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Information-theoretically Secret Key

Generation for Fading Wireless Channels
Chunxuan Ye†, Suhas Mathur‡, Alex Reznik†, Yogendra Shah†, Wade Trappe‡ and Narayan

Mandayam‡

Abstract

The multipath-rich wireless environment associated with typical wireless usage scenarios is char-

acterized by a fading channel response that is time-varying, location-sensitive, and uniquely shared

by a given transmitter-receiver pair. The complexity associated with a richly scattering environment

implies that the short-term fading process is inherently hard to predict and best modeled stochastically,

with rapid decorrelation properties in space, time and frequency. In this paper, we demonstrate how

the channel state between a wireless transmitter and receiver can be used as the basis for building

practical secret key generation protocols between two entities. We begin by presenting a scheme based

on level crossings of the fading process, which is well-suited for the Rayleigh and Rician fading models

associated with a richly scattering environment. Our levelcrossing algorithm is simple, and incorporates

a self-authenticating mechanism to prevent adversarial manipulation of message exchanges during the

protocol. Since the level crossing algorithm is best suitedfor fading processes that exhibit symmetry in

their underlying distribution, we present a second and morepowerful approach that is suited for more

general channel state distributions. This second approachis motivated by observations from quantizing

jointly Gaussian processes, but exploits empirical measurements to set quantization boundaries and a

heuristic log likelihood ratio estimate to achieve an improved secret key generation rate. We validate
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both proposed protocols through experimentations using a customized 802.11a platform, and show for

the typical WiFi channel that reliable secret key establishment can be accomplished at rates on the order

of 10 bits/second.

I. INTRODUCTION

The problem of secret key generation from correlated information was first studied by Maurer [39],

and Ahlswede and Csiszár [4]. In a basic secret key generation problem, called thebasic source model,

two legitimate terminals (Alice and Bob)1 observe a common random source that is inaccessible to an

eavesdropper. Modeling the observations as memoryless, wecan define the model as follows: Alice and

Bob respectively observen independent and identically distributed (i.i.d.) repetitions of the dependent

random variablesX and Y , denoted byXn = (X1, · · · ,Xn) and Y n = (Y1, · · · , Yn). In any given

time instance, the observation pair(Xi, Yi) is highly statistically dependent. Based on their dependent

observations, Alice and Bob generate a common secret key by communicating over a public error-free

channel, with the communication denoted collectively byV.

A random variableK with finite rangeK represents anε-secret keyfor Alice and Bob, achievable with

communicationV, if there exist two functionsfA, fB such thatKA = fA(X
n,V), KB = fB(Y

n,V),

and for anyε > 0,

Pr(K = KA = KB) ≥ 1− ε, (1)

I(K;V) ≤ ε, (2)

H(K) ≥ log |K| − ε. (3)

Here, condition (1) ensures that Alice and Bob generate the same secret key with high probability;

condition (2) ensures such secret key is effectively concealed from the eavesdropper observing the public

communicationV; and condition (3) ensures such a secret key is nearly uniformly distributed.

An achievable secret key rateR is defined [39], [4] to be a value such that for everyε > 0 and

sufficiently largen, an ε-secret keyK is achievable with suitable communication such that1
nH(K) ≥

R− ε. The supremum of all achievable secret key rates is thesecret key capacitydenoted byCSK . For

the model presented above, this is given by [39], [4], [40], [42]

CSK = I(X;Y ). (4)

1Unless otherwise specified, all the terminals in this paper refer to legitimate terminals, and hence the term “legitimate” will

be omitted henceforth.
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This result holds for both discrete and continuous random variablesX and Y , as long asI(X;Y ) is

finite (cf. [62], [47]).

The model defined above assumes the eavesdropper (i.e. Eve) may observe the transmissions on the

public channel, but is unable to tamper with them and has no access to any other useful side information.

The case of an eavesdropper with access to side information has received significant attention (see, e.g.,

[39], [4], [53], [19]); unfortunately the capacity problemremains open in this case. The case of an

eavesdropper with the ability to tamper with the transmissions on the public channel has been addressed

in a comprehensive analysis by Maurer and Wolf [41], [43], [44], [45].

A practical implementation of secret-key agreement schemes follows a basic 3-phase protocol defined

by Maureret.al.. The first phase,advantage distillation[39], [15], is aimed at providing two terminals

an advantage over the eavesdropper when the eavesdropper has access to side information. We do not

consider this scenario (as we shall see shortly, it is not necessary for secrecy generation from wireless

channels) and, therefore, do not addressadvantage distillation.

The second phase,information reconciliation[8], [7], [14], is aimed at generating an identical random

sequence between the two terminals by exploiting the publicchannel. For a better secret key rate, the

entropy of this random sequence should be maximized, while the amount of information transmitted on

the public channel should be minimized. This suggests an innate connection between the information rec-

onciliation phase of the secrecy agreement protocol and Slepian-Wolf data compression. This connection

was formalized by [23] in the general setting of multi-terminal secrecy generation.

The connection between secrecy generation and data compression is of significant practical, as well as

theoretical interest. Considering the duality between Slepian-Wolf data compression and channel coding

(e.g., [27], [35], [49], [20], [17], etc), the relationshipbetween secrecy generation and data compression

allows capacity-achieving channel codes, like Turbo codesor LDPC codes, to be used for the information

reconciliation phase. Moreover, the capacity-achieving capabilities of such codes in the channel coding

sense carry over to the secrecy generation problem. A comprehensive treatment of the application and

optimality of such codes to the secrecy generation problem can be found in [13], [12].

The last phase of Maurer’s protocol,privacy amplification[9], [11], extracts a secret key from the

identical random sequence agreed to by two terminals in the information reconciliation phase. This

can be implemented by linear mapping and universal hashing [16], [57], [11], [45], or by an extractor

[52], [45], [24], [25], [22]. The combination of the information reconciliation phase and the privacy

amplification phase has been considered in [15], [61].

Perhaps the first practical application of the basic source model is quantum cryptography (cf. e.g., [10],
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[46]), where non-orthogonal states of a quantum system provide two terminals correlated observations of

randomness which are at least partially secret from a potential eavesdropper. Quantum key distribution

schemes based on continuous random variables have been discussed in [28], [55], [13], [36]. Less

realized is the fact that wireless fading channel provides another source [30], [62], [12] of secrecy which

can be used to generate information-theoretically secure keys. Because the source model for secrecy

establishment essentially requiresa priori existence of a “dirty secret” which is then just cleaned up, such

sources of secrecy are hard to find. To our knowledge no such sources other than quantum entanglement

and wireless channel reciprocity have been identified to date. Further, we note that although there have

been several implementations of quantum cryptographic keyestablishment, little work has been done to

provide a system validation of this process for wireless channels. This paper examines both theoretical and

practical aspects of key establishment using wireless channels and represents one of the first validation

efforts to this effect.

An alternative approach to secrecy generation from wireless channels is based on the wiretap channel

models, see e.g. [12]. However, this approach suffers from aneed to make certain assumptions as part of

the security model that are hard to satisfy in practice and has not, to date, led to a practical implementation.

A (narrowband) wireless channel is well modeled as a flat fading channel. The fading coefficient

changes in time, but the change is rather slow (on the order of1 msec to 1 sec, depending on terminal

velocities and other factors). For simplicity, let us consider frequency flat fading. Roughly speaking, for

a fixed time and location, the transmitted signalt and the received signalr are related viar = Ft+ Z,

whereF is the channel fading coefficient andZ is the additive independent noise. If the transmitted

signal t is known at the receiver beforehand, (e.g., it is a training sequence) then the receiver is able

to obtain a noisy estimate of the fading coefficientF . Furthermore, if both terminals send the training

sequence at approximately the same time (more precisely, well within one channel coherence time of

each other), then they can obtain channel estimates that arehighly correlated due to channel reciprocity.

This suggests the following model: let the random variablesX and Y be defined byX = F + ZA,

Y = F + ZB , whereF , ZA, ZB are three independent random variables.

In data communications application, it is common to model the channel as Rayleigh or Rician, in

which case,F , ZA andZB are Gaussian. Let these be distributed asN (0, P ), N (0, NA) andN (0, NB)

respectively. A simple calculation shows that the secret key capacity [62] of this jointly Gaussian model

is

CSK = log2

(
1 +

P

NA +NB + NANB

P

)
bits/sample. (5)
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If we let NA = NB = N in this setting, then we get a natural definition of SNR asSNR = P
N , and the

above secret key capacity reduces tolog2

(
1 + SNR

2+1/SNR

)
bits/sample.

As noted, the above calculation is relevant for the traditional Rayleigh or Rician fading model, and

serves as an upper bound on the secret key establishment rate, but does not provide insight into how one

can practically extract such secret bits from the underlying fading process. In this paper, we examine

two different approaches for secrecy extraction from the channel state between a transmitter and receiver

in a richly scattering wireless environment. Our first approach, which is based on level-crossings, is a

simple algorithm that is well-suited for environments thatcan be characterized as Rayleigh or Rician.

However, we recognize that such a method might not apply to other, general fading cases. One way to

address this problem is to consider more complex fading distribution models, such as those appropriate

for ultrawideband channels. This has been addressed in a previous work by Wilsonet. al [58] (see

also [5], [31], [6]). However, we take a different approach in this paper. Inspired by our prior work on

Gaussian-based approaches, we propose auniversalreconciliation approaches for wireless channels. This

second, and more powerful method, only assumes that the channel impulse responses (CIRs) measured

at both terminals are highly correlated, and their measurement noise is very low. Whereas the first of

our two approaches was simple, and able to achieve a limited secret key establishment rate, our second

approach is more complex, but is able to take better advantage of the secrecy capabilities offered by

CIR measurements, which tend to have high SNR (due to a high processing gain associated with such

measurements in modern communication systems).

In both of these cases, our goal is to come up with a practical approach to secrecy generation from

wireless channel measurements. In particular, because thestatistics of the real channel sources we utilize

are not known (and that is the major challenge we believe addressed by our work), it is impossible to

make any quantitative statements about optimality of our approaches. Nevertheless, we do want to make

sure that our solution is based on solid theoretical foundation. To do so, we include discussion of the

motivating algorithms and their performance in idealized models when necessary.

Several previous attempts to use wireless channels for encrypting communications have been proposed.

Notably, [34] exploited reciprocity of a wireless channel for secure data transformation; [29] discussed

a secrecy extraction scheme based on the phase information of received signals; the application of the

reciprocity of a wireless channel for terminal authentication purpose was studied in [48], [59], [60], etc.

Unlike these and other approaches, our approach for direct secrecy generation allows the key generation

component to become a “black box” within a larger communication system. Its output (a secret bit

stream) can then be used within the communication system forvarious purposes. This is important, as
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the key generation rate is likely to be quite low, and thus direct encryption of data will either severely

limit throughput (to less than 1 kbps in indoor channels) or result in extremely weak secrecy.

The adversary model assumed in this paper focuses mainly on passive attacks. We do not consider

authentication attacks, such as the man-in-the-middle attack, since these require an explicit authentication

mechanism between Alice and Bob and cannot be addressed by key-extraction alone. The starting point

for algorithms presented in this paper is the successive probing of the wireless channel by the terminals

that wish to extract a secret key. Implicitly, we assume thatthe adversary is not engaging in an active

attack against the probing process, though we note that physical layer authentication techniques, such

as presented in [60] might be applicable in such an adversarial setting. The infeasibility of passive

eavesdropping attacks on the key generation procedures is based on the rapid spatial decorrelation of the

wireless channel. We demonstrate this using empirically computed mutual information from the channel-

probing stage, between the signals received at Bob and Eve and comparing it with the mutual information

between the signals received at Alice and Bob. Beyond the basic eavesdropping attack, we do consider a

particular type of active attack in our level-crossing algorithm in Section II, where the adversary attempts

to disrupt the key extraction protocol by replacing or altering the protocol messages. In this case, we

provide a method to deal with this type of active attack by cleverly using the shared fading process

between Alice and Bob.

One of the goals of our work is to demonstrate that secrecy generation can be accomplished in

real-time over real channels (and not simulation models) and in real communication systems. To that

end, results based on implementations on actual wireless platforms (a modified commercial 802.11 a/g

implementation platform) and using over-the-air protocols are presented. To accomplish this, we had to

work with several severe limitations of theexperimental systemat our disposal. Consequently certain

parameters (e.g. code block length) had to be selected to be somewhat below what they should be for

a well-designed system. This, however, does not reflect on the feasibility of proper implementation in a

system with these features designed in. For example, nothing would prevent a design with the code block

length sufficiently long to guarantee desired performance.On the contrary, we believe the demonstration

of a practical implementation to be one of the major contributions of our work.

The rest of this paper is organized as follows. Section II discusses the simpler of our algorithms based

on level crossings. Section III presents a more complex and more powerful approach to extracting secret

bits from the channel response, as well as some new results onsecrecy generation for Gaussian sources

which motivate our solution. We conclude the paper with somefinal remarks in Section IV.
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II. L EVEL CROSSINGSECRET KEY GENERATION SYSTEM

In this section we describe a simple and lightweight algorithm in [38] for extracting secret bits from

the wireless channel that does not explicitly involve the use of coding techniques. While this comes at

the expense of a lower secret key rate, it reduces the complexity of the system and it still provides a

sufficiently good rate in typical indoor environments. The algorithm uses excursions in the fading channel

for generating bits and the timing of excursions for reconciliation. Further, the system does not require

i.i.d. inputs and, therefore, does not require knowledge ofthe channel coherence time a priori. We refer

to this secret key generation system as thelevel crossing system. We evaluate the performance of the

level crossing system and test it using customized 802.11 hardware.

A. System and Algorithm Description

Let F (t) be a stochastic process corresponding to a time-varying parameterF that describes the

wireless channel shared by, and unique to Alice and Bob. Alice and Bob transmit a known signal (a

probe) to one another in quick succession in order to derive correlated estimates of the parameterF ,

using the received signal by exploiting reciprocity of the wireless link. LetX andY denote the (noisy)

estimates of the parameterF obtained by Alice and Bob respectively.

Alice and Bob generate a sequence ofn correlated estimateŝXn = (X̂1, X̂2, . . . , X̂n) and Ŷ n =

(Ŷ1, Ŷ2, . . . , Ŷn), respectively, by probing the channel repeatedly in a time division duplex (TDD) manner.

Note however, thatX̂i (and Ŷi) are no longer i.i.d. fori = 1, . . . n since the channel may be strongly

correlated between successive channel estimates.

Alice and Bob first low-pass filter their sequence of channel estimates,X̂n and Ŷ n respectively, by

subtracting a windowed moving average. This removes the dependence of the channel estimates on

large-scale shadow fading changes and leaves only the smallscale fading variations (see Figure 6). The

resulting sequences,Xn andY n have approximately zero mean and contain excursions in positive and

negative directions with respect to the mean. The subtraction of the windowed mean ensures that the

level-crossing algorithm below does not output long strings of ones or zeros and that the bias towards one

type of bit is removed. The filtered sequences are then used byAlice and Bob to build a 1-bit quantizer

ψu(·) quantizer based on the scalarsqu+ andqu− that serve as threshold levels for the quantizer:

qu+ = mean(Un) + α · σ(Un) (6)

qu− = mean(Un)− α · σ(Un), (7)
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where the sequenceUn = Xn for Alice andUn = Y n for Bob. σ(·) is the standard deviation and the

factorα can be selected to control the quantizer thresholds. The sequencesXn andY n are then fed into

the following locally-computed quantizer at Alice and Bob respectively:

ψu(x) =





1 if x > qu+

0 if x < qu−

e Otherwise

wheree represents an undefined state. The superscriptu stands foruserand may refer to either Alice, in

which case the quantizer function isψA(·), or to Bob, for which the quantizer isψB(·). This quantizer

forms the basis for quantizing positive and negative excursions. Values betweenqu− and qu+ are not

assigned a bit.

It is assumed that the numbern of channel observations is sufficiently large before using the level

crossing system, and that theith elementXi andYi correspond to successive probes sent by Bob and

Alice respectively, for eachi = 1, . . . , n. The level crossing algorithm consists of the following steps:

1) Alice parses the vectorXn containing her filtered channel estimates to find instances wherem or

more successive estimates lie in an excursion aboveq+ or belowq−. Here,m is a parameter used

to denote the minimum number of channel estimates in an excursion.

2) Alice selects a random subset of the excursions found in step 1 and, for each selected excursion,

she sends Bob the index of the channel estimate lying in the center of the excursion, as a list

L. Therefore, ifXi > q+ or < q− for somei = istart, . . . , iend, then she sends Bob the index

icenter = ⌊ istart+iend

2 ⌋.
3) To make sure theL-message received is from Alice, Bob computes the fraction of indices inL

whereY n lies in an excursion spanning(m − 1) or more estimates. If this fraction is less than

1
2 + ǫ, for some fixed parameter0 < ǫ < 1

2 , Bob concludes that the message was not sent by Alice,

implying an adversary has injected a fakeL-message.

4) If the check above passes, Bob replies to Alice with a message L̃ containing those indices inL

at whichY n lies in an excursion. Bob computesKB = ψB(Yi; i ∈ L̃) to obtainN bits. The first

Nau bits are used as an authentication key to compute a message authentication code (MAC) of

L̃. The remainingN −Nau bits are kept as the extracted secret key. The overall message sent by

Bob is
{
L̃,MAC

(
Kau, L̃

)}
. Practical implementations, for example, one could use CBC-MAC

as the implementation for MAC, and use a keyKau of lengthNau = 128 bits.

5) Upon receiving this message from Bob, Alice usesL̃ to form the sequence of bitsKA = ψA(Xi; i ∈
L̃). She uses the firstNau bits ofKA as the authentication keyKau = KA(1, . . . , Nau), and, using
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Kau, she verifies the MAC to confirm that the package was indeed sent by Bob. Since Eve does

not know the bits inKau generated by Bob, she cannot modify theL̃-message without failing the

MAC verification at Alice.

Figure 1 shows the system-level operation of the level crossing algorithm. We show later that provided

the levelsq+, q− and the parameterm are properly chosen, the bits generated by the two users are

identical with very high probability. In this case, both Alice and Bob are able to compute identical key

bits and identical authentication key bitsKau, thereby allowing Alice to verify that the protocol message

L̃ did indeed come from Bob. Since Eve’s observations from the channel probing do not provide her

with any useful information aboutXn and Y n, the messagesL and L̃ do not provide her any useful

information either. This is because they contain time indices only, whereas the generated bits depend

upon the values of the channel estimates at those indices.

B. Security Discussion for the Level-crossing Algorithm

The secrecy of our key establishment method is based on the assumption that Alice and Bob have

confidence that there is no eavesdropper Eve located near either Alice or Bob. Or equivalently, any

eavesdropper is located a sufficient distance away from bothAlice and Bob. In particular, the fading

process associated with a wireless channel in a richly scattering environment decorrelates rapidly with

distance and, for two receivers located at a distance of roughly the carrier wavelength from each other, the

fading processes they each witness with respect to a transmitter will be nearly independent of each other

[32]. For a Rayleigh fading channel model, ifhba and hbe are the jointly Gaussian channels observed

by Alice and Eve due to a probe transmitted by Bob, then the correlation betweenhba andhbe can be

expressed as a function of the distanced between Alice and Eve, and is given byJ0(2πd/λ), where

J0(x) is the zeroth-order Bessel function of the first kind,d is the distance between Alice and Eve, and

λ is the carrier wavelength. Hence, because of the decay ofJ0(x) versus the argumentx, if we are given

any ǫ > 0, it is possible to find the minimum distanced that Eve must be from both Alice and Bob such

that the mutual informationI(hba;hbe) ≤ ǫ.
Further, we note that the statistical uniformity of the bit sequences that are extracted by Alice and Bob

using our level-crossing algorithm is based on the statistical uniformity of positive and negative excursions

in the distribution of the common stochastic channel between them. This inherently requires that the

channel state representation for the fading process be symmetrically distributed about the distribution’s

mean. Many well-accepted fading models satisfy this property. Notably, Rayleigh and Rician fading

channels [33], which result from the multiple paths in a richscattering environment adding up at the
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receiver with random phases, fall into this category. Consequently, we believe that the reliance of level-

crossing algorithm on the underlying distribution symmetry, suggests that the level-crossing algorithm

is best suited for Rayleigh or Rician fading environments. The independence of successive extracted

bits follows from the fact that the excursions used for each bit are naturally separated by a coherence

time interval or more, allowing the channel to decorrelate in time. Finally, we note that our approach

does not preclude a final privacy amplification step, though application of such a post-processing step

is straightforward and might be desirable in order to ensurethat no information is gleaned by an

eavesdropper.

C. Performance Evaluation and Experimental Validation

The central quantities of interest in our protocol are the rate of generation of secret bits and the

probability of error. The controls available to us are the parameters:qu+, q
u
−,m and the rate at which

Alice and Bob probe the channel between themselves,fs. We assume the channel is not under our

control and the rate at which the channel varies can be represented by the maximum Doppler frequency,

fd. The typical Doppler frequency for indoor wireless environments at the carrier frequency of2.4 GHz

is fd = v
λ ∼ 2.4×109

3×108 = 8 Hz, assuming a velocityv of 1 m/s. We thus expect typical Doppler frequencies

in indoor environments in the2.4 GHz range to be roughly10 Hz. For automobile scenarios, we can

expect a Doppler of∼ 200 Hz in the 2.4 GHz range. We assume, for the sake of discussion, that the

parameter of interest,F is a Gaussian random variable and the underlying stochasticprocessF (t) is a

stationary Gaussian process. A Gaussian distribution forF may be obtained, for example, by takingF to

be the magnitude of the in-phase component of a Rayleigh fading process between Alice and Bob [51].

We note that the assumption of a Gaussian distribution onF is for ease of discussion and performance

analysis, and our algorithm is valid in the general case where the distribution is symmetric about the

mean.

The probability of error,pe is critical to our protocol. In order to achieve a robust key-mismatch

probability pk, the bit-error probabilitype must be much lower thanpk. A bit-error probability ofpe =

10−7 ∼ 10−8 is desirable for keys of lengthN = 128 bits. The probability of bit-error,pe is the probability

that a single bit generated by Alice and Bob is different at the two users. Consider the probability that

the ith bit generated by Bob is “Ki
B = 0” at some index given that Alice has chosen this index, but she

has generated the bit “Ki
A = 1”. As per our Gaussian assumption on the parameterF and estimatesX
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andY , this probability can be expanded as

Pr(Ki
B = 0|Ki

A = 1) =
Pr(Ki

B = 0,Ki
A = 1)

Pr(Ki
A = 1)

= (8)

∫ ∞

qX+

∫ qY
−

−∞
. . .

∫ ∞

qX+︸ ︷︷ ︸
(2m−1) terms

(2π)(1−2m)/2

|K2m−1|1/2
exp

{
−1

2x
TK−1

2m−1x
}
d(2m−1)x

∫ ∞

qX+

. . .

∫ ∞

qX+︸ ︷︷ ︸
(m) terms

(2π)−m/2

|Km|1/2 exp
{
−1

2x
TK−1

m x
}
d(m)x

,

whereKm is the covariance matrix ofm successive Gaussian channel estimates of Alice andK2m−1

is the covariance matrix of the Gaussian vector(X1, Y1,X2, . . . , Ym−1,Xm) formed by combining the

m channel estimates of Alice and them− 1 estimates of Bob in chronological order. The numerator in

(8) is the probability that of2m− 1 successive channel estimates (m belonging to Alice, andm− 1 for

Bob), allm of Alice’s estimates lie in an excursion aboveq+ while all m− 1 of Bob’s estimates lie in

an excursion belowq−. The denominator is simply the probability that all of Alice’s m estimates lie in

an excursion aboveq+.

We compute these probabilities for various values ofm and present the results of the probability

of error computations in Figure 2. The results confirm that a larger value ofm will result in a lower

probability of error, as a largerm makes it less likely that Alice’s and Bob’s estimates lie in opposite

types of excursions. Note that if either user’s estimates donot lie in an excursion at a given index, a bit

error is avoided because that index is discarded by both users.

How many secret bits/second (bps) can we expect to derive from a fading channel using level crossings?

An approximate analysis can be done using the level-crossing rate for a Rayleigh fading process, given

by LCR =
√
2πfdρe

−ρ2

[51], wherefd is the maximum Doppler frequency andρ is the threshold level,

normalized to the root mean square signal level. Settingρ = 1, givesLCR ∼ fd. This tells us that we

cannot expect to obtain more secret bits per second than the order of fd. In Figure 3 (a) and (b), we

plot the rate in s-bits/sec as a function of the channel probing rate for a Rayleigh fading channel with

maximum Doppler frequencies offd = 10 Hz andfd = 100 Hz respectively. As expected, the number

of s-bits the channel yields increases with the probing rate, but saturates at a value on the order offd.

In order for successive bits to be statistically independent, they must be separated in time by more

than one coherence time interval. While the precise relationship between coherence time and Doppler

frequency is only empirical, they are inversely related andit is generally agreed that the coherence time

is smaller in magnitude (Coherence timeTc, is sometimes expressed in terms offd as Tc ≈

√
9

16πf2
d
)
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than1/fd. Therefore, on average, if successive bits are separated bya time interval of1/fd, then they

should be statistically independent.

More precisely, the number of secret bps is the number of secret bits per observation times the probing

rate. Therefore

Rk = H(bins)× Pr(Ki
A = Ki

B)×
fs
m

(9)

= 2
fs
m
× Pr(Ki

A = 1,Ki
B = 1)

=2
fs
m
.

∫ ∞

qX+

. . .

∫ ∞

qX+︸ ︷︷ ︸
(2m−1) terms

(2π)
1−2m

2

|K2m−1|1/2
e{− 1

2
xTK−1

2m−1x}d2m−1x,

whereH(bins) is the entropy of the random variable that determines which bin (> q+ or < q−) of

the quantizer the observation lies in, which in our case equals 1 assuming that the two bins are equally

likely2. The probing ratefs is normalized by a factor ofm because a single ‘observation’ in our algorithm

is a sequence ofm channel estimates.

Figure 3 confirms the intuition that the secret bit rate must fall with increasingm, since the longer

duration excursions required by a larger value ofm are less frequent. In Figure 4(a), we investigate how

the secret-bit rateRk varies with the maximum Doppler frequencyfd, i.e., the channel time-variation.

We found that for a fixed channel probing rate (in this case,fs = 4000 probes/sec), increasingfd results

in a greater rate but only up to a point, after which the secret-bit rate begins to fall. Thus, ‘running faster’

does not necessarily help unless we can increase the probingrate fs proportionally. Figure 4(b) shows

the expected decrease in secret-bit rate as the quantizer levels the value ofα is varied to movequ+ andqu−

further apart. Here,α denotes the number of standard deviations from the mean at which the quantizer

levels are placed.

We examined the performance of the secrecy generation system through experiments. The experiments

involved three terminals, Alice, Bob and Eve, each equippedwith an 802.11a development board.

In the experiments, Alice was configured to be an access point(AP), and Bob was configured to be a

station (STA). Bob sends Probe Request messages to Alice, who replies with Probe Response messages as

quickly as possible. Both terminals used the long preamble segment [2] of their received Probe Request

or Probe Response messages to compute 64-point CIRs. The tallest peak in each CIR (the dominant

multipath) was used as the channel parameter of interest, i.e., theX andY sample inputs to the secret

2The levelsq+ andq− are chosen so as to maintain equal probabilities for the two bins.
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key generation system. To access such peak data, FPGA-basedcustomized logic was added to the 802.11

development platform. Eve was configured to capture the Probe Response messages sent from Alice in

the experiments.

Two experiments were conducted. In the first experiment, Alice and Eve were placed in a laboratory.

In a second experiment, Alice and Eve remained in the same positions while Bob circled the cubicle

area of the office.

Figure 5(a) shows an example of Alice’s, Bob’s, and Eve’s 64-point CIRs obtained through a single

common pair of Probe Request and Probe Response messages. Itis seen from the figure that Alice’s

and Bob’s CIRs look similar, while they both look different from Eve’s CIR. We show the traces for

Alice and Bob resulting from 200 consecutive CIRs in Figure 5(b). The similarity of Alice’s and Bob’s

samples, as well as their difference from Eve’s samples, areevident from the figure.

While our experiments ran for∼ 22 minutes, in the interest of space and clarity we show only700

CIRs collected over a duration of∼ 77 seconds. Each user locally computesq+ and q− as in (6), (7).

We choseα = 1
8 for our experiments.

Figure 6 shows the traces collected by Alice and Bob after removal of slow shadow fading components

using a simple local windowed mean. This is to prevent long strings of 1s and0s, and to prevent the

predictable component of the average signal power from affecting our key generation process. Using the

small scale fading traces, our algorithm generatesN = 125 bits in 110 seconds (m = 4), yielding a key

rate of about1.13 bps. Figure 6 shows the bits that Eve would generate if she carried through with the

key-generation procedure. The results from our second experiment with a moving Bob are very similar

to the ones shown for the first experiment, producing1.17 bps. withm = 4 andα = 1
8 . Note that while

figures 3 and 4 depict the secret bit rate that can be achieved for the specified values of Doppler frequency,

our experimental setup does not allow us to measureably control the precise Doppler frequency and the

secret bits rates we report from our experiments correspondonly the indoor channel described.

In order to verify the assumption that Eve does not gain any useful information by passive observation

of the probes transmitted by Alice and Bob, we empirically computed the mutual information using the

method in [56] between the signals received at the legitimate users and compare this with that between

the signals received by Eve and a legitimate user. The results of this computation, summarized in Table I,

serve as an upper bound to confirm that Eve does not gather any significant information about the signals

received at Alice and Bob. Although this information leakage is minimal relative to the mutual information

shared between Alice and Bob, it might nonetheless be prudent to employ privacy amplification as a post-

processing to have a stronger assurance that Eve has learnedno information about the key established
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between Alice and Bob. Finally, we note that with suitable values of the parameters chosen for the level

crossing algorithm, the bits extracted by Alice and Bob are statistically random and have high-entropy

per bit. This has been tested for and previously reported in [38] using a suite of statistical randomness

tests provided by NIST [3].

III. QUANTIZATION -BASED SECRET KEY GENERATION FORWIRELESSCHANNELS

We now present a more powerful and general approach than the level-crossing approach discussed in

Section II for obtaining secret keys from the underlying fading phenomena associated with a with a richly

scattering wireless environment. Whereas the level-crossing algorithm was best suited for extracting keys

from channel states whose distributions are inherently symmetric, our second approach is applicable to

more general channel state distributions. Further, this second approach approach is capable of generating

significantly more than a single bit per independent channelrealization, especially when the channel

estimation SNRs are high.

To accomplish this we propose a new approach for the quantization of sources whose statistics are

not known, but are believed to be similar in the sense of having “high SNR” - a notion we shall define

more precisely below. Our quantization approach is motivated by considering a simpler setting of a

Gaussian source model and addressing certain deficiencies which can be observed in that model. This

problem has been addressed by [62] using a simple “BICM-like” approach [13] to the problem. A more

general treatment which introduces multi-level coding canbe found in [13] and also [12], however for our

purposes, the simple ”BICM-like” approach of [62] and [13] is sufficient. To motivate our approach to

“universal” quantization we need to take this solution and improve on it - the process which we describe

next.

A. Over-quantized Gaussian Key Generation System

We begin our discussion of the over-quantized Gaussian Key Generation System by reviewing the

simple approach to the problem described in [62]. A block diagram of a basic secret key generation

system is shown in Figure 7. Alice’s secrecy processing consists of four blocks: Quantizer, Source Coder,

Channel Coder and the Privacy Amplification (PA) process. The Quantizer quantizes Alice’s Gaussian

samplesXn. The Source Coder converts the quantized samples to a bit string Xb. The Channel Coder

computes the syndromeS of the bit stringXb. A rate 1/2 LDPC code is used in [62]. This syndrome

is sent to Bob for his decoding ofXb. As discussed in Section I, the transmission of the syndromeis

assumed to take place through an error-free public channel;in practice this can be accomplished through
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the wireless channel with the use of standard reliability techniques (e.g., CRC error control and ARQ).

Finally, privacy amplification (if needed) is implemented in the PA block.

Figure 8(a) present the results obtained by using various algorithm options discussed in [62]. We

observe from this figure that at high SNR (> 15dB), the secret key rates resulting from Gray coding are

within 1.1 bits of the secret key capacity (5). However, the gap between the achieved secret key rates and

the secret key capacity is larger at low SNR. In this sub-section, we demonstrate how the basic system

can be improved such that the gap at low SNR is reduced. We restrict ourselves to Gray coding, as this

is clearly the better source coding approach.

We start with the observation that the quantization performed by Alice involves some information

loss. To compensate for this, Alice could quantize her samples at a higher level than the one apparently

required for the basic secret key generation purpose. Suppose that quantization tov bits is required by

the baseline secrecy generation scheme. Alice then quantizes tov+m bits using Gray coding as a source

coder. We refer to thev most significant bits as theregularly quantized bitsand them least significant

bits as theover-quantized bits. The over-quantized bitsB are sent directly to Bob through the error-free

public channel.

The Channel Decoder (at Bob) uses the syndromeS of the regularly quantized bitsXb, the over-

quantized bitsB and Bob’s Gaussian samplesY n to decodeXb. Again, it applies the modified belief-

propagation algorithm (cf. [35]), which requires the per-bit LLR. The LLR calculation is based on both

Y n andB.

Suppose one of Alice’s Gaussian samplesX is quantized and Gray coded to bits(Xb,1, · · · ,Xb,v+m).

With Bob’s corresponding Gaussian sampleY and Alice’s over-quantized bits(Xb,v+1, · · · ,Xb,v+m) =

(av+1, · · · , av+m), the probability ofXb,i, 1 ≤ i ≤ v, being 0 is derived below:

Pr(Xb,i = 0|Y = y,Xb,v+1 = av+1, · · · ,Xb,v+m = av+m)

=
Pr(Xb,i = 0,Xb,v+1 = av+1, · · · ,Xb,vm = av+m|Y = y)

Pr(Xb,v+1 = av+1, · · · ,Xb,vm = av+m|Y = y)

=

∑2v+m

j=1 Pr(q̄j−1 ≤ X < q̄j|Y = y)1Gi
v+m(j−1)=0 · 1Gv+1

v+m(j−1)=av+1
· · · 1Gv+m

v+m(j−1)=av+m∑2v+m

j=1 Pr(q̄j−1 ≤ X < q̄j|Y = y) · 1Gv+1
v+m(j−1)=av+1

· · · 1Gv+m
v+m(j−1)=av+m

, (10)

where1 is an indicator function and the functionGi
k(j), 1 ≤ i ≤ k, 0 ≤ j ≤ 2k − 1, denotes theith

bit of thek-bit Gray codeword representing the integerj. The quantization boundaries̄q0 < · · · < q̄2v+m

depend on the quantization scheme used. For instance, the quantization boundaries of theequiprobable
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quantizersatisfy ∫ q̄j

q̄j−1

1√
2πN

e−
x2

2N dx =
1

2v+m
, j = 1, · · · , 2v+m. (11)

Now,

Pr(q̄j−1 ≤ X < q̄j|Y = y) = Pr(q̄j−1 ≤
P

P +N
Y + Z0 < q̄j|Y = y)

= Pr(q̄j−1 −
P

P +N
y ≤ Z0 < q̄j −

P

P +N
y)

= Q


 q̄j−1 − P

P+N y√
2PN+N2

P+N


−Q


 q̄j −

P
P+N y√

2PN+N2

P+N




= g(j − 1, y)− g(j, y),

where the functiong(k, y), 0 ≤ k ≤ 2v+m, is defined as

g(k, y) = Q

(
q̄k − P

P+N y√
(2PN +N2)/(P +N)

)
, (12)

andQ is the usual Gaussian tail function [50]. Hence, the probability of (10) is given by
∑2v+m

j=1 [g(j − 1, y)− g(j, y)] · 1Gi
v+m(j−1)=0 · 1Gv+1

v+m(j−1)=av+1
· · · 1Gv+m

v+m(j−1)=av+m∑2v+m

j=1 [g(j − 1, y)− g(j, y)] · 1Gv+1
v+m(j−1)=av+1

· · · 1Gv+m
v+m(j−1)=av+m

. (13)

It should be noted that when equiprobable quantization is used, the over-quantized bitsB and the regularly

quantized bitsXb are independent as shown below. Suppose a sampleX is equiprobably quantized and

source coded tot bits (Xb,1, · · · ,Xb,t). For an arbitrary bit sequence(a1, · · · , at) and a setS ⊆ T =

{1, · · · , t}, we have

Pr ({Xb,i = ai : i ∈ S}|{Xb,i = ai : i ∈ T \ S}) =
Pr ({Xb,i = ai : i ∈ T })

Pr ({Xb,i = ai : i ∈ T \ S})

=
2−t

2−(t−|S|)
= 2−|S| = Pr ({Xb,i = ai : i ∈ S}) ,

which implies the amount of secrecy information remaining in Xb after the public transmission is at least

|Xb| − |S| bits.3 Note that this conclusion does not hold for other quantization approaches (e.g., MMSE

quantization) and, therefore, equiprobable quantizationshould be used if over-quantization is applied.

On the other hand, it is implied by (13) that the over-quantized bitsB and the regularly quantized

bits Xb are dependent given Bob’s samplesY n. Hence,I(Xb;B|Y n) > 0. It follows from the Slepian-

Wolf theorem (cf. [21]) that with the availability of the over-quantized bitsB, the number of syndrome

3Relying on hash functions for privacy amplification requires the use of Rényi entropy. However, we can use [11, Theorem

3] to equivocate Rényi and Shannon entropies.
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bits |S| required by Bob to successfully decodeXb is approximatelyH(Xb|Y n,B), which is less than

H(Xb|Y n), the number of syndrome bits transmitted in the basic system. In other words, the secret

key rate achieved by the over-quantized system is approximated by 1
nI(Xb;Y

n,B), which is larger than

1
nI(Xb;Y

n), the secret key rate achieved by the basic system.

To obtain an upper limit on the performance improvement thatover-quantization may provide us,

we can imagine sending the entire (real-valued) quantization error as a side information. There are a

number of issues with this approach. Clearly, distortion-free transmission of real-valued quantities is not

practically feasible. However, as we are looking for a bound, we can ignore this. More importantly, the

transmission of raw quantization errors may reveal information aboutXb. For example, to equiprobably

quantize a zero mean, unit variance Gaussian random variable with 1 bit per sample, the quantization

intervals are(−∞, 0] and (0,∞), with respective representative value -0.6745 and 0.6745.Suppose a

sampleX is of value 2, then its quantization error is2 − 0.6745 = 1.3255. This implies thatX must

be in the interval(0,∞), since otherwise, the quantization error does not exceed 0.6745. Thereby, it

is necessary to process the raw quantization errors such that the processed quantization errors do not

contain any information aboutXb. For this purpose, it is desirable to transform quantization errors to

uniform distribution. To do so, we first process an input sample X with the cumulative distribution

function (CDF) of its distribution and then quantize. The transformed quantization error is then given by

E = φ (X)−φ (q(X)), whereφ(x) is the CDF forX andq(X) is the representative value of the interval

to whichX belongs. The quantization errorsEn = (E1, · · · , En), which are then uniformly distributed

on
[
−2−(v+1), 2−(v+1)

]
, are sent to Bob through the error-free public channel.

The rest of the process (encoding/decoding and PA) proceedsas before. However, the LLR computation

must be modified to use probability density functions, rather than probabilities:

ln
Pr(Xb,i = 0|Y = y,E = e)

Pr(Xb,i = 1|Y = y,E = e)
=

2v∑

j=1

(−1)1Gi
v(j−1)=0 · h(e, j, y), (14)

where the functionGi
k(j) is defined in (10) and the functionh(e, j, y) is defined as

h(e, j, y) =
P +N

2(2PN +N2)

(
φ−1

(
e+

j − 0.5

2v

)
− P

P +N
y

)2

,

for −2−(v+1) ≤ e ≤ 2−(v+1), 1 ≤ j ≤ 2v , with the functionφ being the CDF forX. The derivation of

(14) is similar to that of (13), which is omitted here.

Figure 8(b) shows simulation results for 2-bit over-quantization and the upper bound. We note, as

expected, that the overall gap to capacity has been reduced to about 1.1 dB at the low-SNR.
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B. A Universal Secret Key Generation System

In the previous sub-section we discussed secret key generation for a jointly Gaussian model. The

random variablesX andY in the model are jointly Gaussian distributed and the distribution parameter

SNR is known at both terminals. However, in many practical conditions, the correlated random variables

at the two terminals may not be subject to a jointly Gaussian distribution, and the distribution parameters

are usually unknown or estimated inaccurately.

We address this problem by describing a method for LLR generation and subsequent secrecy generation

that makes very few assumptions on the underlying distribution. As we shall see this method is largely

based on the over-quantization idea we introduced above.

1) System Description:Compared to the basic system (Figure 7) developed for the Gaussian model,

the universal system includes two additional Data Converter blocks (one at Alice; the other at Bob), and

modified Quantizer and Channel Decoder blocks. The inputs toAlice’s Data Converter blocks areXn

and the outputs of Alice’s Data Converter block are sent to the modified Quantizer block. The inputs

to Bob’s Data Converter blocks areY n and the outputs of Bob’s Data Converter block are sent to the

modified Channel Decoder block.

The purpose of the Data Converter is to convert the input samplesXn, Y n to uniformly distributed

samplesUn, V n, whereUi, Vi ∈ [0, 1). The conversion is based on the empirical distribution of input

samples. Given theith sampleXi of input samplesXn, denote byKn(Xi) the number of samples inXn

which are strictly less thanXi plus the number of samples inXn which are equal toXi but their indices

are less thani. The output of the Data conversion block corresponding toXi is given byUi =
Kn(Xi)

n .

To justify the use of this approach, we show thatUn asymptotically tends to an i.i.d. sequence, each

uniformly distributed between 0 and 1. Thus, while for any finite block length the sequenceUn is

not comprised of independent variables, it is assymtotically i.i.d. uniform. Consider an i.i.d. sequence

Xn = (X1, · · · ,Xn) . Denote byφ the actual CDF ofXi. Let Wi = φ(Xi), i = 1, · · · , n. Then

W1, · · · ,Wn is an i.i.d. sequence, each uniformly distributed between 0and 1. Hence, it suffices to show

that the sequenceUn converges to the sequenceW n.

Convergence of the empirical distribution to the true distribution is a well-established fact in probability

known as the Glivenko-Cantelli Theorem [54]. However, we need a stronger statement which gives the

rate of such convergence. This is known as the Dvoretzky-Kiefer-Wolfowitz Theorem [26] and is stated

in the following lemma.

Lemma 1: [26] Let X1, · · · ,Xn be real-valued, i.i.d. random variables with distributionfunctionF .
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Let Fn denote the associate empirical distribution function defined by

Fn(x) =
1

n

n∑

i=1

1(−∞,x](Xi), x ∈ R.

For anyε > 0,

Pr

(
sup
x∈R
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 . (15)

�

We will also need the notion of aLp convergence of random sequences [18]. TheLp-norm of a

sequenceXn, p ≥ 1, is defined by||Xn||p = (
∑n

i |Xi|p)
1

p . A sequenceXn is said to converge inLp

to Y n, 0 ≤ p ≤ ∞, if limn→∞ E [||Xn − Y n||p] = 0. We then have the following lemma [18, Theorem

4.1.4].

Lemma 2: If a sequenceXn converges to another sequenceY n in Lp, 0 ≤ p ≤ ∞, thenXn converges

to Y n in probability. �

We can now show the desired statement.

Theorem 1:The sequenceUn converges to the sequenceW n in probability.

Proof: According to Lemma 2, we only need to showlimn→∞ E [||Un −W n||4] = 0. Here,

E [||Un −W n||4] = E



(

n∑

i=1

|Ui −Wi|4
) 1

4


 ≤

(
E
[

n∑

i

|Ui −Wi|4
]) 1

4

=

(
n∑

i

E
[
|Ui −Wi|4

]
) 1

4

, (16)

For anyi = 1, · · · , n, we have

E
[
|Ui −Wi|4

]
=

∫ 1

0
Pr
(
|Ui −Wi|4 > u

)
du =

∫ 1

0
Pr
(
|Ui −Wi| > u

1

4

)
du

≤
∫ 1

0
2e−2nu

1
2 du, (17)

where (17) follows from (15). By lettingt =
√
u and integrating by parts, we show

E
[
|Ui −Wi|4

]
≤ 4

∫ 1

0
te−2ntdt =

1

n2
− e−2n

n
(2 +

1

n
) ≤ 1

n2
. (18)

Combining (16) and (18), we obtain

E [||Un −W n||4] ≤
(

n∑

i=1

1

n2

) 1

4

= n−
1

4 ,

which tends to 0 asn→∞. This completes the proof of the theorem. �

The conversion fromXn (or Y n) to Un (or V n) can be accomplished using a procedure that requires

no computation and relies only on a sorting algorithm. It hasthe important side benefit that the output is
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inherently fixed-point, which is critical in the implementation of most modern communication systems.

Let A be the number of bits to be used for each output sampleUi. This implies thatUi is of value j
2A ,

0 ≤ j ≤ 2A − 1. Denote byC(j), 0 ≤ j ≤ 2A, the number of output samples of valuej−1
2A . The values

of C(j) are determined by the following pseudo-code:

C(0)← 0;

for j = 1 to 2A

C(j)←
⌊
j·n
2A

⌋
−∑j−1

k=0C(k);

end

where⌊x⌋ is the largest integer less thanx. For an input sampleXi with

k∑

j=0

C(j) ≤ Kn(Xi) <

k+1∑

j=0

C(j),

the corresponding outputUi is given by k
2A .

To efficiently implement this process, we follow a three stepprocess: i) sort the input samplesXn

in ascending order; ii) convert sorted samples to valuesj
2A , 0 ≤ j ≤ 2A − 1; iii) associate each input

sample with its converted value.

Suppose input samplesXn are sorted toX̃n, whereX̃1 ≤ · · · ≤ X̃n. The index mapping betweenXn

andX̃n is also recorded for the use in the association step.

The values ofX̃n are converted tõUn using the algorithm defined via the pseudo-code below. The

algorithm distributesn items amongA bins in a “uniform” way even whenA does not dividen. The

process is based on the rate-matching algorithms used in modern cellular systems, e.g. [1], and is also

similar to line-drawing algorithms in computer graphics.

c← 0; k ← 0; j ← 1;

while (j ≤ n)
c← c+ n

2A ;

while (c ≥ 1)

Ũj ← k
2A ; j ← j + 1; c← c− 1;

end

k ← k + 1;

end

The last step rearranges̃Un to outputsUn such that theith output sampleUi is associated with the

ith input sampleXi.

October 23, 2018 DRAFT



21

Although the above procedures use2A as the total number of possible values to be assigned, in general,

any integerM may be substituted for2A, in which case the unit interval[0, 1) is partitioned intoM

equal sub-intervals, with the data distributed among them as uniformly as possible.

To equiprobably quantize uniformly distributed samplesUn with v bits per sample, the Quantizer

determines the quantization boundaries as

qi =
i

2v
, 0 ≤ i ≤ 2v.

For a simple decoding process, the quantization errorE is defined as the difference betweenU and the

lower bound of the interval to whichU belongs. Hence, the quantization errorE is uniformly distributed

between 0 and1
2v . The transmission of such quantization errorsEn = (E1, · · · , En) over the public

channel does not reveal any information aboutXb.

For the case of fixed point inputsUn, if the number of bits per samplev in the Quantizer block used

for generatingXb is less than the numberA of bits used forU , then the Quantizer block obtains the

quantized value and the quantization error forU simply from the firstv bits and the lastA− v bits out

of theA bits for U , respectively.

Bob’s Data Converter performs the same operations as Alice’s. The Channel Decoder calculates the

per-bit LLR based on the outputs of Bob’s Data Converter block V n and the received quantization errors

En. Unlike the jointly Gaussian model, the joint distributionof X andY in this case is unknown and

the accurate LLR is generally incomputable.

We provide an extremely simple but effective way of computing the LLR. Heuristically, the LLR is

related to the distances fromV to the possibleU values that causeXb,i = 1 and that causeXb,i = 0.

Suppose a uniform sampleU is quantized and Gray coded to bits(Xb,1, · · · ,Xb,v) and the quantization

error ofU is E. The heuristic LLRLi for Xb,i, 1 ≤ i ≤ v, is derived through the following pseudo-code:
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for i = 1 to v

Li ← 2E − 2V + 1− 2−(v−i+1);

if V < 0.5

V ← 2V ;

E ← 2E;

else

V ← 1− 2V ;

E ← 2−(v−i) − 2E;

end

end

Consider an example ofE = 0.2 andv = 1. This quantization error indicates the two possible values

of U are 0.2 and 0.7, which corresponds toXb,1 = 0 andXb,1 = 1, respectively. IfV = 0.3, which is

closer to the possibleU value 0.2, then it is more likely thatXb,1 is equal to ‘0’ and the LLR forXb,1

should be positive. It follows from the pseudo-code above that L1 = 0.3. If V = 0.5, which is closer to

the possibleU value 0.7, then it is more likely thatXb,1 is equal to ‘1’ and the LLR forXb,1 should be

negative. It follows from the codes above thatL1 = −0.1.

As theLi obtained in the codes above is generally within the range of[−1, 1], the likelihood probability

of each bit is restricted to the range of[0.27, 0.73]. Hence, it is desirable to re-scaleLi to the operational

range of the modified belief-propagation algorithm by multiplying with a constant.

2) Simulation and Experimental Validation:We examine the performance of the proposed approach

in a simulation environment with the jointly Gaussian channel model and with real channels.

In order to examine the performance of the universal system,we apply it to the jointly Gaussian model,

though noting that the parametersP , N of the jointly Gaussian model are not utilized in the universal

system. The secret key rates achieved by the universal system are shown in Figure 9. For comparison, the

secret key capacity and the upper bound for the secret key rates achieved by the over-quantized system

are also plotted in the same figure. It is seen from the figure that the universal system performs well at low

SNR, but deviates at high SNR. The deviation may be due to the trade-off made between the regularly

quantized bits and the over-quantized bits. A different trade-off can push the deviation point higher at

the expense of more communication (of over-quantized bits)and higher LDPC decoding complexity.

We experimentally validated the feasibility of the above universal approach using 802.11 setup de-

scribed earlier. In the two experiments stated in Section II, Bob sent Probe Request messages at an

October 23, 2018 DRAFT



23

average rate of 110 ms.4 Typically, Bob received the corresponding Probe Response message from Alice

within 7 ms after a Probe Request message was sent. It is reported in Table I that in the first experiment,

the mutual information between Alice and Bob’s samples is about 3.294 bits/sample, while the mutual

information between Bob and Eve’s samples is about 0.047 bit/sample. In the second experiment, the

mutual information between Alice and Bob’s samples is about1.218 bits/sample, while the mutual

information between Bob and Eve’s samples is 0 within the accuracy of the measurement. This suggests

that the respective secret key capacities5 of the first and the second experimental environments are about 30

(≈ (3.294-0.047) bits/sample÷ 0.11 second/sample) bps and 11 bps, provided that the channel coherence

time is around 110 ms.

Next, we check the secret key rates achieved by the universalsystem. For the purpose of generating

keys in a short time duration, we apply a LDPC code with a shorter block length in the universal system.

The code is a (3,6) regular LDPC code of codeword length 400 bits. The quantization parameterv is

chosen as 3 for the first experiment and 2 for the second experiment. This implies that for each run of

the system, a block of 134 (≈ 400/3) first experimental samples or 200 second experimental samples is

sent to the universal system.

Our experimental results show that in both cases, Bob is ableto successfully decode Alice’s bit sequence

Xb of 400 bits. With the reduction of 200 bits, revealed as syndrome bits over the public channel, both

terminals remain with 200 secret bits. In order to remove thecorrelation between the 200 secret bits and

Eve’s samples in the first experiment, which shows non-zero mutual information, we may need to squash

out an additional 7 (≈ 0.047∗134) bits from the 200 secret bits, resulting in 193 secret bits.Considering

the period of collecting these 134 or 200 samples, we conclude that the secret key rate achieved by the

universal system is about 13 bps for the first experiment and 9bps for the second experiment.

IV. CONCLUSIONS

The wireless medium creates the unique opportunity to exploit location-specific and time-varying

information present in the channel response to generate information-theoretically secret bits, which may

be used as cryptographic keys in other security services. This ability follows from the property that in

a multipath scattering environment, the channel impulse response decorrelates in space over a distance

that is of the order of the wavelength, and that it also decorrelates in time, providing a resource for fresh

4Here, we assume the channel coherence time is less than or equal to 110 ms. Hence, two consecutive CIRs at either terminal

are assumed to be mutually independent.

5We abuse the notion of capacity a bit as this “capacity” assumes i.i.d. channel samples.
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randomness. In this paper, we have studied secret key extraction, under the assumption of a Rayleigh or

Rician fading channel, and under a more general setting where we do not make any assumption on the

channel distribution. We have developed two techniques forproducing identical secret bits at either end

of a wireless communication link and have evaluated each technique using channel measurements made

using a modified 802.11 system. The first technique is based onthe observation of correlated excursions

in the measurements at the two users while the second technique employs error-correction codes. The

former method trades off the performance of the latter with alower complexity and does not require

knowledge of the channel coherence time. Since the time-varying nature of the channel acts as the source

of randomness, it limits the number of random bits that can beextracted from the channel for the purpose

of a cryptographic key. The second method applies to more general distributions for the shared channel

information between a transmitter and receiver, and is ableto achieve improved secret key rates at the

tradeoff of increased complexity. Our evaluations indicate that typical indoor wireless channels allow us

to extract secret bits at a practically useable rate, with minimal information about these secret bits being

learned by an eavesdropper. Lastly, we note that as a final step, the legitimate participants in the protocol

may wish to employ privacy amplification to provide added assurance that the eavesdropper cannot infer

the bits being generated.
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Fig. 1. A system level description of the level crossing algorithm. Messages exchanged over the air are shown in dotted lines.
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(a) Alice’s secrecy processing.

(b) Bob’s secrecy processing.

Fig. 7. Block diagrams of the basic system.
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