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Abstract—This paper studies the problem of controlling
a multi-robot system to achieve a polygon formation in a
self-organized manner. Different from the typical formation
control strategies where robots are steered to satisfy the
predefined control variables, such as pair-wise distances,
relative positions and bearings, the foremost idea of this
paper is to achieve polygon formations by injecting control
inputs randomly to a few robots (say, vertex robots) of the
group, and the rest follow the simple principles of moving
towards the midpoint of their two nearest neighbors in the
ring graph without any external inputs. In our problem, a
fleet of robots is initially distributed in the plane. The so-
called vertex robots take the responsibility of determin-
ing the geometric shape of the entire formation and its
overall size, while the others move so as to minimize the
differences with two direct neighbors. In the first step,
each vertex robot estimates the number of robots in its
associated chain. Two types of control inputs that serve
for the estimation are designed using the measurements
from the latest and the last two time instants respectively.
In the second step, the self-organized formation control
law is proposed where only vertex robots receive exter-
nal information. Comparisons between the two estimation
strategies are carried out in terms of the convergence
speed and robustness. The effectiveness of the whole con-
trol framework is further validated in both simulation and
physical experiments.

Index Terms—Formation control, Distributed control,
Multi-agent systems, Estimation.

I. INTRODUCTION

MULTI-ROBOT systems have attracted intensive atten-
tion in recent years. In general, the robots cooperate

with each other to overcome the shortcomings of limited
computational resources and local communication/sensing ca-
pabilities. The cooperative control of multi-robot systems is
broadly used in search and rescue [1], transportation and
construction [2], mapping and navigation [3], sensor network
deployment [4], etc.

The primary goal of formation control is to drive a multi-
robot system to form the prescribed geometric shape, which
serves as an important module for complex tasks. In typical
consensus-based formation control strategies [5]–[8], robots
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are driven to achieve the desired control variables such as
relative position, distance, bearing and angle, the values of
which are consistent with the prescribed formation, and thus
the convergence of control variables results in the realization
of formation control. To make the swarm more autonomy and
adapted, some recent research attempt to use less priori cali-
brated information during formation. The complex Laplacian
employed in [9] can reduce the number of informed agents. In
[10], [11], it is shown that transformations including scaling,
rotation and translation can be realized by only controlling
the leaders. As an extension, a matrix-valued Laplacian is
introduced to gain more flexibility in dynamic formation
change [12]. In [13], the information of the desired formation
is encoded into the stress matrix, enabling the convergence to
its affine image by only controlling three leaders. Moreover,
as an alternative way to relieve the dependence on the exact
knowledge of formation parameters, some estimation methods
are developed to infer the system states [14], formation scaling
size [15], [16], and mixed scaling and rotation variables [17],
to name a few. However, it is required in most of the existing
methods that all the desired pair-wise control variables have
to be pre-defined carefully before its implementation, which
is of huge computation complexity. The tedious pre-defined
procedure also reduces the feasibility to the changing tasks or
the ambient environment.

It has been observed that the collective behavior of swarms
in nature are almost self-organized, such as the aggregation
of birds and fish, and the social structure of ant colony, that
is, via very simple interaction principle among neighbors, the
swarms can form different patterns to adapt to environment
changes. Motivated by this fact, by introducing the concept of
morphology into swarms, self-organized rules and emergence
behaviors are exploited on simple mobile robots to obtain a
variety of spatial configurations [18]. To verify the capability
of creating emergent morphologies via purely self-organizing
behaviors, 300 simple robots are put into use without any
self-localization [19]. Recently, it has been proved that less
communication can contribute to better adaptation to changes
by using the specified voter model [20]. Besides, from the
perspective of micro-world, gene regulatory network is utilized
in [21], [22], where each robot contains two genes generating
proteins to control the movement of robots. It is also reported
in [23] that a group of robots can gradually generate some
complicated patterns such as a polygon by using the Turing
diffusion-driven instability theory where two signals exchange
between the swarms through a set of reaction–diffusion differ-
ential equations. However, these self-organized methods make
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Fig. 1. Intuitive comparison from the perspective of mutual interaction.
(a) the consensus-based formation control [5] ˙pij = Σaij(pi−pj−p∗ij),
which requires the pre-defined desired relative positions among all
neighbors; (b) the purely self-organizing morphogenesis [19] q̇i =
Rf(qi, qj) + Dqi∇2qi, q̇j = Rg(qi, qj) + Dqj∇2qj , where robots in
the red shadow zone are considered as the neighbors of i; (c) the
proposed method, where the external interventions are exerted on the
vertex robots (generally a few among the group), and the others only
interact with its two direct neighbors.

it challenging to form a specified desired shape.
This paper focuses on the problem of self-organized de-

terministic polygon formation control for swarm robots with
the aid of a few external interventions exerted on the vertex
robots. The sensing topology among the robots is cyclic, where
each robot can only interact with its two direct neighbors.
To make the problem tractable, we first divide the whole
ring topology into virtual segments, and each vertex robot
estimate the number of robots in its associated chain only
using local measurements. Then, with the accurate estimation
value, the vertex robots actively move to adjust the collective
formation shape as well as its scaling size, playing the role
of shepherd dogs when herding sheep. The others move
according to their intrinsic interaction with their two direct
neighbors. The intuitive comparison of the above-mentioned
methods can be seen in Fig. 1. In the consensus-based
formation control framework, the desired relative positions
among all neighbors have to be pre-defined carefully. In
the strategy of purely self-organizing morphogenesis, each
robot only interacts with its neighbors without any external
injection to generate emergence behaviors, while it is generally
hard to obtain prescribed formation patterns. In contrast, the
proposed control strategy can achieve any specific polygon
formation determined by the relative positions of vertex robots
instead of all pairwise robots, which significantly reduces the
computation complexity and the number of control variables.
Another distinguishing feature of the proposed scheme is the
scalability in the sense that the desired formation is defined by
a few among many, which allows flexible joining and leaving
without altering the stabilized formation shape.

The rest of this paper is organized as follows. In Section
II, some notations and preliminary theories are given, as well
as the problem to be addressed. Two classes of distributed
controllers for estimation are proposed in Section III to derive
the cardinality of the associated robot set. Then the formation
control strategies are designed in Section IV. Finally, the
simulation and experimental results are presented in Section
V, followed by the conclusion in Section VI.

II. PRELIMINARIES
This section will give basic knowledge of notations, the

related graph theory and the statement of the problem to be

addressed.

A. Notations
Let Rn×m, Rn, and R denote the sets of real matrices (of

dimension n × m), real vectors (of dimension n) and real
numbers, respectively. Let 0 be the matrix with all entries
equal to zero and I be the identity matrix. The symbol | · |
represents the absolute value of a real number, the magnitude
of a complex number, and the determinant of a matrix,
respectively. we use ‖x‖ to denote the 2-norm of a vector x.
Given two sets A and B, the subtraction operation is indicated
by A−B, i.e., removing the elements belong to the set B from
A.

B. Graph theory
In this paper, the interaction among the networked robots

is described by an undirected graph G = (V, E ,A), where
V = {0, 1, . . . , n− 1} is the node set, E ∈ V × V is the edge
set and A = [aij ] ∈ Rn×n represents the binary adjacency
matrix with aij = 0 if (i, j) /∈ E and aij = 1 otherwise.
The neighbor set is defined as Ni = {j|(i, j) ∈ E}. The edge
(i, j) ∈ E indicates that robots i and j can sense each other.
Now we introduce two kinds of undirected graphs.
• Ring graph: a cyclic graph where the neighbors of node
i are nodes i− 1 and i+ 1 (mod n) [24].

• Chain graph: an connected graph that all the nodes have
two neighbors except for two ending nodes who have
only one neighbor.

C. Polygon formation
A configuration q ∈ Rn×2 is a finite collection of the posi-

tions of n labeled robots, denoted by q = [q0, q1, . . . qn−1]T .
A framework (G, q) is obtained by assigning a feasible con-
figuration q to its associated graph G in the Euclidean space.
In a polygon formation, a robot is called the vertex robot if it
is non-collinear with its neighbors. Assume that the abstracted
polygon has m vertices, and the corresponding vertex robots
are collected in the set S = {s0, s1, · · · , sm−1} ⊂ V . Note
that the non-negative integers si and si+1 are not necessarily
consecutive. For vertex robots si and si+1, we define nsi =
si+1−si as the number of their in-between nodes. The stacked
form is given by ns = [ns0, n

s
1, . . . , n

s
m−1]T . Correspondingly,

the relative positions between vertex robots are concatenated
in the vector r = [r0, r1, . . . , rm−1]T with ri = qsi−qsi+1

. In
this paper, the number of vertex robots needs to be consistent
with the number of vertices. However, the vertex robot is label-
free, which means the index in the set S may change as robots
move. This contributes to the scalability of the swarm and
the flexible change of the desired polygon formation, which
stimulates the self-organized collective behavior.

D. Problem formulation
This paper focuses on the formation control of n robots

modelled by discrete-time dynamics

qi(k + 1) = qi(k) + ∆t ∗ vi(k), (1)



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

(a) The ring graph G (b) The resultant sub-
graph Ge

Fig. 2. The ring graph and the resultant chains after cutting operation.

where qi ∈ R2 represents the position of robot i and ∆t
denotes the time interval between two sampling instants. The
robot team is expected to form a polygon shape with m
vertices. The only injected information for the robot team is
the desired relative position between vertex robots, i.e., r∗ =
[r∗0 , r

∗
1 , . . . , r

∗
m−1]T , whose component r∗i is only available to

vertex robot si. Except for such ‘external information’, all the
robots are self-regulated via local sensing and communication.
The cardinality of the set V , i.e., the integer n, and the number
of robots along each edge of the polygon are unknown. The
communication/sensing relationship is represented by the ring
graph. It can be seen from Fig. 2 that after removing the
red edges incident to vertex robots, say cutting operation, we
obtain the subgraph Ge composed of m chains.

Aiming to present a comprehensive and trackable solution,
we decompose the overall self-organized polygon formation
control problem into two sub-problems. First, the distributed
estimation problem conducted by vertex robot si to infer the
number of robots along the chain where it stays, i.e., si−si−1.
Then, the control objective is to design the distributed law for
each robot i using only local information to achieve the desired
polygon formation, which is represented by r∗i even though it
is unknown to most of the robots.

III. DISTRIBUTED ESTIMATION

Without loss of generality, we consider the estimation
problem along one specific chain with n robots, grouped in
the set VC , and thus the neighbor sets are given by N0 =
{1},Ni = {i−1, i+ 1}, i ∈ V −{0, n−1},Nn−1 = {n−2}.
The robot n−1 needs to estimate the unknown integer n. Two
strategies utilizing different historical data are proposed, and
the rigorous theoretical analyses are also given.

A. Estimation based on the latest measurements

In this subsection, assume that only the measurements
from the latest sampling instant are available. The distributed
controller for activating the estimation process is designed as

v0(k + 1) =0

vi(k + 1) =
α

2
(qi+1(k) + qi−1(k)− 2qi(k))

+
vi+1(k) + vi−1(k)

2
, i ∈ VC − {0}

vn(k + 1) =− vn(k)

(2)

where α is a positive constant. Assume that robot 0 stays
still at the origin all the time. It is worth noting that robot
n is a virtual one, which means vn(k) can be regarded as
an excitation signal. Under the controller (2), robots in the
chain will act like a stable oscillator when the convergence is
reached. Let n′ ∆

= n − 1 for simplicity. Recall that the n′th
robot needs to estimate the total number of robots moving
in the chain, namely the value of n′ + 1. Instead of directly
estimating n′ + 1, we seek to figure out the value of n′ using
the states of n′th robot.

Remark 1: The controller can be transformed into

(vi+1(k)− vi(k + 1))− (vi(k + 1)− vi−1(k))

= α[(qi+1(k)− qi(k))− (qi(k)− qi−1(k))], i ∈ VC − {0},
(3)

The relative position and velocity of robot j measured in robot
i’s local reference frame can be expressed as p(i)

ij = Ripij ,
v

(i)
ij = Rivij , where Ri is the rotation transformation from the

global frame to the local frame of robot i. Then, the control law
can be written as R−1

i (v
(i)
i+1(k)− v(i)

i (k+ 1))−R−1
i (v

(i)
i (k+

1) − v(i)
i−1(k)) = α[R−1

i (q
(i)
i+1(k) − q(i)

i (k)) − R−1
i (q

(i)
i (k) −

q
(i)
i−1(k))]. Multiplying the above equation by the rotation ma-

trix Ri from the left side, the controller expressed in the local
coordinate frame is obtained as v(i)

i+1(k+1) = α/2[(q
(i)
i+1(k)−

q
(i)
i (k))−(q

(i)
i (k)−q(i)

i−1(k))]+(v
(i)
i+1(k)+v

(i)
i−1(k))/2, which is

the same as (1). The relative position and relative velocity can
be measured by onboard sensor, but v(i)

j is technically difficult
to measure directly in the local coordinate frame. Normally,
v

(i)
j is calculated by subtracting the measured relative velocity
v

(i)
ij from the robot i’s own velocity v

(i)
i . Moreover, in a

typical application scenario where communication is allowed
and the orientations of each local coordinate frame are aligned,
the neighbors can transmit their own velocities vi+1(k) and
vi−1(k) directly to robot i.

Prior to giving main result on the convergence
of the closed-loop system under (2), we introduce
an auxiliary variable s ∈ R2n′×2 defined by
s(k) = [q1(k), q2(k), . . . , qn′(k), v1(k), v2(k), . . . , vn′(k)]T ,
whose dynamics satisfy

s(k + 1) =

[
I ∆t ∗ I

αA21 A22

]
︸ ︷︷ ︸

∆
=A

s(k) + bvTn′+1(k)
(4)

where A21, A22 ∈ Rn′×n′ are given by

A21 =


−1 0.5 0 0
0.5 −1 0.5 · · · 0
0 0.5 −1 0

...
. . .

...
0 0 0 · · · −1

 , A22 =


0 0.5 0 0

0.5 0 0.5 · · · 0
0 0.5 0 0

...
. . .

...
0 0 0 · · · 0


and b = [0, 0, · · · , 0.5]T ∈ R2n′ . By applying iterative
process, (4) turns to be

s(k + 1) =A2s(k − 1) +AbvTn′+1(k − 1) + bvTn′+1(k)

=Aks(1) +

k∑
i=1

(
Ak−ibvTn′+1(i)

)
.

(5)
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It can be obtained from (2) that vTn′+1(i) = (−1)i−1vTn′+1(1).
Substituting this equality into (5) yields

s(k + 1) =Aks(1) +

k∑
i=1

(
Ak−ib(−1)i−1vTn′+1(1)

)
=Aks(1) + (−1)k+1

k∑
i=1

(
(−A)k−ibvTn′+1(1)

)
.

Theorem 1: The spectral radius of matrix A is less than 1

if the parameter α is chosen satisfying α∆t <
1−cos2( π

n′+1
)

3−cos2( π
n′+1

) .

The proof of Theorem 1 is given in Appendix VI-A.
Under Theorem 1, there holds limk→∞Ak = 0 and the

matrix power series
∑
k A

k converges. In addition, we know
limk→∞

∑k
i=1(−A)k−i = limk→∞

∑k−1
i=0 (−A)i = [I −

(−A)]−1 = (I +A)−1 [25]. Hence, it yields

lim
k→∞

s(k) = (−1)k+1(I +A)−1bvTn′+1(1). (6)

In principle, from (6) the value of limk→∞ s(k) can be figured
out once the value of (I + A)−1 is determined. However,
the direct calculation of inverse matrix is of high complexity.
Recall that the specific form of vector b whose elements are
all 0 except for the last one. Thus the value of (I + A)−1b
only depends on the last column of (I+A)−1. For the sake of
simplified calculation, we focus on the recursive relationship
in terms of the bottom right block of matrix (I +A)−1.

In light of A defined in (4), it follows

I +A =

[
2I ∆t ∗ I
αA21 I +A22

]
.

Let β ∆
= α∆t/2. Then (I + A)−1 can be written in the

following block form[
2I ∆t ∗ I
αA21 I +A22

]−1

=

[
∗ ∗
∗ (I +A22 − βA21)−1

]
, (7)

where ∗ represents some certain matrix of appropriate
dimension. The invertibility of matrix (I + A22 − βA21)
is shown in Appendix VI-B. Hence it follows from (6)
that limk→∞ ‖s(k)‖ converges to a constant number. By
recalling the fact that ‖vn′+1(k + 1)‖ = ‖vn′+1(k)‖,
and vn′(k) comprises the stacked vector s(k), one knows
limk→∞ ‖vn′(k)‖/‖vn′+1(k)‖ is also a constant real number.

In the following contents, we use M(d) to represent the
leading principal submatrix of order d of matrix (I + A22 −
βA21). Denote by f(d) the last element in matrix M−1(d).

Theorem 2: Under controller (2), the value of n′ can be
inferred as followed:

n′ =
ln f̄(n′)− ln f̄(1)

ln f̄(2)− ln f̄(1)
+ 1 (8)

where f̄(d) = f(d)−ρ1

f(d)−ρ2
with ρ1,2 = 2(1+β)±4

√
β

(1−β)2 , and
f(1), f(2) and f(n′) are given by f(1) = 1

1+β , f(2) =
1+β

(1+β)2− (1−β)2

4

and f(n′) = limk→∞
2‖vn′ (k)‖
‖vn′+1(k)‖ .

Proof: From the definition of matrix A in (4), one gets the
explicit form of matrix (I +A22 − βA21) as

1 + β 1−β
2

0 · · · 0 0
1−β
2

1 + β 1−β
2
· · · 0 0

0 1−β
2

1 + β · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + β 1−β

2

0 0 0 · · · 1−β
2

1 + β

 .

Accordingly, the leading principal submatrices with d ∈
{1, 2, n′} are respectively in the form of M(1) = 1 + β,

M(2) =

[
1 + β (1− β)/2

(1− β)/2 1 + β

]
, and M(n′) = (I +

A22 − βA21). For any 1 ≤ d ≤ n′, there holds

M(d) =


0

M(d− 1)
...

(1− β)/2
0 · · · (1− β)/2 1 + β.


the inverse of which is

M−1(d) =

[
∗ ∗
∗ (1 + β − (1−β)2

4 f(d− 1))−1

]
.

Then f(d) can be obtained in a recursive manner yielding

f(d) =
1

1 + β − (1−β)2

4 f(d− 1)
. (9)

Two roots of the characteristic equation of (9) are ρ1,2 =
2(1+β)±4

√
β

(1−β)2 . Recalling the definition of f̄(d), the general
expression of the recurrence relation (9) is given by

f̄(d) = f̄(1)(
f̄(2)

f̄(1)
)d−1. (10)

When d = n′, taking the natural logarithm on both sides of
(10) yields

n′ =
ln f̄(n′)− ln f̄(1)

ln f̄(2)− ln f̄(1)
+ 1. (11)

In view of (6), the absolute value of un′ satisfies

lim
k→∞

‖vn′(k)‖ =
1

2
f(n′)‖vn′+1(k)‖. (12)

Therefore it is straightforward to get

f(n′) = lim
k→∞

2‖vn′(k)‖
‖vn′+1(k)‖

. (13)

This completes the proof. �

B. Estimation using the measurements from the last two
time instant

In this subsection, under the assumption that the mea-
surements from the last two time instants are available, the
controller for estimation is designed as

v0(k + 1) =0

vi(k + 1) =
α

2
(qi+1(k) + qi−1(k)− 2qi(k))

+
vi+1(k − 1) + vi−1(k − 1)

2
, i ∈ VC − {0}

vn(k + 1) =− vn(k).
(14)
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This controller is similar to (2) except that for i ∈ VC − {0}
it uses vi(k − 1) instead of vi(k). This specific manner con-
tributes to an analysis-friendly structure that will be illustrated
below. Denote by sr(k) = [q1(k), q2(k), . . . , qn′(k), v1(k −
1), v2(k − 1), . . . , vn′(k − 1), v1(k), v2(k), . . . , vn′(k)]T . The
compact form of (14) is

sr(k + 1) =

 I 0 ∆t ∗ I
0 0 I

αA21 A22 0


︸ ︷︷ ︸

∆
=Ar

sr(k) + bvTn′+1(k)

The definition of A21, A22 and b are the same as that in
Subsection III-A. Similarly, one has

sr(k + 1) =Akrs(1) +

k∑
i=1

(
Ak−ir bvTn′+1(i)

)
=Akrs(1) + (−1)k+1

k∑
i=1

(
(−Ar)k−ibvTn′+1(1)

)
.

Then we have another main theorem regarding the spectral
property of matrix Ar.

Theorem 3: The spectral radius of Ar is less than 1 if the

parameter is chosen such that α∆t <
1−cos2( π

n′+1
)

5+cos2( π
n′+1

) .
The proof of Theorem 3 is given in Appendix VI-C.

Following the same operations as the previous subsection,
one has

lim
k→∞

sr(k) = (−1)k+1(I +Ar)
−1bvTn′+1(1). (15)

Theorem 4: Under controller (14), the value of n′ can be
obtained in the form of

n′ = lim
k→∞

(1− β)‖vn′(k)‖
‖vn′+1(k)‖ − (1− β)‖vn′(k)‖

. (16)

Proof: The inverse of matrix (I +Ar) is given by

(I +Ar)
−1 =

[
∗ ∗
∗ (I −A22 − βA21)−1

]
where the explicit form of I −A22 − βA21 is

1− β (1− β)/2 · · · 0 0
(1− β)/2 1− β · · · 0 0

0 (1− β)/2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1− β (1− β)/2
0 0 · · · (1− β)/2 1− β

 .

To distinguish from the symbol M(d) in previous subsec-
tion, we use Mr(d) to denote the leading principal submatrix
of order d of matrix (I −A22 − βA21). Then its determinant
can be obtained via

|Mr(d)| = (1− β)|Mr(d− 1)| − (1− β)2

4
|Mr(d− 2)|.

The general expression of Mr(d) from the above recursive
equation is given by

|Mr(d)| = n+ 1

2n
(1− β)n.

Apparently, when β 6= 1, |Mr(d)| 6= 0,∀d ∈ N, implying
Mr(d) is invertible. Let g(d) represent the last element of
matrix M−1

r (d). Then it follows

M−1
r (d) =

[
∗ ∗

∗
(

1− β − (1−β)2

4 g(d− 1)
)−1

]
.

The function g(d) can be expressed as a recurrence relation

g(d) =
1

1− β − (1−β)2

4 g(d− 1)
,

the explicit solution to which is given by

g(d) =
2d

(d+ 1)(1− β)
.

In combination with (15), as k →∞, vn′(k) satisfies

lim
k→∞

‖vn′(k)‖ =
n′

(n′ + 1)(1− β)
‖vn′+1(k)‖. (17)

Then after simple rearranging, the value of n′ can be obtained
as (16). �

Remark 2: Note that although the two calculation manner
(8) and (16) both require the iterative step k tends to infinity,
in implementations and applications the value of n′ can be
obtained in finite time. Since the eventual estimation value of
n′ is a positive integer, n′(k) will not be updated once n′(k)
enters the interval of (−0.5, 0.5) around some constant value.
The real value can then be obtained via rounding-off method.

IV. FORMATION CONTROL BASED ON
ESTIMATION

This section will present control law for each robot based
on the estimation of robot number in each chain. Given that
the vertex robot si has the knowledge of nsi−1 via estimation,
the polygon formation control law is designed as

vi(k + 1) =
α

2
(qi+1(k) + qi−1(k)− 2qi(k))

+
vi+1(k + 1− σk) + vi−1(k + 1− σk)

2
, i ∈ V − S

vi(k + 1) =α (qi−1(k)− qi(k)− l∗i−1)

+ vi−1(k + 1− σk), i ∈ S − {s0}
vs0(k + 1) =0

(18)
where σk ∈ {1, 2} indicates the time instants associated

with the measurements used in implementation and denote
l∗i−1 =

r∗i−1

nsi−1
. It can be observed from (18) that the external

information l∗i−1 only influence the vertex robots, while for
the non-vertex robot, the controllers of the estimation and
the formation process share the same form. Hence, the two
processes can be implemented successively.

Theorem 5: Using the control law (18), the group robots
modelled by (1) are stabilized at the desired polygon formation
under the parameter condition in Theorem 1.

Proof: The proof is divided into three steps: a) clarify the
compact form of the system under control law (18); b) prove
the Schur stability of the state matrix; c) show the convergence
to the desired state.

Firstly, according to (18), the entire system is a linear
cascade system where every two chains si, si−1 ∈ S are
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cascaded with qsi−1
and vsi−1

. For the sake of brevity, suppose
the number of robots in each chain are all equal to n. Similarly,
the dynamics under the formation controller (18) when σk = 1
can be written as

s(k + 1) =

[
I ∆t ∗ I

αA21f A22f

]
︸ ︷︷ ︸

,Af

s(k) +Bfuf ,
(19)

where A21f , A22f ∈ Rn×n,

Bf =


0n×3

0.5α 0.5 0
0 0 0
...

...
...

0 0 −α


and uf = [qsi−1 , vsi−1 , l

∗
i−1]T . By applying iterative process,

(19) turns to be

s(k + 1) = Akfs(1) + (I +Af + ...+Ak−1
f )Bfuf .

Secondly, we prove that the state matrix is Schur, i.e.,
limk→∞Akf = 0. Noticing that the matrix A and Af only
differ in two entries, we separate Af into Af = A+Ad with

Ad =

[
0(2n−1)×n 0(2n−1)×n

0 · · · 0.5α 0 0 · · · 0.5 0

]
.

Then,
Akf = (A+Ad)

k = Ak + kAk−1Ad, (20)

since Akd = 0, k = 2, 3, ...,∞. Remind that we already have
limk→∞Ak = 0 when the parameters satisfy Theorem 1. Now
we focus on the second term. The Jordan normal form of A can
be obtained as A = PJP−1. Assume that λ is an eigenvalue
of A and J(λ) ∈ Rnλ×nλ is its corresponding Jordan block
with nλ being the dimension of J(λ). We have

J(λ)k−1 =


λk−1 (k − 1)λk−2 ... Ck−2

nλ λk−nλ

0 λk−1 ... Ck−3
nλ λk−nλ+1

...
...

. . .
...

0 0 ... λk−1

 .
As |λ| < 1, it is obvious that limk→∞ kJ(λ)k−1 = 0, which
implies that limk→∞ kAk−1Ad = limk→∞ kPJk−1P−1Ad =
0. Combining (20), we have limk→∞Akf = 0 when α∆t <
1−cos2( π

n+1 )

3−cos2( π
n+1 ) . Further, the matrix of the whole system (18) is

a lower triangular matrix, denoted by

As =


Af 02n×2n 02n×2n · · · 02n×2n

Asd Af 02n×2n · · · 02n×2n

02n×2n Asd Af · · · 02n×2n

...
. . .

...
02n×2n 02n×2n · · · Asd Af


with

Asd =

 0n×n 0n×n
0 0 · · · 0.5α 0 0 · · · 0.5α

0(n−1)×n 0(n−1)×n

 .
Therefore, the whole system matrix has the same eigenvalue
as Af , which implies the whole system is stabilized. If the

Fig. 3. Estimation value over time using (8) and (16)

number of robots in each chain is different, the stabilization
condition is up to the largest nsi−1.

Finally, we prove that the system converges to the desired
state under the control input uf . In view of the fact that
limk→∞Akf = 0 implies the spectral radius of Af is less
than 1 [25], it yields

lim
k→∞

s(k) = (I −Af )−1Bfuf , (21)

where

(I −Af )−1 =

[
(α∆t)−1I −α−1A−1

21f

−∆t−1I 0

]
.

The value of (I −Af )−1Bfuf only depends on the first and
the last column of Af . Notice that the first column of A−1

21f

is [−2,−2, ...,−2]T and the last column is [−1,−2, ...,−n]T .
Then (21) turns to

lim
k→∞

s(k) = [qsi−1 + α−1vsi−1 − l∗i−1, qsi−1 + α−1vsi−1

− 2l∗i−1, ..., qsi−1
+ α−1vsi−1

− nl∗i−1, 0, 0, ..., 0]T .

For the first chain, it is set that qs0 = q0 and vs0 = 0 where q0

is an arbitrary desired position. Then, the convergent position
of the first chain is [q0 − l∗0, q0 − 2l∗0, ..., q0 − nl∗0] and the
ultimate velocity is 0. Similarly, the convergence position of
the second chain is [q0−r∗0−l∗1, q0−r∗0−2l∗1, ..., q0−r∗0−nl∗1].
The convergence state of the succeeding chains can be deduced
in the same way, indicating the whole system will converge to
the desired state. The proof of the case when σk = 2 is quite
similar and is omitted due to the space limitation.

V. SIMULATIONS AND EXPERIMENTS

In this section, we first present the simulation results to
validate the effectiveness of the two estimation strategies.
Their performance in terms of the convergence speed and the
sensitivity to robot group size will also be discussed. Then the
simulation and experimental results are presented to give an
intuitive sense on the behavior of the proposed control scheme.

A. Simulation results of estimation strategies

The simulation is conducted with 20 robots that are ran-
domly distributed on a chain graph. The time interval between
two sampling instants is set to be ∆t = 0.01s and the
parameter α in different controllers are chosen to be the same
as α = 0.5.
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Fig. 4. Convergence time under different numbers of robots

Fig. 5. Sensitivity test to the number of robots

Fig. 3 shows the evolution of estimation value using es-
timation strategies (8) and (16) over time, from which it
can be seen the precise estimation can be achieved in finite
time. Besides the effectiveness, we compare the two estimation
strategies from the perspective of their convergence speed, the
robustness, and the computation complexity. The comparison
of convergence speed is carried out by setting the number of
robots from 5 to 30, and recording the convergence time at
each n. We then derive the average time after repeating the
same operation five times. The results are shown in Fig. 4. It
can be observed that when the group size is relatively small,
the convergence speed is almost the same no matter which
strategy is used. However as the size of the robot group grows,
the strategy (8) renders us precise estimation in less time than
(16). In addition, from the explicit expressions of (8) and
(16), we know the precise estimation relies on both ‖vn′‖ and
‖vn′+1‖ when they reach their equilibrium. In order to show
the influence of group size on estimation, we conduct another
simulation by computing the change of ‖vn′‖/‖vn′+1‖, which
can be interpreted as the sensitivity (or somewhat robustness)
w.r.t. the number of robots. The results are shown in Fig. 5,
implying the strategy (16) is more sensitive to the group size,
which is more favorable to the estimation. It is also worth
noticing that irrespective of those above-mentioned properties,
the relatively more concise expression of (16) generally leads
to lower computation complexity.

B. Simulation of formation control
Consider a team of 120 robots whose desired formation is a

hexagon, with 20 robots on each chain. The set of vertex robots
is set as S = {1, 21, 41, 61, 81, 101} and the corresponding
relative configuration r∗ is chosen as

r∗ =

[
−4 −8 −4 4 8 4
−8 0 8 8 0 −8

]
.

(a) t = 0s (b) t = 50s

(c) t = 100s (d) t = 150s

Fig. 6. The snapshots of 120 robots converging to the desired formation
under the controller (18)

Fig. 7. The relative distance errors w.r.t. neighboring vertex robots

Assume that the formation control law (18) is implemented
under the condition that robot si has obtained the real value of
nsi−1 via estimation. The time interval is set to be ∆t = 0.05s
and the control parameter α = 0.5. Fig. 6 shows the collective
formation shape at t = {0, 50, 100, 150}s. Based on the
formation evolution at different time instants, it is obvious
that the the desired formation is achieved from the geometric
perspective. This is further validated by the convergence of
relative distance errors ei

∆
= ‖ri − r∗i ‖, i = 1, · · · , 5, to

the origin, shown in Fig. 7. When equilibrium is attained,
the robots become static and maintain the status thenceforth,
which is demonstrated in Fig. 8.

Fig. 8. The velocity of each vertex robot
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Fig. 9. Initial configuration of the robot team

C. Experiments
In this subsection, the physical experiments are carried out

on the mobile platform consisting of 7 miniature unmanned
aerial vehicles called Crazyflie. The Crazyflie is a typical
quadrotor UAV. Generally, the controller is designed in cascade
form with two sub-controllers: an inner-loop attitude controller
and an outer-loop position controller. We only focus on the
latter, where the kinematics can be described by (1). Two
phases are involved: distributed estimation and formation
control. The initial relative locations of these flying robots are
shown in Fig. 9. The desired polygon formation is prescribed
as a triangle with vertex robot set S = {0, 2, 5}. Hence three
chain graphs are accordingly generated, containing 2, 3 and 2
robots respectively. In this situation, the time interval is set
to be ∆t = 1s and the control parameter α = 0.1. Fig.
10 shows the results of estimations implementing algorithms
(8) and (16). It is easy to see the precise estimation can be
obtained using either of them.

(a) algorithm (8) (b) algorithm (16)

Fig. 10. Estimation of the number of robots in three chains using two
different algorithms

In formation control, the relative position matrix of neigh-
boring vertex robots is designed as

r∗ =

[
1 2 −3
−2 2 0

]
.

The parameters are chosen as ∆t = 0.2s and α = 0.3. After
implementing the control law (18), the robots are stabilized at
a triangle formation shown in Fig. 11(a), where the in-between
robots are evenly distributed along each side. Regarding the
vertex robots, their relative distance errors are shown in Fig.
11(b), where the the convergence to the origin indicates
the realization of the prescribed polygon formation shape.
Together with the previous discussion on the rest robots, the
effectiveness of the proposed self-organized formation control
strategy is verified via physical flying robots.

(a) The stabilized formation (b) The relative distance errors

Fig. 11. Final configuration of the robot team

VI. CONCLUSION

In this paper, we have proposed a self-organized polygon
formation control framework that can realize an arbitrary
polygon formation with given vertex robots. Firstly, two dis-
tributed control strategies for estimation have been designed
using the measurements from the latest and the last two time
instants respectively. Based on the estimation, the vertex robots
can infer the number of robots in its associated chain. Then
under the circumstance that only vertex robots have access
to the external information, the specific formation control
law has been proposed for each robot so as to enable the
majority of the group robots move merely following the very
simple principle, namely moving towards the centroid of the
line segment formed by two direct neighbors. The proposed
polygon formation strategy extricates the users from com-
plicated pre-design of the desired relative variables globally.
In addition, it is inherently superior to the consensus-based
control structure due to its scalability and flexibility in the
sense that the external information only relates to a few robots.
An interesting direction in the future is to extend the polygon
formation to more general formation shapes.

APPENDIX

A. Proof of Theorem 1
The characteristic polynomial of A is

|λI −A| =
∣∣∣∣ (λ− 1)I −∆t ∗ I
−αA21 λI −A22

∣∣∣∣
= |(λ− 1)(λI −A22)−∆tαA21| ,

where λ ∈ C. Let Ā ∆
= (λ − 1)(λI − A22) − ∆tαA21, the

explicit form of which is

Ā =


λ2−λ+α∆t −λ−1+α∆t

2 0 0

−λ−1+α∆t
2 λ2−λ+α∆t −λ−1+α∆t

2 ··· 0

0 −λ−1+α∆t
2 λ2−λ+α∆t 0

...
. . .

...
0 0 0 ··· λ2−λ+α∆t


n′×n′

.

To analyze the eigenvalues of matrix Ā using Gershgorin’s
disk theorem, we introduce a transformation to equalize the
radius of Gershgorin’s disk with respect to each eigenvalue.
Define P = diag (p1, p2, . . . , pn′) with pi ∈ R≥0. Apparently,
Ā is symmetric and P is invertible. Therefore, the matrix
PĀP−1 presented in (22) (on the top of next page) and
the matrix A have the same eigenvalues. According to the
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PĀP−1 =
λ2 − λ+ α∆t − p2

2p1
(λ− 1 + α∆t) 0 0

− p1

2p2
(λ− 1 + α∆t) λ2 − λ+ α∆t − p3

2p2
(λ− 1 + α∆t) · · · 0

0 − p2

2p3
(λ− 1 + α∆t) λ2 − λ+ α∆t 0

...
. . .

...
0 0 0 · · · λ2 − λ+ α∆t

 .
(22)

Gershgorin’s disk theorem, each eigenvalue of Ā lies within
at least one of the discs centered at λ2 − λ + α∆t with
radiuses p2

2p1
·(λ−1+α∆t), p1+p3

2p2
·(λ−1+α∆t), . . . ,

pn′−1

2pn′
·

(λ− 1 +α∆t), respectively. The constants p1, p2, · · · , pn′ are
appropriately chosen such that

p2

p1
=
p1 + p3

p2
= · · · = pi−2 + pi

pi−1
= · · · = pn′−1

pn′
.

By setting p1 = 1, one has

pi = p2pi−1 − pi−2, i ∈ {3, 4, · · · , n′}. (23)

The solution to (23) is given by

pi =
sin(i arctan

√
4−p2

2

p2
)

sin(arctan

√
4−p2

2

p2
)
.

Recalling that pn′−1

p′n
= p2, there holds

sin((n′ − 1) arctan

√
4−p2

2

p2
)

sin(n′ arctan

√
4−p2

2

p2
)

= p2

and further p2 = 2 cos( π
n′+1 ). Therefore, all the eigenvalues

of Ā lie within the Gerschgorin’s disk with λ2−λ+α∆t being
its center and

∣∣∣cos( π
n′+1 )(λ− 1 + α∆t)

∣∣∣ the radius. Since λ
is the eigenvalue of A, one has |Ā| = |λI − A| = 0, which
means Ā has an eigenvalue 0. In such a case, the origin should
be included in the Gerschgorin’s disk, which requires |λ2 −
λ+ δ| ≤ | cos( π

n′+1 )(λ− 1 + δ)|.
To compare the radius with the distance between the center

and the origin, we define an auxiliary function as

ψ(λ) = |λ2 − λ+ δ|2 − cos2(
π

n′ + 1
)|λ− 1 + δ|2

which is the difference between the squared form. Next, we
will prove that |λ2 − λ + δ| ≤ | cos( π

n′+1 )(λ − 1 + δ)| holds
only when λ < 1. Now we give the proof by contradiction,
that is, ψ(λ) > 0 always holds if |λ| ≥ 1.

Assume that the magnitude and the argument of λ is a and
θ respectively. Then λ can be written as

λ = a(sin θ + ι cos θ), (24)

where ι represents the imaginary quantity. Accordingly we
have

ψ(a) =a4 − 2a3 sin θ + 2a2δ sin2 θ − 2a2δ cos2 θ

− 2aδ sin θ + δ2 + a2

+ (1− ε)(a2 + 2a sin θδ − 2a sin θ + δ2 − 2δ + 1).
(25)

We now focus on the value of function ψ(a) with respect
to a. If the three inequalities: ψ(a)|a=1 > 0, the first-order
partial derivative ∂ψ(a)

∂a

∣∣∣
a=1

> 0 and the second-order partial

derivative ∂2ψ(a)
∂a2

∣∣∣
a≥1

> 0 holds, one has ψ(a) > 0 when

a ≥ 1. In the following part, we will respectively consider
these three situations.

1) the value of ψ(a)|a=1

ψ(a) = δ(4 sin2 θ − 4 sin θ) + ε((2− 2 sin θ)(1− δ) + δ2)

> δ(4 sin2 θ − 4 sin θ) + ε((2− 2 sin θ)(1− δ)).

Apparently, when sin θ ≤ 0, ψ(sin θ+ι cos θ) > 0 always
holds. when sin θ > 0,

ψ(a) > δ(4 sin θ − 4) + ε((2− 2 sin θ)(1− δ))
> (2− 2 sin θ)(ε(1− δ)− 2δ).

(26)

It can be obtained from (26) that when δ < ε
2+ε , ψ(sin θ+

ι cos θ) > 0.
2) the value of ∂ψ(a)

∂a

∣∣∣
a=1

The first-order partial derivative of ψ(a) is given by

∂ψ(a)

∂a
=4a3 − 6a2 sin θ + 4aδ(sin2 θ − cos2 θ)− 2δ sin θ

+ 2a− (1− ε)(2a+ 2 sin θδ − 2 sin θ).

When a = 1, one has

∂ψ(a)

∂a

∣∣∣∣
a=1

=(4− 8δ sin θ − 4δ)(1− sin θ)

+ 2ε(1 + sin θ(δ − 1))

>(4− 12δ)(1− sin θ)

+ 2ε(1 + sin θ(δ − 1)).

Hence, if δ < 1
3 , there holds ∂ψ(a)

∂a

∣∣∣
a=1

> 0.

3) the value of ∂2ψ(a)
∂a2

∣∣∣
a≥1

Under the condition that a ≥ 1, the second-order partial
derivative of ψ(a) satisfies

∂2ψ(a)

∂a2
=12a2 − 12a sin θ + 4δ sin2 θ − 4δ cos2 θ

+ 2− 2(1− ε)
≥12− 12 sin θ + 4δ(sin2 θ − 1) + 2ε

=4(3− δ sin θ − δ)(1− sin θ) + 2ε

>4(3− 2δ)(1− sin θ) + 2ε.

It thus can be inferred from the above equation that
∂2ψ(a)
∂a2 > 0 if δ < 3

2 .
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To sum up, when a = |λ| ≥ 1 and δ < ε
2+ε , the inequality

ψ(a) > 0 always holds, which leads to the contradiction.
Hence, the spectral radius of matrix A is less than 1.

B. Proof of the invertibility
The determinant of M(d) is given by

|M(d)| = (1 + β)M(d− 1)− (1− β)2

4
M(d− 2).

By considering |M(0)| = 1, |M(1)| = 1 + β, one has

|M(d)| = 2
√
β + β + 1

4
√
β

(
1 + β

2
+
√
β)d︸ ︷︷ ︸

∆
=M1

+
2
√
β − β − 1

4
√
β

(
1 + β

2
−
√
β)d︸ ︷︷ ︸

∆
=M2

.

Obviously, |M1| > |M2| always holds when d > 0, implying
|M(d)| 6= 0,∀d ∈ N. Therefore, the invertibility of matrix
(I +A22 − βA21) is proved.

C. Proof of Theorem 3
The characteristic polynomial of Ar is

|λI −Ar| =

∣∣∣∣∣∣
(λ− 1)I 0 −∆t ∗ I

0 λI −I
−αA21 −A22 λI

∣∣∣∣∣∣
=
∣∣(λ3 − λ2)I − λ∆tαA21 − (λ− 1)A22

∣∣ .
(27)

Denote Ār = (λ3 − λ2)I − λ∆tαA21 − (λ− 1)A22. Similar
to the proof scheme of Theorem 1 in Appendix VI-A, it can
be shown that all the eigenvalues of Ār lie within the disk of
radius cos2( π

n′+1 )|λ−1+λα∆t| centered at λ3−λ2 +λα∆t.
Next, we will prove by contradiction that |λ3−λ2 +λα∆t| >
cos2( π

n′+1 )|λ − 1 + λα∆t| holds only when |λ| ≥ 1. Define
an auxiliary function as follows

ψr(λ) =|λ2 − λ+ α∆t|2 − cos2(
π

n+ 1
)|λ− 1 + λα∆t|2

=|λ2 − λ+ δ|2 − (1− ε)|λ− 1 + λδ|2

=a4 − 2a3 sin θ + 2a2δ sin2 θ − 2a2δ cos2 θ

− 2aδ sin θ + δ2 + a2

− (1− ε)
(
a2(1 + δ)2 − 2a sin θδ − 2a sin θ + 1

)
(28)

Again following the same lines of Appendix VI-A, we con-
sider the following three situations.

1) the value of ψr(a)|a=1

In such a situation, we have

ψr(λ) =− 4 cos2 θ + ε(δ2 + 2δ + 2− 2 sin θ − 2δ sin θ)

>− 2δ(2− 2 sin θ)(2 + 2 sin θ)

+ ε(δ + 1)(2− 2 sin θ)

≥(2− sin θ)(εδ + ε− 6δ)

It can be derived that ψr(λ) > 0 holds when δ < ε
6−ε .

2) the value of ∂ψr(a)
∂a

∣∣∣
a=1

Taking the derivative of ψr w.r.t. a gives

∂ψr(λ)

∂a
=4a3 − 6a2 sin θ + 4aδ sin2 θ − 4aδ cos2 θ

− (1− ε)
(
2a(1 + δ)2 − 2 sin θδ − 2 sin θ

)
− 2δ sin θ + 2a.

By letting a = 1, there holds

∂ψr(λ)

∂a

∣∣∣∣
a=1

=4− 4 sin θ + 4δ sin2 θ − 4δ cos2 θ − 2δ2

− 4δ + ε
(
2(δ + 1)2 − 2 sin θ(δ + 1)

)
=(4− 8δ − 8δ sin θ)(1− sin θ) + ε(2(δ + 1)2

− 2 sin θ(δ + 1))− 2δ2

>(4− 12δ)(1− sin θ) + 2δ(ε− δ) + 2εδ2.

Hence, ∂ψr(λ)
∂a

∣∣∣
a=1

> 0 holds if δ < min( 1
3 , ε).

3) the value of ∂2ψr(a)
∂a2

∣∣∣
a≥1

By direct calculation, one has

∂2ψr(λ)

∂a2
=12a2 − 12a sin θ + 4δ sin2 θ − 4δ cos2 θ + 2

− 2(1− ε)(1 + δ)2

>4(3− 2δ)(1− sin θ) + 2− 2(1− ε)(1 + δ)2.

Accordingly, when δ < min( 3
2 ,

ε
1−ε ), the second-order

derivative of ψr is always positive.
To sum up, ψr(λ) > 0, when δ < ε

6−ε ,∀a ≥ 1, which
leads to the contradiction. Therefore, the spectral radius of Ar
is less than 1.
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