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Abstract—This article proposes a new control strategy
for power electronic converters interfacing two dc net-
works. The proposed control, based on a modification of
the dc virtual generator concept, has grid-forming capabil-
ity in both sides of the converter simultaneously without
intermediate energy storage device. Departing from the dc
virtual generator control concept, capable of controlling
voltage in one of the converter sides while withdrawing
the power from the other side, an adaptation is done to
make it reversible. A priority weight is assigned to each side
voltage control. A weight calculation method, proportional
to the voltage deviation from its rated value, is proposed.
This weight calculation strategy makes the control system
to contribute to the side most in need (using voltage de-
viation with respect to rated value as an indicator of the
neediness). The interlinking converter with the proposed
weighted strategy is capable of stable work in grid-forming
mode at both sides simultaneously, just requiring a grid-
feeding converter with P/V droop to be connected in either
side. No control architecture was found in the literature with
this capability for dc–dc interlinking converters. The the-
oretical discussion has been supported with small-signal
analysis and hardware-in-the-loop validation.

Index Terms—DC-microgrids, grid-forming control, volt-
age control, dc virtual generator (DCVG).
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I. INTRODUCTION

THE increasing importance of distributed energy resources
(DERs) interfaced by power electronic converters (PECs)

has led to the appearance of microgrids [1]. Although ac was
traditionally more used, the benefits of dc has caused a gradual
move toward dc distribution. These benefits include the easiness
of integration of intermittent DER due to renewable sources
(which normally requires extra dc–ac conversion stages in ac
microgrids) and the reduced losses, due to the absence of reactive
current flow, skin effect, and the reduced number of conversion
stages [2], [3], [4], [5].

Despite of their advantages, microgrids present some chal-
lenges, such as their reduced inertia [6], [7], due to the substi-
tution of rotating generators directly connected to the grid with
PEC interfaced elements or the significant presence of renewable
energy sources, which are often controlled to produce the max-
imum available power. This led to the appearance of the virtual
generator concept [8], emulating the inertial characteristic of the
rotating machines with the control strategy.

Interlinking converters play a key role to enhance reliability.
Interlinking dc–dc converters can be used for connecting more
than one dc microgrid to increase stability by having the capacity
of exchanging power [4] or to have different voltage levels in
the same microgrid [5]. These interlinking converters can also
contribute to voltage regulation. A deep review of the capability
to contribute to voltage regulation in both sides of the interlink-
ing converters depending on the control architecture is presented
in [9], distinguishing between grid-supporting and grid-forming
capabilities for the converter. In [9] and [10], converters are
considered to have grid-forming capability if they behave as a
voltage source. This is a change in the traditional naming of
droop-controlled converters as grid-supporting units regardless
they were current-source or voltage source-based [11]. As stated
in [10], this previous classification is less useful since it is not
based on a fundamental difference between the sources. The
definition used in [9] and [10] will be used throughout this
article, especially for highlighting the necessity of at least one
grid-forming converter in each network.

Some solutions can be found in the literature for dc–ac con-
verters interfacing an ac microgrid with a dc-link capacitor at the
output of a converter connected to an energy source. This is done
with a droop relating ac and dc voltage (Vg/Vdc droop) [12] or a
dual droop, adding a dc voltage term to ac droop equations [13].
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However, apart from being dc–ac converter cases, grid-forming
capability is only supported in one output, having dual grid-
supporting and single grid-forming capability [9].

Similarly, previous research is reported both for ac–dc [14]
and dc–dc [15] interlinking converters that consider additional
grid-forming units in either side. In the event an interconnected
network losses its grid-forming unit, the interlinking converter
will give voltage control capability to that network by power
transfer from the grid-forming unit in the other side. This can
be done without control scheme switching and operation mode
detection. However, this method needs a grid-forming unit in
one of the networks to have a reversible grid-forming capability
with seamless transition.

The strategy proposed in [8] for ac–dc converters has dual
grid-forming capability, i.e., the capability of controlling voltage
in both sides of the converter to reasonable levels, just requir-
ing some type of grid-feeding converter with grid-supporting
strategies in one of the networks. No control architecture has
been found in the literature with dual grid-forming capability
for dc–dc converters [9].

This article proposes a new control strategy based on the
well-known dc virtual generator (DCVG) concept [8], [16],
[17]. From the DCVG scheme, an adaptation is done to make
the control reversible, i.e., to use the same voltage control
scheme for controlling the voltage in either side. The proposed
modification considers a weighted approach, in which a priority
can be given to each side. By considering a weight calculation
strategy proportional to the deviation with respect to the rated
voltage, dual grid-forming capability is achieved: the proposed
method provides grid-forming capability to both outputs at the
same time. It only requires a grid-feeding converter with a
P/V droop in any side to keep the voltage in both grids at
reasonable levels and without requiring communication between
the converters. As compared to the DCVG control, the proposal
is able to: 1) adapt to change in configurations of the network,
for example, automatically adapt to islanded mode (reversible
grid-forming capability) and 2) provide grid-forming capability
to both outputs simultaneously, just requiring an appropriate
grid-supporting element in any side (dual grid-forming capabil-
ity).

The rest of this article is organized as follows. Section II
presents the grid used for this study. Section III describes the
proposed control, whose stability is analyzed in Section IV.
Section V explains the case study, presenting the different grid
configurations that are considered for the analysis. Section VI
presents the results obtained with hardware-in-the-loop (HIL)
for the validation of the proposed control. Finally, Section VII
concludes this article.

II. PROPOSED DC MICROGRID TOPOLOGY

The proposed study uses a subgrid from the one explained in
[18]. The schematic representation is shown in Fig. 1. As it can be
seen, it includes a 375 Vdc bus and a 48 Vdc network connected
to it using an interlinking PEC. The 48 Vdc network will be
referred as converter side 1, while the 375 Vdc bus connection
is named side 2.

Fig. 1. Grid used for HIL validation. Shadowed boxes show filter and
converter configuration and control variables for each subgrid converter
(PEC1 and PEC2) and for interlinking converter (DCVG). All converters
have a synchronous buck configuration, being the inductor filter in the
low voltage side (Vdc1 in the case of the DCVG).

Fig. 2. PEC1 and PEC2 control diagram, showing both grid-forming
(with quadratic voltage control [19]) and grid-feeding alternatives.

Fig. 3. WDCVG control. Shadowed box shows the conventional DCVG
strategy [8].

The converter with the proposed control strategy is labeled
as DCVG, meanwhile in each of the dc networks there is an-
other dc–dc converter contributing to voltage regulation. PEC2
represents a connection to the mains, simplified here as a dc–dc
converter, always operating as a grid-forming unit. PEC1 can
represent any DER operating in grid forming or grid feeding
with P/V droop. PEC1 and PEC2 control is shown in Fig. 2,
meanwhile interlinking control (marked as DCVG in Fig. 1) is
explained in the following section.

III. PROPOSED CONTROL

A. Weighted Dc Virtual Generator (WDCVG)

The proposed control, shown in Fig. 3, is obtained from the
conventional DCVG scheme [8], [16], [17], with some modifi-
cations in order to be able to control the voltage in either side
of the converter (Vdc1 or Vdc2) when the DCVG is acting as an
interlinking converter. Current control, not included to keep the
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figure readable, has the same structure as shown in Fig. 2 for
PEC1 and PEC2.

The proposed control is based on combining a voltage control
strategy focused on each side of the converter by applying a
weighted average. This is shown in (1a) and (1b), being w1

and w2 the weight corresponding to sides 1 and 2, respectively,
with 0 ≤ wx ≤ 1 and w1 + w2 = 1. Vdc and Iff represent the
averaged voltage and feedforward current, obtained from output
voltage and current in side 1 (Vdc1, Io1) and side 2, but referring
the latter ones to side 1 (V ′

dc2, Io2’)

Vdc = w1Vdc1 + w2V
′

dc2 (1a)

Iff = w1Io1 + w2I
′
o2. (1b)

For adapting the voltage in side 2 (Vdc2) to side 1 (V ′
dc2) a

change in voltage base is applied, but also changing the sign
of voltage deviation. For example, Vdc2 = (1 +ΔVdc2)V

∗
dc2 will

be transformed into V ′
dc2 = (1−ΔVdc2)V

∗
dc1, being ΔVdc2 the

per unit voltage deviation in side 2. The change in sign of the
voltage deviation is due to the fact that for increasing the voltage
in one of the sides, the required power has opposite direction to
the one required for increasing the voltage in the other side. The
required transformation is shown in the following equation:

V ′
dc2 = (1−ΔVdc2)V

∗
dc1 = V ∗

dc1 − (Vdc2 − V ∗
dc2)

V ∗
dc1

V ∗
dc2

. (2)

For adapting side 2 current to side 1, I ′o2 is calculated as the
current in side 1 output which will produce the same power
output Io2 produces in side 2. This is done by multiplying
the output current Io2 by Vdc2/Vdc1 and changing its sign. The
corresponding expression is shown in the following equation:

I ′o2 = −Io2
Vdc2

Vdc1
. (3)

Weights w1 and w2 can be fixed according to different cri-
teria. An upper control level could set it depending on the grid
situation. For example, if one of the grids has another converter
with grid-forming capability, the weight corresponding to that
side can be set to 0. By doing this, the DCVG will only control
the voltage in the other side, acting as a grid-forming unit for
that network. If both grids have grid-forming units, the weights
can be set dynamically, taking into account which grid is closer
to reach any saturation limit or has more critical loads, lower
DER participation, or lower inertia.

Another option is to do a complete switch in the side whose
voltage is being controlled attending to some voltage threshold.
For example, initiallyw1 can be set to 1 (andw2 = 0) meanwhile
voltage in side 2 is within some range. If voltage in side 2 exits
the predefined range, the interlinking control starts controlling
that output (w1 = 0 and w2 = 1). This is similar to the voltage
margin control found in [20].

B. Proportionally Weighted DCVG (PWDCVG)

This article proposes a weight calculation strategy propor-
tional to the voltage deviation with respect to the rated value
in each converter side. This is shown in (4), where ΔVdc1 and
ΔVdc2 are each side per unit voltage deviation and wx is the

weight of side 1 or 2

wx =

|Vdcx−V ∗
dcx|

V ∗
dcx

|Vdc1−V ∗
dc1|

V ∗
dc1

+
|Vdc2−V ∗

dc2|
V ∗

dc2

=
|ΔVdcx|

|ΔVdc1|+ |ΔVdc2| . (4)

By doing this, the control focuses more on the side, which is
further away from nominal voltage, without requiring any upper
layer control to infer it from the grid conditions. Additionally,
the proposed system avoids any sharp transition between the side
whose voltage is being controlled produced by sudden changes
of weights w1 and w2. Instead, a smooth and continuous change
in the priority for each side is achieved, resulting in smoother
transients.

By following this strategy, equal per unit voltage deviation is
achieved in both sides of the converter in steady state, as it will
be shown in Section VI. This can be proven by finding the value,
which makes Vdc in (1a) equal to V ∗

dc1, because due to the virtual
resistance decoupling, equilibrium point fulfills Vdc = V ∗

dc1.
Substituting Vdc by V ∗

dc1 in (1a), (5) is obtained. Vdc1 and
V ′

dc2 are expressed in terms of V ∗
dc1, taking into account V ′

dc2 is
obtained by changing the sign of the per unit voltage deviation
measured in side 2 as shown in (2)

V ∗
dc1 = w1(1 + ΔVdc1)V

∗
dc1 + w2(1−ΔVdc2)V

∗
dc1. (5)

Simplifying V ∗
dc1 and with the cancelation of all terms inde-

pendent of ΔVdc1 and ΔVdc2 due to the fact that w1 + w2 = 1,
the expression in (6) is obtained

w1ΔVdc1 = w2ΔVdc2. (6)

Finally, w1 and w2 can be substituted by the formula in (4).
After simplifying the denominator, (7) is obtained. The only
solution for this equation isΔVdc1 = ΔVdc2, obtaining, in steady
state, w1 = w2 = 0.5

|ΔVdc1|ΔVdc1 = |ΔVdc2|ΔVdc2. (7)

As a final remark about the proposed mechanism, it has to
be highlighted that with the weighted strategy the interlinking
converter can behave as a grid-forming converter for both sides
simultaneously, just requiring an additional grid-feeding unit
with P/V droop in either side. This will be demonstrated in
Section VI.

IV. STABILITY ANALYSIS

The stability of the proposed control is analyzed by using
the state-space model. The state-space matrix, together with the
input and state variables, are shown in (8) to (13). The matrices
and terms in red are time varying. Thus, linearization is required
to obtain the small-signal model for the analysis. Io1 and Io2
were considered as system inputs. However, this will generally
not be the case when looking to the complete system. One or
both sides of the converter will normally be connected to a
voltage source through a line impedance, which provides the
required power. In that case, the corresponding input Iox should
be replaced by Vdcx−Vsx

Rx
, thus affecting both A and B matrices

ẋ =
[
A1 A2

]
x+Bu (8)
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x = [ωdc I T ∗
I VLPF V ∗

I Vdc1 Vdc2 IL]
T (9)

u = [V ∗
dc1 Io1 Io2]

T (10)

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Kpw + b

J
−Ke

J

1

J

Kpw

JKe
Ke

L
−R

L
0 0

−Kiw 0 0
Kiw

Ke

0 RωLPF 0 −ωLPF

0 Kii 0 0

0 0 0 0

0 − KpiiL
C2Vdc2

0 0

0
Kpi

Lf
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −w1

L

V ∗
dc1w2

LV ∗
dc2

0

0 0 0 0

0 0 0 0

0 0 0 −Kii

0 0 0
1

C1

− iL
C2Vdc2

− iL
C2Vdc2

0
KpiiL
C2Vdc2

1

Lf
0 0 −Kpi

Lf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kpw

JKe
0 0

−2w2

L
0 0

Kiw

Ke
0 0

0 0 0

0 Kiiw1 −KiiVdc2w2

Vdc1

0 − 1

C1
0

0 −KpiiLw1

C2Vdc2

KpiiLw2 − Vdc1

C2Vdc1

0
Kpiw1

Lf
−KpiVdc2w2

LfVdc1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

The proposed PWDCVG is compared with the traditional
DCVG scheme applied to side 1 (w1 = 1) or to side 2 (w2 = 1).
Sincew1 = w2 = 0.5 in steady state for PWDCVG (as shown in
Section III-B) the application of the WDCVG with a fixed value
of 0.5 for the weights is also considered. The system parameters
are shown in Table I.

To prove the reversible and simultaneous grid-forming
capability of the proposed control, two different scenarios are
considered. Case Vs1 − Io2: side 1 is connected to a voltage
source that provides the power demand by a current source in
side 2. Case Io1 − Vs2 is the opposite scenario. The eigenvalues
for both scenarios are shown in Fig. 4, where it can be seen that
only PWDCVG and wx = 0.5 are stable in both scenarios, with
w2 = 0 having an eigenvalue at the origin and w1 = 0 at the

TABLE I
SYSTEM PARAMETERS

Fig. 4. Eigenvalues for PWDCVG and different values for w1 and w2.
Left column: case Vs1 − Io2; right column: case Io1 − Vs2. Top row: the
general view with all the eigenvalues; bottom row: a zoom to cover all
the dominant eigenvalues. A zoom is presented in the bottom right figure
to distinguish overlapping eigenvalues.

right half-plane in the case where the voltage source is in the
opposite side of the one with weight equal to 0.

The step responses of the same cases for voltage outputs Vdcx

are shown in Fig. 5, where a variation of a step of magnitude
0.1V ∗

dcx and Inx (nominal current in side x) is applied to the
corresponding input. It can be seen that only PWDCVG and
wx = 0.5 are stable in all scenarios, but PWDCVG is faster and
has less overshoot.

V. CASE STUDY

The microgrid used as the case study is shown in Fig. 1, with
all the grid and converter parameters included in Table I. For
checking the operation of the converter in different scenarios,
transitions between different configuration modes of the mi-
crogrid are introduced by connecting/disconnecting PEC1 and
PEC2 units. The different operation modes of the microgrid are
shown in Table II.
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Fig. 5. Step response for PWDCVG and different values for w1 and
w2. Left column: case Vs1 − Io2; right column: case Io1 − Vs2. First row:
response of Vdc1 to change in Vsx. Second row: response of Vdc2 to
change in Vsx. Third row: response of Vdc1 to change in Iox. Fourth
row: response of Vdc2 to change in Iox. Unstable responses are shown
in a small window in the corresponding plot.

TABLE II
DIFFERENT OPERATING MODES OF THE MICROGRID

Four different scenarios are considered. For the first three,
PEC1 operates as grid-forming unit. Each of the 4 scenarios
listed there correspond to one subsection in the same order they
appear. So scenario 1 is presented in Subsection VI.A, scenario
2 is presented in VI.B and so on.

1) Step in weights setting different values to show how send-
ing weight references can change the way the WDCVG
contributes to both networks. Converters in mode A1.

2) The strategy based on voltage margin control is followed.
Initially, w1 is fixed to 1 (w2 = 0), making the WDCVG
only contribute to control in side 1 (48 Vdc network).
Starting in mode A1, there is a transition to mode B1,
leading to an uncontrolled voltage in side 2 (375 Vdc
network). When the voltage in that network goes outside
some limits, w1 is changed to 0 and w2 to 1 so that the
WDCVG starts to control the voltage in side 2.

3) Proportionally WDCVG is used in the same scenario
shown for voltage margin control case in order to compare
both scenarios. A longer HIL simulation for proportion-
ally WDCVG is also shown to demonstrate how transition
between different scenarios affects the grid situation, with
transitions between A1, B1, and C modes.

Fig. 6. HIL results for step changes in weights with converters in mode
A1. Vertical lines indicate change in weight values. From top to bottom:
power in side 1 (48 Vdc network); voltage in side 1; power in side 2
(375 Vdc network); voltage in side 2; each side weight value.

4) Apart from that, a HIL simulation equal to the last men-
tioned one is done but changing PEC1 to be a grid-feeding
unit with droop control (transitions between A2, B2, and
C modes).

VI. HIL RESULTS

The proposed control has been validated by using a HIL setup,
composed of a Typhoon HIL404 platform and a TMS320F28335
TI control card. The HIL time step is 1 μs, the sampling time of
the converters control is 100 μs and their switching frequency is
10 kHz. The data shown in this article have been captured with
a rate of 10 kS/s.

A. Steps in Weights

The first scenario is done for the weighted DCVG generator
working with different values of weights which are step-wise
varied. The results are shown in Fig. 6. Power is expressed
using active sign convention: positive for generation, negative
for consumption.

The initial situation is with w1 = 1 (w2 = 0). Starting from
no load, at t = 0.1 s a step of 2 kW in the power demanded by
the load in 48 Vdc network. At t = 0.3 s, a step of 2.4 kW in the
power demanded by the load in 375 Vdc network. At t = 0.5 s,
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the power demanded by the loads in both networks is set back
to 0 kW. w1 (w2) is changed to 0.5 (0.5) at t = 0.6 s and to 1 (0)
at t = 1.2 s. After these two changes, the same steps in demand
mentioned for w1 = 1 are used.

When w1 = 1 (w2 = 0), the control is focusing only in the
voltage control in 48 Vdc network. It can be seen that in that
interval the control of the DCVG is not affected by the power
changes in the other side (t = 0.3 s).

When w1 = w2 = 0.5 (after t = 0.6 s), the control is con-
tributing in the same proportion to both sides. It can be seen
that, in this case, the control reacts to power changes in both
grids (t = 0.7 s and t = 0.9 s).

After the second vertical line, w1 is set to 0 (w2 = 1), having
the opposite of the initial situation. The control is only focusing
in the 375 Vdc network and not affected by power changes in
the other network (t = 1.3 s)

B. Weighted DCVG With Voltage Margin Control

In order to check the capability of autonomous voltage con-
trol, when any one side is lacking a grid-forming converter, a
weight calculation strategy similar to voltage margin control is
studied. The weight of the DCVG is set to 1 in normal operation,
thus focusing on voltage control in the 48 Vdc network. When
the voltage in the 375 Vdc network goes outside a pre-set
dead-band (370–380 Vdc in this case), the weight is changed
to 0, switching to voltage control in the other side.

If the margin control strategy is applied to the weighted
DCVG, the results shown in Fig. 7 are obtained. Starting in
mode A1, with PEC1 and PEC2 operating as grid forming, load
references in each side are changed. At t = 0.1 s, the load in the
48 Vdc network is set to −2 kW (demand) and changed to 3 kW
(production) at t = 0.7 s. At t = 0.3 s, the load in the 375 Vdc
network is set to −2.4 kW and changed to 1.6 kW at t = 0.5 s.
It can be seen that load changes in the 375 Vdc network are
totally absorbed by PEC2, since the DCVG converter is only
focused in side 1 when the voltage in side 2 is within the limits.

After the vertical line, the only converter controlling the
voltage in 375 Vdc network (PEC2) is disconnected. When the
voltage goes out of the specified limits, the DCVG starts to
control the voltage in that side, setting the dc voltage reference
to 380 V. This allows the converter to be able to work in both
directions. However, sudden changes in the control mode also
causes fast voltage variation when there is no converter in voltage
control in a given grid. It should also be remarked that, when
similar conditions occur at the two sides, it would be difficult to
select which one to give priority.

C. PWDCVG (With Grid-Forming Converters in Both
Networks)

To solve the previous two problems, the proposed weight cal-
culation strategy obtains each weight proportional to the voltage
deviation with respect to the rated values in each converter side.
In that way, the voltage deviation from the reference point is
used as a measure of the neediness of each side and the priority
is set proportional to it. This leads to weights within the range
0 to 1 and results in a smooth operation during grid situation
changes.

Fig. 7. HIL results for weighted DCVG with voltage margin control with
PEC1 as grid forming. Vertical line indicates change from mode A1 to
mode B1. From top to bottom: power in side 1 (48 Vdc network); voltage
in side 1; power in side 2 (375 Vdc network); voltage in side 2; each side
weight value.

This can be seen in Fig. 8, which is the same situation (configu-
ration and load sequence) of Fig. 7 but with the explained weight
calculation strategy. The proposed strategy reacts smoothly to
PEC2 disconnection, reducing the rate of change of the voltage
in the uncontrolled grid.

Fig. 9 shows a longer sequence of changes for a com-
plete demonstration of the operation of the converter in dif-
ferent grid configurations. Starting in mode C (PEC1 off,
PEC2 acting as grid forming), the sequence of changes is the
following.

1) t = 0.1 s: load in 48 Vdc network is set to −2 kW
(demand).

2) t = 0.3 s: load in 375 Vdc network is set to −2.4 kW
(demand).

3) t = 0.4 s: PEC1 is connected, acting as grid forming,
changing operating mode to A1.

4) t = 0.5 s: load in 375 Vdc network is set to 1.6 kW
(production).

5) t = 0.7 s: load in 48 Vdc network is set to 3 kW (produc-
tion).

6) t = 0.8 s: PEC2 is disconnected, changing operating
mode to B1.

7) t = 1.0 s: load in 375 Vdc network is set to −2.4 kW
(demand).
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Fig. 8. HIL results for PWDCVG with PEC1 as grid forming. Vertical
line indicates change from mode A1 to mode B1. From top to bottom:
power in side 1 (48 Vdc network); voltage in side 1; power in side 2
(375 Vdc network); voltage in side 2; each side weight value.

8) t = 1.4 s: PEC2 is connected, acting as grid forming,
changing operating mode to A1.

9) t = 1.6 s: PEC1 is disconnected, changing operating
mode to C.

It can be seen that the control is able to act as grid-forming
converter in any of the sides keeping the voltage stable in both
sides, even if the other grid-forming converter in the correspond-
ing network is disconnected. Apart from that, when both PEC1
and PEC2 are operating, the DCVG reacts to load changes in
both sides, making it possible to each PEC to contribute to the
load in the other network.

Current outputs are shown too, where it can be seen that the
ripple in the current is not very significant. The ripple is higher
in 375 Vdc network (side 2) because side 1 is the one with the
LC filter (see Fig. 1).

Finally, a comparison in the per unit voltage at each side of the
converter is shown. As it was demonstrated mathematically, it
can be seen that, in steady state, the voltage deviation is equal in
both sides. This means that it is able to reach a balanced situation
in which both networks are in similar neediness as seen from
both converter output voltages.

D. PWDCVG (With Grid Feeding)

The proportionally WDCVG has the capability of acting as
grid forming in both networks at the same time, with no need of

Fig. 9. HIL results for PWDCVG with PEC1 as grid forming. From top
to bottom: power in side 1 (48 Vdc network); current in side 1; voltage in
side 1; power in side 2 (375 Vdc network); current in side 2; voltage in
side 2; per unit voltage in each side; each side weight value.

other grid-forming unit in either side. Only one converter acting
as grid feeding with droop control is required for the proposed
control to be able to control voltage in both sides at the same
time.

This is shown in Fig. 10, with exactly the same scenario shown
in Fig. 9, but changing the grid-forming unit in 48 Vdc network
by a grid-feeding unit withP/V droop. Thus, the sequence is the
one presented before, but changing modes A1 and B1 for A2 and
B2. It can be seen that even when the only grid-forming unit in
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Fig. 10. HIL results for PWDCVG with PEC1 as grid feeding with P/V
droop. From top to bottom: power in side 1 (48 Vdc network); current in
side 1; voltage in side 1; power in side 2 (375 Vdc network); current in
side 2; voltage in side 2; per unit voltage in each side; each side weight
value.

the system apart from the DCVG interlinking converter (PEC2)
is disconnected after the second vertical line, the interlinking
converter is able to reach stable situation forming both grids at
the same time.

In this case, the voltage deviation is higher than for the case
with grid-forming units in both networks due to the P/V droop
required for the grid-feeding unit to contribute. However, this
situation will only happen due to contingencies and a secondary

control can recover the voltage level. Besides that, voltage
oscillations are more significant due to the lower capability of
grid-feeding elements to contribute to voltage support.

VII. CONCLUSION

This article proposes a new control strategy based on a modifi-
cation of the DCVG to adapt the control to make it able to control
voltage in either side of the converter, providing grid-forming
capability. A weight is given to each side so that the control
focuses more on that side.

The proposed weighted DCVG is designed using weights
proportional to the deviation of each converter side voltages
from rated point. This makes the control to prioritize the grid,
which is more in need. Small-signal analysis was performed to
study the stability of the proposed method.

The performance was validated with Typhoon HIL404 plat-
form. The results show the capability of the converter of oper-
ating in any scenario, provided that at least in one of the grids
there is a converter providing the required power, either with
grid-forming units or grid feeding with P/V droop. No control
architecture was found in the literature with this capability for
dc–dc interlinking converters. It was shown that, in steady state,
the proposed control achieves the same voltage deviation in both
sides, obtaining a good balance between the neediness of both.
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[4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids–
part II: A review of power architectures, applications, and standardization
issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549,
May 2016, doi: 10.1109/TPEL.2015.2464277.
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