, Senior Member, IEEE

Abstract—In this paper, we propose a new iterative learning
control (ILC) scheme for trajectory tracking of pneumatic muscle
(PM) actuators with state constraints. A PM model is constructed
in three-element form with both parametric and nonparametric
uncertainties, while full state constraints are considered for
enhancing operational safety. To ensure that system states are
within the predefined bounds, the barrier Lyapunov function
(BLF) is used in the analysis, which reaches infinity when some
its arguments approach limits. The proposed ILC incorporates
the BLF with the composite energy function (CEF) approach and
ensures the boundedness of CEF in the closed-loop, thus, assuring
that those limits are not transgressed. Through rigorous analysis,
we show that under the proposed ILC scheme, uniform conver-
gence of PM state tracking errors are guaranteed. Simulation
studies and experimental validations are conducted to illustrate
the efficacy of the proposed scheme. Experimental results show
that the proposed ILC satisfies the state constraint requirements
and the tracking error is less than 2.5% of the desired trajectory.

Index Terms—Iterative learning control, Pneumatic muscle,
State constraint, Barrier Lyapunov function.

I. INTRODUCTION

PNEUMATIC muscles (PMs) have been actively studied

in the last decades. Compared to conventional electric

motors, they have advantages such as light weight, compliance

and power efficiency [1]. Due to their muscle-like properties,

PMs have been widely applied in robotic manipulators and

rehabilitation devices [2–4]. However, its nonlinear behaviour

and time-varying characteristics bring difficulties to controller

design.

The three-element model [5] is commonly used to describe

PM dynamics. However, the pressure-dependent uncertain

parameters and unmodelled uncertainty such as friction de-

grade the control performance. Existing methods to handle

these uncertainties include model approximation [6, 7], robust

control [8, 9] and nonlinear disturbance observer (NDO)

[10, 11]. To deal with parametric uncertainties, an offline

model compensator is established in [6]. Alternatively, for
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state-dependent nonparametric uncertainties, a state estimator

is developed in [7] for feedforward controller design. Robust

control schemes are proposed in [8] and [9]. Although para-

metric uncertainty are tackled with backstepping technique and

parameter estimation algorithm, nonparametric uncertainties

are not considered. To handle both uncertainties, NDOs are

incorporated with dynamic surface control [10] and proxy-

based sliding mode control [11]. However, the nonparametric

uncertainties are assumed to be bounded by some known

values which are hard to justify.

Repetitive tasks are commonly seen in industrial manufac-

turing and robot-aided rehabilitation [1–4]. Iterative learning

control (ILC) shows superiority in handling repetitive con-

trol process [12–14]. However, the implementation of ILC

on PM systems is rare. The norm-optimal ILC (NOILC)

is introduced for PM tracking by minimizing an iteration-

dependent quadratic function [15]. Since the computation of

matrix gain requires explicit system knowledge, parametric

uncertainties can not be handled. A recent study [16] es-

tablishes a data-driven model for PM and achieves position

tracking by model-free adaptive iterative control (MFAILC).

Although the perturbation of uncertain parameters are captured

by the data-driven model, the global Lipschitz continuous

(GLC) condition is required and nonparametric uncertainties

are not considered. To address these problems, the composite

energy function (CEF) framework [17] is introduced. CEF

is originated from Lyapunov function (LF) and subsequently

extended to consecutive learning cycles. The LF approach

is applicable to local Lipschitz functions and guarantees the

boundedness of system states within a finite interval. To

evaluate the parametric learning effect along iteration horizon,

the L2-norm of learning errors is also incorporated into CEF.

Based on such construction, the convergence of CEF along

iteration horizon guarantees the boundedness and pointwise

convergence of the tracking error.

For an enhanced operational safety, the states of PM,

i.e., contraction length and velocity are better to have some

limits. Velocity constraints are considered for two PM-driven

rehabilitation devices, where the duty cycle modification [18]

and the saturation function [19] are used. For aforementioned

two works, due to the lack of rigorous stability analysis, the

performance of the closed-loop system is not theoretically

guaranteed. Besides, full state constraints have been rarely

considered for the control design of PMs.

In this paper, we consider the trajectory tracking problem of

PMs with state constraints. A PM model is constructed under

three-element form with both parametric and nonparametric
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Figure 1: (a) Operational principle of a PM. (b) Three-element

model of PM.

uncertainties. A new ILC scheme is proposed that consists

of feedforward learning and feedback robust terms. Unlike

previous results, the commonly used identical initial condition

(i.i.c.) is relaxed by the alignment condition, the nonparametric

uncertainties are assumed to be local Lipschitz continuous

(LLC) and only lower bound of the input gain is required for

the controller design. The barrier Lyapunov function (BLF)

is employed to solve the constrained state tracking problem

by restricting the corresponded tracking errors. With proposed

sufficient conditions, we show that uniform convergence of

PM state tracking errors are guaranteed, while full state

constraints will not be violated through the entire learning

cycle. Simulation and experimental studies are conducted to

illustrate the efficacy of the proposed scheme.

The rest of paper is organized as follows. Section II

formulates the state tracking problem. The proposed ILC

scheme and designed CEF are developed in Section III, with

rigorous convergence analysis presented by Section IV. Section

V provides simulation results and experimental comparison

studies.

II. PM MODELING AND PROBLEM FORMULATION

A. PM Modeling

We consider a PM that vertically drives a mass as shown

in Figure 1. The system model can be described as [5]:

Mẍs +B(P )ẋs +K(P )xs = F (P )−Mg

B(P ) = B1P +B0 =

{

Bi1P +Bi0 inflation

Bd1P +Bd0 deflation

K(P ) = K1P +K0

F (P ) = F1P + F0 (1)

where M,P and g are the mass of load, pressure and grav-

itational acceleration, respectively. The PM position, velocity

and acceleration are denoted as xs, ẋs and ẍs. B(·),K(·)
and F (·) are the pressure-dependent damping, spring and

force elements, where B(·) is piecewise due to inflation and

deflation.

Define an equilibrium point under pressure P0, where the

position of PM is x0 and ẋ0 = ẍ0 = 0, we have

K(P0)x0 = F (P0)−Mg. (2)

Let u = P − P0 and x = xs − x0, then (1) becomes

ẍ+ B̄ẋ+ K̄x = (aẋ+ bx+ c)u (3)

where B̄ = (B1P0 + B0)/M , K̄ = (K1P0 + K0)/M , a =
−B1/M , b = −K1/M and c = (F1 − K1x0)/M . For PM

dynamics, the pressure-dependent parameters in (1) implies

that the value of B̄, K̄, a, b and c in (3) are unknown [8, 20].

Besides, the unmodelled uncertainty and state constraints are

also crucial for a precise and safe trajectory tracking.

B. Problem Formulation

Considering the PM system works in an iterative manner

with index i ∈ N
+, we rewrite (3) as

ẋi,1(t) = xi,2(t)

ẋi,2(t) = θTxi(t) + g
(

xi(t)
)

ui + d
(

xi(t), t
)

, t ∈ [0, T ] (4)

where T > 0 is the time interval. θ = [−K̄,−B̄]T represents

the uncertain parameters and xi = [xi,1, xi,2]
T is a state

vector. The control input is defined as ui with unknown

gain g(xi) = axi,2 + bxi,1 + c, and d(xi, t) represents

the unmodelled uncertainty. The following assumptions and

property are given.

Assumption 1 [21]. The twice differentiable desired trajectory

xr,1 and its first derivative xr,2 satisfy

|xr,1| ≤ kc,1, |xr,2| ≤ kc,2, ∀t ∈ [0, T ] (5)

where kc,1 and kc,2 are two positive numbers. Note that under

the desired control input ur, the following equation similar to

(4) is satisfied

ẋr,2 = θTxr + grur + dr (6)

where xr = [xr,1, xr,2]
T is a desired state vector, gr , g(xr)

and dr , d(xr, t).

Assumption 2. Functions g(·) and d(·) in (4) satisfy LLC,

that is

|g(xi)− g(xr)| < αi‖xi − xr‖ (7)

|d(xi)− d(xr)| < βi‖xi − xr‖ (8)

where αi = α(xi, xr, t) and βi = β(xi, xr, t) are known

bounding functions and ‖·‖ is the Euclidean norm for vectors.

Assumption 3. Reference trajectories are spatially closed,

i.e., xr,1(0) = xr,1(T ), xr,2(0) = xr,2(T ). Actual trajectories

are aligned, i.e., xi,1(0) = xi−1,1(T ), xi,2(0) = xi−1,2(T ).

Property 1 [5, 8]. For a general PM, F1 > 0 always hold.

Since PM’s contraction range and velocity are usually small,

i.e., xi,1 and xi,2 are small. Thus, the function g(·) satisfies

that g(·) ≥ gmin > 0.

For safety concern, system states are required to satisfy

|xi,1| < ks,1, |xi,2| < ks,2, ∀t ∈ [0, T ] (9)

where ks,1 and ks,2 are positive state constraints. It is natural

to assume that kc,1 < ks,1 and kc,2 < ks,2 for conducting

a complete tracking. The control objective is to design a



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

robust constrained ILC (RCILC) controller ui for (4) such

that xi,1 → xr,1 and xi,2 → xr,2 as i → ∞. All variables in

the closed-loop system are global uniformly bounded and state

constraints (9) are satisfied. To prevent states from violating

predefined bounds, we employ BLF that incorporated with the

CEF framework. The following lemma formalises a result on

the use of CEF in the control design and analysis for repetitive

system.

Lemma 1 [22]. For kb,1, kb,2 ∈ R
+, let L := {(l1,l2) ∈

R
2 : |l1| < kb,1, |l2| < kb,2} be an open set.

Consider the dynamic system works in an iterative manner

żi = f(zi, t), i ∈ N
+, ∀t ∈ [0, T ] (10)

where zi = [zi,1, zi,2]
T and f : L × R → R

2. Suppose that

there exists a continuously differentiable function E : L →
R

+, such that

E(zi) → ∞ as |zi,1| → kb,1, |zi,2| → kb,2. (11)

System (10) is under the alignment condition, i.e., zi(0) =
zi−1(T ) and z1(0) ∈ L. If the following inequalities hold:

Ė(zi) < ∞ and ∆E
(

zi(T )
)

≤ 0, ∀t ∈ [0, T ] (12)

where ∆E
(

zi(T )
)

= E
(

zi(T )
)

−E
(

zi−1(T )
)

is the difference

between two consecutive iterations, then we have

zi ∈ L, ∀t ∈ [0, T ] and lim
i→∞

∆E
(

zi(T )
)

= 0. (13)

Proof: The boundedness of E
(

z1(0)
)

and Ė(zi) < ∞ in-

fer that E
(

z1(t)
)

is bounded. With the alignment condition, we

have E
(

zi(t)
)

is bounded for all t ∈ [0, T ] and i ∈ N
+. From

(11), the boundedness of E
(

zi(t)
)

indicates that zi(t) remains

in the set L, i.e., |zi,1(t)| < kb,1, |zi,2(t)| < kb,2, ∀t ∈ [0, T ].
Since ∆E

(

zi(T )
)

≤ 0, E
(

zi(T )
)

is non increasing along

the iteration horizon, it implies that limi→∞ E
(

zi(T )
)

ex-

ists. With bounded E
(

z1(T )
)

, at k-th iteration, we have

limk→∞ E
(

zk(T )
)

= E
(

z1(T )
)

+limk→∞

∑k

i=2 ∆E
(

zi(T )
)

≤ E
(

z1(T )
)

and limk→∞

∑k

i=2 ∆E
(

zi(T )
)

converges. From

the convergence theorem [23], as the sum of series converges,

we infer that ∆E
(

zi(T )
)

converges to zero asymptotically, as

i → ∞. Thus, it can be seen that (13) holds.

Define the state tracking error zi,1 = xi,1 − xr,1, zi,2 =

xi,2 − σi and σi = xr,2 − κ1zi,1 cos
2(

πz2

i,1

2k2

b,1

), where κ1 >

0 is a constant. In our subsequent design, we transfer state

constraints into corresponded error constraints, that is

|zi,1| < kb,1, |zi,2| < kb,2, ∀t ∈ [0, T ] (14)

where kb,1 and kb,2 are defined as constraints on zi,1 and zi,2
which are chosen by

kb,1 ≤ ks,1 − kc,1

kb,2 ≤ ks,2 − kc,2 − κ1kb,1. (15)

Note that zi,2 is a fictitious error consists of the second order

state error żi,1 = xi,2 − xr,2 and an additional term σi. If

zi,1 → 0 as i → ∞, we have zi,2 → żi,1.

Remark 1. Instead of the GLC condition in PM controller

designs [16, 24], the LLC condition is considered in this study.

The i.i.c. is a general assumption in ILC theory [25], i.e.,

zi,1(0) = zi,2(0) = 0. From a practical point of view, i.i.c.

can hardly be met in various circumstances. Therefore, i.i.c.

is relaxed by the alignment condition in which the final state of

the previous iteration becomes the initial state of the current

iteration.

III. CONTROLLER DESIGN AND CEF

A. Controller Design

The state error vector is defined as z̄i = [zi,1, żi,1]
T and we

design the following control law

ui = uilc
i + ur

i (16)

ur
i = −

1

gmin

(

αi|u
ilc
i |sgn(zi,2)‖z̄i‖+ βisgn(zi,2)‖z̄i‖

+ |θ̂Ti |z̄isgn(zi,2) + |ẋr,2 − σ̇i|sgn(zi,2) + κ2zi,2

+ zi,1sgn(zi,1zi,2) cos
2(
πz2i,2
2k2b,2

) cos−2(
πz2i,1
2k2b,1

)
)

(16a)

uilc
i = proj(uilc

i−1)− pzi,2 cos
−2(

πz2i,2
2k2b,2

), uilc
0 = 0 (16b)

θ̂i = proj(θ̂i−1) + qzi,2z̄i cos
−2(

πz2i,2
2k2b,2

), θ̂0 = 0 (16c)

where the control law (16) consists of a robust part (16a) and

two ILC parts (16b) and (16c) with positive learning gains

p and q. The sgn stands for the signum function [10]. The

κ2 > 0 is a constant and the σ̇i is given by

σ̇i = ẋr,2 − κ1żi,1 cos
2(
πz2i,1
2k2b,1

) + κ1

πz2i,1
k2b,1

sin(
πz2i,1
k2b,1

)żi,1.

(17)

The definition of proj(·) follows

proj(uilc) =

{

uilc if |uilc| ≤ ūilc

sgn(uilc)ūilc if |uilc| > ūilc
(18)

and

proj(θ̂) = [proj(θ̂1), proj(θ̂2), ..., proj(θ̂l)]
T

proj(θ̂j) =

{

θ̂j if |θ̂j | ≤ θ̄j

sgn(θ̂j)θ̄j if |θ̂j | > θ̄j
j = 1, 2, ...,l (19)

where ūilc ≥ |ur|sup and θ̄j ≥ |θj |sup, ∀j = 1, 2, ...,l.

Remark 2. In ILC theory, proj(·) is commonly used for pro-

viding uniform convergence instead of pointwise convergence

[17]. In practice, the bounding information can be selected

from hardware limits and large bound can lead to divergent

learning transient behaviour [25, 26].
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B. Composite Energy Function

In this paper, we employ following BLFs [22]:

V (zi,1) =
k2b,1
π

tan(
πz2i,1
2k2b,1

), |z1,1(0)| < kb,1 (20)

V (zi,2) =
k2b,2
π

tan(
πz2i,2
2k2b,2

), |z1,2(0)| < kb,2 (21)

which are positive definite, continuously differentiable for

|zi,1| < kb,1, |zi,2| < kb,2 and will approach infinite as

|zi,1| → kb,1, |zi,2| → kb,2. Incorporated with BLFs, CEF

is designed as

Ei(t) = V 1
i (t) + V 2

i (t) + V 3
i (t) (22)

V 1
i (t) =

k2b,1
π

tan(
πz2i,1
2k2b,1

) +
k2b,2
π

tan(
πz2i,2
2k2b,2

) (23)

V 2
i (t) =

1

2p

∫ t

0

gr(u
ilc
i − ur)

2dτ (24)

V 3
i (t) =

1

2q

∫ t

0

(θ − θ̂i)
T (θ − θ̂i)dτ. (25)

Remark 3. In the optimization-based ILC [27–29], the system

input, output and state constraints are transformed into matrix

inequality and the control law is designed by solving the

constrained optimization problem. In virtue of energy-based

nature, we use CEF incorporated with BLF to handle state

constraints.

IV. ANALYSIS OF CONVERGENCE PROPERTY

Theorem 1. Suppose Assumption 1–3 and Property 1 hold for

(4). The initial conditions satisfy |z1,1(0)| < kb,1, |z1,2(0)| <
kb,2 and kb,1, kb,2 are selected according to (15). If the

controller (16) is applied, the following results hold.

(1) State constraints |xi,1| < ks,1 and |xi,2| < ks,2 will not

be violated.

(2) State tracking errors zi,1 and żi,1 uniformly converge to

zero as i → ∞.

(3) All variables in the closed-loop system are bounded.

Proof: (i) First we show that the time derivative of Ei is

bounded for any iteration. From (23) we have

V̇ 1
i = zi,1żi,1 cos

−2(
πz2i,1
2k2b,1

) + zi,2żi,2 cos
−2(

πz2i,2
2k2b,2

). (26)

In light of żi,1 = zi,2 − κ1zi,1 cos
2(

πz2

i,1

2k2

b,1

) and żi,2 = z̈i,1 +

ẋr,2 − σ̇i, we obtain that

V̇ 1
i =zi,1zi,2 cos

−2(
πz2i,1
2k2b,1

)− κ1z
2
i,1

+ cos−2(
πz2i,2
2k2b,2

)
(

zi,2z̈i,1 + zi,2(ẋr,2 − σ̇i)
)

. (27)

From (6) and Assumption 2, we have

zi,2z̈i,1 = zi,2
(

θT z̄i + (giui − grur) + (di − dr)
)

zi,2u
ilc
i (gi − gr) ≤ αi|zi,2||u

ilc
i | ‖z̄i‖

zi,2(di − dr) ≤ βi|zi,2| ‖z̄i‖. (28)

Note that giu
ilc
i − grur = uilc

i (gi − gr) + gr(u
ilc
i − ur),

according to control law (16) and Property 1, we have

zi,2z̈i,1 ≤ zi,2θ
T z̄i + zi,2(di − dr) + zi,2u

ilc
i (gi − gr)

+ grzi,2(u
ilc
i − ur)− αi|zi,2||u

ilc
i |‖z̄i‖ − κ2z

2
i,2

− βi|zi,2|‖z̄i‖ − |zi,2||θ̂
T
i z̄i| − |zi,2||ẋr,2 − σ̇i|

− |zi,1zi,2| cos
2(
πz2i,2
2k2b,2

) cos−2(
πz2i,1
2k2b,1

)

≤ zi,2θ
T z̄i + grzi,2(u

ilc
i − ur)− κ2z

2
i,2

− |zi,2||θ̂
T
i z̄i| − |zi,2||ẋr,2 − σ̇i|

− |zi,1zi,2| cos
2(
πz2i,2
2k2b,2

) cos−2(
πz2i,1
2k2b,1

). (29)

Substituting (29) into (27) yields

V̇ 1
i ≤ cos−2(

πz2i,2
2k2b,2

)
(

zi,2θ
T z̄i + grzi,2(u

ilc
i − ur)

− |zi,2||θ̂
T
i z̄i|

)

− κ1z
2
i,1 − κ2z

2
i,2. (30)

From (24) and ILC law (16b), it can be derived that

V̇ 2
i (t) =

1

2p
gru

2
r +

1

2p
grproj(u

ilc
i−1)

2 −
1

p
grurproj(u

ilc
i−1)

+ cos−2(
πz2i,2
2k2b,2

)
(

grzi,2ur +
1

2
pgrz

2
i,2 cos

−2(
πz2i,2
2k2b,2

)

− grzi,2proj(u
ilc
i−1)

)

=C1 + cos−2(
πz2i,2
2k2b,2

)
(

grzi,2
(

ur − proj(uilc
i−1)

)

+
1

2
pgrz

2
i,2 cos

−2(
πz2i,2
2k2b,2

)
)

(31)

where C1 = 1
2p
gru

2
r +

1
2p
grproj(u

ilc
i−1)

2 − 1
p
grurproj(u

ilc
i−1).

From (25) and ILC law (16c), the derivative of V 3
i follows

V̇ 3
i =

1

2q
θT θ +

1

2q
proj(θ̂i−1)

Tproj(θ̂i−1)−
1

q
θTproj(θ̂i−1)

− cos−2(
πz2i,2
2k2b,2

)
(

zi,2θ
T z̄i − zi,2proj(θ̂i−1)

T z̄i

−
1

2
qz2i,2z̄

T
i z̄i cos

−2(
πz2i,2
2k2b,2

)
)

=C2 − cos−2(
πz2i,2
2k2b,2

)
(

zi,2
(

θ − proj(θ̂i−1)
)T

z̄i

−
1

2
qz2i,2z̄

T
i z̄i cos

−2(
πz2i,2
2k2b,2

)
)

(32)

where C2 = 1
2q
proj(θ̂i−1)

Tproj(θ̂i−1)−
1
q
θTproj(θ̂i−1)

+ 1
2q
θT θ.

Substituting (30) – (32) into (22) yields

Ėi =V̇ 1
i + V̇ 2

i + V̇ 3
i

≤C1 + C2 + cos−2(
πz2i,2
2k2b,2

)
(

zi,2(proj(θ̂i−1)− θ̂i)
T z̄i

)

+ grzi,2
(

uilc
i − proj(uilc

i−1)
)
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+
1

2
cos−4(

πz2i,2
2k2b,2

)(pgrz
2
i,2 + qz2i,2z̄

T
i z̄i)− κ1z

2
i,1 − κ2z

2
i,2

=C1 + C2 −
1

2
cos−4(

πz2i,2
2k2b,2

)(pgrz
2
i,2 + qz2i,2z̄

T
i z̄i)

− κ1z
2
i,1 − κ2z

2
i,2. (33)

The proj(·) function ensures that C1 and C2 are finite which

indicates that Ėi < ∞. According to Lemma 1, we have Ei is

bounded, which guarantees the state error constraints (14) hold

in the i-th iteration, as BLFs incorporated will be bounded.

With kb,1 and kb,2 selected by (15), it is straightforward to

show that |xi,1| < kb,1+kc,1 < ks,1 and |xi,2| < kb,2+ |σi| <
ks,2. Therefore, state constraints (9) will never be violated over

the entire learning cycle.

(ii) Next, we prove that CEF is non-increasing at t = T .

The difference of Ei(T ) between two consecutive iterations is

defined as

∆Ei(T ) = ∆V 1
i (T ) + ∆V 2

i (T ) + ∆V 3
i (T ). (34)

From (23), ∆V 1
i (T ) is given by

∆V 1
i (T ) =

k2b,1
π

tan(
πzi,1(0)

2

2k2b,1
)−

k2b,1
π

tan(
πzi−1,1(T )

2

2k2b,1
)

+

∫ T

0

cos−2(
πz2i,1
2k2b,1

)zi,1(τ)żi,1(τ)dτ

+
k2b,2
π

tan(
πzi,2(0)

2

2k2b,2
)−

k2b,2
π

tan(
πzi−1,2(T )

2

2k2b,2
)

+

∫ T

0

cos−2(
πz2i,2
2k2b,2

)zi,2(τ)żi,2(τ)dτ. (35)

We will omit τ in the subsequent analysis. With Assumption

3, we have

∆V 1
i (T ) =

∫ T

0

(

cos−2(
πz2i,1
2k2b,1

)zi,1żi,1 + cos−2(
πz2i,2
2k2b,2

)zi,2żi,2
)

dτ.

(36)

Employing same manners (28)–(30), we obtain that

∆V 1
i (T ) ≤

∫ T

0

(

cos−2(
πz2i,2
2k2b,2

)
(

zi,2θ
T z̄i + zi,2gr(u

ilc
i − ur)

− |θ̂Ti z̄i||zi,2|
)

− κ1z
2
i,1 − κ2z

2
i,2

)

dτ. (37)

For ∆V 2
i (T ), note that uilc

i +proj(uilc
i−1)−2ur ≤ 2(uilc

i −ur),
it can be inferred that

∆V 2
i (T ) ≤

1

2p

∫ T

0

gr
(

uilc
i − proj(uilc

i−1)
)(

uilc
i + proj(uilc

i−1)

− 2ur

)

dτ

≤

∫ T

0

cos−2(
πz2i,2
2k2b,2

)zi,2gr(ur − uilc
i )dτ. (38)

For ∆V 3
i (T ), applying the property (a − b)T (a − b) − (a −

c)T (a−c) = (b−c)T (b+c−2a) for vector a, b and c ∈ R
l×1,

we derive that

∆V 3
i (T ) ≤

1

2q

∫ T

0

(

θ̂i − proj(θ̂i−1)
)T (

θ̂i + proj(θ̂i−1)

− 2θ
)

dτ

≤

∫ T

0

cos−2(
πz2i,2
2k2b,2

)zi,2(θ̂i − θ)T z̄idτ. (39)

Substituting (37)–(39) into (34) yields

∆Ei(T ) ≤

∫ T

0

−κ1z
2
i,1 − κ2z

2
i,2dτ ≤ 0. (40)

According to Lemma 1, we have ∆Ei(T ) asymptotically

converge to zero. Therefore, from (40), we can infer that zi,1
and zi,2 asymptotically converge to zero in the sense of L2-

norm, namely

lim
i→∞

∫ T

0

z2i,1dτ = 0, lim
i→∞

∫ T

0

z2i,2dτ = 0, t ∈ [0, T ]. (41)

Part.III Boundedness of involved quantities and uniform con-

vergence of state tracking errors

Part.I shows that state constraints are solved by (14). With

bounded states, the boundedness of żi,1 and σ̇i are clear. Since

functions g(·) and d(·) are state-dependent, their boundedness

ensure that the robust term ur
i is also bounded. With bounded

ui, ẋi,2 is bounded which implies that żi,1 = zi,2 + σi − ẋr,1

and żi,2 = ẋi,2 − σ̇i are finite. Since t ∈ [0, T ] is a closed set,

zi,1, zi,2 are uniformly continuous, according to (41), zi,1 and

zi,2 uniformly converge to zero, that is

lim
i→∞

zi,1(t) = 0, lim
i→∞

zi,2(t) = 0, t ∈ [0, T ]. (42)

Notice that σi → xr,2 as zi,1 → 0, we have zi,2 = xi,2−σi →
żi,1. Therefore, we can conclude that the second-order state

error also uniformly converge to zero, that is

lim
i→∞

żi,1(t) = 0, t ∈ [0, T ]. (43)

Remark 4. The control parameters should be set to guarantee

both the performance and the stability of the closed-loop

system. In particular, fast convergence can be achieved by

tuning p and q up, but choosing large gains are likely to

cause control saturation and measurement noise in practice.

Parameter κ1 can be determined by the error constraint

(15) based on practical conditions and κ2 should be tuned

accordingly for stabilizing the robust term.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Setup and Parameter Identification

The experimental setup of the PM platform is shown in

Figure 2. The PM (Festo DMSP-20-400N) vertically drive

the load and is controlled by a proportional regulator (Festo

VPPM-6L-V1). The displacement of the PM is measured by

an encoder (Festo MLO-POT-300). The NI roboRIO is used

for data acquisition and sends voltage signal to control the

valve. The control program is designed on host computer using

LabVIEW. Firstly, the identification of the system parameters

in (1) is conducted for simulation. The identification processes
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Figure 2: The PM platform contains the following compo-

nents: 1. PM actuator; 2. Displacement encoder; 3. Weight

(load); 4. Proportional pressure valve; 5. NI roboRIO.
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Figure 3: Simulation results. (a) Trajectory of x1 in the first

iteration; (b) Maximum error convergence within 20 iterations.

follow approaches in [20] which are omitted in this paper. The

results are given by

B(P ) =

{

Bi1P +Bi0 = −1.52× 10−4P + 2829.76

Bd1P +Bd0 = −1.25× 10−3P + 3068.4

F (P ) = F1P + F0 = 0.0024P − 146.8

K(P ) =



















Kl1P +Kl0 = −0.205P + 39542

0 < P ≤ 1.75528× 105Pa

Kh1P +Kh0 = 0.025P + 1819.6

1.75528× 105Pa < P ≤ 6× 105Pa

(44)

where K(·) is piecewise with two sets of parameters Kl1,Kl0

and Kh1,Kh0. For the simulation and experimental study, we

use a 49N load and preapply a nominal pressure P0 = 1.8×
105Pa which will lead PM to an initial position x0 = 0.032m.

For simulation, the limits of uncertain parameters in (3) can be

calculated as 560.5 < B̄ < 1084; 4500 < K̄ < 6320; 3.74×
10−3 < a < 6.4 × 10−3; −3.04 × 10−5 < b < −2.5 × 10−4

and 2.75× 10−4 < c < 3.6× 10−4.
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Figure 4: Simulation results. (a) Trajectory of x2 in the first

iteration; (b) Maximum error convergence within 20 iterations.

B. Simulation Study

This section validates the feasibility of the proposed control

algorithm before implementing to the practical plant. The time

interval in each iteration is 0.001 s and the reference trajectory

is an unidirectional sine wave

xr,1 = 0.02 sin(2πft−
π

2
) + 0.02 (45)

where f = 1Hz and state constraints are defined as ks,1 =
0.05 and ks,2 = 0.18. Tracking results are compared with the

PD-type iterative learning controller (PD-ILC) [25] and model

inverse-based ILC (Inverse ILC) [30]:

PD-ILC : ui = ui−1 + Γzi−1,1 +Υżi−1,1 (46)

Inverse ILC : ui = ui−1 +ΨG−1zi−1,1. (47)

where Γ, Υ and Ψ are designed learning gains and G−1 is

the inverse of the system. Uncertainty d(·) in (4) is modelled

as d(xi) = m · sgn(xi,2) + nxi,2, which contains Coulomb

and Viscous friction with m = 0.02 and n = 2. The LLC

bounding functions αi and βi as well as gmin are calculated

by αi = 0.00039, βi = 2.02 and gmin = 5.87×10−4. Control

parameters of RCILC are tuned by trail and error that follows

Remark 4. We first select kc,1 = 0.04 and kb,1 is then chosen

by kb,1 = ks,1 − kc,1 = 0.01. To satisfy (15), we set kb,2 =
0.024 with κ1 = 3. The rest of the parameters are set as

p = 1×106, q = 5×104 and κ2 = 10. For PD-ILC and Inverse

ILC, learning gains are set as Γ = 6× 106, Υ = 2× 106 and

Ψ = 1.

In Figure 3, tracking performances of x1 are given. We can

observe that PD-ILC and inverse ILC violate the constraint in

first iteration while RCILC can restrict the state as expected.

From the maximum error convergence curve, RCILC reduces

the tracking error to 0.007 < kb,1 accordingly. Figure 4

shows the tracking performance of x2. Inverse ILC violates the

constraint ks,2 and PD-ILC has a maximum error of 0.08m/s
in first iteration, while RCILC can reduce it to 0.02m/s
according to the error constraint kb,2. Moreover, as shown

in the magnified box, RCILC uniformly converges żi,1 and

the fictitious state error zi,2 will approach to żi,1 as iteration

increases.
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Figure 5: Experimental results. (a) Trajectory of x1 in the first

iteration; (b) Maximum error convergence within 15 iterations.
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Figure 6: Tracking performance of x1 after different iterations.

(a) Trajectory of x1; (b) z1.

C. Experimental Validation

In the experimental studies, PD-ILC and RCILC are both

implemented. We first select xr,1 with the same amplitude in

(45) and set f = 0.1Hz. For different frequency, experiments

will also be conducted to validate the performance of the

proposed scheme.

The state constraints are defined as ks,1 = 0.05, ks,2 = 0.1,

while error bounds are chosen as kb,1 = 0.01, kb,2 = 0.035
with κ1 = 5. The ILC gains in (16b) and (16c) are set as

p = 15 and q = 10, and κ2 = 8 in (16a). For the PD-ILC,

the learning gains are set as Γ = 75 and Υ = 15. In robotic

applications, the position and velocity restrictions of the end-

effector are essential for an enhanced safety. These restrictions

can be converted into the constraints on the PM contraction

range and rate, i.e., ks,1 and ks,2, respectively.

The trajectory tracking of x1 in the first iteration of two

schemes are shown in Figure 5(a). We can observe that the

state x1 evidently exceed the constraint 0.05m under PD-

ILC scheme. However, RCILC can avoid violation of the

predefined state constraint by employing the barrier scheme.

Figure 5(b) shows the maximum error convergence curves,

with predefined bound kb,1 = 0.01, RCILC can quickly

reduce the error accordingly implies that the employed BLF is

working as excepted. The tracking performance after several

iterations is shown in Figure 6, we can see that both meth-
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Figure 7: Experimental results. (a) Trajectory of x2 in the first

iteration; (b) Maximum error convergence within 15 iterations.
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Figure 8: Control signal profiles. (a) First iteration; (b) Eighth

iteration.

ods can gradually track the reference trajectory. Specifically,

RCILC can reduce the tracking error to 1 × 10−3 m (2.5%
of the desired trajectory) within 8 iterations, while for PD-

ILC, the tracking error is 2× 10−3 m after 14 iterations. The

tracking results of xi,2 in the first iteration and maximum error

convergence curves are given in Figure 7. State x2 is well in

bound for both methods under low frequency, however, the

RCILC is able to properly reduce the tracking error in the

first iteration and maintain quick convergence speed.

Control input signals at the first and eighth iterations are

shown in Figure 8. With large tracking error, the control

effort of the robust part ur
1 is obvious in Figure 8(a). When

the tracking error converge to a significant small level, the

discrepancy between ui and uilc
8 in Figure 8(b) is also small.

It indicates that, as iteration increases, the iterative learning

part uilc
i will dominate the control effort.

To further verify the performance of the proposed scheme,

experimental results while the PM drives different loads under

different frequencies are shown in Figure 9. We can see that

RCILC is able to maintain outstanding tracking performance

while the state tracking error converge to approximate 1 ×
10−3 m after 8 iterations for both scenarios. This indicates that

the proposed scheme is practicable for various applications.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 8

0 4 8 12 16
0

0.02

0.04
T

ra
je

c
to

ry
 T

ra
c
k
in

g
 (

m
)

M = 10kg, f = 0.25Hz

0 2 4 6 8
Times (s)

(a)

0

0.02

0.04
M = 0kg, f = 0.5Hz

0 1 2 3 4
Iteration

(b)

-1

0

1

z
8

,1
 (

m
)

10
-3 z

8,1
: f = 0.25Hz, M = 10kg

z
8,1

: f = 0.5Hz, M = 0kg

Figure 9: The tracking performance of x1 after 8 iterations.

(a) Two scenarios: 1. M = 10 kg, f = 0.25Hz, 2. M = 0kg,

f = 0.5Hz; (b) State tracking error z1 under both scenarios.

VI. CONCLUSION

This paper proposes a new ILC scheme for trajectory

tracking of PM actuators with predefined state constraints.

Both parametric and nonparametric uncertainties are tackled

and state constraints are considered for enhancing system

safety. Differ from conventional ILC schemes, i.i.c. is relaxed

with alignment condition and nonparametric uncertainties are

assumed to be LLC. By constructing the robust feedback,

the controller is designed under CEF framework and only

the lower bound of the unknown control gain is required.

Employing BLF approaches, we solve the state constraint

problems by restricting corresponded state errors. With the

given error bounds, we prove that the state tracking errors

are uniformly converged and the state constraints will not be

violated over the entire learning cycle. Experimental studies

indicate that proposed scheme can effectively tackle state

constraints and the tracking error after convergence is less than

2.5% of the desired trajectory.
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