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Abstract—We introduce a set theoretic framework for water-
marking. Multiple requirements, such as watermark embedding
strength, imperceptibility, robustness to benign signal processing,
and fragility under malicious attacks are described as constraint
sets and a watermarked image is determined as a feasible solution
satisfying these constraints. We illustrate that several constraints
can be formulated as convex sets and develop a watermarking
algorithm based on the method of projections onto convex sets.
The framework allows flexible incorporation of different con-
straints, including embedding strength requirements for multiple
watermarks that share the same spatial context and different
imperceptibility requirements based on frequency-weighted error
and local texture perceptual models. We illustrate the effective-
ness of the framework by designing a hierarchical semifragile
watermark that is tolerant to mild compression, allows tamper
localization, and is fragile under aggressive compression. Using
a quad-tree representation, a spatial resolution hierarchy is
established on the image and a watermark is embedded corre-
sponding to each node of the hierarchy. The spatial hierarchy of
watermarks provides a graceful tradeoff between robustness and
localization under mild JPEG compression, where watermarks
at coarser levels demonstrate progressively higher immunity to
JPEG compression. Under aggressive compression, watermarks
at all hierarchy levels vanish, indicating a lack of trust in the
image data. The constraints implicitly partition watermark power
in the resolution hierarchy as well as among image regions based
on robustness and invisibility requirements. Experimental results
illustrate the flexibility and effectiveness of the method.

Index Terms—Projections onto convex sets (POCS), robustness
to compression, semifragile watermark, set theoretic water-
marking, spread-spectrum watermark, tamper localization.

I. INTRODUCTION

THE widespread distribution capability afforded by the
Internet and the ready availability of image manipulation

tools have brought to the forefront several security concerns
with the use of digital images. Digital processing and the com-
munications infrastructure, however, also allow us to address
these concerns using a variety of techniques ranging from
conventional cryptographic methods [1] to digital forensics
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[2] and watermarking [3]. The choice among these different
options is often dependent on the specific application and
the operating constraints. In a number of multimedia security
applications, watermarks are particularly attractive because
they are embedded within the content. This allows them to be
readily incorporated in existing infrastructure and also permits
content-related functionality, such as localization and tolerance
of benign signal processing to be easily built-in.

In typical watermarking applications, the watermark must
satisfy multiple, often conflicting constraints, with the common
requirements being imperceptibility, detectability, localization
capability, robustness to signal processing, and fragility under
malicious attacks. The exact bounds of these requirements
depend on the specific needs of the application. Copyright
protection and content tracking need a noise-tolerant water-
mark design [5], [6] while authentication applications require
fragility of the watermark even when minute changes are
performed on the multimedia [7]–[11]. On the other hand,
semifragile watermarks should tolerate content-preserving
(nonmalicious) lossy transformations (e.g., compression), but
should detect malicious manipulations (e.g., removal of objects
from a scene [12]–[14]).

A number of ad-hoc methods and optimization-based algo-
rithms have been developed for efficient watermark insertion
into multimedia under multiple requirements. The optimal
transform domain watermark embedding method is a good ex-
ample of the latter class. The watermark insertion is formulated
as a linear programming problem in which the strength of the
watermark in frequency domain is maximized subject to a set
of constraints in the spatial domain [24]. Though powerful, the
formulation is limited to linear constraints, whereas a number
of the desirable constraints in watermarking are nonlinear.

In this paper, we propose a set theoretic framework for wa-
termarking. The framework is a natural choice for finding a so-
lution that simultaneously satisfies the multiple constraints in
watermarking. Unlike optimization methods that find a solution
that maximizes (or minimizes) an objective function, set theo-
retic methods find feasible solutions that satisfy required con-
straints but do not necessarily satisfy an optimality criterion.
The power of set theoretic methods comes from their capability
to incorporate more of the constraints and more realistic con-
straints, which are sometimes ignored in optimization frame-
works. In addition, feasibility problems are often analytically
easier and computationally inexpensive compared to the opti-
mization problems and the solutions are acceptable for many
engineering problems [16]–[20].

We show that several requirements in watermarking applica-
tions can be mapped to convex constraints or can be closely ap-
proximated by convex constraints. These include watermark de-
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tectability, noise robustness, multiple watermark detectability,
imperceptibility, robustness to lossy compression, and fragility
under aggressive compression. This allows determination of the
feasible solution using the powerful method of projections onto
convex sets (POCS).

We illustrate the utility and flexibility of the framework by
applying it to the problem of semifragile watermarking. The
widespread use of lossy compression provides motivation for
watermarking techniques that are tolerant to compression while
still allowing identification of regions with suspected alterations
[21]. However, in a number of sensitive medical and military
applications where perceptual integrity of even fine spatial de-
tail has utmost importance, aggressive lossy compression can
be considered as a malicious attack that causes loss of vital in-
formation. In such a scenario, it is desirable that watermarks:
1) are robust against mild compression; 2) distinguish manipu-
lated regions from other areas; and 3) vanish under aggressive
compression to indicate the loss of significant visual content.

We demonstrate that the framework allows considerable
freedom in designing the semifragile watermarked image
to meet the constraints of imperceptibility, robustness, and
detectability in the presence of mild compression, while simul-
taneously providing localization capability. The semifragile
spread-spectrum hierarchical watermark that we present pro-
vides a graceful tradeoff between robustness and localization
under JPEG compression: mild JPEG compression preserves
watermarks at all levels of the hierarchy allowing fine localiza-
tion of malicious changes while aggressive JPEG compression
removes watermarks at all hierarchy levels.

The rest of this paper is organized as follows. In Section II, we
introduce the set theoretical framework for watermarking, sug-
gesting possible constraints and applications. In Section III, we
describe a semifragile hierarchical multiple layer watermarking
technique implemented in the framework. In Section IV, we
present an experimental evaluation of the proposed semifragile
watermarking method and discuss the characteristics of the
algorithm, particularly its capability to implicitly manage the
distribution of power to meet constraints of imperceptibility
and robustness to compression. Section V presents concluding
remarks. Mathematical details of the visual texture model
incorporated within the method and projections are presented
in Appendices A and B, respectively.

II. SET THEORETIC FRAMEWORK FOR WATERMARKING

The central idea of set theoretic watermarking is to represent
each property desired of the watermarked image as a constraint
set. Thus, if there are desirable properties, these are repre-
sented as sets , where denotes the set of images
that possess the th property. Any image that lies in the inter-
section of all the constraint sets possesses all of the
desired properties and may be used as a watermarked version of
the image.

A. Watermark Insertion by POCS

A practical method for watermarking in the set-theoretic
framework requires techniques for finding an image in the
intersection of all constraint sets. The method of projections
onto convex sets [15]–[17] provides a robust algorithm for
cases when the sets are all convex.

Fig. 1. Schematic illustration of semifragile watermarking by POCS.

POCS Algorithm Statement:
1) Initialization: arbitrary image.
2) Projection step: Project sequentially onto convex con-

straint sets to obtain the next iterate, that is

(1)

where is the
relaxed projection operator onto set , with

denoting the projection of onto the
set . For unity relaxation, , which
will be the case considered throughout this paper.

3) Convergence check: If , set watermarked
image as and terminate iterations, else set
and go to 2).

Fig. 1 schematically illustrates the process of watermark in-
sertion by POCS for a semifragile watermarking scenario. The
“points” in this figure represent images with
dimensions identical to the dimensions of the cover image in
which the watermark is to be inserted. If the intersection set is
nonempty, the sequence generated by the algorithm
is guaranteed to converge to a point in the intersection [15],
providing an image satisfying all requisite constraints for the
semifragile watermark. We define these underlying constraint
sets in the next section.

Note that in the set-theoretic embedding framework, the
knowledge of the cover data is utilized in formulating the con-
straint sets. The method therefore is an instance of “informed
embedding” [22, p. 132] and is preferable to “blind embed-
ding” methods where the cover data are treated purely as noise.
The proposed method, however, is not an “informed coding”
technique, typified by quantization index modulation [6].

B. Constraints for Set Theoretic Watermarking

1) Watermark Detectability/Strength of Spread Spectrum
Embedding: Spread spectrum embedding [5] is a common
watermark embedding technique. Conventionally, the em-
bedding process consists of the addition of a key-dependent
pseudo-noise sequence to the cover image. The detection
is performed by correlating a test image against the same
pseudo-noise sequence and comparing the result against a
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threshold to determine whether a watermark is present or not.
In the set-theoretic framework, instead of defining an explicit
watermark insertion technique, we implicitly insert the water-
mark by imposing a constraint on the (watermarked) image for
exceeding a preset minimum embedding (detection) strength.

For our detector, we adopt the mean corrected linear corre-
lation metric, which provides robustness against additive noise
and resilience to valumetric scaling (of images) [22, p. 127]. The
constraint on watermark embedding strength is formulated by
imposing a minimal value for the correlation. If
denotes the image with dimensions and
denotes the pseudonoise watermark sequence, we denote

and as the vec-
tors obtained by stacking together the columns of each. We
will adopt the notation in terms of 1-D vectors throughout and
assume that any image operators are also represented as ma-
trices/functions conforming with the vector representation. The
watermark detectability constraint set is then given by

(2)

(3)

where and represent a vector of the same
size as and having its elements as the sample mean of the
vector .1 Unless indicated otherwise, we also adopt the same
notational convention for subsequent constraint set definitions.
Note that in the formulation above, we are assuming that the de-
tector does not have access to the original image; hence it per-
forms blind detection and for nonblind scenarios, the constraint
is readily modified.

The definition of (3) assumes watermark embedding in the
spatial domain. The proposed method, however, is generic and
can be applied to most transform domains which may be at-
tractive for their properties. For any linear transformation
of the image, assuming detection in the transform domain, the
detectability constraint becomes

(4)

Thus, the watermark detectability constraint is readily extended
to watermarking in various domains, such as the discrete-co-
sine transform, fractional-Fourier transform [23], and wavelet
transform.

It is worth noting a few of the advantageous properties of the
implicit watermark embedding technique proposed here. Since
the constraint is formulated in terms of the response of the cor-
relation detector, the interference of the host signal is automat-
ically taken into account and the method does not require ad-
justments for different images. In this sense, the method utilizes
knowledge of the cover image and is superior to additive wa-
termark insertion. The constraint, however, does not guarantee
invisibility of the embedded watermark. Another noteworthy as-
pect is that the method also does not mandate a specific choice
of the pseudonoise sequence . In particular, the

1Typically, the embedding strength in the left-hand side of the inequality in
(3) would be normalized for the image size, by multiplication with (1=MN);
for succinct notation, we will find it convenient to absorb the factor MN into
the upper bound for this and subsequent sets.

Fig. 2. Schematic illustration of constraint sets in 2-D representation. (a) Wa-
termark detectability. (b) Overall fidelity. (c) Pixel-wise visual fidelity. (d) Ro-
bustness to quantization.

sequence may not be white and may be spectrally shaped to im-
prove performance in the presence of attacks as suggested by
other works [28], [29].

Multiple Watermark Embedding: In applications where
multiple watermarks are embedded within an image, each
individual watermark will encounter interference from others
(i.e., the detector response to each watermark is weakened by
the embedding of subsequent watermarks). The interference
problem is implicitly handled within the set-theoretic water-
marking framework, by introducing a separate constraint for
each watermark. The image that satisfies all constraints will
bear each watermark with sufficient strength. Thus, if we have

watermarks that are to be embedded in the same
image, there are corresponding constraint sets

(5)

Note that the watermark detectability constraints in (5) are
simultaneously imposed on the watermarked image. Therefore,
in the multiple watermarking scenario, the set theoretic frame-
work accounts for any interwatermark interference present at the
receiver. The formulation allows for the simultaneous insertion
of multiple watermarks or sequential insertion, provided that at
each stage, the previously embedded watermarks are known, for
instance, for a multibit embedding technique [23].

The watermark detectability constraint sets are clearly convex
and are schematically shown in Fig. 2(a).

2) Watermark Imperceptibility: The watermarked image
should be perceptually (almost) identical to the original image.
We incorporate this requirement through the introduction of
two image fidelity constraints: an overall visual fidelity con-
straint formulated in terms of a linear visual system model and
a pixel-wise image-fidelity constraint determined in terms of a
noise visibility function.

Overall Image Fidelity Constraint: The sensitivity of
human observers to changes introduced in an image exhibits
a strong spatial frequency dependence. Typically, changes in
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image content at low spatial frequencies are perceived more
readily than changes at high frequencies. This behavior can
be represented, to a first order, by assuming that the perceived
image in response to an input image is given by , where

represents a 2-D spatial low-pass filter.2 Using this approxi-
mation, a constraint on overall image fidelity can be formulated
by requiring that the difference between the perceived water-
marked image and the perception of the original image

should be small (where denotes the original image).
Using the Euclidean norm for quantifying the difference, the
constraint therefore becomes

(6)

where represents the Euclidean norm of , and is a suit-
ably chosen threshold.

The spatial filter is determined by the specific visual
system model employed. In particular, we employ the model
proposed by Mannos et al. [26], which has been extensively
utilized in image processing research. For the model, the spatial
filter is represented in the frequency domain by a radially
isotropic function
where denotes the radial frequency in cycles per degree [26].
It is readily seen that the constraint in (6) is convex and
a schematic 2-D geometric representation is illustrated in
Fig. 2(b).

Pixel-Wise Image Fidelity Constraint: Since the overall fi-
delity constraint (6) is based primarily on psychophysical data
for individual sinusoidal stimuli, it does not adequately handle
localized perturbations of the image in a small area. Therefore,
we use an additional model to limit local perturbations to en-
sure imperceptibility. Our model exploits the perceptual phe-
nomenon of spatial masking [27] in which perturbations intro-
duced in an image region at a frequency are masked by stronger
image content at similar frequencies. In particular, we use the
spatial-domain texture masking model proposed by Pereira et
al. [24]. Given an original image, the model predicts the al-
lowable distortion at each pixel level that is visually tolerable,
leading, in turn, to pixel-wise upper and lower bounds for the
difference from the original image. The resulting constraint can
be expressed as

(7)

where and are the same size as and represent the
pixel-wise upper and lower bounds on the distortion, is
the original image, and the inequalities in (7) apply termwise.
Additional relevant details of the model are summarized in
Appendix A. The constraint can alternately be expressed as

where and
form for pixelwise upper and lower bounds.

The constraint is obviously convex and is illustrated for the 2-D
case in Fig. 2(c).

Note that the imperceptibility constraints apply to the wa-
termarked image and are therefore directly applicable in both

2The visual system also includes significant point-wise nonlinearity.
Common digital image representations, however, already include a compen-
sation for this nonlinearity [25] and its effect can therefore be ignored with
minimal error.

single and multiple watermark embedding scenarios. This is in
contrast with explicit embedding methods, where the power dis-
tribution among the multiple watermarks must be carefully con-
trolled in order to meet this constraint.

3) Robustness to Compression Constraint: Resilience
against nonmalicious changes is a desirable property in several
applications of semifragile and robust watermarks, which is ex-
tremely challenging because of the large class of nonmalicious
changes that may be introduced [22]. Here, we concentrate on
one important class of alterations consisting of lossy compres-
sion. Specifically, we focus on transform coding techniques, for
which the lossy component consists of a quantization operation
in the transform domain.3 Resilience of the watermarked image
to compression can be achieved by requiring that the detector
response to compressed versions of the image exceeds a desired
threshold . This requirement yields the constraint set

(8)

where denotes the quantizer, represents the transform
operation from the spatial domain into the transform domain,
and represents the inverse transform. We assume that the
transform is linear and invertible so that
and the quantizer operates on a term-by-term basis so that
it is the direct product of the scalar quantizers ,
where is the quantizer for the th transform coefficient.
In the case of JPEG, for example, is the discrete cosine
transform (DCT) and is the inverse discrete cosine transform
(IDCT), and the quantizer then consists of the 64 quantizers
for the DCT coefficients within each 8 8 block of DCT co-
efficients (where the frequency-dependent scaling factor is in-
cluded as part of the quantizer). The constraint of (8) is usually
not convex. A typical 2-D representation illustrating this fact
is shown in Fig. 2(d). Motivated by the observation that typ-
ical transform coding schemes provide coding gain through the
compaction of signal energy into a few coefficients, we approx-
imate the set (8) by the following set:

(9)

where refers to the function determined from the original
image by defining its constituent scalar “quantizer” func-
tions as

otherwise;
(10)

where denotes the th transform coefficient of the
original image . Thus, the function sets transform co-
efficients that are zero in to zero and leaves other
coefficients unchanged. This approximation has the underlying
assumption that the transform coefficients that are quantized to
zero cause the major loss of watermark information. We can
readily see that for our definition of , we have

3The JPEG compression standard is the prime and most commonly used ex-
ample of transform coding that we utilize in our implementation.
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. Hence, from the linearity of the transforma-
tion the convexity of the set in (9) follows immediately.

4) Fragility Under Aggressive Compression Constraint:
While compression is a content preserving benign signal pro-
cessing operation, under aggressive compression, there can be
significant loss of perceptual data. Therefore, in semifragile
watermarking, it is sometimes desirable that watermarks dis-
appear under aggressive compression. This fragility of the
watermarked image to aggressive compression can be achieved
by requiring that the detector response to highly compressed
versions of the image be below the detection threshold . This
requirement provides the constraint set

(11)

where denotes the quantizer for aggressive compression
and other terms are as defined in (8). Just like the robustness to
compression constraint, this set is not convex; however, arguing
as we did before, a convex approximation is obtained as

(12)

where the function is defined as in (10) with being re-
placed by the corresponding aggressive compression quantizer

(for the th transform coefficient).

III. SEMIFRAGILE HIERARCHICAL WATERMARKING

IN A SET THEORETIC FRAMEWORK

Using the constraint sets defined in the preceding section, the
method of POCS may be utilized to embed a watermark as out-
lined in Section II-A. We illustrate the flexibility of the frame-
work with a semifragile watermarking scheme that utilizes mul-
tiple watermarks for localization while maintaining a desired
level of imperceptibility and tolerance to compression.

Semifragile watermarks can be designed by carefully tuning
a robust watermark so that it is removed if the distortion exceeds
a particular level [22]. We chose spread-spectrum embedding
for this purpose. Noise immunity and reliable detection in
spread-spectrum watermarking require long (spreading) se-
quences. Short sequences, while providing good localization
accuracy, are sensitive to noise and may fail to provide suf-
ficient immunity to compression [21]. There is an inherent
conflict between the capability to localize malicious changes
within the image (short sequences) and resilience against lossy
compression (long sequences)—both desirable characteristics
of semifragile watermarks. We, therefore, use spread-spectrum
embedding in a hierarchical manner which ensures better
localization and less immunity to lossy compression at lower
levels and less localization but better immunity at higher levels.

Our hierarchical block-based watermarking technique adopts
a multilevel spatial hierarchy previously used in [11]. A partition
of the image into nonoverlapping blocks constitutes the highest
level of the hierarchy. Successive levels of the hierarchy are
formed by combining distinct groups of blocks at a preceding
level of the hierarchy. In general, the number of blocks from
a level of the hierarchy that are combined to form a block at

Fig. 3. Partitioning of an image and the resulting four-level hierarchical over-
lapping block structure.

the next lower level of the hierarchy may be arbitrarily chosen;
however, in order to keep the notation and the description sim-
pler, we assume for the rest of this paper that the region of 2 2
blocks at a given level of the hierarchy be combined to create a
block at the next lower level of the hierarchy.

Given an sized image , we first form a multilevel
hierarchical block structure as shown in Fig. 3. Let us denote a
block in this hierarchy by , where the indices represent the
spatial position of the block and is the level of the hierarchy
to which the block belongs. The total number of levels in the
hierarchy is further denoted by .

On the highest level, we partition the image into size
nonoverlapping blocks . At each

successive (lower) level, the image is partitioned into blocks
which, in turn, are composed of 2 2 blocks at the preceding
(higher) level of the hierarchy. That is, for to

Finally, the bottom level of the hierarchy consists of only one
block . Note that we have larger blocks at lower levels
of the hierarchy, with a particular size at the

th level. No filtering or decimation is performed.
We embed (and detect) a spread-spectrum watermark for each

block at each level of the hierarchy, thereby providing localiza-
tion capability. The watermarks are embedded using the method
of POCS with the constraint sets outlined in Section II-B. The
projections onto these sets are described in Appendix B. We note
that the blocks at different levels overlap and, therefore, share
the total image context provided by the image.

Thus, the watermarks at different levels of the hierarchy con-
tribute interference to each other in addition to the interference
encountered from the cover image. In this context, the individual
watermark detectability constraints formulated as in (5) ensure
that the watermarked image bears each watermark with suffi-
cient strength. The overall image fidelity and point-wise fidelity
constraints of (6) and (7) are used to ensure imperceptibility
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even under the combined impact of multiple watermarks. Ro-
bustness to mild compression for each watermark and fragility
under aggressive compression constraints are further ensured by
the constraints in (9) and (12), respectively.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

We illustrate the efficacy of the set theoretical framework with
an implementation of the proposed semifragile watermark for
gray-scale images.

1) Algorithm Parameters: The set theoretic framework is
a powerful means of simultaneously satisfying multiple con-
straints in watermarking that often act in opposite directions.
The bounds for the constraint sets that determine, for example,
acceptable levels of robustness and imperceptibility, would
typically be application dependent. As application-based de-
velopment and extensive testing of these bounds are beyond
the scope of this paper, we have empirically determined a set
of parameters that provide acceptable levels of visual fidelity,
malicious manipulation sensitivity, and robustness/fragility to
compression.

In our implementation of the POCS watermarking algorithm
of Section II-A, we also terminate at the convergence check step
if iterations are exceeded before numerical conver-
gence is achieved. The constraint sets in the POCS em-
bedding algorithm described in Section II-A are arranged so that
the order of successive projections proceeds in the sequence4 1)
detectability; 2) fragility under aggressive compression; 3) ro-
bustness to compression; 4) overall visual fidelity; 5) pixel-wise
image fidelity. While this is irrelevant when the algorithm con-
verges, in scenarios where the algorithm fails to converge, this
ordering ensures that pixel-wise visual fidelity is always main-
tained in the watermarked image. Moreover, the constraints or-
dered later in the successive projection sequence are empirically
favored over the earlier ones. Alternate priorities may dictate a
different ordering or relaxation of some constraints.

For the spread-spectrum watermark signal , we utilize
(possibly colored) pseudorandom noise that is obtained by
generating white bipolar noise and replicating each sample
times horizontally and vertically in the 2-D image plane. The
replication provides a simple method for shaping the spectral
characteristics of the watermark to conform better to images
that are typically low-pass. Alternate methods for spectrally
shaping the watermark in order to make it more compatible
with the image, that are motivated by optimal signal design
considerations, may also be used instead (see [29] for an
example). Note that the compression robustness and impercep-
tibility constraints already (implicitly) shape the spectrum of
the embedded watermark. Nevertheless, choosing a suitable
watermark still provides a benefit at the detector, as it ensures
that the sequence used for detection is better matched to the
watermark actually embedded in the image.

The parameters for the constraint sets used in the algorithm
are set as follows: The bound for the overall image fidelity
threshold [26] is set at and values of

and neighborhood are used for the pixel-wise

4In (1), this corresponds to the order of increasing index values for the sets.

image fidelity parameters [24]. The embedding strength is set
to the linear correlation lowerbound of , cor-
responding to a normalized value of . In
most image blocks, this limit can be satisfied without violating
the imperceptibility constraints. The corresponding detection
threshold at the receiver is set to . The combination
of these values provides a good tradeoff between robustness
to benign operations (low false alarm rates) and sensitivity
to malicious operations (low miss rates). The fragility of the
method can be increased (decreased) by increasing (respec-
tively decreasing) the detection threshold.

The quantizer in (9) is determined by the indices of
DCT coefficients quantized to zero at a JPEG quality factor

. This determines the compression resilience. Simi-
larly, the fragility under aggressive compression is achieved by
determining the function in (12) by the indices of DCT co-
efficients quantized to zero at a JPEG quality factor .
In order to allow some margin for noise and to take into account
the approximation in our definition, the threshold for fragility
under aggressive compression is actually set to a normalized
value5 of . We emphasize that these constraints are ap-
proximations (see Section II-B). Thus, meeting these constraints
does not fully guarantee that the watermarks survive compres-
sion quality factors higher than 60 and vanish for factors lower
than 40. Also, the fragility constraint may or may not be required
in applications and, therefore, consider cases that include and
exclude it.

For hierarchical embedding, we utilize an elementary block-
size of 64 64 pixels. This provides a sufficient length for the
spread-spectrum sequence (even in the presence of replications)
while being small enough to provide good tamper localization
capability.

2) Test Images: We used the Goldhill, Lena, Barbara, Man-
drill, Washat, Peppers, Boat, and Zelda images from the Univer-
sity of Southern California test image set [31], a hundred miscel-
laneous Kodak test images, and the Aerial image seen in Fig. 8.
These are 8-b gray-scale images with a size of 512 512 pixels
for the USC and Kodak images, and 1024 1024 for the Aerial
image. Thus, using our 64 64 elementary block size, the USC
images and Kodak images have a level hierarchy for em-
bedding and the Aerial image has a level hierarchy.

B. Performance

We first examine how we realize advantages of the implicit
set-theoretic watermark embedding scheme that were men-
tioned at the end of Section II-B. For this purpose, in each
case, we use a small number of constraint sets that clearly
illustrate the benefits realized in the absence of competing
requirements. Then, we present the performance of the com-
plete set-theoretic watermarking scheme incorporating all of
the constraints together and comment on the tradeoff between
conflicting requirements when these cannot be met simultane-
ously. Note that in order to define a valid watermarking scheme
in the set-theoretic framework, visual fidelity and watermark
detectability are essential constraints and are therefore required
in all cases (in some form).

5This value was seen empirically to provide good performance.
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Fig. 4. Histogram of detector responses of 108 different images at various
layers. Robustness and fragility sets are excluded during watermark process.
(a) Level l = 1, (b) Level l = 2, (c) Level l = 3, (d) Level l = 4. (Color
version available online at http://ieeexplore.ieee.org.)

1) Interference Adaptation: Set theoretic watermarking is an
elegant example of informed watermark embedding.6 From the
constraint set definitions, we see that in a feasible image, the
interference from the cover image and multiple watermarks at
different levels of the hierarchy is completely accounted for in
the embedding process. This informed embedding guarantees a
uniform embedding strength, when possible and, thus, improved
robustness to subsequent processing. We illustrate this property
in Fig. 4 which presents histograms of the watermark detector
response (mean corrected linear correlations) for all blocks in all
108 test images at different levels of the hierarchy. Constraints
used for generating the watermarked images for this case in-
clude the primary watermark detectability and visual fidelity
constraints. From the histograms in Fig. 4(a)–(d), we see that
the detector response is unity or higher for almost all blocks at
levels of the hierarchy (larger blocks). Note that at the
lower levels of the hierarchy , we have a small number
of blocks that do not satisfy the sufficient embedding strength
constraint. This is because these blocks do not have enough ac-
tivity to mask the distortion introduced by the imposed water-
marks.7 For these blocks, a sufficient embedding strength is not
possible unless corresponding visibility constraints are relaxed
at the expense of image fidelity. The histograms indicate that
both cover image interference and interwatermark interference
across watermarks at different levels of the hierarchy that share
the same spatial context are implicitly accounted for in the em-
bedding process.

For the watermarking scenario where all constraint sets are
utilized, histograms are shown in Fig. 5. In the presence of the
additional constraints, particularly the fragility constraint, the
performance degrades slightly and we see that a larger number
of blocks fall below the target correlation value of 1.0 at all

6Recall that we use the term informed-embedding as defined in [22, p. 132],
which is distinct from side-informed coding methods.

7Particularly, the Kodak image database [32] includes several images with
extremely large smooth regions.

Fig. 5. Histogram of detector responses of 108 different images at various
layers. (a) Level l = 1, (b) level l = 2, (c) level l = 3, and (d) level l = 4.
(Color version available online at http://ieeexplore.ieee.org.)

levels of the hierarchy. For images consisting of mostly smooth
regions, the robustness to compression constraint conflicts
strongly with the visual fidelity constraint and for these images,
even the lowest level blocks (consisting of the entire
image) fail to meet the target correlation value requirement.
Overall, however, the histograms illustrate that the method does
an excellent job of maintaining watermark strength in most
blocks despite the contrary constraints.

2) Visual Fidelity Adaptation: The impact of the visual fi-
delity constraints of the hierarchical watermarking scheme is
illustrated on Goldhill image (Fig. 6). Fig. 6(a) shows the orig-
inal image and Fig. 6(b) illustrates the watermarked image ob-
tained with the hierarchical semifragile watermarking scheme
using the parameters as described earlier and utilizing all con-
straint sets. The watermarked image shows minimal artifacts de-
spite the fact that each pixel carries the payload for the four wa-
termarks at the different levels of the hierarchy. The impercep-
tibility constraints imposed on the watermark effectively pre-
vent significant perceptible artifacts. The only noticeable arti-
fact appears at the upper part of the image in the sky region
that is extremely smooth and, therefore, does not allow embed-
ding without concurrent distortion. To specifically illustrate the
benefit of the visual fidelity constraints, we compare the perfor-
mance without this constraint but with an overall peak signal-to-
noise ratio (PSNR) constraint that is selected to match the PSNR
of Fig. 6(b). This is obtained within our framework by dropping
the pixel-wise image fidelity constraint entirely and replacing
the operator in the overall visual fidelity constraint in (6) with
the identity operator so that it defines a bound on the PSNR,
which is defined as . Note that
this also illustrates the flexibility of the set theoretic embedding
approach: the nature of the embedding can be changed from a
visually adaptive method to one that only has a total-power con-
straint by a simple redefinition of a set. As seen in Fig. 6(c),
without the visual fidelity constraint, the image has more ar-
tifacts (at the same overall PSNR) which can be particularly
seen in the sky region. A closer view of this region is shown
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Fig. 6. Goldhill image illustrating the impact of visual fidelity constraint. Size = 512 � 512; L = 4; R = 2. (a) Original. (b) Watermarked with visual
fidelity constraint (PSNR = 31:87). (c) Watermarked without visual fidelity constraint (PSNR = 32:37 dB). (d) Watermarked without robustness and fragility
constraints (PSNR = 40:09 dB).

in Section IV-B2 in Fig. 7 where the advantage of the visual fi-
delity constraint can be clearly seen.8

3) Compression Resilience: In this section, we illustrate the
resilience of the proposed watermark to compression and the
impact of the robustness to the compression set. For the results
in this section, we exclude the fragility under aggressive com-
pression constraint and defer results and discussion for that con-
straint to the next section. Table I summarizes the results for wa-
termark detection for the proposed scheme across the 108 im-
ages from the USC and Kodak image sets for JPEG compression
with Q-factors ranging from 90 down through 10.

The impact of shaping the watermark spectral characteristics
through the use of the replication factor (by which the water-

8In this example, the spatial localization constraint and hierarchical embed-
ding limit the capability of the visual fidelity constraint to redistribute watermark
power. In scenarios where the method is utilized to embed multiple bits over the
entire image, this constraint is absent and the effect is more significant [23].

mark pseudonoise sequence is replicated along each of the two
image dimensions, the value seen in the leftmost column) is also
included within this table. Each entry in the table is represented
as where is the total number of blocks at that level of the
hierarchy encountered in the experiment and is the number
of these blocks in which the watermark is successfully detected
(for the corresponding compression level). The performance of
the detection in the absence of the robustness to compression
constraint is summarized for the eight images in the USC data
set in Table II for comparison.

From the data in the tables, several observations can be made.
A comparison of the (i.e., a spectrally white watermark)
entries in Tables I and II illustrates the significant impact of the
robustness to compression constraint. With the constraint, the
watermark is detected for a large majority of the blocks for JPEG
quality factors above 50, whereas the detection performance de-
grades very severely without the constraint. The watermark is
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Fig. 7. Closeup of a region of the Goldhill image illustrating the impact of visual fidelity, robustness, and fragility constraints. Regions that are significantly
different are encircled. (a) Original Goldhill image. (b) Watermarked with visual constraint. (c) Watermarked without visual constraint. (d) Watermarked without
robustness and fragility constraint.

TABLE I
SUMMARY OF WATERMARK DETECTION RESULTS FOR EIGHT WATERMARKED IMAGES AT VARIOUS JPEG COMPRESSION LEVELS.

THE ROBUSTNESS TO COMPRESSION IS SET AT JPEG QUALITY FACTOR 60 AND FRAGILITY SET IS EXCLUDED

TABLE II
WATERMARK DETECTION RESULTS IN ABSENCE OF ROBUSTNESS TO

COMPRESSION SET AT VARIOUS JPEG COMPRESSION LEVELS

detected only in a minority of the blocks even at . By
comparing the entries for and in Table I, we

also observe that spectrally shaping the watermark by replica-
tion further improves robustness to compression. As we indi-
cated earlier in this section and at the end of Section II-B1, this
improvement comes from the detector. The choice of the wa-
termark sequence is not constrained by the set-theoretic frame-
work.

From Table I, we also see that the detection performance im-
proves at lower levels of the hierarchy (small , larger blocks).
This is due to the lengthening of the spreading sequence with the
increased block size. The process is beneficial since greater ro-
bustness is often desirable for the lower levels of the hierarchy.
The detection performance at different levels may also be con-
trolled by establishing different embedding strength thresholds
and different robustness to compression bounds. Also note that
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TABLE III
SUMMARY OF WATERMARK DETECTION RESULTS FOR EIGHT WATERMARKED IMAGES AT VARIOUS JPEG COMPRESSION LEVELS. THE ROBUSTNESS TO

COMPRESSION IS SET AT JPEG QUALITY LEVEL 60 AND FRAGILITY TO AGGRESSIVE COMPRESSION SET USING AT JPEG QUALITY LEVEL 40

when , for a few blocks at (smallest blocks) and
for one block at , the watermark is not detectable even
at . As mentioned in Section IV-B1, these blocks cor-
respond to extremely smooth regions where no embedding is
possible without violating the visual fidelity constraint.9

4) Aggressive Compression Fragility: In this section, we
consider the impact of the constraint imposing fragility under
aggressive compression. In order to do so, we incorporate all
constraints in our POCS watermarking scheme and examine
the performance in the presence of compression as was done
in the previous section. Table III lists the results for watermark
detection under this operational scenario for a number of com-
pression ratios in the same format as Table I. From Table III,
we see that the watermarks start to deteriorate under vigorous
compression starting at all levels of the hierarchy. The
efficacy of the fragility set is clear at and below. This
is particularly clear when we compare the results in Table III
against those in Table I, where only the robustness to compres-
sion set was used.

Observe that the robustness to compression and fragility
under robust compression constraints act in diametrically op-
posite directions and, therefore, are the most difficult to satisfy
concurrently. This conflict is also apparent from a comparison
of Tables I and III. In interpreting the results for Table III, we
would also like to recall the discussion from Section IV-A1
regarding the implicit prioritization of constraints due to their
ordering. As indicated, our ordering favors robustness to com-
pression over fragility under aggressive compression. This (and
the approximate nature of the set) explains why the water-
marks are not eliminated precisely at the JPEG quality factor

used for the fragility constraint. Experimental
validation with reordering the sets indicates that indeed the
fragility may be given priority over robustness to compression
using this process.

5) Tamper Detection Capability: Tamper detection capa-
bility of the scheme is illustrated with a malicious manipulation
example. A five-level hierarchical watermark is embedded
within the Aerial image for which the original is shown in
Fig. 8(a). The watermarked image shown in Fig. 8(b) is ob-
tained by the proposed POCS algorithm using all sets except
fragility and with robustness to JPEG compression determined

9This is not a severe problem as one may also question the need for integrity
verification of constant blocks in isolation without their surrounding context.

by the quality factor and other parameters as
specified before. After embedding of the watermark, the image
is compressed using a JPEG quality factor of 50. The resulting
watermarked and compressed image is then tampered with to
remove vehicles around the center building. This tampered ver-
sion of the image is shown in Fig. 8(c). The results obtained from
the watermark detection process applied to the watermarked-
compressed-tampered image are shown in Fig. 8(d). Image
regions for which the watermark detection fails at any hierarchy
level are indicated by shading and the corresponding hier-
archy-level number at which the watermark detection (first) fails
is overlaid on these shaded regions. The detection results cor-
rectly identify the tampered regions and localize the tampering.

6) Computational Complexity: For the parameters in
Section IV-A1 and the eight images from the USC database
with a four-level hierarchy, the POCS iterations for the water-
mark embedding converge to a feasible solution in typically
15 iterations. This takes approximately 4 min on a Pentium M
1.70-GHz machine with Matlab implementation. In instances
where the algorithm does not converge after 60 iterations (ap-
proximately 15 min), the process is terminated and the current
iterate is used as the approximate solution.

The proposed framework constitutes a middle ground between
heuristic embedding methods, which can guarantee neither ro-
bustness nor imperceptibility, and optimization-based methods,
which require substantial computational resources. Moreover,
incorporating linear and nonlinear constraints in the system is
significantly easier compared with the optimization methods.

As a result, the algorithm provides a powerful practical al-
ternative to both heuristic and optimization-based methods, es-
pecially in commercial content distribution applications where
preserving the perceptual quality is paramount.

V. CONCLUSION

In this paper, we introduced a set theoretic framework for
watermarking that formulates watermark embedding as a
problem of determining a feasible solution meeting multiple
constraints. We have defined constraint sets for common wa-
termarking requirements of detectability, robustness against
compression, imperceptibility, and fragility under aggressive
compression and have developed an algorithm for watermark
embedding using the method of POCS. We implemented a hier-
archical semifragile watermark in the framework and illustrated
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Fig. 8. Tamper localization performance on the aerial image. Size 1024� 1024 pixels. Image in (c) has been manipulated by removing the vehicles around the
building at the center. Detection results on the manipulated image after JPEG compression with Q = 50 are shown in (d). Numbers indicate the levels at which
the watermark is not detected. (a) Original image. (b) Watermarked image (L = 5; R = 2; PSNR = 36:61 dB). (c) Manipulated image. (d) Detection result
(Q = 50).

the power of the framework. Specifically, the watermarking
scheme automatically and implicitly handles both host signal
interference and interwatermark interference, ensures visual
fidelity, provides robustness against mild JPEG compression,
and fragility under aggressive JPEG compression and the
capability to detect alterations under mild compression. The
set theoretic watermarking framework successfully unifies
multiple watermarking, visually adaptive watermarking, and
interference cancellation scenarios.

APPENDIX A
TEXTURE MASKING MODEL

We adopt the spatial texture masking model developed in [34]
that was previously used for watermark embedding in [24]. We
present a brief overview of the model here and refer the reader to

these publications for greater detail. The cover image is modeled
as a sum of the local mean and an error term, with the latter
further modeled by a generalized Gaussian distribution. A noise
visibility function (NVF) at each pixel position is obtained
from this model as

(13)

where

(14)

(15)
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The shape parameter and local image variance specify
the model. The shape parameter is image dependent and esti-
mated by moment matching. It ranges between 0.3 and 1.0 for
most real images.

The maximum likelihood estimator of the variance is utilized,
which is given by

(16)

where defined the neighborhood size over which the image
mean is computed in the model and

We use a simplified empirical version of the NVF model [33]

(17)

where tuning parameter controls the contrast adjustment
where is the maximal local variance for

a given image and is an experimentally determined parameter
[33], [34].

Using the NVF, allowable pixel distortions are computed as

(18)

where and represent the allowable pixel distortion in busy
and flat regions, respectively. We use a neighborhood size of

, and values of and , based on [24]. The
upper and lower bounds on distortion are then set equal to
(i.e., is utilized in (7)). In “flat” image regions,
the NVF is close to 0 which makes the term
small and, therefore, the allowable distortion level is also
small. This is consistent with the fact that noise is less visible in
busy regions and more visible in flat regions.

APPENDIX B
CONSTRAINT SET PROJECTION OPERATORS

The projection onto each constraint set is computed as
follows.

A. Strength of Spread-Spectrum Embedding

Projection of onto is given by

subject to

The Lagrangian [30] for this constrained optimization
problem can be written as

(19)

where is the matrix representing the linear transformation
.
The Lagrange parameter is readily shown to be

otherwise.
(20)

The projection can then be expressed in terms of the Lagrange
parameter as

(21)

B. Projection Onto Overall Fidelity

The projection of onto is given by

subject to

Using the method of Lagrange multipliers, the projection is
determined as

(22)

where denotes the identity matrix, and is the Lagrange pa-
rameter. If , the Lagrange parameter is the positive root
of

(23)

and is zero if .
If is assumed to be shift-invariant, as in the case in this

paper, the computation of the Lagrange parameter can be signifi-
cantly simplified by using the discrete Fourier transform (DFT).
For , the Lagrange parameter is the positive root of

(24)

where , , and represent the 2-D DFT co-
efficients of , and , respectively.

C. Projection Onto Point-Wise Fidelity

The projections onto the point-wise fidelity constraint set are
readily determined term-wise. If we denote then
for each , the element is given by

if
if
otherwise

(25)

where , , and are the th elements of , , and ,
respectively.
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D. Projection Onto Robustness to Compression

Note that the robustness to compression set in (26) can be
rewritten as

(26)

where is the concatenation of the linear opera-
tors , and . Now the set has the same form as the set
in (5) and we can use the projection derived earlier for this set.
It is worth noting that the operator is normally singular.
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