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Abstract

In cellular systems, confidentiality of uplink transmission with respect to eavesdropping terminals can be ensured

by creating intentional inteference via scheduling of concurrent downlink transmissions. In this paper, this basic idea

is explored from an information-theoretic standpoint by focusing on a two-cell scenario where the involved base

stations are connected via a finite-capacity backbone link. A number of transmission strategies are considered that

aim at improving uplink confidentiality under constraints on the downlink rate that acts as an interfering signal. The

strategies differ mainly in the way the backbone link is exploited by the cooperating downlink- to the uplink-operated

base stations. Achievable rates are derived for both the Gaussian (unfaded) and the fading cases, under different

assumptions on the channel state information available at different nodes. Numerical results are also provided to

corroborate the analysis. Overall, the analysis reveals that a combination of scheduling and base station cooperation

is a promising means to improve transmission confidentiality in cellular systems.

I. INTRODUCTION

The ability to ensure transmission confidentiality is becoming a crucial requirement of many wireless com-

munications systems due to the increasing role of on-line transactions and new applications that exchange critical

personal data. In information-theoretic terms, perfect security (or confidentiality) implies the impossibility for a given

eavesdropping terminal to harness any information about the transmitted message from its received signal [1]. This

condition implies an even stronger guarantee than traditional cryptography, where security relies on the computational

limitations of the eavesdropper (also referred to as the wiretap).

Analysis of transmission strategies that are able to meet the requirement of perfect security in wireless networks

is currently an active area of research. As a brief and partial review of available literature, we first recall that,

following the basic definitions given in [1] of a wiretap channel (consisting of a single source-destination pair

and an eavesdropper), perfect security in a Gaussian wiretap channel with no fading was studied in [2]. More

recently, attention has turned to the investigation of the corresponding fading scenario [13] [14], and to multi-user/

multi-antenna Gaussian models [3]-[8]. In particular, the Gaussian multiple-access wiretap channel was studied in

[3], the multiple access with confidential messages in [4], the broadcast channel in [5] (parallel broadcast channels)

and [6] (multi-antenna broadcast channels), and the single-link Gaussian MIMO case in [7] [8].

In this paper, we focus on secure communications for cellular systems, motivated by the fact that most of

confidential transactions are expected to be conducted over such networks in the near future. Specifically, a novel
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Fig. 1. Illustration of a system with cooperating base stations B and C, an uplink terminal A, an eavesdropping mobile station E and a dowlink

user D.

basic approach to ensuring confidentiality is proposed that exploits uplink/ downlink scheduling of transmissions in

adjacent cells and cooperation at the base station (BS) level. In so doing, we follow on the line of research opened

by [10], where it was shown that cooperative transmission, beside being able to improve throughput or reliability

(see, e.g., [9]), can also be instrumental in enhancing the confidentiality of transmission (for a basic relay network).

BS cooperation is currently being widely investigated as a key enabler for high-data rate infrastructure networks

(see, e.g., [12] [11]), and is enabled by the presence of high-capacity backbone links connecting the BSs. The

main contribution of this work is to show that such technology can also bring significant gains in terms of secure

communications.

The proposed techniques aim at securing uplink transmissions from terminals to a given BS. The basic idea is

to schedule downlink BS transmissions at the same time as the concurrent uplink transmissions of interest, so as

to create intentional interference on the possible eavesdroppers. Cooperation at the BS level is then used to convey

information about the downlink transmission to the uplink-operated BS (uplink) over a finite–capacity backbone.

This enables the uplink-operated BS to partially mitigate interference from the BS transmission. The approach is

similar to [15] [16] [10] [17], where artificial noise jams the reception of the eavesdropper, while using techniques to

avoid interference at the intended receiver. In [15] this interference mitigation is obtained by exploiting the structure

and reciprocity of multi-antenna fading channels, while [16] [17] leverage a infinite-capacity backbone between

receiving and jamming antennas. We propose several new schemes based on the above mentioned basic idea, each

of them using a combined wireless/backbone transmission. The schemes and the corresponding achievable rates are

investigated and compared via analysis and simulations.

II. SYSTEM MODEL AND BACKGROUND

In this section, we fist introduce the scenario of interest and relevant quantities, and then investigate the reference

case where no infrastructure is present to enable cooperation between the BSs.
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A. Scenario

We focus on two adjacent cells served by single-antennas BSs as in Fig. 1 (the contribution of other cells is

considered implicitly as additive noise), where the two BSs are connected by a high capacity, typically wired,

backbone link. The BSs are termed B and C, respectively. Terminal A within the first cell has a message to

deliver to B under constraints of confidentiality with respect to the activity of an eavesdropping terminal E. The

eavesdropper is assumed to be within the transmission range of terminal A, as otherwise it would not pose any

threat to the confidentiality of A’s message, but also of the adjacent BS C. The main idea behind the considered

transmission strategy is that the uplink transmission from A to B can be scheduled at the same time as the downlink

transmission from C towards a given terminal D in its range. Hence, the transmission from C effectively acts as

a jammer on the reception at E. Note this approach is not intended to secure the communication C − D. Also,

notice that jamming is thereby accomplished without exploiting any additional system resource since it is obtained

from a regular downlink transmission.

1) System Model: Formally, terminal A randomly selects a rate-RA message WA from the set {1, ..., 2nRA}, and

encodes it via a sequence of n complex channel inputs XA = [XA,1 · · ·XA,n] ∈ Cn with normalized average power

constraint E[|XA,i|2] = PA. Encoding takes place through a (possibly stochastic) mapping: XA: {1, ..., 2nRA}→ Cn

[1] [2]. Notice that vectors of n symbols are represented throughout the paper by bold letters. At the same time,

BS C transmits a rate-RC downlink message WC , randomly selected from the set {1, ..., 2nRC}, with an average

power of PC . The actual codebook used by C is assumed to be subject to design and thus depends on the specific

cooperative strategy employed by BSs B and C. This will be specified for different proposed techniques in the

following sections. The capacity of the backbone link is denoted by CL and is measured in bit/symbol. We consider

bandwidth that is normalized to 1 Hz, such that bit/symbol is equivalent to bit/second (bps). We assume full

synchronization between the transmissions of A and C at the receiver of B. Finally, to account for a worst-case

scenario, synchronization is also assumed at the receiver of eavesdropping terminal E, and the latter is endowed

with information about the codebooks used by A and C.

The complex channel coefficient between any two nodes U and V is denoted by hUV , while the i−th symbol

transmitted by node U is denoted by XU,i (U ∈ {A,C} and V ∈ {B,D,E}). The signal received by B and E,

respectively, at the i−th symbol (i = 1, ..., n) reads:

YB,i = hABXA,i + hCBXC,i +NB,i (1)

YE,i = hAEXA,i + hCEXC,i +NE,i (2)

Each noise component NV,i is a complex Gaussian white noise with unit power, so that if the node U transmits

with power PU , the corresponding received signal-to-noise ratio (SNR) at the node V is:

γUV = PU |hUV |2. (3)

In the most of the paper (Sec. III-VI), we focus on Gaussian (unfaded) channels, where the channel gains (3) are

fixed and deterministic. In practice, these rates can be achieved, for given channel realizations, when channel state
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information is known at the receiver side, and all the channel gains of interest (hAB , hCB , hAE , hCE) are known

to terminal A, while the channel gains hCB and hCD are known to the downlink-operated BS C. In Sec. VII, the

analysis will be extended to a fading scenario under different assumptions on the channel state information at the

transmitters’ side.

Finally, the BS B decodes through a mapping g(YB): Cn → {1, ..., 2nRA}. According to standard definitions

[1] [2], a rate RA = RA,s is said to be achievable with perfect secrecy with respect to eavesdropper E if, as the

number of samples per coding block n→∞: (a) the decoding error at BS B vanishes:

Pe = P [g(YB) 6= WA]→ 0; (4)

(b) the uncertainty (equivocation) ∆ of eavesdropper E regarding A’s message, measured as the conditional entropy

of WA given the signal received by E normalized over the unconditional entropy, satisfies:

∆ =
H(WA|YE)
H(WA)

→ 1. (5)

B. Some Useful Functions

To simplify the presentation of the results in this paper, it is useful to define the following two functions. The

first function C(γUV ) is the standard capacity of a Gaussian single link with source U and receiver V, and SNR

equal to γUV :

C(γUV ) = log(1 + γUV ). (6)

The second function SU1V (RU2) pertains to the performance of a multiple–access channel (MAC) with two users
U1 and U2 and receiver V. It measures the supremum of the achievable rates from U1 to V for a given transmission
rate RU2 of U2. Notice that rate RU2 is not restricted to be within the MAC capacity region, that is, it is not
necessarily decodable by V. Given the SNRs γU1V and γU2V , the function is given by:

SU1V (RU2) =

8>>><>>>:
C(γU1V ) if RU2 ≤ C

“
γU2V

1+γU1V

”
C(γU1V + γU2V )−RU2 if C

“
γU2V

1+γU1V

”
< RU2 ≤ C(γU2V )

C
“ γ

U1V

1+γU2V

”
if RU2 > C(γU2V )

. (7)

C. Perfect Secrecy Without Backbone Link (CL = 0)

Here, we briefly discuss the baseline scenario where no backbone link exists between BSs B and C (CL = 0).

In such a case, no cooperation via the backbone link is possible, and we assume that the BS C transmits with a

standard Gaussian codebook XC(WC) = [XC,1(WC) · · ·XC,n(WC)] ∈ Cn, where variables XC,i are generated

as complex Gaussian independent with zero mean and power PC . As explained above, this codebook conveys

information to a downlink user D. Given this set-up, it can be readily seen that the considered approach coincides

with the strategy considered in [10] under the name Noise–Forwarding (NF). It was shown therein that the secrecy

capacity can be found by considering the compound multiple access channel (MAC), with two receivers B and E

and two transmitters A and C. In particular, for the Gaussian case of interest here, and using the function (7), the

result of [10] (Theorem 3) can be restated as follows.
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Proposition 1: If BS C transmits in downlink with rate RC and there is no backbone link (CL = 0), the rate

RA,s(RC) is achievable with perfect secrecy with respect to eavesdropper E1:

RA,s(RC) = (SAB(RC)− SAE(RC))+
, (8)

with SAB(RC) and SAE(RC) defined in (7).

From (8) it can be seen that an increase in the secrecy rate can be obtained by either increasing the achievable

rate SAB(RC) to the intended destination B or hampering reception of the eavesdropper (decreasing SAE(RC)).

III. PERFECT SECRECY WITH LARGE-CAPACITY BACKHAUL LINK (CL ≥ RC )

We now turn to the interesting case where the backhaul link has a capacity larger than the downlink rate,

CL ≥ RC . As in the baseline case considered above, we assume that BS C transmits codewords from a given

rate-RC randomly generated Gaussian codebook. Since CL ≥ RC , BS C can communicate the current codeword

XC(WC) to the adjacent BS B by using the backbone link. Therefore, BS B can effectively cancel the interference

signal XC(WC) from the received signal (1), leading to the equivalent received signal

YB,i = hABXA,i +NB,i. (9)

This implies that for any RC we have:

SAB(RC) = SAB(0) = C(γAB), (10)

from which the following proposition easily follows.

Proposition 2: If BS C transmits in downlink with rate RC and CL ≥ RC , the rate RA,s(RC) is achievable

with perfect secrecy:

RA,s(RC) = (C(γAB)− SAE(RC))+ (11)

with SAE(RC) defined in (7).

Proof : Follows directly from Theorem 3 of [10] (see discussion in Sec. II-C).

The rate (11) is plotted in Fig. 2 along with the capacity of the direct link C(γAB) and the maximum achievable

rate at the eavesdropper SAE(RC) for γAB = 7, γAE = 15, γCE = 10. A relevant quantity that can be observed

from the figure is the rate Rx = C(γAB) − RA,s. This can be interpreted as the rate loss that terminal A must

sacrifice to the aim of “confounding” the eavesdropper E and thus achieving rate RA,s with perfect secrecy. For

this particular example, when RC = 0, the single–user link A−E is less noisy than the link A−B and therefore

the secrecy capacity is zero. As the downlink rate RC increases, while the achievable rate C(γAB) on the link

A − B is clearly unaffected (see (9)), the rate decodable by the eavesdropper SAE(RC) decreases (for RC large

enough), and thus a positive secrecy rate is obtained as soon as SAE(RC) < C(γAB). In particular, the secrecy rate

RA,s increases linearly with RC until it reaches the maximum value
(
C(γAB)− C

(
γAE

1+γCE

))+

for RC ≥ C(γCE).

1We define (x)+ = x if x > 0 and (x)+ = 0 otherwise.
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Fig. 2. The achievable secrecy rate RA,s in Proposition 2. Here Rx = C(γAB)−RA,s is the amount of information spent by A to “confound”

the eavesdropper E in order to achieve a rate RA,s with perfect secrecy.

It can be easily seen that this value of RA,s corresponds to the case where the signal from C acts as a Gaussian

noise with power γCE , which is known to be worst–case jammer on E (see, e.g., [20]).

Finally, two remarks on the case at hand of large-capacity backbone link (CL ≥ RC) are in order, that will be

compared in the next sections with the complementary case where CL < RC . (a) With a large-capacity backbone,

the secrecy rate RA,s is a non-decreasing function of the downlink rate RC . (b) With a large-capacity backbone,

the value of the inter-BS channel gain γCB is irrelevant to the system performance. This clearly contrasts with the

case of CL = 0 studied in Sec. II-C: for instance, for the chosen SNRs in the example on Fig. 2, if in addition we

assume γCB ≤ γCE , it can be seen from (8) that with CL = 0 the secrecy rate RA,s is identically zero.

IV. QUANTIZATION–BASED TRANSMISSION STRATEGIES

In this section, we start the analysis of the secrecy capacity for the case where the backbone link capacity is

smaller than the downlink rate, CL < RC . In such as case, different strategies can be devised by the BS C in order

to provide the adjacent BS B with some information about the downlink transmitted waveform XC in order to

enable interference mitigation at B and thus improve the secrecy rate RA,s (recall the discussion about (8)). In this

section, we describe two strategies based on source coding arguments (quantization) for transferring information

from C to B, while the next section proposes strategies based on channel coding principles. For the strategies

considered in this section, we assume, as above, that the BS C employs a standard randomly generated Gaussian

codebook.

A. Elementary Quantization

The first considered approach is based on quantizing the downlink codeword XC(WC) via a rate-CL Gaussian

codebook. Quantization/compression is done by using standard joint typicality-based vector quantization [19] and
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does not exploit here any side information available at the receiver (elementary quantization). Given its optimality

in a rate-distortion sense, here we consider a Gaussian test channel, which we represent for convenience in the

forward form [18]:

X̂C,i = XC,i +Qi, (12)

where Qi is i.i.d. complex Gaussian quantization noise with power σ2
Q. From basic rate-distortion theory, it follows

that the following condition should be satisfied:

I(XC ; X̂C) = CL (13)

which, as mentioned above, reflects the fact that the quantization process at C is oblivious to the fact that there

is a parallel wireless link between C and B that conveys side information. The quantization error power σ2
Q can

then be found from (13) as σ2
Q = PC/(2CL − 1) (since I(XC ; X̂C) = log2

(
1 + PC/σ

2
Q

)
), so that the SNR on the

equivalent channel (12) reads

γQ =
PC
σ2
q

= 2CL − 1. (14)

It is remarked that the quantization codebook is assumed to be known to the BS B, which uses the received index

from the backbone link to decompress the signal into X̂C . The following proposition provides the rate achievable

with this strategy (see proof in Appendix-A).

Proposition 3: If BS C transmits in downlink with rate RC , the elementary quantization-based strategy achieves

with perfect secrecy the rate RA,s(RC) given by:

RA,s(RC) =
(
SEQAB (RC)− SAE(RC)

)+

(15)

with SAE(RC) defined in (7),

SEQAB (RC) =


C(γAB) if RC ≤ C

(
γCB

1+γAB
+ γQ

)
Csum −RC if C

(
γCB

1+γAB
+ γQ

)
< RC ≤ C(γCB + γQ)

Csum − C(γCB + γQ) if RC > C(γCB + γQ)

(16)

and Csum = log2

(
2CL(1 + γAB) + γCB

)
.

It can seen that, unlike the large-backbone case of Proposition 2, here the achievable rate (15) is not a mono-

tonically increasing function of RC since the latter affects (decreases) also SEQAB (RC). Moreover, it can be shown

that only for CL →∞, the rate (15) tends to the large-backbone secrecy rate (11) due to the residual quantization

noise for any finite CL. In practice (and in our evaluations in Sections VI and VII, whenever the instantaneous rate

RC ≥ CL, then we do not use quantization, but transfer the message completely over the backhaul.

B. Wyner–Ziv Quantization

The approach presented above can be improved by designing the quantization scheme according to Wyner-Ziv

compression with side information at the decoder [21] (Wyner-Ziv quantization). In fact, the wireless signal YB

October 9, 2018 DRAFT
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received by BS B is correlated with the signal XC transmitted by BS C and can thus be used as side information

at the decoder. From [21], the following relationship should now hold:

I(XC ; X̂C |YB) = CL. (17)

By using the Gaussian forward test channel (12), the power of the quantization noise σ2
Q and the respective equivalent

quantization SNR γQ can be easily derived (see Appendix-B) leading to the equivalent SNR

γQ =
PC
σ2
q

= (2CL − 1)
(

1 +
γCB

1 + γAB

)
. (18)

Achievable rates with Wyner-Ziv compression then follow directly from Proposition 3 by simply replacing γQ in

(14) with (18). It is noted that if γCB = 0, this scheme has clearly no advantage over the elementary quantization

considered above due to the absence of useful side information at the receiver.

V. SUPERPOSITION CODING-BASED TRANSMISSION STRATEGIES

Here we investigate a channel coding-based strategy to exploit the backbone link with capacity satisfying the

condition CL < RC . The strategy is based on rate–splitting encoding at BS C so that, differently from the previous

sections, here C changes the format of its wireless transmission to facilitate the transfer of information over the

backbone. It is also noted that this assumption requires downlink terminal D to modify its decoding strategy

accordingly (see details below). The message WC is transmitted by sending two independent messages WC1, WC2

with rates RC1, RC2, respectively such that:

RC = RC1 +RC2, (19)

where RC is determined by the capacity of the downlink transmission by C:

RC = C(γCD). (20)

The two messages are combined by using superposition coding, such that the ith symbol sent by C is:

XC,i =
√
αXC1,i +

√
1− αXC2,i, (21)

where α is the power–division coefficient and 0 ≤ α ≤ 1. Notice that, unlike the previously described quantization-

based scheme, here the downlink channel gain γCD plays an important role, since any modification in the design

of the transmission scheme at BS C (i.e., rates (RC1, RC2) and coefficient α) has to guarantee successful decoding

at terminal D. To elaborate, we assume that decoding at D is carried out via successive interference cancellation,

such that WC1 is first decoded and subtracted and then WC2 is decoded. Such a decoding imposes the following

conditions on rates (RC1, RC2) and coefficient α:

RC1 = log2

(
1 +

αγCD
1 + (1− α)γCD

)
(22)

RC2 = log2(1 + (1− α)γCD). (23)
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It can be easily seen that for any 0 ≤ α ≤ 1, condition (20) is satisfied (RC1 + RC2 = C(γCD)) and we have

freedom to chose α.

The basic idea of this strategy is to send one of the messages, either WC1 or WC2 (i.e., either the one decoded

first or last by downlink user D), over the backbone. This implies either RC1 = CL or RC2 = CL, respectively. It

is noted that once either of the latter condition is specified, this choice, by way of (22)-(23), uniquely determines

the value of α and, from (19), the remaining rate. As we will see in the next sections, the choice of which message

to send over the backbone drastically impact the achievable secrecy rate, and neither strategy dominates the other.

A. Sending the Message Decoded Last by D (WC2)

In this first case, we set RC2 = CL, which, from (23), determines the following value of α:

α = α2 = 1− 2CL − 1
γCD

, (24)

and the rate RC1 = RC − CL. BS B can then uses WC2 to cancel XC2(WC2) from its wireless received signal

YB , such that the resulting received wireless signal at B at the instance i is given by:

YB,i = hABXA,i + hCB
√
α2XC1,i +NB,i. (25)

The following lemma follows (see proof in Appendix-C).

Lemma 1: If BS C transmits in downlink with rate RC using the superposition coding scheme with (24), the

maximum rate achievable on the link A-B is given by:

S
(α2)
AB (RC) =

 min{C(γAB), C(γAB + α2γCB)− (RC − CL)} if RC − CL < C(α2γCB)

C
(

γAB

1+α2γCB

)
otherwise

(26)

B. Sending the Message Decoded First by D (WC1)

When WC1 is sent over the backbone, we set RC1 = CL, resulting in

α = α1 =
1− 2−CL

1− 1/(1 + γCD)
(27)

and RC2 = RC − CL. After cancelling out XC1(WC1), the multiple access channel at B is given as:

YB,i = hABXA,i + hCB(1−
√
α1)XC2,i +NB,i. (28)

The following result follows from the same arguments as in Appendix-C.

Lemma 2: If BS C transmits in downlink with rate RC using the superposition coding scheme with (27), the

maximum rate achievable on the link A-B is given by:

S
(α1)
AB (RC) =

 min{C(γAB), C(γAB + (1− α1)γCB)− (RC − CL)} if RC − CL < C((1− α1)γCB)

C
(

γAB

1+(1−α1)γCB

)
otherwise

(29)
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C. Achievable Secrecy Rate with Superposition Coding

Accounting for both options of sending either WC1 or WC2 over the backbone, we can now state the following

result.
Proposition 4: If BS C transmits in downlink with rate RC , the superposition-based strategy achieves the

following rate RA,s(RC) with perfect secrecy:

RA,s(RC) =
“
SSUPAB (RC)− SAE(RC)

”+

(30)

with

SSUPAB (RC) = max
i=1,2

{
S

(αi)
AB (RC)

}
, (31)

where S(αi)
AB (RC) are defined in (26) and (29), and SAE(RC) is given by (7).

The proposition follows from Lemmas 2 and 1 and similar arguments as in the proof of Proposition 1 [10]. In

particular, following such arguments, one should calculate the maximum rate decodable by the eavesdropper E for

given RC and for the rate splitting strategy. It can be shown that this maximum rate is indeed SAE(RC) as in (30),

that is, it is the same rate that we would have if BS C had used a single-rate Gaussian codebook. This is because

from (19),(22), and (23), it can be proved that any of the superposed messages is decodable if and only if the other

is.

A final remark concerns a comparison between the superposition strategy and elementary quantization. It can be

shown by comparing (30) and (16) (with (14)) that for downlink rate RC → ∞ the performance of both scheme

coincide since SSUPAB (RC)→ SEQAB (RC) = Csum − C(γCB + γQ).

D. Some Comments on the Superposition Strategy

The achievable secrecy rate (30) contains a maximization over the choice of which message should be sent over

the backhaul link. This choice is made so as to optimize the maximum achievable rate on the link A-B (31). In

this regard, some general conclusion can be drawn by noticing that from the assumption RC = C(γCD) ≥ CL it

can be verified that

α2 ≥ 1− α1. (32)

Then the following observations can be made:

• For large downlink rates RC , such that:

RC ≥ CL + C(α2γCB) = C(2CLγCB)
(a)

≥ CL + C((1− α1)γCB) (33)

where (a) follows from (32)it follows from Lemmas 1 and 2 that

S
(α2)
AB (RC) = C

(
γAB

1 + α2γCB

)
≤ C

(
γAB

1 + (1− α1)γCB

)
= S

(α1)
AB (RC) (34)

which means that sending XC1 over the backbone offers higher achievable rates RA.

• For low downlink rates RC , such that:

RC ≤ CL + C((1− α1)γCB) =≤ CL + C(α2γCB) (35)
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it follows from Lemmas 1 and 2 that

S
(α2)
AB (RC) = min{C(γAB), C(γAB + α2γCB)− (RC − CL)}

S
(α1)
AB (RC) = min{C(γAB), C(γAB + (1− α1)γCB)− (RC − CL)}

thus S
(α2)
AB (RC) ≥ S

(α1)
AB (RC) (36)

which means that sending XC2 over the backbone offers higher achievable rates RA.

We give an intuitive explanation of the previous result. Note that if a signal contains two superposed messages and

one of those messages is known a priori, then this is equivalent to cancelling power from the composite message.

For example, if in (21) the message WC1 is known, then we cancel the signal
√
αXC1, which corresponds to the

power of αPC . Now we can ask the following question: If we fix the condition RC1 +RC2 = RC and we set one

of the rates (RC1 or RC2) to be equal to CL, then in which case we can cancel the maximal amount of power

from the composite message? From the previous discussions, if RCj = CL then we determine α = αj . If WC2

is sent over the backhaul then j = 2 and the amount of power cancelled is (1 − α2)PC . If j = 1, the amount

of power cancelled is α1PC . Hence, using the condition (32), we conclude that sending WC2 over the backhaul

implies minimal possible cancellation of power from the composite message (and thus at the receiver B) and the

remaining power of the wireless signal from C at B is largest possible. At relatively low RC , this effect increases

the interval of values for RC that are completely decodable at B and that is why sending WC2 over the backhaul

gives higher achievable rate SAB(RC). However, when the rate RC is large and thus not completely decodable at

B, then XC1 acts as a noise and such a high remaining power harms the rate achievable for large RC . On the other

hand, when WC1 is sent over the backbone, the uncancelled part of the composite message has minimum possible

power, which is desirable when that portion of the signal sent by C is undecodable and has to be treated as noise.

VI. NUMERICAL EXAMPLES

In this section we provide some numerical examples for the performance of the proposed confidential transmission

schemes when all the wireless channels are deterministic (unfaded), as assumed in the previous sections. We

will use the following acronyms: EQ for Elementary Quantization, WZ for Wyner–Ziv quantization, and SUP for

transmission based on superposition coding. In the cases RC ≤ CL, the message from C is completely transferred

via the backhaul, such that all the schemes behave identically.

We start by considering the maximum achievable rates with no confidentiality constrains from terminal A to BS

B, namely SEQAB (RC) (16) (14); SEQWZ(RC) (16) (18); S(α1)
AB (RC) (29) and S

(α2)
AB (RC) (26). Fig. 3 depicts such

rates versus the downlink rate RC . For the chosen parameters (γAB = γCB = 10 [dB] and CL = 2 [bps]), WZ

is to be preferred for any value of the downlink rate RC . Moreover, by appropriately selecting which message is

sent over the backbone (WC1 or WC2), that is choosing between S
(α1)
AB (RC) and S

(α2)
AB (RC), the SUP strategy

outperforms the EQ for any RC . On this note, confirming the discussion of Sec. 3, we have that for lower RC it is

more convenient to send WC2 over the backbone (S(α2)
AB (RC) > S

(α1)
AB (RC)) and viceversa for larger RC . Finally,
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we remark that, as pointed out in Sec. V-C, if the rate RC is large enough, the EQ strategy obtains a constant

secrecy rate RC , which coincides with the asymptotic achievable for of the SUP strategy.

Fig. 4 shows the achievable rate without confidentiality constraints (as Fig. 3) versus the SNR between the BSs

γCB . Here it can be seen that, for low values of γCB the SUP strategy outperforms the WZ strategy. The U-shape

of all the curves versus γCB can be explained similarly to the arguments used to study interference channels with

with weak and strong interference. Consider for instance the case CL = 0. For low γCB , BS B cannot decode RC ,

but the wireless interference from C at B is weak, which makes the achievable rate A−B high. As γCB increases,

but still not sufficiently as to make rate RC decodable at B, the achievable rate on link A−B drops. However, for
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strong interference γCB , BS B can decode RC and then subtract it, thus causing low (if any) penalty to the rate

from A to B.

Finally, Fig. 5 depicts the derived secrecy rates for different values of CL versus the downlink rate RC for

γAB = γCB = γAE = γCE = 20 [dB]. Note that with such a choice of SNRs the Noise–Forwarding strategy [10]

(CL = 0) offers a zero secrecy rate, which implies that in this case the presence of the backbone offers markedly

improved secrecy. Moreover, for small downlink rates RC , all proposed strategies have the same achievable secrecy

rate as in the case of large backbone capacity studied in Sec. III (CL > RC) up to a certain value of RC , which

is the largest for the WZ strategy. Finally, as pointed out above, WZ offers substantial gains with respect to EQ,

and, given the large value of γCB in this example, also with respect to SUP (where SUP and EQ have the same

performance for large RC).

VII. EXTENSION TO FADING CHANNELS

In this section, we turn the attention to fading channels and reconsider the performance of the proposed trans-

mission strategies under different assumptions regarding the channel state information available at different nodes.

A. Scenario and Performance Measures

The inter-BS link C − B is considered to be a line–of–sight and thus does not experience fading, i. e., γCB is

constant, while the other links are faded. We assume that a fading link hUV features Rayleigh fading, such that

the SNR of the link γUV is independently and exponentially distributed with average value γ̄UV . Furthermore, we

consider block fading, such that a fading channel stays constant for a sufficient number of symbols n, where for

coding purposes n can be assumed to be infinity. It is noted that the assumption regarding the inter-BS link γCB

is a reasonable if, e.g., the BSs are sufficiently elevated with respect to the rest of the network. As far as channel
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state information is concerned, terminal A is assumed to know the channel gains γAB (and the constant γCB),

beside the downlink rate RC , so that it can calculate (and transmit at) the maximum instantaneous achievable rate

SAB(RC) in (7). Other assumptions will be differently specified below for two scenarios, one in which we measure

the outage probability and the other in which we assess the scheduling performance.

1) No Channel State Information about E: Outage Probability: This scenario relies on the realistic assumption

that the instantaneous fading channel to the eavesdropper γAE and γCE are not known to terminal A and BS C. In

such a case, no non-zero rate is achievable with perfect secrecy, and therefore we one has to resort to the concept of

outage probability [13], [17]. In particular, given a target secrecy rate RA,s, the outage probability is defined as the

probability that such RA,s is not achievable for the given transmission technique. It is noted that, for each fading

realization, the value of RC is selected is here selected as (20), which requires BS C to know the instantaneous

downlink channel γCD −D.

2) Full Channel State Information: Scheduling Performance: In this second scenario, we assume full channel

state information about all the fading channels at both terminal A and BS C know. Given the full channel state

information, it is relevant here to generalize the model to include Mu uplink users A1, A2, . . . AMu that have data to

transmit to B and Md downlink users D1, D2, . . . DMd
potentially receiving from BS C. The goal is to analyze the

impact of different scheduling and transmission strategies on the performance of the network at hand over fading

channels. As throughout the paper, of particular interest is the impact of design choices on the trade-off between

the downlink (RC) and the uplink secrecy rate (RA,s).

Regarding uplink scheduling, we assume that the uplink user Ai∗ is selected so as to maximize the uplink rate:

i∗ = max
i
γAiB (37)

More interesting is the scheduling of the downlink transmissions from C, for which we define two different types

of schedulers:

• MaxRC scheduler: In this case the scheduled user Dj∗ is selected so as to maximize the downlink rate:

j∗ = max
j
γCDj

(38)

• MaxSec scheduler: In this case the selection of the user Dj∗ is done so as to maximize the uplink secrecy

rate RA,s. Accordingly, the selection of Dj∗ depends on which method is used by C to communicate over the

backbone. If WZ quantization is used, the scheduler is denoted MaxSecWZ and we have:

j∗,WZ = max
j
RWZ
A,s (log2(1 + γCDj

)), (39)

while if superposition is used, the scheduler is denoted MaxSecSUP and:

j∗,SUP = max
j
RsupA,s(log2(1 + γCDj

)). (40)

Note that, in general j∗,WZ 6= j∗,SUP . Moreover, notice that only the WZ strategy has been considered among the

quantization schemes to simplify the discussion and given the superior performance with respect to EQ. Performance

evaluation is then carried out by calculating the average secrecy rate R̄A,s(S) and the average downlink rate R̄C(S),
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where the average is taken with respect to the fading channels (γAi∗B , γAi∗E , γCE , γCDj∗ ) given the scheduler

S ∈ {MaxRC ,MaxSecsup,MaxSecWZ}.

B. Numerical Results

We now present some numerical results for the two considered scenarios.

1) Outage Probability: Fig. 6 depicts the outage probability as a function of the backbone capacity CL for

γ̄AB = γ̄AE = γ̄CE = γ̄CD = 15 [dB], γCB = 15 [dB], RA,s = 1 [bps]. We recall that the value RC is selected

according to the instantaneous SNR γCD as (20). The line CL ≥ RC is obtained by assuming that CL is large

enough to can accommodate any rate RC (strictly speaking, CL → ∞). It can be seen that, as CL increases, the

outage probability of all the strategies approaches this asymptotic performance, as it becomes highly probable that

the given CL can accommodate the rate C(γCD). The lower bound on the outage probability is obtained by assuming

that C sends pure Gaussian noise (which is the worst jamming signal, see, e.g., [20]), that is perfectly transferred

through the backbone (CL = ∞, RC = ∞). Another reference performance is set by the case PC = 0, where no

downlink transmission takes place. For low values of CL, the proposed schemes can actually be outperformed by

such solution. This is because, for low CL, the downlink transmission impairs not only reception at the eavesdropper

E, but also at the BS B.

Fig. 7 depicts the outage probability as a function of the inter-BS SNR γCB for γ̄AB = γ̄AE = γ̄CE = γ̄CD = 15

[dB], RA,s = 1 [bps] and CL = 2 [bps]. The U-shape of the curves for the proposed strategies can be explained

by resorting to similar arguments as for Fig. 4 (see Sec. VI). Following this remark, we note from Fig. 7 that the

gain in terms of outage probability of all strategies with respect to the case CL = 0 is most relevant in the regime

of weak/strong interference from BS C (i. e. low/high γCB). In fact, it is in this regime that the interference from
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BS C to B (due to the realizations where RC > CL) has the least impact on the performance of the link A−B.

2) Scheduling performance: Turning to the average rates that can be achieved in the scenario of full channel

state information, Fig. 8 considered the downlink rates in terms of the ratios R̄C(MaxSecsup)

R̄C(MaxRC)
and R̄C(MaxSecW Z)

R̄C(MaxRC)

for γ̄AB = γ̄AE = γ̄CD = γ̄CE = 15, γCB = 5 [dB]. These ratio demonstrate which fraction of the maximal

average downlink throughput is achieved if the scheduler at C aims to maximize the secrecy of the transmission

A−B. Equivalently, the complement to one of such ratios measure the fractional rate loss due to the requirement of

maximizing the secrecy of the transmission A−B. The results show that at high CL, maximum secrecy is coherent

with maximal rate RC . However, from Fig. 8 it is seen that for lower CL maximal security is not always achieved

by maximizing RC , which is in accordance with the observations from Fig. 5. Regarding the SUP strategy, there is

one degenerative effect, which can be explained by observing the SUP curve on Fig. 5. It can be seen (on the figure

not discernible for CL = 2) that for large RC , the secrecy rate of the SUP scheme slowly decreases towards the

asymptotic value (achieved for RC → ∞), while for the quantization schemes there are finite values of RC after

which the secrecy rate becomes constant. Hence, the scheduler that maximizes the secrecy tends to select lower

rates RC when SUP is applied. Nevertheless, when CL = 0, both SUP and WZ operate in identical way.

The average secrecy rates from A to B are then shown in Fig. 9-10 in terms of the ratios R̄As (MaxSecsup)

R̄A,s(MaxRC)
and

R̄A,s(MaxSecW Z)

R̄A,s(MaxRC)
. Thus, the figures shows, for each transmission method (WZ or SUP), how much the secrecy

rate is improved if the scheduler at C determines the downlink user (and the corresponding rate RC) in order

to maximize the instantaneous rate RA,s rather than the downlink rate RC . It can be seen that for a weak link

C − B (low γCB), as on Fig. 9 (where γCB = 5 [dB]), the gain in the secrecy rate for the MaxSec schedulers

is insignificant, which means that application of opportunistic scheduler MaxRC at C will be also good for the

security of the link A−B. Conversely, for a strong link C−B, the results on Fig. 9-10 show that the secrecy of the
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link A−B can be boosted by selecting appropriate non-maximal RC and in this case the opportunistic downlink

scheduler at C is not compatible with the secrecy requirements.

VIII. CONCLUSIONS

Optimized scheduling and multi-cell BS cooperation are becoming increasingly standard features of current and

future wireless infrastructure (cellular) networks. This work has advanced the notion that such technologies can

play an important role in ensuring confidentiality (security) of wireless transmissions. From the analysis of several

transmission strategies under different assumptions regarding propagation channels and corresponding channel state

information, a number of conclusions have been drawn. In particular, a technique based on Wyner-Ziv compression
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over the backbone link connecting the BSs has proved to be the most promising, with the added benefit of requiring

no modifications on the uplink/ downlink transmissions of a conventional cellular systems. When complexity of

Wyner-Ziv encoding is an issue, one could resort to simpler quantization schemes with a performance loss that

depends on the network topology. Or else, if willing to modify the downlink transmission/ reception strategy for

the sake of ensuring uplink confidentiality, one could opt for channel coding (rather than source coding) based

techniques which perform close (or even better than) Wyner-Ziv under some circumstances.

There are several interesting extensions of this work. In this paper we have shown some achievable rates, but it is

important to know what is the true secrecy capacity of the introduced method or at least to derive some tight upper

bounds. Furthermore, the considered scenario can be extended to multiple cooperating base stations, which raises the

question how to organize the transmission/receive schedule for the access points in order to maximize the secrecy

effect, while not degrading the throughput. Finally, the study can be extended to consider colluding eavesdroppers,

which attempt to jointly decode the desired signal and the interference from the downlink transmissions.

APPENDIX I

APPENDIX-A: PROOF OF PROPOSITION 3

The equivalent signal seen at BS B over both the wireless and wired channels in a given time instant i can be

written as a vector MAC channel:

ỸB,i =

 YB,i

X̂C,i

 =

 hAB hCB

0 1

 XA,i

XC,i

+

 Ni

Qi

 . (41)

Let SEQAB (RC) denote the maximum achievable rates from A to B for a given transmission rate RC when the

quantization strategy is used (recall (7)). In order to determine SEQAB (RC), we have to examine the achievable
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region for the vector MAC channel with output (41):

RAB < I(XA; ỸB |XC) (42a)

RCB < I(XC ; ỸB |XA) (42b)

RAB +RCB < I(XA, XC ; ỸB) (42c)

where we have dropped the index i for simplicity) and XA represents normally–distributed complex signal trans-

mitted by A. The mutual informations in (V-A) can be determined as follows:

I(XA; ỸB |XC) = I(XA, YB |XC) = C(γAB) (43)

since X̂C is conditionally independent of XA when XC is given. The second bound leads to:

I(XC ; ỸB |XA) = C(γCB + γQ) (44)

while the third condition is:

I(XA, XC ; ỸB) = (45)

= I(XC ; ỸB) + I(XA; ỸB |XC) = (46)

(a)
= C

(
γCB

1 + γAB
+ γQ

)
+ I(XA;YB |XC) (47)

= C
(

γCB
1 + γAB

+ γQ

)
+ C(γAB) (48)

= log2

(
2CL(1 + γAB) + γCB

)
(49)

where (a) follows again from XA being conditionally independent of X̂C for given XC . The rate SEQAB (RC) in (3)

then easily follows.

APPENDIX II

APPENDIX-B: PROOF OF (50)

Using the same model for the vector MAC channel as in (41), we can write:

CL = I(XC ; X̂C |YB) = I(XC ; X̂C , YB)− I(XC ;YB) =

= C
(

γCB
1 + γAB

+ γQ

)
− C

(
γCB

1 + γAB

)
=

= log2

(
1 +

γQ
1 + γCB

1+γAB

)
(50)

and thus (50) easily follows.

October 9, 2018 DRAFT



20

APPENDIX III

APPENDIX-C: PROOF OF LEMMA 1

Similarly to Appendix-A, we need to determine the maximal achievable rate S(α2)
AB (RC). We start from the MAC

capacity region obtained after the cancellation of WC2:

RA < C(γAB) (51)

RC1 = RC − CL < C(α2γCB) (52)

RA +RC − CL < C(γAB + α2γCB), (53)

Depending on the value of RC , we have two cases to consider, namely, when RC1 is decodable at B (RC −CL <

C(α2γCB)) and when RC1 is not (RC − CL ≥ C(α2γCB)). Analysis of these two cases easily leads to (26).
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