Loading [MathJax]/extensions/MathMenu.js
Computationally Efficient Sphere Decoding Algorithm Based on Artificial Neural Networks for Long-Horizon FCS-MPC | IEEE Journals & Magazine | IEEE Xplore

Computationally Efficient Sphere Decoding Algorithm Based on Artificial Neural Networks for Long-Horizon FCS-MPC


Abstract:

Successful application of finite control set model predictive control strategies with long prediction horizon depends on the careful design of the optimization algorithm....Show More

Abstract:

Successful application of finite control set model predictive control strategies with long prediction horizon depends on the careful design of the optimization algorithm. The conventional method involves transforming the problem to an equivalent box-constrained integer least-squares formulation that can be solved with branch-and-bound techniques, such as the sphere decoding algorithm (SDA). In this work, it is proposed to define an artificial neural network (ANN) to replace the SDA, avoiding its inherent computational variability. Similarly to practical applications of the SDA, the ANN finds an approximate solution of the underlying optimization problem. In contrast, the main benefit of the proposed approach is that it can be implemented in a low-cost microprocessing platform, greatly improving the performance in terms of resources in comparison with other advanced techniques proposed in the literature.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 71, Issue: 1, January 2024)
Page(s): 39 - 48
Date of Publication: 13 February 2023

ISSN Information:

Funding Agency:


References

References is not available for this document.