
1

Assessing Fingerprint Individuality In Presence Of Noisy Minutiae

Sarat C. Dass

Abstract

Fingerprint image quality is an important source of intra-class variability. When the underlying image quality

is poor, human experts as well as automatic systems are more likely to make errors in minutiae detection and

matching by either missing true features or detecting spurious ones. As a consequence, fingerprint individuality

estimates change depending on the quality of the underlying images. The goal of this paper is to quantitatively

study the effect of noise in minutiae detection and localization, resulting from varying image quality, on

fingerprint individuality. The measure of fingerprint individuality is modeled as a function of image quality via

a random effects model and methodology for the estimation of unknown parameters is developed in a Bayesian

framework. Empirical results on two databases, one in-house and another publicly available, demonstrate how

the measure of fingerprint individuality increases as image quality becomes poor. The measure corresponding

to the “12-point match” with 26 observed minutiae in the query and template fingerprints increases by several
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orders of magnitude when the fingerprint quality degrades from “best” to “poor”.

Index Terms

Biometric authentication, fingerprint-based authentication, fingerprint individuality, fingerprint image quality.

I. Introduction

Fingerprint individuality is the study of the extent of uniqueness of fingerprints in a target population, and

is the central premise for expert testimony in court. Fingerprint experts compare the salient features, typically

minutiae, of a latent print lifted from a crime scene with those taken from the defendant. A reasonably high

degree of match between minutiae leads the experts to testify irrefutably that the owner of the latent print and

the defendant are one and the same person. Central to establishing an identity based on fingerprint evidence is

the assumption of discernible uniqueness; fingerprint minutiae of different individuals are observably different,

and therefore, when two prints share many common minutiae, the experts conclude that the owners of the two

different prints are one and the same person.

For decades, the testimony of fingerprint experts was almost never excluded from these cases, and on

cross-examination, the foundations and basis of this testimony were rarely questioned. A significant event that

questioned this trend occurred in 1993 in the case of Daubert vs. Merrell Dow Pharmaceuticals [1], where

the U.S. Supreme Court ruled that in order for expert forensic testimony to be allowed in courts, it had to

be subject to the criteria of scientific validation (see [2] for details). Following the Daubert ruling, forensic

evidence based on fingerprints was first challenged in the 1999 case of U.S. v. Byron C. Mitchell [3], and

subsequently, in 20 other cases involving fingerprint evidence. The main concern with the admissibility of

fingerprint evidence is the problem of individualization, namely, that the fundamental premise for asserting the

uniqueness of fingerprints has not been scientifically validated and matching error rates are unknown [2], [4].
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(a) Finger 1: GT (b) Finger 1: EX

(c) Finger 2: GT (d) Finger 2: EX

Fig. 1. Spurious and missed minutiae in two fingerprint images in the IBM database [2].

More recently, in the Bryan K. Rose case in 2008 [5], a Baltimore County Circuit judge ruled that fingerprint

evidence was not reliable enough to be used in a capital murder case, and she denied the prosecutors’ request

to reconsider that decision.

The central question in a court of law is: What is the uncertainty associated with the experts’ judgement

when matches are decided by fingerprint evidence? How likely can an erroneous decision be made for the given

latent print? For example, if the latent print is of poor quality, then it is reasonable to believe that the match

made by the experts is more prone to error. The main issue with expert testimony is the lack of quantification

of the uncertainty in their decision. It is not known how fingerprint individuality estimates change as a function

of the image quality, given the uncertainty present in recovering the true minutiae.

A measure of fingerprint individuality is given by the probability of a random correspondence (PRC), which

is the probability that two minutiae, one from the query and the other from the template fingerprint, randomly

corresponds with each other. Spurious features have the effect of increasing random correspondences, whereas

missed minutiae decreases the number of true correspondences. These two types of errors, in turn, affect the
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PRC as a function of image quality. Figure 1 shows two fingerprint images from the IBM database [2]. The left

and right panels of Figure 1 illustrate two different types of ‘extractors’ used for these images. The notations

‘GT’ (for panels (a) and (c)) and ‘EX’ (for panels (b) and (d)), respectively, indicates minutiae extraction by

manual inspection and by an automatic algorithm reported in [6]. Minutiae in panels (a) and (c) (respectively, (b)

and (d)) enclosed in a circle (respectively, square) are missed (respectively, spurious) minutiae. Figure 2 shows

the random correspondences generated when noisy minutiae is used (i.e., EX panels) compared to ground truth

minutiae (GT panels). Panel (a) (respectively, (b)) matches the ground truth (extracted) minutiae of Fingers 1

and 2 in Figure 1. Clearly, the information on the number of matches is different. Nine true correspondences are

obtained for panel (a). Only one true correspondence (number 4) is recovered in panel (b) while the remaining

true correspondences are not recovered at all due to missed minutiae. Further, three false correspondences are

generated due to spurious minutiae in panel (b). Finally, Figure 3 shows the classification of minutiae (either

missed or spurious) as a function of the underlying image quality. Panels (a) and (c) (respectively, (b) and (d))

show GT (respectively, EX) minutiae for two fingerprint images with the image in the top row having a better

quality measure. As image quality degrades, more missed and spurious minutiae are generated resulting in a

greater number of missed and spurious correspondences.

The goal of this paper is to extend the framework for assessing fingerprint individuality of [4] by modeling

errors in minutiae detection and localization. The aim is to analyze the probability of obtaining random

correspondences in the presence of noisy minutiae (Figure 2(b)) as opposed to ground truth minutiae (Figure

2(a)). The methodology involves two main steps: First, a flexible class of statistical models is elicited for noisy

minutiae, and used to derive PRCs. Second, the estimated PRCs are modeled as a function of the quality of

the fingerprint pair via a log-linear random effects model. Table I gives an outline of our work in comparison

to two previous models of fingerprint individuality, [2] and [4].

The rest of this paper is organized as follows: Section II gives a brief introduction to the modelling of

fingerprint minutiae in terms of statistical mixture models. Section III discusses the log-linear random effects
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(a) (b)

Fig. 2. Effect of spurious and missed minutiae on random correspondences. Panels (a): GT and (b):

EX minutiae

Source of fingerprint variability Pankanti et al. [2] Zhu et al. [4] Proposed approach

Minutiae variability within a finger Y Y Y

Minutiae variability in different fingers N Y Y

Spurious and missed minutiae N N Y

TABLE I. Summary of sources of variability considered in three studies on fingerprint individuality.

Y=Yes, N=No.

model that is used to study how the probability of random correspondences change as a function of the

underlying image quality. Section IV presents the methodology for fitting the log-linear models in a Bayesian

framework. Section V presents the fitting of the models to two databases, namely, the IBM ground truth and

NIST fingerprint databases. Several tests for the goodness of fit of the log-linear random effects models to the

two databases is presented. Section VI presents the summary and conclusion.

II. Mixture Models on Minutiae

The first stage of our methodology involves fitting mixture models to the distribution of minutiae in each

fingerprint image. The motivation for using mixture models is that they are a flexible family of distributions

capable of capturing salient characteristics of minutiae occurrence; for example, clustering tendencies and
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(a) GT (b) EX

(c) GT (d) EX

Fig. 3. Spurious and missed minutiae in two fingerprint images of different quality in the IBM

database.

spatial dependence between the location and orientation of minutiae. The current discussion closely follows

the framework developed in [4], but is presented here for completeness. For each fingerprint, letk denote the

total number of minutiae which are represented by their location and direction information{ (Sj , Dj), j =

1, 2, . . . k }, whereSj ∈ R2 and Dj ∈ [0, 2π). Minutiae referred to here is assumed to be made available by

some feature extractor; later on, the ‘GT’, ‘EX’ and ‘MINDTCT’ (which corresponds to minutiae extracted

using the NIST minutiae extractor) type minutiae will be considered in Section V. The distribution proposed

in [4] for the minutiae is given by theG-component mixture

f( s, θ |ΘG) =
G∑

g=1

τg fX
g (s |µg, Σg) · fD

g (θ | νg, κg), (1)

wheres ≡ (x, y) ∈ R2, θ ∈ [0, 2π), and

fX
g ( s |µg, Σg ) = φ2( s |µg, Σg ) (2)
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is the bivariate Gaussian density with meanµg and covariance matrixΣg that represents the distribution of

minutiae location from theg-th component. The second density in the mixture of equation (1)

fD
g (θ | νg, κg, pg) =





pg v(θ) if θ ∈ [0, π),

(1− pg) v(θ − π) if θ ∈ [π, 2π),
(3)

is a two-component mixture of Von-Mises distributions that represents the distribution of minutiae direction

from theg-th component; here,v(θ) is the Von-Mises distribution defined as

v(θ) ≡ v( θ | νg, κg) =
2

I0(κg)
exp{κg cos2(θ − νg)}, (4)

with I0(κg) given by

I0(κg) =
∫ 2π

0
exp{κg cos(θ − νg)} dθ. (5)

In (4), νg and κg represent the mean angle and the precision (inverse of the variance) of the Von-Mises

distribution, respectively. The proposed mixture models were shown to be a flexible class of distributions [4]

that satisfactorily represent all characteristics of minutiae variability, including clustering tendencies (see, for

example, [7] and [8]), and dependence between the minutiae location and direction. Estimation of the unknown

parametersΘG = {G, ((τg, µg,Σg, νg, κg, pg), g = 1, 2, . . . , G) } is carried out using the EM algorithm [9],

and the optimal number of components,G∗, is selected using the Bayes Information Criteria (BIC) (see [4]

for more details).

Subsequently, the mixture models are used to obtain the probability of a random correspondence as a

measure of fingerprint individuality. For an impostor query and template pair of fingerprints(Q,T ), Zhu et al.

[4] obtained a closed form expression for the probability of a random correspondence (PRC) corresponding to

w minutiae matches. The probability of obtaining exactlyw matches given that there arem andn minutiae in

Q andT , respectively, is derived to have the Poisson probability mass function

p∗(w ; Q,T ) =
e−λ(Q,T ) λ(Q,T )w

w!
(6)
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with meanλ(Q,T ). The expression ofλ(Q, T ) was obtained in [4] as

λ(Q, T ) = m np(Q,T ), (7)

where

p(Q,T ) = P (|SQ − ST |s ≤ r0 and|DQ −DT |a ≤ d0) (8)

denotes the probability of a match when(SQ, DQ) (respectively,(ST , DT )) is a random minutiae from the

mixture distribution fitted toQ (respectively,T ). In (8), | · |s (respectively,| · |a) is the Euclidean distance

(respectively, angular distance) with the following expressions for pointss1 ≡ (x1, y1) ands2 ≡ (x2, y2) ∈ R2,

and anglesθ1, θ2 in [0, 2π): |s1 − s2|s =
√

(x1 − y1)2 + (x2 − y2)2 and |θ1 − θ2|a = min(|θ1 − θ2|, 2π −

|θ1 − θ2|). In terms of the fitted mixture models toQ and T , fQ and fT , respectively,p(Q,T ) is calculated

from the formula

p(Q,T ) =
∫ ∫

(s2,θ2)∈B(s1,θ1)
fQ(s1, θ1) fT (s2, θ2) ds2 dθ2 ds1 dθ1, (9)

whereB(x, θ1) is the (r0, d0)-ball of (s1, θ1) (that is, the set of all(s2, θ2) with spatial and angular distances

less thanr0 andd0, respectively, from(s1, θ1)).

The mean parameterλ(Q,T ) in equation (6) can be interpreted to be the expected number of matches;

there are a total ofm n possible match pairings with the probability of each match beingp(Q,T ). The PRC

corresponding tow matches is the probability of observingw or more matches betweenQ andT , and has the

formula

PRC(w |m, n ) =
∑

u≥w

p∗(u ; Q,T ), (10)

wherep∗(u ; Q,T ) is as given in (6).

III. Incorporating Fingerprint Image Quality

The probability of random correspondence (PRC) measures the likelihood of a random match between two

different fingerprints, and therefore, reflects the amount of uncertainty in the observed match. When poor quality
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images are used for determining a match, the associated uncertainty is much larger. It follows that the PRC is

an increasing function of quality degradation; lower (respectively, higher) quality fingerprint images results in

higher (respectively, lower) values of the PRC. The Poisson distribution is an example of a monotone likelihood

ratio (MLR) family in its parameterλ; see [10]. The MLR property implies that the PRC in equation (10) is an

increasing function ofλ. From (7), it follows thatPRC(w | m, n ) is an increasing function of the probability

of a matchp(Q,T ) for fixed m andn. Thus, it is sufficient to investigate howp(Q, T ) (as opposed to the PRC

in equation (10)) can be modelled as a function of the quality degradation ofQ andT .

The image quality ofQ andT is obtained using a quality extractor that quantifies numerically the clarity of

ridge valley structures. In this study, two quality extractors are used: (i) the quality extractor, ‘QUAL’, reported

in [11] which uses a wavelet transform to measure image clarity, and (ii) the NIST quality extractor, ‘NFIQ’,

as reported in [12]. The quality extractor ‘QUAL’ outputs a numberQ∗ between 0 and 1 with higher values

indicating better quality images. The transformationQ = 1−Q∗ is then used to reverse the direction of image

degradation. Subsequently, a total ofB = 3 equal proportion quality bins are constructed to group the quality

measure withG1 = [0, 0.4),G2 = [0.4, 0.7) and G3 = [0.7, 1] (see Figure 5). The ‘QUAL’ quality extractor

eventually outputs a quality label1, 2 or 3, with 1 and 3, respectively, corresponding to the best and worst

quality images. The NFIQ algorithm is an implementation of the “NIST Image Quality” algorithm based on

neural networks as described in [12]. For the NFIQ quality extractor, the output is a quality label numbered

1, 2, · · · , 5 with 1 and5 corresponding to the best and worst quality images, respectively. The final quality bins

are arranged according to increasing quality degradation, namely,1, 2, · · · , B whereB = 3 andB = 5 in the

cases of ‘QUAL’ and ‘NFIQ’, respectively.

The following model is a first step towards investigating how the PRCs change as a function of image quality

degradation: For the query and template pair(Q,T ),

logp(Q,T ) = µ + γ(q(Q), q(T )) + ε(Q,T ) (11)

whereq(S) is the quality measure of fingerprintS based on either ‘QUAL’ or ‘NFIQ’ taking values in the set
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formula (9), andε(Q, T ) are independent and identically distributed random errors distributed as normal with

mean0 and unknown varianceσ2. This will be called Model I from now on. The motivation for Model I in

(11) is that the probability of a match (and subsequently the PRC) can be expressed as a linear combination

of an overall meanµ and fixed effectsγ(1,1), γ(1,2), · · · , γ(B,B) that depend on the quality of the underlying

fingerprint images. Since the bins are ordered in terms of decreasing quality, the probability of a match will

increase as the index of the quality bin increases (as discussed earlier). Thus, it is natural to have a restriction

on the parametersγ(r,s) given by

γ(r,s1) ≤ γ(r,s2) for s1 ≤ s2 and every fixedr = 1, 2, . . . , B, and

γ(r1,s) ≤ γ(r2,s) for r1 ≤ r2 and every fixeds = 1, 2, . . . , B. (12)

Parameters of Model I cannot be estimated uniquely due to model non-identifiability, meaning that different

combinations of the model parameters give rise to the same distribution for logp(Q,T ). To avoid the non-

identifiability problem, it is necessary to impose some restrictions on theγ(r,s) parameters. We assume that

γ(1,1) = 0 with the interpretation thatµ is the the baseline log probability of a match corresponding to the best

quality label pair(q(Q), q(T )) = (1, 1) and all other quality combinations represent increases inp(Q,T ) over

this baseline.

Model I is a first step towards building a framework that incorporates image quality effects into fingerprint

individuality estimates. The model may be too simple to adequately fit to large databases as demonstrated in

Section V. The reason for this under-fitting is that other main as well as correlation effects have not been

accounted for in the model formulation of (11). For example, there is significant correlation between the

estimates ofp(Q,T ) and p(Q′, T ′) when Q and Q′ (and T and T ′) are different impressions of the same

fingers. One way of incorporating correlation into the framework of (11) is to consider the following mixed
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effects model, Model II, as follows:

logp(Q,T ) = µ + γ(q(Q), q(T )) + βch(Q) + βch(T ) + αFinger(Q) + αFinger(T ) + ε(Q,T ), (13)

whereFinger(S) represents the finger label for the impressionS andαFinger(S) are independent and identically

distributed random variables distributed as normal with mean zero and unknown varianceσ2
α. For the model

in (13), the correlation between logp(Q,T ) and logp(Q′, T ′) can be computed to be

Corr(logp(Q,T ), logp(Q′, T ′)) =
2σ2

α

2σ2
α + σ2

=
2

2 + ν
(14)

whereν ≡ σ2/σ2
α > 0 is the ratio of the two variance components. Further, in (13), extra fixed effects terms

can be incorporated to represent additional information or characteristics of the input image pair(Q,T ). These

fixed effects are represented in (13) by theβch(S) terms wherech(S) represents some additional characteristic

of impressionS taking values in the label set{1, 2, · · · , C}. For the NIST database, for example,ch(S) will

represent the fingerprint class information ‘L’, ‘R’, ‘W’ and ‘A’ withC = 4. Then,βch(S) represents the effect

on logp(Q,T ) corresponding to classch(S).

IV. A Bayesian Framework for Inference

The estimation of model parameters in (11) and (13) is carried out in a Bayesian framework which is briefly

discussed here. The set of all parameters corresponding to the two models is denoted byΘ with the understand-

ing thatΘ = (µ, γ(r,s), r, s = 1, 2, · · · , B, σ2) andΘ = (µ, γ(r,s), r, s = 1, 2, · · · , B, β1, β2, · · · , βC , σ2, ν) for

Models I and II, respectively. The Bayesian inferential framework needs two inputs: (1) the likelihood of the

data, logp(Q,T ), given Θ, which we denote bỳ(data |Θ), and (2) a prior onΘ denoted byπ0(Θ). Given

the likelihood and prior, the posterior ofΘ is computed via Bayes Theorem:

π0(Θ | data) =
`(data |Θ) · π0(Θ)∫

Θ `(data |Θ) · π0(Θ) dΘ
. (15)

In (15), the integral in the denominator is taken over the entire space ofΘ. The posteriorπ0(Θ | data) represents

the best distribution of uncertainty associated with the unknown parameters once the data has been observed.
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A point estimate ofΘ can be obtained by computing the posterior mean from (15) while the variability can

be ascertained by computing the posterior variance. The best range of most likely values ofΘ can be obtained

from the highest posterior density sets (HPD sets) of (15).

For the present application, the prior onΘ is taken to be “flat” or non-informative. For Model I, we have

π0(Θ) =
(

1
σ2

dσ2
)

(dµ)




B∏

r,s=1

dγ(r,s)


 (16)

on the setγ(r,s) where restriction (12) is satisfied. For Model II, the prior is

π0(Θ) =
(

1
σ2

dσ2
)

(G(ν ; α, β) dν) (dµ )

(
C∏

u=1

dβu

) 


B∏

r,s=1

dγ(r,s)


 (17)

on the set where (12) is satisfied; in (17),G(α, β) is the Gamma probability density function given by

G(ν ; α0, β0) =
1

Γ(α0) βα0
0

να0−1 exp{−ν/β0} (18)

with shape and scale parametersα0 andβ0, respectively. Non-informative priors are attractive in the sense that

they allow the data to “speak for themselves” without any subjective input. However, since non-informative

priors are typically improper (that is, they integrate to infinity), it is necessary to ensure that the resulting

posterior distribution obtained is proper (that is, a proper probability distribution so that quantities such as the

mean and variance makes sense and is well defined). Due to page-limit restrictions, the interested reader is

referred to the technical report Dass (2009) [13] where propriety of the posterior is established for both models

considered here. Further, from the proof, it follows that the posterior for the extended model cannot be proper

unless the prior onν is proper, and that is the reason for choosing the Gamma distribution onν. Although this

limitation is unavoidable, the hyper-parametersα0 andβ0 are estimated from the database (and not subjectively

determined) to allow maximum support from data in this case.

Inference for the posterior can be carried out using Markov Chain Monte Carlo (MCMC) techniques which are

popular as Bayesian computational tools. The MCMC technique constructs a Markov Chain ofΘ realizations,

say,Θ1, Θ2, . . . ,ΘT , . . ., with stationary distribution given by the posterior distribution (15). As a result, the

distribution of ΘT is approximately the posterior distribution (15) asT → ∞. The reader is referred to [14]
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which gives an excellent introduction to MCMC methods in Bayesian statistics. In the present case, we use

a special case of the MCMC procedure called the Gibbs sampler which samples from suitable conditional

distributions derived from the full posterior. The reader is referred to Dass (2009) [13] for the details.

A. Convergence Diagnostics

Before samples from the Gibbs sampler can be used to calculate the posterior mean, variance and HPD

sets, convergence diagnostics tests has to be performed. A popular method for assessing convergence is with

the Gelman-Rubin R statistic (see [14]). A total ofI ≥ 2 initial chains are run starting from different initial

estimates ofΘ, and the ratio of between chain variance to within chain variance is calculated for each component

of Θ based on the samples of the Gibbs chain. Convergence is established ifR-statistic corresponding to each

Θ component is close to 1.

B. Goodness of Fit

Goodness of fit tests are conducted to determine whether the models proposed earlier are an adequate

representation of variability in the fingerprint databases. The subsequent discussion is based on Model II in

(13) with necessary adjustments made in the presentation for Model I in (11). Goodness of fit tests are conducted

in the following way: Define the residual

r(Q,T ) = logp(Q,T )− µ− γ(q(Q), q(T )) − βch(Q) − βch(T ) − αFinger(Q) − αFinger(T ) (19)

for each(Q, T ) pair in the database, and the mean residual to be

r̄0 =

∑
(Q,T )

impostor pairs
r(Q,T )

N0
(20)

whereN0 is the total number of impostor pairs in the database. It can be shown that the posterior mean ofr̄0

is 0 under Model II, and therefore,̄r0 values calculated fromΘ samples from the posterior distribution should

be close to0. This is determined by constructing the95% HPD set forr̄0, R0, based on theΘ samples from
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Database No. of fingerprints No. of different fingers ni

IBM 900 269 2− 8

NIST 4, 000 2, 000 2

TABLE II. Summary information of the two databases used in the experiments.

the Gibbs chain and checking if0 belongs to this set. We define

L0 =





1 if 0 ∈ R0, and

0, otherwise.

(21)

Two other goodness of fit measures are derived similarly. Defining

r1(Q,T ) =
(
µ + γ(q(Q), q(T )) + βch(Q) + βch(T )

)
· r(Q,T ) (22)

and

r2(Q,T ) =
(
µ + γ(q(Q), q(T )) + βch(Q) + βch(T ) + αFinger(Q) + αFinger(T )

)
· r(Q, T ), (23)

it can be similarly shown that the means ofr̄1 and r̄2 is zero under Model II. In these cases, the goodness of

fit measure translates to

Lj =





1 if 0 ∈ Rj , and

0, otherwise.

(24)

for j = 1, 2, whereRj is the95% posterior HPD set based on̄rj .

V. Experimental Results

Two fingerprint databases, the in-house IBM [2] and the publicly available NIST [15] databases, are con-

sidered in our experiments (see Table II). The IBM database consists of fingerprint impressions of 450 pairs

of fingers with manually labeled minutiae (ground truth) and minutiae correspondences between each pair.

There areF = 269 distinct fingers in the IBM database with the number of multiple impressions per finger

(ni) varying from2 to 8. The ground truth minutiae was denoted by the notation ‘GT’ to represent one mode

of minutiae extraction. We also considered the feature extraction and matching algorithm of [6] to obtain
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Fig. 4. Mixture model fitting to ground truth minutiae distribution of a fingerprint. Panel (a) and (b)

show the clusters in 2-D and 3-D spaces, respectively.

(a) ‘Best’, Label=1(b) ‘Moderate’, Label=2(c) ‘Poor’, Label=3

Fig. 5. Examples of fingerprint images in the three categories of quality for ‘QUAL’.

the list of extracted (EX) minutiae as our second mode of minutiae extraction. A third state-of-the-art and

publicly available minutiae extractor is also considered, namely the ‘MINDTCT’ minutiae extractor developed

by the NIST Image Group. The ‘MINDTCT’ algorithm is a fingerprint feature extractor algorithm inspired

by the Home Office’s Automatic Fingerprint Recognition System (see [16]). Executing the algorithm on an

input fingerprint gives information on the location and direction of minutiae as well as a measure of reliability

ranging from0 to 100, with higher values indicating better reliability.

The mixture model in (1) was fit to the three sets of minutiae (labeled as ’GT’, ‘EX’ and ‘MINDTCT’)

and was found to be a good fit to all the 450 image pairs (see Figure 4 for an example of fitting the mixture

distribution) for all the three minutiae extractors. Based on the mixture distributions, the value of logp(Q,T )

was obtained using equation (8), and then taking logarithms.

Both Models I and II were fit to the observed data consisting of the values of logp(Q,T ). Since the number of



16
Quality GT EX MINDTCT

measure Stat. Model I Model II Stat. Model I Model II Stat. Model I Model II

R 1.0033 1.0044 R 1.0025 1.0085 R 1.0288 1.0028

(0.0042) (0.0038) (0.0036) (0.0119) (0.0162) (0.0057)

QUAL L̄ 0.5000 0.9667 L̄ 0.5000 1.0000 L̄ 0.9000 1.0000

(0.000) (0.1054) (0.0000) (0.0000) (0.2108) (0.0000)

R 1.0001 1.0169 R 1.0001 1.0253 R 1.0331 1.0088

(0.0001) (0.0200) (0.0000) (0.0354) (0.0094) (0.0138)

NFIQ L̄ 0.9000 1.0000 L̄ 0.8500 1.0000 L̄ 0.9000 1.0000

(0.3100) (0.0000) (0.3375) (0.0000) (0.3162) (0.0000)

TABLE III. Convergence diagnostics and goodness of fit assessments for the IBM database. Entries

for each statistic correspond to the means and standard deviations (in parenthesis) of 10 repeated

experiments.

impostor pairs in the IBM database was very large (a total of900∗899 = 809, 100 pairs), the implementation of

the Gibbs sampler based on all impostor pairs is computationally time consuming and prohibitive. Alternatively,

a total ofN0 = 10, 000 impostor pairs were randomly selected and Models I and II were fit to this subset of

impostor pairs. The sampling procedure was repeated 10 times, and the average of the results of the10 trials

are reported for the two databases.

Estimates of the parameters were computed using the Bayesian framework described in Section IV with

pre-specified values ofα0 and β0 estimated from the database. The Gibbs chain was run up toT = 1, 000

iterations. Convergence diagnostics (see Section IV-A) performed indicates that the chains (we tookI = 3)

converged fromT = 900 onwards. See Table III for values of the Gelman-RubinR-statistic for Models I and

II based on the three feature extractors ‘GT’, ‘EX’ and ‘MINDTCT’ and the two quality measures ‘QUAL’

and ‘NFIQ’. The goodness of fit tests to judge the adequacy of the Models I and II uses the average ofLjs for

j = 0, 1, 2, L̄ = (L0 + L1 + L2)/3. Note that0 ≤ L̄ ≤ 1 with L̄ = 1 and L̄ = 0 indicating, respectively, the
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Quality GT EX MINDTCT

measure Parameter Model I Model II Parameter Model I Model II Parameter Model I Model II

µ −9.3018 −6.9532 µ −9.6962 −7.1833 µ −8.2468 −7.4278

(0.5670) (0.1742) (0.5253) (0.2872) (0.1737) (0.0559)

QUAL σ2 1.5862 0.9323 σ2 1.8077 1.0429 σ2 0.3377 0.2602

(0.1302) (0.0430) (0.2320) (0.0885) (0.0226) (0.0067)

ν − 12.756 ν − 12.3618 ν − 41.2058

− (1.489) − (2.2377) − 7.4468

µ −6.7686 −6.9662 µ −6.7347 −7.0359 µ −7.4511 −7.4095

(0.0416) (0.0820) (0.0461) (0.0859) (0.0625) (0.0276)

NFIQ σ2 1.2941 0.8969 σ2 1.5423 1.0218 σ2 0.2998 0.2604

(0.0540) (0.0267) (0.2220) (0.0952) (0.0085) (0.0094)

ν − 13.291 ν − 13.404 ν − 38.97

− (1.095) − (3.073) − (5.9070)

TABLE IV. Posterior means for the IBM database corresponding to Models I and II based on 10

repeated trial. Entries are the averages and standard deviations (in parenthesis) over the 10 trials.

NOTE: Only entries corresponding to Model II should be used for further inference since Model I

does not fit the database well.

GT EX MINDTCT

r/s 1 2 3 r/s 1 2 3 r/s 1 2 3

1 0.0000 0.0565 0.0600 1 0.0000 0.2110 0.2137 1 0.0000 0.0562 0.0627

2 0.0455 0.0835 0.0882 2 0.2297 0.3066 0.3104 2 0.0651 0.0694 0.0754

3 0.0521 0.0890 0.2978 3 0.2354 0.3105 0.3892 3 0.0701 0.0771 0.1384

TABLE V. The γ(r,s) entries for the IBM database for Model II and the quality measure ‘QUAL’. Entries

are averages of posterior means of the 10 repeated experiments.
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GT EX MINDTCT

r/s 1 2 3 4 5 r/s 1 2 3 4 5 r/s 1 2 3 4 5

1 0.000 0.045 0.050 0.059 0.129 1 0.000 0.085 0.089 0.098 0.131 1 0.000 0.028 0.031 0.038 0.053

2 0.043 0.060 0.067 0.081 0.183 2 0.073 0.098 0.104 0.117 0.167 2 0.019 0.034 0.040 0.052 0.085

3 0.056 0.072 0.081 0.105 0.280 3 0.088 0.109 0.117 0.145 0.225 3 0.029 0.044 0.058 0.082 0.145

4 0.089 0.126 0.169 0.241 0.453 4 0.112 0.144 0.172 0.227 0.362 4 0.039 0.059 0.085 0.129 0.235

5 0.168 0.225 0.282 0.396 0.795 5 0.163 0.206 0.247 0.340 0.780 5 0.057 0.081 0.119 0.182 0.386

TABLE VI. The γ(r,s) entries for the IBM database for Model II and the quality measure ‘NFIQ’. Entries

are averages of posterior means of the 10 repeated experiments.

Extractor r/s 1 2 3

1 0.0052 (100) 0.0100 (190) 0.0104 (198)

GT 2 0.0088 (168) 0.0136 (258) 0.0143 (273)

3 0.0095 (181) 0.0144 (275) 0.1524 (290)

1 0.0024 (100) 0.0261 (1106) 0.0269 (1140)

EX 2 0.0323 (1367) 0.0769 (3255) 0.0802 (3398)

3 0.0344 (1458) 0.0803 (3402) 0.1943 (8229)

TABLE VII. PRCs (all entries in the order of 10−9) and their increases as image quality degrades

based on the IBM database for feature extractors ‘GT’ and ‘EX’, and the quality extractor ‘QUAL’. The

numbers in the parenthesis give the percent increase in PRC from the baseline (1, 1) for Model II.

Extractor r/s 1 2 3 4 5

1 0.0143 (100) 0.0348 (243) 0.0369 (258) 0.0389 (272) 0.0418 (292)

2 0.0297 (207) 0.0456 (319) 0.0498 (348) 0.0527 (368) 0.0582 (407)

MINDTCT 3 0.0311 (217) 0.0491 (343) 0.0537 (375) 0.0582 (407) 0.0660 (462)

4 0.0336 (235) 0.0520 (364) 0.0577 (403) 0.0694 (485) 0.1075 (752)

5 0.0373 (260) 0.0569 (398) 0.0628 (439) 0.1043 (730) 0.6105 (4,272)

TABLE VIII. PRCs (all in the order of 10−11) and their increases as image quality degrades based on

the NIST database for ‘MINDTCT’ and the quality extractor ‘NFIQ’. The numbers in the parenthesis

give the percent increase in PRC from the baseline (1, 1) for Model II. Entries are averaged over all

16 pairs of combinations of fingerprint class for (Q,T ) from the class label set {W,R,L, A}.
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best and worst goodness of fit assessment. The values of theR-statistic (with means close to 1 and standard

deviations close to 0) indicate that every chain has converged afterT = 900, and that samples may be collected

from the posterior to make inference on the model parameters. The mean and standard deviation values ofL̄

indicate that Model II is a better fit to the observed data compared to Model I. This can be seen from the fact

that the means and standard deviations ofL̄ are, respectively, closer to 1 and 0 in Model II compared to Model

I.

The last100 samples from the three chains were used to estimateΘ corresponding to Models I and II. The

posterior means estimates ofµ, σ2 (andν) are given in Table IV for the three feature extractors and two quality

measures for Model II whereas the estimates ofγ(r,s) are given in Tables V and VI for Model II (the better

fitting model).

Several conclusions can be drawn from the entries of Table IV: First, for the feature extractor ‘MINDTCT’,

Model I is also a good fit to the observed data. This can be seen from the highL̄ entries in Table III and the

large ν values in Table IV; note that largeν values indicate that the correlation in (14) is close to zero, and

therefore, Model II is almost equivalent to Model I. However, for the other feature extractors, Model I does

not fare as well, as evidenced from the lowerL̄ andν values (indicating a higher level of correlation).

Second, ‘MINDTCT’ is the more effective feature extractor compared to ‘EX’ as seen from theµ values in

Table IV. The three feature extractors output a different number of minutiae when applied to the same input

image. Generally, the ‘GT’ yielded the highest number, followed by ‘MINDTCT’ and finally, ‘EX’. Due to the

differing number of minutiae extracted, it turns out that the three feature extractors cannot be compared with

each other; the mixture models fitted will be different depending on the number of these detected minutiae. One

comparison can be carried out, however. Since ‘MINDTCT’ also outputs a measure of reliability corresponding

to each minutiae detected, we sorted the extracted minutiae in decreasing order of reliability and took the

top M many, whereM corresponds to the number of minutiae extracted by ‘EX’. The lower values ofµ

corresponding to ‘MINDTCT’ in Table IV in the column for Model II when compared to ‘EX’ indicates that
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it is a slightly better minutiae extractor for authentication purposes.

Third, the fact that ‘MINDTCT’ is a better feature extraction algorithm is again demonstrated in Tables V

and VI. The increase in theγ(r,s) parameters as image quality degrades (corresponding to higher bin labels) is

smaller for ‘MINDTCT’ compared to ‘EX’. This indicates more reliability of fingerprint authentication based

on ‘MINDTCT’ for the IBM database.

The above methodology was also applied to the NIST Special Database 4 [15]. The NIST fingerprint database

is publicly available and consists of 2,000 8-bit gray scale fingerprint image pairs of size 512-by-512 pixels.

The first 2,000 images of each finger are denoted by ‘f’ while the second 2,000 images of the same fingers

are denoted by ‘s’. Minutiae could not be automatically extracted from14 images of the NIST database due to

poor quality by at least one of the three feature extractors. Thus, the total number of NIST fingerprints used

in our experiments is F = 1,986. The feature extraction algorithms giving rise to the ‘EX’ and ‘MINDTCT’

minutiae types were used on the fingerprint images. The mixture model in (1) was fit to the two sets of extracted

minutiae (from the ‘f’ and ‘s’ images). Goodness of fit tests in [4] demonstrated that the mixture model was a

good fit to all fingerprints in the NIST database. Based on the mixture distributions, the value of logp(Q,T )

and the quality label based on ‘QUAL’ and ‘NFIQ’ were obtained.

A similar analysis is carried out for the NIST database and detailed results are reported in Dass (2009)

[13]. The conclusions from the analysis are summarized here. Both Models I and II are very good fits to the

database except in the case of (‘MINDTCT’,‘QUAL’) where Model II is clearly a superior fit. High values of

ν for both models indicate that the better fitting model is not the one that accounts for correlation between

fingers but rather the one that incorporates the additional fixed effectsβch(S) terms. Indeed, when Model II

was also fitted to the NIST database without theβch(S) fixed effects, it turned out to be worse than Model II

with these effects incorporated again for the combination (‘MINDTCT’,‘QUAL’).

Based on the estimates derived from the IBM and NIST databases, we can compute the PRC corresponding

to w matches as a function of the fingerprint image quality. For illustrative purposes, we usew = 12 (for
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Fig. 6. Figure showing the increasing trend of the PRCs as quality degrades. Panels (a), (b) and (b)

are for the combinations ‘GT’ and ‘QUAL’, ‘EX’ and ‘QUAL’, and ‘MINDTCT’ and ‘NFIQ’, respectively.

the 12-point matching criteria) withm = n = 26 (this is one of the combinations used by Zhu et al. [4]).

The PRCs in Table VII are given for the IBM database for the feature extractors ‘GT’ and ‘EX’. For the

NIST database, the PRCs are calculated, as an illustration, for the feature and quality extractor combination

MINDTCT and NFIQ (see Table VIII). PRCs for other combinations can be derived similarly. Since additional

fixed effects are involved in this case, each combination of fixed effects(βch(Q), βch(T )) is first taken and an

estimate of the PRC is obtained. Subsequently, the PRCs are averaged over 16 such combinations of fixed

effect pairs resulting from the class labelsW,R, L and A. We note from Tables VII and VIII that PRCs

deteriorate (become larger) significantly when either one of the fingerprints is of poor quality. In the case when

both query and template images are of poor quality, the increases in PRCs are orders of magnitude larger

compared to the baseline. Figure 6 plots the PRCs obtained in Tables VII and VIII to show the increasing

trend. Panels (a) and (b) correspond to ‘QUAL’ with ‘GT’ and ‘EX’, respectively, as in Table VII while panel

(c) is based on ‘MINDTCT’ and ‘NFIQ’ in Table VIII. TheB lines in each panel is the plot ofPRC(r, s)

versuss = 1, 2, · · · , B for every fixedr = 1, 2, · · · , B, whereB = 3 or 5. PRC(r, s) is determined to be the

average of two PRCs corresponding to quality bin(r, s) and (s, r) in the two tables.
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VI. Summary and Conclusion

We have outlined a methodology to investigate how PRCs change as a function of the underlying image

quality of the pair of fingerprints in question. Based on our analysis, ‘MINDTCT’ appears to be a generally more

robust as a minutiae extractor with respect to quality degradation. Intra-finger correlation dictates the selection

of model for the IBM database whereas the additional fixed effects (and not the correlation) determines the

best fitting model for the NIST database. Therefore, it is recommended to fit the extended form of Model II

(with intra-finger correlation and additional fixed effects) for fingerprint databases in general for achieving the

best fit.

The increase in PRCs is most significant when both query and template fingerprints are of poor quality.

This study cautions the use of poor quality fingerprint images for the purpose of identification. Future work

will include modeling of the probability of a genuine match and combining the methodology outlined here to

investigate how the genuine probabilities change as a function of the underlying image quality.
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