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Reinforcement-Learning-Based Parameter
Look-up Table Generating Method for Optimal
Torque Control of Induction Motors

Xing Qi, Member, IEEE, Wenping Cao, Senior Member, IEEE,
Lassi Aarniovuori, Senior Member, IEEE

Abstract—In the optimal control of induction motors,
it is a challenging task to maintain the optimal torque
over the varying operation conditions. This paper proposes
a parameter look-up table generating method, that can
achieve an optimal torque over a wide range of currents and
speeds, even though the commands of current are not set
correctly. Based on the motor’s testing data, this method
uses a reinforcement-learning algorithm to generate param-
eter look-up tables iteratively. Experimental results show
that the proposed method can learn appropriate parame-
ters from the running data to output an optimal torque.
The comparative studies show that the proposed method
can generate 5%-25% more torque than traditional model-
based parameter estimation methods, over a wide range of
currents and speeds. Furthermore, the proposed method
has a faster convergence feature and a higher identification
resolution than many conventional search-based methods.

Index Terms—Induction motor, optimal torque, parame-
ters look-up table, reinforcement learning

|I. INTRODUCTION

NDUCTION motors (IMs) are widely used in industrial

applications because of their low cost, high reliability
and robustness [1]. In recent years, many researchers have
developed IMs’ optimal control that can fulfill the requirement
of torque and efficiency optimization in the applications of
automotives [2], electrical propulsion systems [3], and so
on. The optimal control of IMs is generally classified into
three categories: 1. search methods, which adjust the optimal
working conditions by iterative search [4]; 2. model-based
methods, which set the optimal motor drive command based
on the power-loss model [5]; and 3. hybrid methods, which use
both iterative searches and models [6]. The optimal control can
be applied to both IMs’ scalar control [7] and vector control
[8], the former needs to calculate an optimal air-gap flux, and
the latter needs to set the correct commands of d-q axis current
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(denoted by ¢,4 and ¢,) under different speeds to satisfy the
optimal flux and torque.

In addition to the air-gap flux and d-q axis current com-
mands, there are other motor parameters are also the key
factors that affect the motor’s performances. For example, if
an induction motor runs in an indirect field orient control
(IFOC), incorrect values of the rotor resistance (R,) and the
magnetizing inductance (L,,,) could lead to an inaccurate rotor
field orientation [9]. In the case the torque will be significantly
reduced even if 4,4 and ¢, are set correctly. On the contrary, if
the values of R, or L., can be estimated properly, the motor
can be adjusted to an optimal torque condition even if the
command of 4,4 and ¢, are set incorrectly [10].

However, considering the effect of magnetic saturation and
field weakening, in practice 4,4 and 4,, are usually hard to be
set optimally under each working condition. Therefore, it is a
challenge to determine the IM’s optimal parameter values for
producing maximum torque under incorrect ¢4 and 4, setting.
In recent years, many model-based IM’s parameter estimation
methods have been reported, such as no-load and locked-rotor
(NL) [11], model reference adaptive system (MRAS) [12], ex-
tended kalman filter (EKF) [13] and full-order observer (FLO)
[14]. These methods establish a equivalent circuit model or
a differential equation model, and estimate these model’s
parameters. The model-based methods are easy to implement,
and can estimate the parameters online. However, most model-
based methods cannot adjust parameters adaptively as the
working condition changes. Hence the model-based methods
can’t be used for generating parameter look-up tables for
optimal torque.

The second category of parameter estimation methods are
search-based methods, such as genetic algorithm (GA) [15],
particle swarm optimization (PSO) [16] and grid optimization
(GO) [17]. These methods establish cost functions, and then
use some heuristic search techniques to search a minimum cost
value. Although search-based methods can be used to generate
parameter lookup tables, these methods require a large number
of iteration operations and a long test time. Besides, the global
convergence of these search-based methods still needs to be
further analyzed [18].

To address the above challenges, this paper proposes a
reinforcement-learning-based parameter look-up table gener-
ating method for optimal torque control. It calculates the
optimal values of R, and L, and then generates R, and
L., look-up tables under different speeds and currents. The



generated look-up tables can guarantee optimal torque control
over a wide range of working conditions, including the case
where the commands of #,4 and %, are not correctly set. In
the proposed method, the IMs’ data are firstly acquired in
experimental tests, and the testing data are stored into a data
pool. The data pool provides the algorithm learn experience
from a large number of data, such that the calculated results
are sensitive to the working conditions. Then the data from the
data pool are randomly selected and input to a reinforcement-
learning algorithm. The algorithm runs iteratively to generate
the parameter look-up tables in an end-to-end manner.

Il. PARAMETER ANALYSIS FOR OPTIMAL TORQUE
CONTROL OF IMs

According to the IM’s control theory, the d-q axis voltage
equations are given by:

Usd = Rsisd - WLO'sisq

. )
Usq = Rsisq + WLsisd + Lo’sdd#?"
and the torque is denoted by:
L3 L2
le = §an_stqu (2)

where w is the electrical angular speed, 7. is the output torque,
Ny is the number of pole pairs. w4, Usq, 4sq¢ and 4,4 are the d-q
axis voltages and d-q axis currents. R, and R, are the stator
resistance and rotor resistance, respectively. L,,, denotes the
magnetizing inductance, and the rotor inductance L, can be
written as L, = L,, + L,,, where L., is the rotor leakage
inductance. Usually L,, < L, and L,,, = L,.

When the IM runs in IFOC, the exciting current and the
flux rotating speed are:

diga _ Re( .
it = 15 (—tmd + 7sd) 3)
Ry
W= npwy + Ws = Npwr + 7

where w, is the mechanical speed of the IM.

It can be seen in Egs. 1-3 that the selection of R, and
L,, greatly affects the accuracy of the rotor field orientation.
Therefore, in IFOC, R, and L., are the key parameters that
affect the performance of IM’s torque optimal control.

A. Determination of R, for optimal torque control

Firstly assume that 7., is constant, define R, as the actual
rotor resistance, and R, as the estimated rotor resistance, the
torque of IM can be rewritten as [19]:

U .2 .2
I 3 Rr . st + qu
le = _anm_stzsq—/
-2 R.\22
2+ (52)%
sd R, sq

5 R “)

Dividing both the numerator and denominator by #2,, Eq. 4
can be rewritten as:

oo B gy 3 R 14 ()
Le= F(G5 ) = Sl GG —r— )

Bet a1 4 ()2 (20

Eq. 5 indicates that the torque is a function of R, /R, and
#sq/%sd> which is not linear. In order to maintain a maximum
output torque, f(R,/R,,is,/isq) should be set as a convex
function. For simplicity, let R;/RT =OR, and i,y /i, = OI,
the Hessian matrix of Eq. 5 is:

82f B2 f
5012 5OR, 601
2, 2 (6)
82f B2 f
50I60R, 5612

H =

where:

8%f _ 20R,.0I}3(140I%)(OR26I1°-3)
9ORZ — (1+eR20I1?)3
52 f ORIOI°—ORIOI*+6ORZOI*+BOR2OI%-301%7—1
9OR,. 61 — — (1+eR2612)3
92f _  OR!OI°-—ORIOI*+60R2QI*+60RZOI?—301%—-1
90I6R, — — (1+eR261?)3
92f _ 20R,QI(QRIOI>-OR?0I?>-30R%+3)
o612 — (1+6R2612)3

)
To keep f(©R,,OI) as a convex function, the Hessian
matrix in Eq. 6 needs to be positive semi-definite [20], that is:

0 B0 e it
OR26I?  \OR,6]I OIOR,

)20 ®)
Substituting Eq. 7 into Eq. 8,

0<R,/R, <1 if iy/isqg>1

9
R /R, >1 if 0<is/isg<1 )
Eq. 9 indicates that in order to achieve an optimal torque,
the estimated R;, should be lower than R, for is,/i.q > 1,
and should be higher than R, for 0 < i,,/¢sq < 1. For
example, Fig. 1 plots the relationship between 7. and i, at
n = 1000rpm and i,q = 40A. It can be seen that to locate
the torque in the convex area, R; > R, when i,q > 754,
and R;, < R, when i,4 < 7s4. Noted that if the magnetic
saturation effect is considered, the selection rule of R;, will
be more complicated.

n=1000rpm, i ~40A
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Fig. 1: The relationship between 7, and 75, at n = 1000rpm
and 7,4 = 40A.



B. Determination of L.,, for optimal torque control

When the motor is working in a high-speed region, the core
loss becomes dominant. The torque considering the core loss
is given by:

RI e

5” L_T(imqswdr - imdswqr)

where T, . is the torque considering the core loss, %,,45s and
imgqs are the d-q axis currents considering the core loss. 14,
and 4, are the d-q axis fluxes, respectively. The ratio of T,
and T.p. is given by [21]:

T, 1+ w3T?
_ sTr 11
TeFe ( )

(wsTr + wrrrt"e)2 + (1 - wswrrrb'eTar)2
where 7T, is the leakage inductance time constant, and I, ;.
is the rotor time constant considering the core loss, denoted
by:

Tepe = (10)

Lm o Lm Rr o LmFe
RFe_ Rr RFe_ RT

where Rp. is the core loss resistance and L,,p. is the
equivalent magnetizing inductance considering the core loss.

Since L,, < L., Eq. 11 can be approximated as:

T. _ 1+ (W2T2) R? + w212,

Tere " 1 (w lEe)? — R2 4 20, Lynp Ry + w212

(13)
This suggests that L,, r. significantly affects the output torque
at high speeds.

According to Egs. 12 and 13, in the high speed region where
the flux is weakened, the value of L,,, should be increased to
minimize the core loss of the motor.

Lype = (12)

I11. PARAMETER LOOK-UP TABLE GENERATING BASED
ON DEEP-REINFORCEMENT-LEARNING

In this section a reinforcement-learning-based method is
introduced to generate R, and L,, look-up tables under
different speeds and currents. The proposed method is based
on deep deterministic policy gradient (DDPG) [22], and thus
named the deep deterministic policy gradient parameters look-
up table generating method, or DDPG-PLTG for short.

A. General Framework of the DDPG-PLTG

The structure of DDPG-PLTG is illustrated in Fig. 2. The
test data are firstly acquired and stored into a data pool for
reinforcement learning [23], and then the data are selected
randomly from data pool as the input, called mini-batch
[24]. In DDPG-PLTG, the acquired motor’s signals are called
observation (denoted by s), the parameters’ values are called
action (denoted by a), and the output torque is called reward
(denoted by 7). The basic idea for the DDPG-PLTG is to
search for the optimal policy (denoted by 1) that can maximize
the reward under the current observation, and then select
actions from the optimal policy (denoted by a; = u(s:)).

The DDPG-PLTG introduces an Actor-Critic [25] frame-
work to accelerate the convergence, as shown in Fig. 3. Actor-
Critic framework combines the feature of policy gradient (Ac-
tor) and time differential (Critic). It can output a continuous
action with fast convergence. Specifically, the Actor firstly

selects a policy with continuous actions using a policy gradient
approach, and the Critic calculates the cost value of the Actor’s
policy using a time differential (TD) approach. Afterwards,
the Actor modifies the policy according to the calculated cost
values of Critic.

Moreover, DDPG-PLTG introduces a “updater-filter” to
improve its robustness [22]. Specifically, it consists of a Q
value calculation neural network (Q-net) and a policy gradient
calculation neural network (PG-net), as in Fig. 2. The Q-net
is used to search the optimal torque, and the PG-net is used to
calculate the parameters that correspond to the optimal torque.
In order to improve the algorithm’s stability, both the Q-net
and the PG-net are divided into two sub-networks, called the
online update neural network (OU-net) and the filtering neural
network (F-net), respectively. The OU-net uses a stochastic
gradient descent [26] to update the weight matrix of the neural
network, and the F-net uses a first-order filter to smooth the
weight matrix in the OU-net, that is:

0% — 769+ (1—1)0Y

Filter , ,
0" +— 160" +(1—71)6"

(14)

where 8% and 6% are the weight matrices of the OU-net and
the F-net in the Q-net, and 8* and 6* " are the weight matrices
of the OU-net and the F-net in the PG-net, respectively. 7
is the filter coefficient. All of the neural networks have the
identical 3-level network structure, including 4 input neurons,
30 hidden-level neurons and 1 output neuron.

B. Selection of Observation, Action and Reward

A key task of DDPG-PLTG is to find the best observation,
action and reward. In IFOC, 4.4, 54, usq and us, can be
chosen as the observation, denoted by:

(15)

St = [stt7 ?sqty Usdt, usqt]

where ¢ denotes the time of calculations.

R, and L,, are the estimated parameters, so the action can
be set as:

ay = [Ry, Loy (16)

In order to achieve maximum torque and accelerate the
convergence, the differential of torque can be used as a reward,
denoted by:

1 D
Ty = Tet — E[Te } = Tet — ,Z—) / Tedt (17)
0

where D denotes the data pool. Finally, the motor runs in
the torque loop, and the control block diagram of the DDPG-
PLTG is shown in Fig. 4, where the generated R, and L,,
look-up tables are input into the IFOC control strategy.
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Fig. 4: The control block diagram for the torque loop of the
IFOC.
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2: The structure of DDPG-PLTG.

C. Detailed steps of DDPG-PLTG

The detailed steps of DDPG-PLTG is illustrated in Algo-
rithm.1. Firstly, the data pool and the observation are cleared
before the calculation, as shown in lines 1 and 2, and all the
networks’ weight values are set to 0.01. In order to balance the
exploration and exploitation [27], the action is superimposed
with a Gaussian noise A, as shown in line 6, denoted by:

Ni = €'N (o, Xo) (18)
where 0 < € < 1, and \V is the Gaussian distribution with a
mean value of vy and a variance value of Xg.

Meanwhile, the DDPG-PLTG uses a stochastic gradient
descent technology to train the loss function, as shown in lines
13 and 15, where 7 is the learning rate. The label of OU-net
y is acquired by a Bellman function [28] as shown in line
11, where 7 is the discounting factor and 0 < v < 1. Line
12 is the loss function of the OU-net in the PG-net, in which
Q(s4,a,)0%) refers to the value function of the Q-net for given
BQ, s; and ay.

The PG-net is trained by a policy gradient method [29], as
shown in line 14. The policy gradient of the PG-net can be
written as [22]:

Voud (1) = Eoep[VaQ(s, al0%) |amp(s) - Veup(s]6*)]
1 M
= MA [VaQ(s7a|0Q)‘s=st,a=ﬂ(s) : vsﬂ/’t(s|0ﬂ)|s=si]dt
19)

where J (1) measures the performance of policy p, V(-) is the
policy gradient, E,._,[] is the expectation when s obeys the
distribution of p, p(s]|6") is the policy under the condition of
0" and s, M is the size of mini-batch.



Algorithm 1 The DDPG-PLTG algorithm

1: Init D and s;

2: Init Q(s, a|0Q) and (s]0");
3 69 « 9%nd 6" — 6%,

4: for episode =1, ...,4 do

5: S [isd7isq7usd7usq}

6: ar = p(s|0%) +N:

7: [R,, L) < a;

8 1o T—o [ Tedt

9: (St7’l”t7(lt78t+1) — D

10: random|[M  (s¢, 74, Gr, St41)] D/
1L Yt —Tt +’YQ/(3t+17M/(3t+1\|N/)|0Q )
2 L= OM (40 — Qs1,04[09))?

13: Lt+1 ’I’]VLt
14: v9#J(M) = ESNp[an(‘S? a‘|0Q)|a=ﬂ(s)'v9ﬂM(s|0ﬂ)}
15: Jt+1 = Jt—nVJt

16: 0% — 70%+(1—-7)6%
17: 0" +— 70"+(1—7)0"/
18: end for

19: [R,, L] = p(s:]0")

20: table < [R,, L]

/Mnitiate data pool and observation

/Mnitiate the Q-net and the PG-net’s weight matrices 8 and 6"
/[Assign 6° and 6" to OU-net’s weight matrixs for the Q-net and the PG-net

//Start iteration
/[Acquire the running data as the observation

/I ' The policy of the PG-net is superimposed with a Gaussian noise as the action

// ' The action is assign to parameters’ calibration

/IThe torque or efficiency of the motor are assign to the algorithm’s reward
//Store the current observation, action, reward and the next observation into data pool
/Mini-batch: select M groups of {s:, 7, at, s¢+1} randomly from data pool

/[Calculate the label of the OU-net in the PG-net
/[Calculate the loss function of the OU-net in the PG-net
//Stochastic gradient descent the loss function
/[Calculate the policy gradient of the OU-net in the PG-net
//Stochastic gradient descent the policy gradient
/[Filter the weight matrix of the OU-net in the Q-net
/[Filter the weight matrix of the OU-net in the PG-net
/Mteration finished

/[Calulate the final action

/[Store the final action into the look-up tables

In each iteration, the output of the PG-net is filtered by
the F-net, the final action results are stored as estimated
parameters. For each command of speed n and d-q axis current
{#sd> 9sq}» recycle the steps in Algorithm.1, so that the R, and
L, look-up tables can be generated.

D. Global Convergence Analysis of DDPG-PLTG

In order to analyze the global convergence of DDPG-PLTG,
the detailed proof is needed in [30]. According to Eq. 1 and
Eq. 5, the optimal paprameter calcultion can be equivalent to
an optimization issue with constraints, written as:

*2 +i
maz[T.(R,, L) = 3n, %* Lﬁf sdt sqz—sflzl?rL

w2,

Usd = Rsisd - WLO'szsq

. . dig
Usqg = Rsqu + WLSst + Lo’sd_tq
Z'de < wmaz

(ZSdWLm)2 + R2( sd + Z2 ) < maz

(20)
s.t

Substitute to Egs. 15-17, Eq. 20 can be approximated as the
following optimization issue, denote by:

L)) = st Ms, + al Na,
= ASt + B(lt

min[—1.(R
2D
s.t Sit1

where M, N, A, B are the matrices with the variance of R,
and L,,, denoted by (M, N, A,B) ~ Matriz(R,, L,,). The
superscript T’ denotes the transpose of a matrix. Noted that
the exact expressions of (M, N, A, B) are usually unknown,
hence the learning-based method should be used instead of
conventional optimization methods, such as Newton or sim-
plex methods.

In DDPG-PLTG, the policy performance .J is the gradient
descent (see Algorithm.l1, line 15), written as Ji4q1 = J; —
nVJ, it has been proved that when the learning rate 5 satisfies
the following inequality [30]:

1 min (M) 1
n§16{< J > IIBIIIIVJ||(1+||A—BJII)}

(22)
we have:
/s 2
Omin (88 .
T —J* < ( — O min (N) [ Hst(st Ht” )(Jt—J )
t
(23)
and:
1 mln T 2
[ Jero — Jir1| < n0min (N) [a (se1)] € (24)
317 ()T

where 0,5, (-) denotes the minimal singular value of a square
matrix, and J* is the optimal policy performance.

Eq. 24 can be rewritten as:
2
) (Jo = J7)
(25)

According to Eqgs. 22 and .25, as long as 7 is small enough,
it holds that:

[omin (s157)]

Tevs =77 < (1= 20 (N)
2 [[ses7 |

Jopi—J <& (26)

where € is a very small number. Hence the global convergence
is proved.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup and Operation Flowchart

The experimental setup is shown in Fig. 5(a), which consists
of a test motor, a dynamometer motor, a torque meter, a



data collector and a host computer. In order to implement the
DDPG-PLTG in practice, the torque meter is needed for torque
data acquisition and the host computer is needed for algorithm
running. The test motor runs in a torque loop of IFOC and
the dynamometer motor runs in a speed loop. When the test
motor is tested, the data of the observer {i.4,%sq, Usd, Usq}
the action {R,, L, } and the reward {7} are acquired by the
motor controller and the torque meter. Then the acquired data
are sent to the host computer by the data collector. The host
computer is used to build the data pool and to run the DDPG-
PLTG. In this work, the test motor is an induction motor used
for automotive applications, and the parameters of the motor is
listed in Table I. The host computer is equipped with: CPU: i7-
6700k, GPU: GTX1080, RAM: 8G, ROM: 256G. The DDPG-
PLTG algorithm is programmed using Python 3.5 and a deep
learning library called Tensorflow.

TABLE I: Parameters of the test motor

Parameter Value
Outer diameter of the stator 120 mm
Stator resistance (at 20°C) 0.0341 O
Rotor resistance (at 20°C) 0.0338 ©2
Unsaturated stator self inductance 0.0002 H
Unsaturated rotor self inductance 0.00018 H
Unsaturated mutual inductance 0.0041 H
Maximum speed 6000 r/min
Maximum torque (at 2000r/min) 80 Nm
Maximum power 17 kW
Number of pole pairs 2

An operation flowchart of DDPG-PLTG is shown in
Fig. 5(b). Under different speeds, firstly the values of R,
and L,, are randomly selected and input to the IFOC
of the test motor, and then the motor’s running data
{isd; tsqs Usd, Usq, By, Lim, 1.} is collected by data collector
and then stored into the data pool. The above operations should
be repeated under different R,., L,, values and different i,4, 754
commands to build up the data pool. The data pool is built
in the host computer using the SQlite database technology
[31] with a “First In First Out (FIFO) ” stack data structure,
so that the data can be updated continuously. Then the data
are selected randomly from the data pool to form a mini-
batch, and input into the DDPG-PLTG algorithm. The DDPG-
PLTG learns experiences from the data pool. When the DDPG-
PLTG’s calculation is finished, the new calculated action of
R,, L,, is sent to the motor controller for the next iteration.

The algorithm’s hyper-parameters are: the number of itera-
tions: 300; the number of data groups stored in the data pool:
100; the size of the mini-batch: 32; the mean value of Gaussian
noise: 0.5; the variance of Gaussian noise: 0.1; the discounting
factor: 0.9; the filter coefficient: 0.1; the learning rate: 0.001.
At the exploration stage, the search ranges for R, and L, are
limited to: 0-0.1€2 (for R,) and 0-0.01H (for L,,), respectively.
All of the above parameter settings are empirical data. Noted
that since the proposed method is data-driven and in essence
does not reply on any prior knowledge of the parameters,
some other initial values of hyper-parameters also can make

Test Motor

Torque Meter

Dynamometer Motor

Motor Lsds bsgp Uiy Hsg Data Motor
Controller R.L Collector Controller
TS m
ﬂ CAN-BUS
Riy Ly § Python 3.5
@ Tensorflow
DDPG-PLTG

(a) Experimental setup

Data collector

Initialize
SQlite

Initialize

communication
protocol

The test motor runs
in IFOC with
different R,, L,
¥
Collect
{isar isqs Usds "sq}
from the motor
controller

—>

Send data
into the data

Collect {7.}
from the
torque meter

Send the data
{isas dsq Usas tsqy Tes Rry Lin} [
to the host computer

Get the
lookup tables

Store the lookup
tables into the
motor controller

Update data in
a “FIFO” manner

]

Random select a
number of data pairs
from the data pool

e data pool
is full?

(b) Operation flowchart of DDPG-PLTG

Fig. 5: Experimental setup and operation flowchart.

the algorithm work well. However, providing some reasonable
initial values can speed up the search process, which is a
balance to strike.

B. Calculations of R, and L,,,

Fig. 6 illustrates the process of R, and L,, calculations
under different 7,4, 5, and n. For simplicity, the K, look-up
table is generated in the constant torque region, and the L.,
look-up table is generated in the field weakening region. The
process of the DDPG-PLTG is divided into three stages: a)
exploration stage, in this stage the motor runs with random
selected {R,, L,,} for 100 times, and then the 100 groups
of running data is collected and input to the data pool for
learning; b) learning stage, in this stage DDPG-PLTG learns
the experience from the data pool; c) convergence stage, in



this stage DDPG-PLTG converges to the optimal parameter
value.

It can be seen in Fig. 6 that all the processes can converge,
and can yield appropriate parameter values under differ-
ent working conditions. Specifically, the DDPG-PLTG over-
estimates R, when 754 >> %5, and under-estimates R, when
1s4 € 154, and increases L., in flux weakening region to
minimize core loss. Clearly these experimental results agree
well with the analytical results, presented in Section II.
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Fig. 6: The Calculation process of R, and L,, for different
speeds and d-q axis currents.

C. Comparision with Model-based Parameter Estimation
Methods

In order to compare the proposed method with existing
ones, the output torque is chosen as an indicator for a given
input currents and a given operating speed, which represents a
higher output power and motor drive efficiency. This indicator
is crucial for many IM drives applications where a strong
torque and a low loss are needed, such as electrical vehicles.
In this work, two classical model-based parameter estimation
methods: NL and MRAS, are used for comparison. NL is

a standard test procedure for induction motor parameters
estimation, whose detail information can be found in the IEEE
Standard 112. MRAS is the most commonly used model-based
method to estimate motor parameters online, whose structure
can be found in Appendix. Fig. 7(a) and Fig. 7(b) show the
comparative results of the rotor resistance and torque, respec-
tively. At the speed 1000r/min, the ¢,4 and 4., are changed
from i;q = 504,45, = 104, to isq = 504,isq = 100A.
It can be seen in Fig. 7(b) that the values of R, calculated
by NL and MRAS do not change with the d-q axis currents,
while the DDPG-PLTG can solve the optimal parameter values
according to different d-q axis currents. Meanwhile, the torque
generated under the two conditions by DDPG-PLTG are higher
than that of NL and MRAS. That is because the DDPG-PLTG
has gained experience from the data pool for optimal torque
generating under each operating condition, while NL and
MRAS can only estimate parameters based on IM’s equivalent
circuit model, and cannot adjust parameters adaptively with the
working conditions. In Fig. 7(b), a zoom-in plot is added to
present a transition from ¢, = 10A to is, = 100A. It can be
seen that the transition process of the proposed DDPG-PLTG
is more smooth than that of NL and MRAS.
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Fig. 7: Comparison of DDPG-PLTG, MRAS and NL under a
transition of 4, .

Table II presents a further comparison of NL, MRAS and
DDPG-PLTG under different operating conditions. It can be
seen that DDPG-PLTG can produce 5%~25% higher torque
than NL and MRAS for the same current and speed. Specifi-
cally, in the middle speed region and ¢4 =~ %,4, DDPG-PLTG
can generate about 5% more torque than NL and MRAS,
while in very low or very high speed region and ¢;q >> i
or i;q < t54, DDPG-PLTG can produce 25% more torque
than NL and MRAS. As the DDPG-PLTG is data-driven and
model-free, it can detect the change of operating conditions
and correct the the error of the field orient adaptively, while
NL and MRAS are based on motor’s model and the model
error can not be rectified. For example, MRAS does not
work well in low speed regions where the model error may
seriously affect the accuracy of the model. Likewise, NL does
not work well in high speed regions because it is an offline
method based on the motor’s equivalent circuit, and can not
sense the operating condition changes. In contrast, the DDPG-
PLTG overcomes such shortcomings because it is a model-
free method. It does not consider any model’s information,



but instead relies exclusively on the actual testing data, and
uses the optimal torque as a reward to yield an accurate field
orientation under any currents setting.

TABLE II: Comparison with some model-based methods

Speed fsd isq Te(NL) Te(MRAS)  Te(proposed)
100r/min 50A 20A 11Nm 9Nm 13Nm
100r/min 40A 50A 19Nm 16Nm 20Nm
100r/min ~ 20A  170A 36Nm 32Nm 44Nm
1000r/min ~ 50A 20A 11Nm 11Nm 13Nm
1000r/min ~ 40A  50A 19Nm 19Nm 20Nm
1000r/min ~ 20A  170A 36Nm 36Nm 45Nm
6000r/min ~ 20A  20A 3Nm 4Nm 4Nm
6000r/min ~ 15A  110A 14m 16Nm 20Nm
6000r/min ~ 10A  170A 16Nm 20Nm 22Nm

D. Comparison with Search-based Methods

The DDPG-PLTG is compared with some classical search-
based parameter estimation methods, including genetic algo-
rithm (GA) [15], particle swarm optimization (PSO) [16],
grid optimization (GO) [17] and deep-Q-learning (DQL) [32].
All the algorithms are implemented in the same computer.
Table III gives the comparison results of GA, PSO, GO, DQL
and DDPG-PLTG in terms of the number of iterations, the
parameter searching resolution and the calculation time for
each iteration. It can be seen that DDPG-PLTG needs a much
lower iteration number than GA and PSO. This is because GA
and PSO are realized in the form of “populations xparticles”,
which need more iterations than reinforcement-learning-based
methods. Moreover, GA and PSO are heuristic algorithms de-
pending on random search, while DDPG-PLTG is a learning-
based algorithm that has a much faster convergence than
random search. As to the calculation time, it should be noted
that if the actual-test torque is used as a cost function, the
motor should keep running for about 2 seconds in each
iteration for acquiring the stable torque value. This means that
all the methods use a 2s sampling time, and the calculation
times of each iteration are different but negligible, compared
with the sampling time. Another advantage of DDPG-PLTG is
that it has a higher parameter identification resolution than that
of GO and DQL because GO and DQL must search in discrete
steps, while the DDPG-PLTG has a continuous action and
can yield a more precise searching solution. In summary, the
DDPG-PLTG has the advantages of both a faster convergence
and a higher searching resolution than other search-based
methods.

V. CONCLUSION

Generating an optimal torque in IMs over a wide work-
ing conditions is crucial in many IM drives applications.
However, an accurate determination of key parameters for
IMs to generate optimal torque poses a challenge, especially
when the commands of d-q axis currents (¢4, %s4) are not

TABLE III: Comparison with conventional search-based

methods
Method Number of iterations  Resolution  Calculation time
GA [15] 2000 0.1% 32ms
PSO [16] 1500 0.1% 27ms
GO [17] 500 2% 4.8ms
DQL [32] 300 2% 7.2ms
DDPG-PLTG 300 0.1% 6.2ms

correctly set. To address the above issue, this paper has
proposed a reinforcement-learning-based parameter look-up
table generating method. It collects the motor’s running data,
and creates a data pool. Through a reinforcement learning
method, the generated parameter look-up tables can produce
an optimal torque over a wide range of speeds and currents.
In order to implement the proposed method in practice, a
motor test bench with a torque meter is needed for torque
data acquisition, and a host computer is also needed to build
the data pool and to run the proposed algorithm. Unlike
model-based methods, the proposed method is data-driven:
it relies exclusively on motor’s actual testing data, so that
it is not disturbed by model errors. Meanwhile, it uses a
data pool to gain experience and to learn optimal data, so
that the appropriate parameter values can be found as per
different speeds and current commands. Unlike search-based
methods, the proposed method is based on learning rather
than searching, and thus has a fast convergence feature and
a high identification resolution. The global convergence is
proved and the experimental results show that the proposed
method is effective. The comparative studies show that the
proposed method can produce 5%~25% more torque than
conventional parameter estimation methods when ¢,4 and i,
are not correctly set. The proposed method can be applied
to the applications where a wide range of optimal torque are
needed, such as electrical vehicles and electrical propulsion
systems.

APPENDIX: AN ILLUSTRATION OF MODEL REFERENCE
ADJUSTABLE SYSTEM (MRAS)

The structure of MRAS is shown as Fig. 8. It consists
of a reference model and an adjustable model. Taking the
estimation of R, for example, the reference model of the motor
is:

<%> L, [Ri+Los 0 <za> L <u5a
o Lo 0 R, + L,,) \isp/) Lm\uss
(27)

where ¢, and %3 are the reference flux in the oo — 3 axis, and
the adjustable model of the motor is:

% - [},%_T —Ww Qﬁa Lr isa
a )= () e
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<

where ), and zﬁg are the adjustable flux in the o — (5 axis,
respectively.



The goal of MRAS is to enable the adjustable model to
accurately track the reference model. According to Popov
hyperstability theory or Lyapunov stability theory, the adjusted
law of R, can be designed by:

R, = Kpe+ Ki/e (29)

where e = wazﬁg — Wﬂﬁa is the flux error between the
reference model and the adjustable model. K, and K; are
the adjustable coefficients.
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Fig. 8: The structure diagram of MRAS
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