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Abstract—Precise calibration is the basis for the vision-
guided robot system to achieve high-precision operations. 
Systems with multiple eyes (cameras) and multiple hands 
(robots) are particularly sensitive to calibration errors, such 
as micro-assembly systems. Most existing methods focus 
on the calibration of a single unit of the whole system, such 
as poses between hand and eye, or between two hands. 
These methods can be used to determine the relative pose 
between each unit, but the serialized incremental 
calibration strategy cannot avoid the problem of error 
accumulation in a large-scale system. Instead of focusing 
on a single unit, this paper models the multi-eye and multi-
hand system calibration problem as a graph and proposes 
a method based on the minimum spanning tree and graph 
optimization. This method can automatically plan the 
serialized optimal calibration strategy in accordance with 
the system settings to get coarse calibration results initially. 
Then, with these initial values, the closed-loop constraints 
are introduced to carry out global optimization. Simulation 
experiments demonstrate the performance of the proposed 
algorithm under different noises and various hand-eye 
configurations. In addition, experiments on real robot 
systems are presented to further verify the proposed 
method.  

 
Index Terms—Calibration, Error correction, Graph theory, 

Multi-Robot systems, Robot vision systems 
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I. INTRODUCTION 

he hand-eye robot systems are used in a wild range. 

Compared with the single-eye and one-hand systems, the 

multi-eye and multi-hand systems (MEMHS) can complete 

flexible and various tasks through cooperation and association, 

which is a research hotspot at present. Many difficult tasks for 

a single robot can be easily accomplished by multi-hand-eye 

robot systems [1], and the MEMHS has been widely used in 

various fields. For example, Tianjin University has designed a 

multi-robot mirror milling system to machining large skin parts. 

In order to ensure that the milling accuracy is less than 0.03mm, 

two robotic arms need to move synchronously to mill and 

support both sides of the metal at the same time. This system 

has high requirements for calibration accuracy [2]. Institute of 

Automation, Chinese Academy of Sciences has designed a 

micro-assembly system for miniature photoelectric lens 

manufacturing based on 3 cameras and 6 manipulators. High-

precision calibration is the cornerstone of the 21-degree-of-

freedom (DoF) control and 4.9μm assembly accuracy of the 

system [3]. Other applications also include dexterous 

manipulation [4], grasping [5], and robot-guided 3-D feature 

recognition [6], which play an important role in intelligent 

manufacturing. But due to the difficulty of high precision 

calibration, the multi-eyes and multi-hands system cannot 

achieve high precision collaboration at low cost. For example, 

Boeing is straggling with its new multi-robot assembly system, 

which leads to the delayed delivery of its new Airplane [7]. 
 

 
Fig. 1 The ETH Zurich's Robotic Fabrication Laboratory (RFL) is a 

MEMHS. It consists of four industrial robots with six axes each, 
suspended from an overhead gantry system, which allows the robot end-
effectors to be positioned at any desired angle within a spacious work 
area measuring 45 by 17 by 6 meters. 
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In this paper, the MEMHS refers to a system that consists of at 

least three robots and three cameras. Cameras fixed in the 

workspace are called eye-to-hand cameras and those mounted 

on the robotic arms are called eye-in-hand cameras. The 

parameters to be calibrated in the MEMHS include the 

kinematic parameters of the robotic arms, the intrinsic 

parameters of the cameras, and the relative poses between units 

(e.g., cameras-robots, robots-robots, cameras-cameras). The 

calibration of the kinematic parameters of the robot itself and 

the intrinsic parameters of the cameras have been widely 

studied [8-12], and are effective enough for most applications. 

The calibration of the extrinsic pose matrices between the 

system’s units is comparably difficult, especially in tasks with 

high precision requirements, which is a major bottleneck 

restricting the wide application of MEMHS.  

A. Related Works 

Robot hand-eye calibration is a classic and basic problem for 

single robot extrinsic calibration. It concentrates on solving the 

pose matrices between the robot base or end flange and the 

sensor frame, which is the famous 𝑨𝑿 = 𝑿𝑩  and 𝑨𝑿 = 𝒀𝑩 

problem, where 𝑿 and 𝒀 are unknown constant transformation 

matrices [13]. Tsai et al. [14] use a series of matrix geometries 

and properties of homogeneous matrices to compute the 

rotation and translation of the hand-eye relationship. However, 

since the parameters are estimated in a two-stage process, the 

estimation error from the first stage will propagate to the second 

stage. Park et al. [15] proposed a method to calculate 𝑨𝑿 = 𝑿𝑩 

in a one-stage process. This method uses the Lie group theory 

to solve the rotation and translation of the hand-eye equation 

simultaneously. Ernst et al. [16] proposed a method calibrating 

tool-flange and robot-world simultaneously with a least-squares 

approach, that achieved more accurate results and required 

fewer calibration stations. 

In previous studies on multi-robot calibration problems, 

researchers mainly focused on the dual robot system, which is 

the well-known 𝑨𝑿𝑩 = 𝒀𝑪𝒁 problem. Where X, Y, and Z are 

all unknown constant matrices, representing the transformation 

between a base frame and another base frame, camera frame 

and end flange, another end flange and tool frame respectively. 

By solving the dual robot calibration problem, the multi-robot 

calibration problem could be easily solved by decomposing the 

multi-robot system into a series of independent dual robots 

groups, or hand-eye robot units, then applying the dual robot or 

hand-eye calibration method on each group [17]. Namely, step-

by-step calibrate an open-loop chain that is composed of all 

units. Wang et al. [1] proposed a method to simultaneously 

calibrate the parameters of a dual robot system using Lie 

algebra and the non-linear optimization method. The initial 

value is obtained by solving two 𝑨𝑿 = 𝑿𝑩 problems. Wu et al. 

[18] also used the nonlinear optimization method of Lie algebra 

to calibrate the dual-hand-eye robot system. To obtain a good 

initial value, they use quaternion to calculate all the unknown 

pose matrices synchronously in avoiding error propagation 

before performing global adjustments. Fu et al. [19] use a dual 

quaternion-based analytical solution for dual robot calibration, 

and solvability analysis is provided to prove the robustness 

against noise. Wang [17] used the Kronecker product and 

iteration to solve the problem, proofing that their cost function 

is strictly convex. Ma et al. [20] proposed a hybrid approach 

that combines 𝑨𝑿𝑩 = 𝒀𝑪𝒁  solvers from Wang [1] with 

probabilistic methodology, which requires fewer data without 

losing accuracy. It considered the noise level of different sensor, 

and information matrices has been added during the 

optimization process, however, it only focuses on the dual robot 

scenario, which only consists of one loop, and it may deteriorate 

quickly as the noise level increase. 

Less attention has been paid to the calibration sequence of 

different units and the accumulative error problem in actual 

operations, even though it has a vital influence on multi-robot 

co-manipulation. Many scholars have studied the calibration 

sequence of MEMHS, but most of these methods are just 

suitable for specific scenarios and lack flexibility and 

scalability. Ruan et al. [21] produced a 3D camera multi-robot 

system and designed a non-contact calibration strategy for this 

system. This approach calibrates their cooperative grinding 

workstation accurately, but it uses a special geometric 

relationship of their system, which may be difficult to transplant 

to another system. Shen et al. [3] designed a micro-assembly 

platform with 3 cameras and 6 manipulators to achieve 21-DoF 

assembly tasks. This platform is calibrated step by step using 

the single unit calibration method proposed in [22]. This 

approach also only supports their specially designed system. Yu 

et al. [23] proposed a general method to calibrate both extrinsic 

matrices between robots and robot kinematic parameters. This 

method uses the product of exponentials (POE) formula to 

module robot motion and determine the unknown parameters. 

This method is a general method for multi-robot calibration, 

while kinematic parameters can be determined simultaneously. 

However, this method did not consider sensor precision 

difference, and the selection of world coordinates may 

influence the calibration accuracy. Due to the complexity of 

offline calibration, some pose compensation-based calibration 

methods are proposed. Stadelmann et al. [24] proposed an end-

effector pose correction method for large-scale multi-robot 

systems. They use Indoor Global Positioning System (iGPS) 

and IMU to track the end-effector pose, thereby achieving high 

accuracy calibration. With their sensor fusion algorithm, the 

end-effector position error reduces to 0.1mm on average. 

Maghami et al. [25] use deep neural networks for multi-robot 

calibration. Measure the pose of multiple robots at different 

locations and record the joint angle input simultaneously. Then 

trained a fully connected network for error compensation. 

B. Contributions 

In this article, we mainly focus on the general calibration 

process of MEMHS, and special attention has been provided to 

finding the optimal calibration path with the highest sensor 

accuracy, which is the equilibrium point of efficiency and 

accuracy. This paper models the MEMHS calibration problem 

as a graph and proposes a minimum spanning tree and graph 

optimization-based calibration strategy. Firstly, optimal open-

loop chains are selected for local calibration to get a set of 

initialization parameters. Then, closed loops covering all units 

are selected for global adjusting. The main contributions of this 

paper are as follows: 

1) A general multi-eye multi-hand system (MEMHS) 

calibration model based on minimum spanning tree and 

graph optimization is presented, and the optimal 

calibration principle is proposed.  
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2) According to the presented system model, a numerical 

solution of nonlinear calibration equations is given, and 

the corresponding algorithm is developed. 

3) A standard calibration procedure for MEMHS is 

proposed, which is comprehensively tested on both 

simulated and real MEMHS. 

The paper is organized as follows: In section II, the calibration 

problem is modeled. In section III, details of the proposed 

calibration method are introduced. Simulation and real robot 

verification of the calibration method are presented in Section 

IV. Finally, Section V concludes this article. 

II. PROBLEM STATEMENT 

This paper is devoted to the calibration of a system that 

consists of multiple cameras and robotic arms. On the premise 

that the cameras’ intrinsic parameters and the kinematic 

parameters of the robots themselves are well calibrated, given a 

set of robot joint states and camera measurement results, the 

pose between any two units can be calibrated. 

Denote 𝑁 robotic arms, 𝑀 eye-in-hand cameras, and 𝐿 eye-to-

hand Cameras as a MEMHS. The relative pose between the 

bases of the 𝑁 robots remain constant, 𝑀 eye-in-hand cameras 

are mounted on the bodies of robotic arms and each of their 

pose is constant to a certain joint. The poses of 𝐿 eye-to-hand 

Cameras are fixed to the base of 𝑁 robots. The base coordinate 

system of the i-th robotic arm is denoted as {𝑅𝑖 }. The tool 

coordinate system is represented by {Hi}, the coordinate system 

of the j-th eye-in-hand camera is represented by {𝐸𝑗}, and the 

coordinate system of the k-th eye-to-hand camera is represented 

by {Ck}, where 𝑖 = 1,2 … … 𝑁, 𝑗 = 1,2 … … 𝑀, 𝑘 = 1,2, … … 𝐿. 

Poses between devices are changing with robots’ joint angles. 

Mathematically, this can be described as ∀𝐴, 𝐵 ∈
{𝑅𝑖}, {𝐸𝑗}, {𝐻𝑖}, {𝐶𝑘}. the transformation matrix from {A} to {B} 

is denoted as  𝐵𝑻𝐴, where  𝐵𝑻𝐴 ∈ 𝑆𝐸(3).  

Fig. 2(a) shows a MEMHS, which consists of three robots, 

three eye-in-hand cameras, and one eye-to-hand camera. The 

solid line in the figure represents the measurable pose matrices, 

the blue one indicates the matrices which can be obtained from 

the joint angles with corresponding kinematic parameters of the 

robot; The red one indicates the matrices which can be obtained 

from cameras with overlapping fields of view. The dashed line 

represents the constant pose matrices that need to be calibrated. 

III. METHOD 

Taking each coordinate system as a vertex and the pose 

relationship between two coordinate systems as an edge, the 

MEMHS can be modeled as a complete graph, which is 

represented as follows. 

 𝐺(𝑉, 𝐸, 𝛷) (1) 

where 𝑉 is the vertex set of 𝐺, 𝐸 is the edge set of 𝐺, and 𝛷 is 

the weight set of the corresponding edge. Calling the MEMHS 

complete graph MCG for short. Each edge corresponds to a 

translation matrix, where some edges are constant matrices, and 

some are functions of joint angles, and its accuracy is related to 

weight Φ. The calibration problem can then be formulated as 

determining a set of parameters such that for a given system 

joint angles state, the matrices corresponding to all edges can 

be calculated. If MCG has 𝑛 vertices in total, then there are 

𝑛(𝑛 − 1)  edges in total, but only 𝑛 − 1  of them are 

independent, since MCG has an important property that along 

each of a close ring, the product of the corresponding matrices 

should be an identity matrix. Therefore, all spanning trees of the 

graph are mathematically equivalent, namely, any given 

spanning tree can restore the system graph. Different from 

SLAM (Simultaneous localization and mapping) problem, the 

calibration problem requires human labor forces. The 𝑛(𝑜2) 

time complexity may not be high for computers when n is not 

very large, but it could be extremely large for human force. 

Therefore, calibrating the 𝑛 − 1  best edges will balance the 

accuracy and the efficiency. The minimum spanning tree is the 

best tree for preliminary calibration. Then, according to the 

spanning tree equivalence principle and preliminary calibration 

results, a set of closed loops of MCG are selected for global 

optimization based on the close-loop-identity property. 

Take the MEMHS shown in Fig. 2(a) as an example, assuming 

the kinematic parameters of the robots and intrinsic parameters 

of the cameras are known, the MCG is shown in Fig. 2(b). Red 

and black edges represent the translation matrices and can be 

directly measured according to the kinematic model of the robot 

or cameras; the blue edge represents the edge corresponding to 

the constant matrices. 

A. edge evaluation 

The measurement accuracy mainly depends on the accuracy of 

the sensor itself, and the sensitivity of the measurement process. 

The former includes the pixel density of the camera, the encoder 

accuracy of the robotic arm, etc. The latter includes the distance 

between the calibration object and the camera, etc. In the MCG, 

the former is related to vertices while the latter is related to 

edges. Therefore, it is necessary to set different weights for 

vertices and edges with different precisions to achieve better 

measurement results. Let the weight of vertex 𝑖 be 𝜂𝑖 ∈ 𝑹+, the 

vertices with higher measurement accuracy will have larger 

weights. From the perspective of practical engineering, 𝜂𝑖  is 

determined by an empirical formula including the influence 

mentioned above. For the case where the covariance matrices 

are known, SVD decomposition is performed on the 

corresponding covariance matrix, and its largest eigenvalue is 

taken as 𝜂𝑖 . Then convert the weight of the vertex into the 

weight of the edge. Let the currently measured vertices be 𝑖,  𝑗, 

and let the edge weight be 𝛷𝑖𝑗. Additionally, for the sensitivity 

of the measurement process, it is necessary to add preset 

weights on the edge directly, but this error is difficult to obtain 

before measurement, so it is simply represented by 𝑑𝑖𝑗  here. 𝑑𝑖𝑗  

should be constant zero in most cases, only when the physical 

distance of two vertices is too large, or existing obstacles or 

difficulties affect the measurement in the given edge, the 𝑑𝑖𝑗  

need to be added. The final edge weights can be expressed as 

follows. 

 𝛷𝑖𝑗 =
1

log(𝑛𝑖𝑗(
1

𝜂𝑖
+

1

𝜂𝑗
+𝑑𝑖𝑗)+1)+1

 (2) 

where 𝑛𝑖𝑗 represents the measurement times of edge between 

vertices 𝑖, 𝑗 . We assume that in unbiased measurements the 

accuracy of the data measurement is more important than the 
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Fig. 2 (a) Example of MEMHS, which consists of three robots, three eye-in-hand cameras, and one eye-to-hand camera. (b) The corresponding 
MCG (MEMHS complete graph) of the MEMHS shown in (a). (c) The optimal calibration loop diagram of the MEMHS shown in (a). 

quantity, so the weight function uses a logarithmic term to limit 

the number of measurements. The number of measurements 𝑛𝑖𝑗 

for edges that cannot be directly measured or computed by 

hand-eye calibration (such as transportation matrices between 

two robot bases) is 0. Weights are assigned to different edges, 

and the minimum weight constraint and spanning tree criterion 

are introduced to simplify the graph to find the optimal 

calibration path. This paper uses Prim’s algorithm [26] to 

generate the minimum spanning tree, since the time complexity 

of Prim's algorithm is 𝑜(𝑛2), where 𝑛 is the number of vertices, 

and its time complexity is only related to the number of vertices. 

B. Calibration of edge 

The calibration problem of the MEMHS can be divided into a 

series of calibration tasks between two vertices. Calibration 

methods between a pair of units have been well studied. For the 

calibration between fixed cameras, if the two cameras have 

enough overlapping fields of view, the problem becomes a dual 

camera calibration problem. The intrinsic parameters of each 

camera are obtained separately [8] [9]. Then by placing the 

calibration board in the public field of view, and using the PnP 

algorithm [27] [28] to measure the pose between the cameras 

and the calibration board, the pose relation of the two camera 

units can be calculated. 

The calibration problem between the camera and the end of the 

robot, and between the camera and the base of the robot can be 

modeled in the form of eye-in-hand and eye-to-hand problems. 

The calibration equation has the form of 𝑨𝑿 = 𝑿𝑩 [14] [15]. 

where 𝑿 represents the matrix to be solved. The calibration can 

be completed by placing a calibration board in a fixed position 

in the working area or at the end of the robot arm. 

C. Global optimization and Iterative calibration 

The main idea of the iterative calibration stage is to construct 

a closed-loop optimization error function to eliminate the error 

to the greatest extent. The calibration is done by adjusting the 

pose matrix 𝑇𝑖  between multiple units. If an edge is added 

between any two non-directly connected vertices in the 

minimum spanning tree, a ring can be formed, and the matrix 

obtained by multiplying the corresponding matrices on the ring 

in order should result in the identity matrix 𝑰. However, due to 

the existence of the actual error, the matrix is not an identity 

matrix after continuous multiplication, causing the coordinates 

of the same point to be different. Therefore, the error function 

can be established. The calibration error function has the 

following form. 

 𝑒 =
1

2
|| ∑ ω𝑘 ∑ (∏ (𝑖−1𝐴𝑖𝑗𝑘

𝑖−1𝑿𝑖𝑘
𝑁
𝑖=1 )

𝑁
𝑷𝑗𝑘

𝑀
𝑗=0

𝑆𝐴𝑙𝑙
𝑘=0 −0𝑷𝑗𝑘||2 (3) 

where 𝑨𝑖 , 𝑿𝑖 ∈ 𝑆𝐸(3), ω𝑘 is the weight for optimization, and 𝑷 

is a set of measured points. The accumulated item 𝑖 represents 

the number of edges passed on a loop, 𝑨𝑖  represents the 

measurable matrix, 𝑿𝑖  represents the matrix that requires 

optimization, and there will be 𝑁 measurable and optimizable 

matrix in the loop 𝑘, since the loop may be measured multiple 

times, all the measurements result should be summed. 𝑀 

represents the measurement times of the current loop. weights 

need to be set when calculating the error, which is represented 

by ω𝑘. Where ω𝑘 is equal to the sum of the inverses of all edge 

weights in the loop. 

 𝜔𝑘 = ∑
1

𝛷𝑖

𝑁
𝑖=0  (4) 

Finally, the total error of all loops is comprehensively 

considered, which is represented by the accumulated term 𝑘. 

According to the error model, the optimization aim can be 

expressed as follows. 

 𝑿 = [𝑿11, 𝑿12, … , 𝑿𝑆𝑁] = arg min
𝑿

1

2
||𝑓(𝑿)||2 (5) 

D. Determining optimal calibration loop 

When handling the calibration task of the MEMHS into a 

weighted graph, calculating all the errors of all loops is 

redundant, and its time complexity is too high. Secondly, it is 

difficult to obtain direct calibration values between many 

vertices. Therefore, the optimal calibration loop needs to be 

found to reduce the complexity and improve the calibration 

accuracy. The optimal calibration loop has the following 

characteristics. It contains at least one edge requiring 

calibration; contains at least one measurable edge; the loop has 

the shortest weight distance, and the weight of each edge on the 

loop uses the weight determined above. An optimal calibration 

loop algorithm based on Dijkstra's algorithm is proposed. Fig. 

2(c) illustrates the current calculation of the pose matrix for the 
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edge connecting vertices 1 and 7, which is depicted as a dotted 

line. To determine the optimal calibration loop, path planning 

is performed on the MCG. The main purpose of processing is 

to delete some vertices, thereby reducing the amount of 

calculation and searching for the correct path. To prevent a loop 

from being unable to form, firstly, delete the edge directly 

connecting vertices 1 and 7. Secondly, delete edges with too 

large distances or no connections. As shown in Fig. 2(c). The 

relationship between vertex 2 and vertex 6 (corresponding to 

the coordinate system of the end of the robot and the fixed 

camera coordinate system) is difficult to measure directly 

without introducing additional instruments such as laser 

trackers, therefore, it needs to be deleted before path planning. 

The next step is searching for the shortest path. Dijkstra’s 

algorithm [29] is used in this step. Then after deleting redundant 

calibration loop, the error function has the following form. 

 𝑒 =
1

2
||𝑓(𝑋11, 𝑋12, … , 𝑋𝑆𝑁)||2 (6) 

 𝑓(𝑿11, 𝑿12, … , 𝑿𝑆𝑁) =
∑ ω𝑘 ∑ (∏ ( 𝑖−1𝑨𝑖𝑗𝑘  𝑖−1𝑿𝑖𝑘)𝑁

𝑖=1  𝑁𝑷𝑗𝑘 −  0𝑷𝑗𝑘)𝑀
𝑗=0

𝑆
𝑘=0  (7) 

E. Error Correction Model and Correction Method 

An error model based on the determined optimal calibration 

loop is obtained. Numerical optimization begins with an initial 

value and then involves the computation of derivatives by 

introducing disturbances to the error model and repeating the 

process iteratively, by adding disturbance and computing the 

derivative of disturbance, the complexity of computing 

Jacobian matrices is reduced. The direction of descent is 

determined by computing the linear extrema on the tangent 

plane. Recent research on the 3D bundle adjustment problem 

shows the highly non-convex nature of graph optimization [30], 

Nevertheless, thanks to the basically accurate initial values 

generated by the first stage, the chance of falling into local 

minima is significantly reduced. 

Since the translation matrix 𝑿𝑘𝑖  belongs to the Lie group 

𝑆𝐸(3), it can be exponentially mapped by its Lie algebra, where 

∧ is the anti-symmetric symbol, transforming the 3x1 vector 

into a 3x3 anti-symmetric matrix [31]. 

 𝛏∧ = [
𝝓∧ 𝝆
𝟎 0

] (8) 

Then the calibration error function 𝑓(𝑿11, 𝑿12, … , 𝑿𝑆𝑁) 

equals to 𝑔(𝝃11, 𝝃12, … , 𝝃𝑆𝑁). 

𝑓(𝑿11, 𝑿12, … , 𝑿𝑆𝑁) = 𝑔(𝛏11, 𝛏12, … , 𝛏𝑆𝑁) =

∑ ω𝑘 ∑ (∏ ( 𝑖−1𝑨𝑖𝑗𝑘𝑒𝛏𝑘𝑖
∧

)𝑁
𝑖=1  𝑁𝑷𝑗𝑘 −  0𝑷𝑗𝑘)𝑀

𝑗=0
𝑆
𝑘=0  (9) 

After adding disturbance, the current goal is to find the 

disturbance vector δ𝝃  such that 
1

2
||𝑔(𝝃 + δ𝝃)||2  reaches the 

minimum. 

 δ𝝃 = arg min
δ𝝃

1

2
||𝑔(𝝃) + 𝐽(𝝃)δ𝝃||2  (10) 

where 

 𝛏 = [𝛏11, 𝛏12, … , 𝛏𝑆𝑁] (11) 

 𝛿𝛏 = [δ𝛏11, δ𝛏12, … , δ𝛏𝑆𝑁] (12) 

𝐽(𝛏) is the Jacobian matrix of 𝑔(𝛏). Then, add disturbance to 

the error function. 

𝑔(𝛏 + δ𝛏) = ∑ ω𝑘 ∑ (∏ ( 𝑖−1𝑨𝑖𝑗𝑘𝑒δ𝛏𝑘𝑖
∧

𝑒𝛏𝑘𝑖
∧

)𝑁
𝑖=1  𝑁𝑷𝑗𝑘 −  0𝑷𝑗𝑘)𝑀

𝑗=0
𝑆
𝑘=0  (13) 

Then performing a first-order Taylor expansion on the error 

function. 

 𝑔(𝛏 + δ𝛏) ≈ 𝑔(𝛏) + 𝐽(𝛏) ⋅ 𝛿𝛏 (14) 

Then equation (10) can be expanded as follows. 

δ𝝃 = arg min
δ𝝃

1

2
(||𝑔(𝝃)||2 + 2𝑔(𝝃)𝐽(𝝃)δ𝝃 + (δ𝝃)𝑇𝐽(𝝃)𝑇𝐽(𝝃)(δ𝝃)) (15) 

Find the derivative of the above equation for δ𝝃 and set it to 

zero. 

 2𝐽(𝝃)𝑔(𝝃) + 2𝐽(𝝃)𝑇𝐽(𝝃)𝛿𝝃 = 0 (16) 

Then, 

 𝛿𝝃 = (𝐽(𝝃)𝑇𝐽(𝝃))
−1

𝐽(𝝃)𝑇𝑔(𝝃)  (17) 

The remaining problem is to find the Jacobian matrix 𝐽(𝝃), 

which is the key in this process. 𝐽(𝝃) can be represented as 

follows. 

 𝐽(𝛏) =
∂𝑔

∂𝛏
= [

∂𝑔

∂𝛅𝛏11
,

∂𝑔

∂𝛅𝛏12
, … ,

∂𝑔

∂δ𝛏𝑆𝑁
] (18) 

According to the definition of derivatives, take the partial 

derivative of 
∂𝑔

∂𝛏𝐾𝐼
 as an example. 

 
𝜕𝑔

𝜕𝝃𝐾𝐼
=

𝑔(𝝃11,…,𝝃𝐾𝐼+𝛿𝝃𝐾𝐼,…𝝃𝑆𝑁)−𝑔(𝝃11,…,𝝃𝐾𝐼,…𝝃𝑆𝑁)

(𝝃𝐾𝐼+𝛿𝝃𝐾𝐼)−(𝝃𝐾𝐼)
  (19) 

= lim
δ𝛏𝐾𝐼→0

ω𝐾 ∑ (∏ ( 𝑖−1𝑨𝑖𝑗𝐾𝑒𝛏𝐾𝑖
∧

)𝐼−1
𝑖=1 (𝑒δ𝛏𝐾𝑖

∧
− 𝐼)𝑒𝛏𝐾𝑖

∧
∏ ( 𝑖−1𝑨𝑖𝑗𝐾𝑒𝛏𝐾𝑖

∧
)𝑁

𝑖=𝐼+1  𝑁𝑷𝑗𝐾 −  0𝑷𝑗𝐾)𝑀
𝑗=0

δ𝛏𝐾𝐼

 

By applying Taylor expansions at 𝛿𝛏 → 0, lim
δ𝛏→0

𝑒δ𝛏∧
≈ 𝑰 + 𝛿𝛏∧. 

Then equation (19) is expanded follows. 

𝜕𝑔

𝜕𝝃𝐾𝐼
= lim

𝛿𝝃𝐾𝐼→0

𝜔𝐾 ∑ (∏ ( 𝑖−1𝑨𝑖𝑗𝐾𝑒
𝝃𝐾𝑖

∧
)𝐼−1

𝑖=1 (𝛿𝝃𝐾𝐼
∧ )𝑒

𝝃𝐾𝑖
∧

∏ ( 𝑖−1𝐴𝑖𝑗𝐾𝑒
𝝃𝐾𝑖

∧
)𝑁

𝑖=𝐼+1  𝑁𝑷𝑗𝐾− 0𝑷𝑗𝐾)𝑀
𝑗=0

𝛿𝝃𝐾𝐼
 (20) 

Let ∏ ( 𝑖−1𝑨𝑖𝑗𝐾𝑒𝛏𝐾𝑖
∧

)𝐼−1
𝑖=1 =  0𝑻𝐼𝑗𝐾 ,and ∏ ( 𝑖−1𝑨𝑖𝑗𝐾𝑒𝛏𝐾𝑖

∧
)𝑁

𝑖=𝐼+1 =

 𝐼𝑻𝑁𝑗𝐾, where the rotation component is  0𝑹𝐼𝑗𝐾 ,  𝐼𝑹𝑁𝑗𝐾, and the 

translation component is  0𝒕𝐼𝑗𝐾 ,  𝑡𝒕𝑁𝑗𝐾 respectively.  

Then 
∂𝑔

∂𝝃𝐾𝐼
 can be represented as follows. 

= lim
δ𝛏→0

𝑤𝐾 ∑ ( 0𝑻𝐼𝑗𝐾δ𝛏𝐾𝐼
∧  𝐼𝑻𝑁𝑗𝐾 𝑁𝑷𝑗𝐾− 0𝑷𝑗𝐾)𝑀

𝑗=0

δ𝛏𝐾𝐼
  

= lim
δ𝝃𝐾𝐼→0

𝑤𝐾 ∑ ( 0𝑻𝐼𝑗𝐾[δ𝝓𝐾𝐼
∧ δ𝝆𝐾𝐼

𝟎 0
] 𝐼𝑻𝑁𝑗𝐾  𝑁𝑷𝑗𝐾− 0𝑷𝑗𝐾)𝑀

𝑗=0

δ𝝃𝐾𝐼
  

= lim
δ𝛏𝐾𝐼→0

𝑤𝐾 ∑ [ 0𝑹𝐼𝑗𝐾 − 0𝑹𝐼𝑗𝐾( 𝐼𝑹𝑁𝑗𝐾  𝑁𝑷𝑗𝐾 +  𝐼𝒕𝑁𝑗𝐾)
∧

𝟎 0
]𝑀

𝑗=0

(21)Which is a 4 rows 6 columns matrix. The disturbance vector 

of the 𝑙-th iteration is obtained, which is defined as δ𝛏𝑙. Then 

the new 𝝃 can be obtained. 

 𝝃𝑙+1 = 𝝃𝑙 + 𝛿𝝃𝑙 (22) 

After getting 𝛏𝑙+1, we can get δ𝛏𝑙+1 through the above method 

and complete the next iteration. Through continuous iteration, 

all vertices to be optimized can be finally solved. The algorithm 

can be summarized as follows. 
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Fig. 3 A simulated MEMHS consisting of three robotic arms and five cameras, including 3 eye-in-hand cameras and 2 eye-to-hand cameras. (a) 
The MCG of the MEMHS. (b) The expanded minimum spanning tree of the simulated MEMHS. (c) The optimal calibration loop of the simulated 
MEMHS. 

Algorithm 1. Calculate the coordinate transformation matrix 

Input: point 𝒑 in vertices 𝑖 and, its representation in vertices 

𝑗, which is  𝑗𝑷𝑖 

Output: Pose matrix between vertex 𝑖 and vertex 𝑗  

1. δ𝝃𝐴 = [δ𝝃1
∧, δ𝝃2

∧, … , δ𝝃𝑁
∧ ] 

2. While |δ𝝃𝐴|>𝜀  

3. calculate 
𝑔(𝝃1

∧+δ𝝃1
∧,…,𝝃𝑁

∧ +δ𝝃𝑁
∧ )

δ𝛏𝑖
∧  based on (21) 

4. calculate δ𝝃𝐴 based on (17) 

5. 𝝃𝑖
∧ = 𝝃𝑖

∧ + δ𝝃𝑖
∧ 

6. End while 

7.  𝑖𝐗𝑗 = 𝑒𝝃𝑖
∧
 

IV. EXPERIMENTS AND RESULT 

A. Simulation 

1) Optimal Calibration Loop Simulation 
In this section, a simulated system consisting of three robotic 

arms and five cameras is calibrated. In this system, three 

cameras are placed at the end of the robot (eye-in-hand), and 

the remaining two cameras are fixedly installed in the 

workspace (eye-to-hand). Measurement values with different 

noise distributions are added. The optimal calibration loop and 

the results calibrated by the optimal calibration loop are 

recorded for testing. The MCG of this system and the 

measurement noise of different edges are shown in Fig. 3(a).  

We manually set the weights for different vertices as shown on 

each vertex of the MCG. Then, convert the weight of each 

vertex to the weight of corresponding edges, and apply 

minimum spanning tree strategy to generate the optimal 

calibration sequences. The optimal calibration tree is shown in 

Fig. 3(b), where Point D is the root vertex of the generated 

optimal calibration tree, and the sum of weight for each path is 

also shown in the figure. The calibration sequence uses the 

depth-first algorithm to get the initial calibration result of the 

MEMHS. Finally, the optimal calibration loop obtained with 

Dijkstra's algorithm method is shown in Fig. 3(c) with each 

edge weight shown and TABLE I. Closed-loop optimization is 

conducted on these loops. The ground truth and calibration 

results between each vertex are shown in TABLE II. 

 
TABLE I 

OPTIMAL CALIBRATION LOOP 

Loops 

𝐵 → 𝐴 → 𝐷 → 𝐵 

𝐶 → 𝐷 → 𝐼 → 𝐹 → 𝐶 

𝐷 → 𝐾 → 𝐻 → 𝐸 → 𝐷 

𝐶 → 𝐷 → 𝐺 → 𝐽 → 𝐶 

 

2) Large-scale MEMHS simulation 
In this experiment, 25 robotic arms were randomly placed in 

the workspace, and 25 cameras were randomly mounted at the 

end of the robotic arm or placed in fixed positions within the 

workspace. The fully connected weighted graph described 

above was obtained. Record the robot base, end in 100 poses, 

as well as camera poses as true values. Then add multiple 

Gaussian noises with zero means to these poses as simulation 

measurements.  

In this simulation experiment, the proposed method is used to 

calibrate the above system, and for comparison, some random 

spanning trees and random calibration loops are generated from 

the MCG to verify the effectiveness of the proposed algorithm. 

The MEMHS was initially calibrated with both our method 

calculated spanning tree and random spanning tree under 

different noise levels. Then, the average error in each iterative 

step of the closed-loop optimization stage with loops generated 

with our method is measured and recorded shown in Fig. 4. For 

comparison, we also perform closed-loop optimization on 

randomly generated loops and record the average error at each 

iterative step for all random calibration loops, the error at each 

iterative step for the loop with the highest error, and the average 

error at each iterative step for all loops from the MCG. The 

simulation results are shown in TABLE III and Fig. 4. 

The robustness of the proposed method under large 

measurement errors is demonstrated in Fig. 5. Our proposed 

method can automatically select the path with the lowest noise 

and edges with large errors are not included in the closed-loop 

optimization, thereby minimizing the impact of large 

measurement error edges. 
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TABLE II 

THE GROUND TRUTH AND RESULT OF PROPOSED CALIBRATION METHOD (UNIT: MM) 

 Rotation 
Ground 

Truth 

Rotation Calibration Rotation Error (rad) Translation 
Ground 

Truth 

Translation Calibration Translation Error (mm) 

 𝐵𝑇𝐴 (0,0,0) (0.0932,0.0423,0.0312) (0.0932,0.0423,0.0312) (1000,0,0) (996.177,-1.744,-2.7905) (3.822,-1.744,-2.7905) 

 𝐶𝑇𝐹 (1,0,0) (0.9981,-0.0067,-0.0738) (0.0019,-0.0067,-0.0738) (100,0,0) (102.49,-2.9798,1.7161) (2.49,-2.9798,1.7161) 

 𝐷𝑇𝐺 (0,1,0) (0.006,1.0055,0.0025) (0.006,0.0055,0.0025) (0,100,0) (-0.5911,100.1840,-0.1829) (-0.5911,0.1840,-0.1829) 

 𝐸𝑇𝐻 (1,1,0) (0.9975,1.0022,0.0002) (0.0024,0.0022,0.0002) (0,0,100) (0.2827,0.2966,100.9590) (0.2827,0.2966,0.9590) 
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Fig. 4 The error variation comparison of models with different noise levels and the number of iterations. (a) 𝜎𝑁𝑜𝑖𝑠𝑒 = 0.1𝑚𝑚 (b) 𝜎𝑁𝑜𝑖𝑠𝑒 = 0.2𝑚𝑚 (c) 

𝜎𝑁𝑜𝑖𝑠𝑒 = 0.5𝑚𝑚 (d) 𝜎𝑁𝑜𝑖𝑠𝑒 = 1𝑚𝑚 (e) 𝜎𝑁𝑜𝑖𝑠𝑒 = 10𝑚𝑚 (f) 𝜎𝑁𝑜𝑖𝑠𝑒 = 100𝑚𝑚 

 
TABLE III 

THE ERROR COMPARISON OF MODELS WITH DIFFERENT NOISE LEVELS 

Noise 

Level 

(mm) 

VRD path 

Calibration 

Error  
(Our 

Method) 

Average 

Random 

Path 
Calibration 

Error 

Worst 

Random 

Path 
Calibration 

Error  

All Loop 

Calibration 

Error 

σ𝑁𝑜𝑖𝑠𝑒 = 0.1 0.0019 0.0021 0.0136 0.0017 

𝜎𝑁𝑜𝑖𝑠𝑒 = 0.2 0.0092 0.0217 0.1948 0.0092 

𝜎𝑁𝑜𝑖𝑠𝑒 = 0.5 0.0516 0.0845 0.4185 0.0527 

𝜎𝑁𝑜𝑖𝑠𝑒 = 1 0.1895 0.2167 1.0485 0.1836 

𝜎𝑁𝑜𝑖𝑠𝑒 = 10 2.2018 4.1173 25.9876 2.1764 

𝜎𝑁𝑜𝑖𝑠𝑒 = 100 30.1567 42.5941 99.5153 28.2285 

B. Robot Experiments 

In order to validate the effectiveness of the general calibration 

method for MEMHS, a real robot experimental platform shown 

in Fig. 6 has been built. The experiment platform is composed 

of two UR5 robots (6-DOF, ±0.03mm repeatability), one UR3 

robot (6-DOF, ±0.03mm repeatability), and five Hikvision 

cameras (MV-CE060-10UC). Three cameras are mounted at 

the end of the three robotic arms, and the other two cameras are 

placed in a fixed position within the workspace. The two 

cameras have no common field of view, and the intrinsic 

parameters of these cameras have been calibrated using the 

method proposed in [8]. Firstly, the calibration experiment is 

carried out using the MEMHS calibration proposed method, 

then the reprojection error is used to verify the calibration 

accuracy. Secondly, as a comparative experiment, Wu's dual 

robotic arms calibration method [18] is used to sequentially 

calibrate two robotic arms respectively. Finally, a graphical 

demonstration experiment can more intuitively illustrate the 

effectiveness of the proposed algorithm. 

 
Fig. 5 Impact of the measurement noise. 
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Fig. 6 Five-eye three-hand MEMHS. 

1) Calibration Accuracy Verification 
The MEMHS can be represented by the following model in 

Fig. 7. The solid lines represent measurable edges. In this 

MEMHS calibration experiment, we mainly focus on the 

transformation matrices corresponding to the red dash lines. 

These matrices cannot be measured directly but can be obtained 

by transferring values from nearby matrices, so these 

calibration results can effectively test the proposed calibration 

method. The weights of each vertex are shown in Fig. 7. For 

camera vertices, the weights are selected according to the 

camera’s FoV, pixel density, and keypoint reprojection error 

during the intrinsic calibration process. For robot vertices, the 

weights are selected according to the reference manual from 

manufacturers. 
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Fig. 7 The MCG of experiment MEMHS. 

We first obtain the optimal calibration path according to the 

MCG. The calibration starts from D. We generate 30 

configurations for each edge in the optimal calibration tree. 

Record the camera measurement result and robot joint 

parameters to perform initial calibration with hand-eye 

calibration [10]. A calibration board with 11 × 8 keypoints and 

35𝑚𝑚  spacing is placed in the center of the workspace to 

obtain edges between D-B, D-A, D-C, and D-E. Then smaller 

calibration boards with 11 × 8 keypoints and 25𝑚𝑚  spacing 

are mounted at each robot end to obtain edges between C-J, D-

I, and D-K. Finally, the edge J-G, I-F, and K-H is obtained with 

the robots’ kinematic model. Since the true value is unknown 

in this experiment, the closed-loop error is calculated to 

measure the accuracy. The overall mean error in the optimal 

calibration loop is 1.1081𝑚𝑚.  

Then, the closed-loop optimization is conducted on the optimal 

calibration loop. With 48 iterations, the overall closed-loop 

mean error drops to 0.6182 𝑚𝑚, which is shown in Fig. 8. 
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Fig. 8 Error variation during iteration in the experiment 

2) Comparative Experiment with Wu’s Method 
To further illustrate the effectiveness of our proposed method 

in a multi-robot scenario, Wu's method [18] is used to calibrate 

these robots separately in the same experimental condition. The 

three robots are split into two dual robot sets, then perform 

calibration. The detailed calibration process is as follows. 

1. Use Wu's method to calibrate the UR3 robot (vertex J-G-D) 

and one of the UR5 robots (vertex K-H-E).  

2. Then also use Wu's method to calibrate the UR3 (vertex J-

G-D) robot and the other UR5 robots (vertex I-F-C).  

3. A calibration board is placed in the common field of view 

of the eye-to-hand camera (vertex A) and the UR3 robotic 

arm’s eye-in-hand camera (vertex D) to determine the pose 

between vertex A and vertex D. 

4. Repeat step 3 with vertices D and B. 

5. Measure poses of vertices C-E with a calibration board 

placed in the common field of view. 

6. The remaining edges to be calibrated are computed by pose 

translation between vertices. 

The calibration results using this method are as follows. The 

difference from the calibration method proposed in this paper is 

about 0.4787mm and 0.8852mm for  𝐼𝑇𝐽 and  𝐽𝑇𝐾  respectively.  

Since the true value of this experiment cannot be measured, we 

compare the calibration results by verifying the closed-loop 

error as shown in TABLE IV. 

TABLE IV 
CLOSED-LOOP ERROR BETWEEN OUR METHOD AND WU’S METHOD 

Closed loops Our 

Method 

(mm) 

Wu’s 

Method 

(mm) 

𝐶 − 𝐹 − 𝐼 − 𝐽 − 𝐺 − 𝐷 0.6274 0.4213 

𝐷 − 𝐸 − 𝐻 − 𝐾 − 𝐽 − 𝐺 0.6345 0.5812 

𝐶 − 𝐸 − 𝐻 − 𝐾 − 𝐽 − 𝐼 − 𝐹 0.6938 1.5923 

Although Wu's dual robots’ calibration method performs well 

in the situation of two robots, our method has more calibration 

accuracy in the multi-robot scenario, especially in non-direct 

optimized loops. The following trajectory drawing experiment 

can provide a more intuitive demonstration of the calibration 

accuracy. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 

  

  

 

 
 

  

(b)

(a)

Eye-to-Hand
Camera

Eye-to-Hand
Camera

Eye-in-Hand
Camera

End effector
(Blue Pen)

End effector
(Red Pen)

Plane with 
ArUco Marker

(c)

     

     

(d)

(e)

(f)  
Fig. 9 (a) The MEMHS used in the drawing experiment. (b) Actual drawing trajectory with calibration result using our method. (c) Actual drawing 

trajectory with calibration result using Wu’s method. (d) Trajectory and its details drawn by our method. (e) Trajectory and its details drawn by Wu’s 
method. (f) The desired trajectory on the computer. 

3) Vision Guided Drawing Experiment 
In this drawing experiment, the calibration result of both our 

method and Wu’s method mentioned above is used to test the 

calibration accuracy. Remove the cameras at the ends of the two 

robots and install markers to simulate tools as shown in Fig. 

9(a). Use the two fixed cameras and one robot to guide the other 

two robotic arms to write on the plane. A plane printed with 

ArUco markers is placed within the range of the fixed camera 

and one robot. These cameras measure the marker pattern 

through the PnP [27] algorithm to detect the pose and size of 

the plane. Draw trajectories on the computer shown in Fig. 9(f), 

and then the robotic arms will draw the trajectories on the plane 

in turn with our calibration result and Wu’s calibration result. 

The trajectories drawn by the robotic arms overlap each other 

and are the same as the preset trajectories shown in Fig. 9(b-e). 

Both trajectories drawn by our method and Wu's method have 

the same pattern, but the trajectories drawn by our method have 

a higher degree of consistency. With our method, more parts of 

the first drawn red trajectory are covered by the latter drawn 

black trajectory and has fewer trajectories’ inconsistent areas 

compared with Wu’s method.  

V. CONCLUSION 

In this paper, a general calibration method for MEMHS is 

proposed, which is the fundamental of collaboration of multiple 

camera robot systems. Our proposed calibration method 

includes two steps. In the first step, the minimum spanning tree 

based on system settings is used to obtain the optimal 

calibration order. In the second step, a numerical optimization 

solution based on the closed-loop error of the minimum 

calibration loop is proposed to optimize the poses between the 

units. The proposed calibration method achieves calibration 

tasks without additional high-precision sensors. Simulation and 

robot experiments strongly demonstrate the effectiveness of the 

proposed method. However, the influence of different system 

settings and the kinematics parameters of the robotic arm itself 

requires further research. Furthermore, how different sensor 

types, such as omnidirectional cameras, affect the calibration 

accuracy should also be investigated. All these issues require 

further study. This method is a general calibration method that 

can be applied to different settings of camera robot systems. 

Such as high precision multi-robot Aero-engine superalloy 

repair and grinding, multi-robot integrated circuit micro-

assembly system, multi-robot collaborative welding of 

automotive body, and other scenes requiring precise 

cooperation of multiple robots. The calibration algorithm of the 

multi-hand-eye robot proposed in this paper can be widely used 

in the above scenarios. 
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