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Abstract

The multipath-rich wireless environment associated wythidal wireless usage scenarios is char-
acterized by a fading channel response that is time-vanjoaation-sensitive, and uniquely shared
by a given transmitter-receiver pair. The complexity agsed with a richly scattering environment
implies that the short-term fading process is inherentiydha predict and best modeled stochastically,
with rapid decorrelation properties in space, time and deegy. In this paper, we demonstrate how
the channel state between a wireless transmitter and srcean be used as the basis for building
practical secret key generation protocols between twdiesitie begin by presenting a scheme based
on level crossings of the fading process, which is welleslifior the Rayleigh and Rician fading models
associated with a richly scattering environment. Our leveksing algorithm is simple, and incorporates
a self-authenticating mechanism to prevent adversariaipnéation of message exchanges during the
protocol. Since the level crossing algorithm is best suftedading processes that exhibit symmetry in
their underlying distribution, we present a second and npargerful approach that is suited for more
general channel state distributions. This second apprizactotivated by observations from quantizing

jointly Gaussian processes, but exploits empirical measants to set quantization boundaries and a
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heuristic log likelihood ratio estimate to achieve an imya® secret key generation rate. We validate
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both proposed protocols through experimentations usingséomized 802.11a platform, and show for
the typical WiFi channel that reliable secret key estaltisht can be accomplished at rates on the order
of 10 bits/second.

. INTRODUCTION

The problem of secret key generation from correlated in&diom was first studied by Maurer [39],
and Ahlswede and Csiszar [4]. In a basic secret key geoergtioblem, called thbasic source modgl
two legitimate terminals (Alice and B(H))Jbserve a common random source that is inaccessible to an
eavesdropper. Modeling the observations as memorylessawelefine the model as follows: Alice and
Bob respectively observe independent and identically distributed (i.i.d.) repetis of the dependent
random variablesX andY, denoted byX"™ = (Xy,---,X,,) andY"™ = (Y7,---,Y,). In any given
time instance, the observation pdik;,Y;) is highly statistically dependent. Based on their depehden
observations, Alice and Bob generate a common secret keylimyneinicating over a public error-free
channel, with the communication denoted collectively Wy

A random variableil with finite rangek represents aa-secret keyor Alice and Bob, achievable with
communicationV, if there exist two functiong 4, fp such thatK, = fa(X"™, V), K = fp(Y", V),

and for anye > 0,

Pr(K =Ks=Kp)>1—c¢, (1)
I(K;V) <e¢, 2)
H(K) > log K| — €. (3)

Here, condition[(f1) ensures that Alice and Bob generate #messecret key with high probability;
condition [2) ensures such secret key is effectively colecefaom the eavesdropper observing the public
communicationV; and condition[(B) ensures such a secret key is nearly uni§odistributed.

An achievable secret key ratR is defined [39], [4] to be a value such that for every> 0 and
sufficiently largen, ane-secret keyK is achievable with suitable communication such tl};ﬁ(K) >
R — €. The supremum of all achievable secret key rates issd#wet key capacitgenoted byCsx. For

the model presented above, this is given by [39], [4], [40R][

Csk = I(X:;Y). (4)

Unless otherwise specified, all the terminals in this papéerrto legitimate terminals, and hence the term “legitihatill

be omitted henceforth.

October 23, 2018 DRAFT



This result holds for both discrete and continuous randonmabkes X andY, as long as/(X;Y) is
finite (cf. [62], [47]).

The model defined above assumes the eavesdropper (i.e. BEyedlmserve the transmissions on the
public channel, but is unable to tamper with them and has nesacto any other useful side information.
The case of an eavesdropper with access to side informagismdteived significant attention (see, e.g.,
[39], [4], [53], [19]); unfortunately the capacity probleremains open in this case. The case of an
eavesdropper with the ability to tamper with the transroission the public channel has been addressed
in a comprehensive analysis by Maurer and Wolf [41], [434][445].

A practical implementation of secret-key agreement sclseimitows a basic 3-phase protocol defined
by Maureret.al. The first phaseadvantage distillatio39], [15], is aimed at providing two terminals
an advantage over the eavesdropper when the eavesdrogpacdess to side information. We do not
consider this scenario (as we shall see shortly, it is noessary for secrecy generation from wireless
channels) and, therefore, do not addradsantage distillation

The second phas&formation reconciliation[8], [7], [14], is aimed at generating an identical random
sequence between the two terminals by exploiting the pudiiannel. For a better secret key rate, the
entropy of this random sequence should be maximized, whdeamount of information transmitted on
the public channel should be minimized. This suggests aatéconnection between the information rec-
onciliation phase of the secrecy agreement protocol angie&@ieNolf data compression. This connection
was formalized by [23] in the general setting of multi-tenadi secrecy generation.

The connection between secrecy generation and data cosigrés of significant practical, as well as
theoretical interest. Considering the duality betweempi@leWolf data compression and channel coding
(e.g., [27], [35], [49], [20], [17], etc), the relationshi@tween secrecy generation and data compression
allows capacity-achieving channel codes, like Turbo canld<DPC codes, to be used for the information
reconciliation phase. Moreover, the capacity-achieviagabilities of such codes in the channel coding
sense carry over to the secrecy generation problem. A cdrapsive treatment of the application and
optimality of such codes to the secrecy generation problambe found in [13], [12].

The last phase of Maurer’s protocadrivacy amplification[9], [11], extracts a secret key from the
identical random sequence agreed to by two terminals in nf@mation reconciliation phase. This
can be implemented by linear mapping and universal hastiél [57], [11], [45], or by an extractor
[52], [45], [24], [25], [22]. The combination of the inforrtian reconciliation phase and the privacy
amplification phase has been considered in [15], [61].

Perhaps the first practical application of the basic sourggeahis quantum cryptography (cf. e.g., [10],
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[46]), where non-orthogonal states of a quantum systemigiedwo terminals correlated observations of
randomness which are at least partially secret from a patessivesdropper. Quantum key distribution
schemes based on continuous random variables have bearss#idcin [28], [55], [13], [36]. Less
realized is the fact that wireless fading channel providestteer source [30], [62], [12] of secrecy which
can be used to generate information-theoretically secayes.kBecause the source model for secrecy
establishment essentially requirgriori existence of a “dirty secret” which is then just cleaned wghs
sources of secrecy are hard to find. To our knowledge no suattes® other than quantum entanglement
and wireless channel reciprocity have been identified te.datrther, we note that although there have
been several implementations of quantum cryptographicestgblishment, little work has been done to
provide a system validation of this process for wirelessdlets. This paper examines both theoretical and
practical aspects of key establishment using wirelessredlarand represents one of the first validation
efforts to this effect.

An alternative approach to secrecy generation from wisetdgnnels is based on the wiretap channel
models, see e.g. [12]. However, this approach suffers froreesl to make certain assumptions as part of
the security model that are hard to satisfy in practice arschiog, to date, led to a practical implementation.

A (narrowband) wireless channel is well modeled as a flatnfpdihannel. The fading coefficient
changes in time, but the change is rather slow (on the ordérmgec to 1 sec, depending on terminal
velocities and other factors). For simplicity, let us calesifrequency flat fading. Roughly speaking, for
a fixed time and location, the transmitted sighand the received signal are related via = F't + Z,
where F' is the channel fading coefficient ard is the additive independent noise. If the transmitted
signalt is known at the receiver beforehand, (e.g., it is a trainiaguence) then the receiver is able
to obtain a noisy estimate of the fading coefficignt Furthermore, if both terminals send the training
sequence at approximately the same time (more preciselywithin one channel coherence time of
each other), then they can obtain channel estimates thdigitly correlated due to channel reciprocity.
This suggests the following model: let the random variabfesand Y be defined byX = F + Z,4,

Y =F+ Zp, whereF, Z,4, Zp are three independent random variables.

In data communications application, it is common to model dmannel as Rayleigh or Rician, in
which caseF, Z, and Zg are Gaussian. Let these be distributed\&$), P), N (0, N4) and N (0, Np)
respectively. A simple calculation shows that the secrgtdagpacity [62] of this jointly Gaussian model
is
+ z NaN

Na+ Np + =452

Csk = logy (1 ) bits/sample. (5)
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If we let N4 = Np = N in this setting, then we get a natural definition of SNRsas = %, and the

above secret key capacity reduceddg, (1 + sIevR

As noted, the above calculation is relevant for the trad@loRayleigh or Rician fading model, and

) bits/sample.

serves as an upper bound on the secret key establishmerbuatioes not provide insight into how one
can practically extract such secret bits from the undeglyfeding process. In this paper, we examine
two different approaches for secrecy extraction from thanciel state between a transmitter and receiver
in a richly scattering wireless environment. Our first agmto which is based on level-crossings, is a
simple algorithm that is well-suited for environments ticah be characterized as Rayleigh or Rician.
However, we recognize that such a method might not apply herpgeneral fading cases. One way to
address this problem is to consider more complex fadingiloligion models, such as those appropriate
for ultrawideband channels. This has been addressed invéopsework by Wilsonet. al [58] (see
also [5], [31], [6]). However, we take a different approachthis paper. Inspired by our prior work on
Gaussian-based approaches, we propasaiaersalreconciliation approaches for wireless channels. This
second, and more powerful method, only assumes that thenehampulse responses (CIRs) measured
at both terminals are highly correlated, and their measaremoise is very low. Whereas the first of
our two approaches was simple, and able to achieve a limé@edeskey establishment rate, our second
approach is more complex, but is able to take better advarmé&ghe secrecy capabilities offered by
CIR measurements, which tend to have high SNR (due to a higbepsing gain associated with such
measurements in modern communication systems).

In both of these cases, our goal is to come up with a practjgatcach to secrecy generation from
wireless channel measurements. In particular, becaussdtistics of the real channel sources we utilize
are not known (and that is the major challenge we believeesdéd by our work), it is impossible to
make any quantitative statements about optimality of opr@gches. Nevertheless, we do want to make
sure that our solution is based on solid theoretical fouodaffo do so, we include discussion of the
motivating algorithms and their performance in idealizeddels when necessary.

Several previous attempts to use wireless channels foygtirtg communications have been proposed.
Notably, [34] exploited reciprocity of a wireless channet Becure data transformation; [29] discussed
a secrecy extraction scheme based on the phase informdti@taived signals; the application of the
reciprocity of a wireless channel for terminal authentaatpurpose was studied in [48], [59], [60], etc.
Unlike these and other approaches, our approach for dieecesy generation allows the key generation
component to become a “black box” within a larger commumdcaiystem. Its output (a secret bit

stream) can then be used within the communication systeraaidous purposes. This is important, as
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the key generation rate is likely to be quite low, and thugdtirencryption of data will either severely
limit throughput (to less than 1 kbps in indoor channels)esuit in extremely weak secrecy.

The adversary model assumed in this paper focuses mainlyassive attacks. We do not consider
authentication attacks, such as the man-in-the-middéelatsince these require an explicit authentication
mechanism between Alice and Bob and cannot be addressedy/kxiaction alone. The starting point
for algorithms presented in this paper is the successivieipgoof the wireless channel by the terminals
that wish to extract a secret key. Implicitly, we assume thatadversary is not engaging in an active
attack against the probing process, though we note thatigatyayer authentication techniques, such
as presented in [60] might be applicable in such an advaitsseiting. The infeasibility of passive
eavesdropping attacks on the key generation proceduresélion the rapid spatial decorrelation of the
wireless channel. We demonstrate this using empiricaligmaed mutual information from the channel-
probing stage, between the signals received at Bob and Eleaanparing it with the mutual information
between the signals received at Alice and Bob. Beyond thie lkeasesdropping attack, we do consider a
particular type of active attack in our level-crossing aitijon in Section 1l, where the adversary attempts
to disrupt the key extraction protocol by replacing or aftgrthe protocol messages. In this case, we
provide a method to deal with this type of active attack bwetly using the shared fading process
between Alice and Bob.

One of the goals of our work is to demonstrate that secrecyergéion can be accomplished in
real-time over real channels (and not simulation models) ianreal communication systems. To that
end, results based on implementations on actual wireleg®phs (a modified commercial 802.11 a/g
implementation platform) and using over-the-air protscate presented. To accomplish this, we had to
work with several severe limitations of thexperimental systerat our disposal. Consequently certain
parameters (e.g. code block length) had to be selected torbevehat below what they should be for
a well-designed system. This, however, does not reflect erfahsibility of proper implementation in a
system with these features designed in. For example, rpthauld prevent a design with the code block
length sufficiently long to guarantee desired performa@rethe contrary, we believe the demonstration
of a practical implementation to be one of the major contiims of our work.

The rest of this paper is organized as follows. Section Itwses the simpler of our algorithms based
on level crossings. Section Il presents a more complex amiek powerful approach to extracting secret
bits from the channel response, as well as some new resulisancy generation for Gaussian sources

which motivate our solution. We conclude the paper with sdim& remarks in Section IV.
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I[I. LEVEL CROSSINGSECRETKEY GENERATION SYSTEM

In this section we describe a simple and lightweight algamitin [38] for extracting secret bits from
the wireless channel that does not explicitly involve the o§ coding techniques. While this comes at
the expense of a lower secret key rate, it reduces the coityplaixthe system and it still provides a
sufficiently good rate in typical indoor environments. Thgosithm uses excursions in the fading channel
for generating bits and the timing of excursions for rechatddon. Further, the system does not require
i.i.d. inputs and, therefore, does not require knowledgthefchannel coherence time a priori. We refer
to this secret key generation system as ldwel crossing systemiVe evaluate the performance of the

level crossing system and test it using customized 802.tdwzae.

A. System and Algorithm Description

Let F(t) be a stochastic process corresponding to a time-varyingnpeter I’ that describes the
wireless channel shared by, and unique to Alice and Bob.eAdéind Bob transmit a known signal (a
probe) to one another in quick succession in order to derrectated estimates of the parameter
using the received signal by exploiting reciprocity of thigeless link. LetX andY denote the (noisy)
estimates of the parametér obtained by Alice and Bob respectively.

Alice and Bob generate a sequencerotorrelated estimate&” = (X, Xs,...,X,) andY" =
(Yl, Ya, ... ,Yn), respectively, by probing the channel repeatedly in a tilmision duplex (TDD) manner.
Note however, that{; (andY;) are no longer i.i.d. foi = 1,...n since the channel may be strongly
correlated between successive channel estimates.

Alice and Bob first low-pass filter their sequence of chanmstiheates, X" and Y™ respectively, by
subtracting a windowed moving average. This removes thesrtiignce of the channel estimates on
large-scale shadow fading changes and leaves only the so#d fading variations (see Figure 6). The
resulting sequencesy”™ and Y™ have approximately zero mean and contain excursions irtiyp®sind
negative directions with respect to the mean. The subtracti the windowed mean ensures that the
level-crossing algorithm below does not output long ssin§ones or zeros and that the bias towards one
type of bit is removed. The filtered sequences are then usedliby and Bob to build a 1-bit quantizer

Y"(-) quantizer based on the scalats andq" that serve as threshold levels for the quantizer:
¢ = mean(U") +a-o(U") (6)

@ = mean(U")—a-oU"), (7)
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where the sequendé™ = X" for Alice andU™ = Y™ for Bob. o(-) is the standard deviation and the
factor o can be selected to control the quantizer thresholds. TheesegsX” andY ™ are then fed into
the following locally-computed quantizer at Alice and Baspectively:

1 ifx>q}

Piz)=1q 0 if 2 <g"

e Otherwise
wheree represents an undefined state. The supersergpands foruserand may refer to either Alice, in
which case the quantizer functiondg'(-), or to Bob, for which the quantizer ig”(-). This quantizer
forms the basis for quantizing positive and negative exonss Values betweenp" and ¢y are not
assigned a bit.

It is assumed that the numberof channel observations is sufficiently large before usimg level
crossing system, and that tli¢ elementX; andY; correspond to successive probes sent by Bob and
Alice respectively, for eachh=1,...,n. The level crossing algorithm consists of the followingpste

1) Alice parses the vectok™ containing her filtered channel estimates to find instandesr&n or

more successive estimates lie in an excursion alggver belowq_. Here,m is a parameter used
to denote the minimum number of channel estimates in an sikour

2) Alice selects a random subset of the excursions foundeip $tand, for each selected excursion,

she sends Bob the index of the channel estimate lying in théecef the excursion, as a list
L. Therefore, ifX; > ¢4 or < g_ for somei = igqrt, - - -, %end, then she sends Bob the index
foenter = | fsstsFless |
3) To make sure thd.-message received is from Alice, Bob computes the fractiomdices in L
whereY™ lies in an excursion spanningn — 1) or more estimates. If this fraction is less than
%4—5, for some fixed parametér< e < % Bob concludes that the message was not sent by Alice,
implying an adversary has injected a fakemessage.
4) If the check above passes, Bob replies to Alice with a ngEssacontaining those indices il

at whichY™ lies in an excursion. Bob computdéz = ¢/ (Y;;i € L) to obtain N bits. The first

Ny, bits are used as an authentication key to compute a messtgnaeation code (MAC) of

L. The remainingV — N, bits are kept as the extracted secret key. The overall messay by

Bob is {E,MAC’ (Kau,i>}. Practical implementations, for example, one could use GBXC
as the implementation for MAC, and use a k&y,, of length N,,, = 128 bits.
5) Upon receiving this message from Bob, Alice ue® form the sequence of bifs 4 = 4 (X;;i €

E). She uses the firg¥,,, bits of K4 as the authentication keff,,, = Ka(1,..., Ng,), and, using
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K., she verifies the MAC to confirm that the package was indeettseBob. Since Eve does
not know the bits inkK,, generated by Bob, she cannot modify thenessage without failing the

MAC verification at Alice.

Figure[1 shows the system-level operation of the level angsaslgorithm. We show later that provided
the levelsq,,q— and the parametem are properly chosen, the bits generated by the two users are
identical with very high probability. In this case, both édi and Bob are able to compute identical key
bits and identical authentication key bit§,,,, thereby allowing Alice to verify that the protocol message
L did indeed come from Bob. Since Eve’s observations from tnennel probing do not provide her
with any useful information abouk™ andY", the messages and L do not provide her any useful
information either. This is because they contain time iadionly, whereas the generated bits depend

upon the values of the channel estimates at those indices.

B. Security Discussion for the Level-crossing Algorithm

The secrecy of our key establishment method is based on thangsion that Alice and Bob have
confidence that there is no eavesdropper Eve located ndwar eMice or Bob. Or equivalently, any
eavesdropper is located a sufficient distance away from Béte and Bob. In particular, the fading
process associated with a wireless channel in a richly exiragt environment decorrelates rapidly with
distance and, for two receivers located at a distance ofhlgubge carrier wavelength from each other, the
fading processes they each witness with respect to a trétasmill be nearly independent of each other
[32]. For a Rayleigh fading channel model, /if, and h;,. are the jointly Gaussian channels observed
by Alice and Eve due to a probe transmitted by Bob, then theetadion betweerkh;, and h;. can be
expressed as a function of the distant®etween Alice and Eve, and is given by(2xd/\), where
Jo(x) is the zeroth-order Bessel function of the first kimds the distance between Alice and Eve, and
A is the carrier wavelength. Hence, because of the decay(af) versus the argument, if we are given
anye > 0, it is possible to find the minimum distandethat Eve must be from both Alice and Bob such
that the mutual informatiod (hy,; hpe) < €.

Further, we note that the statistical uniformity of the tjgences that are extracted by Alice and Bob
using our level-crossing algorithm is based on the staéibtiniformity of positive and negative excursions
in the distribution of the common stochastic channel betwdgem. This inherently requires that the
channel state representation for the fading process be symally distributed about the distribution’s
mean. Many well-accepted fading models satisfy this prypétotably, Rayleigh and Rician fading

channels [33], which result from the multiple paths in a radattering environment adding up at the
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receiver with random phases, fall into this category. Cqueatly, we believe that the reliance of level-
crossing algorithm on the underlying distribution symmesuggests that the level-crossing algorithm
is best suited for Rayleigh or Rician fading environmentke Tindependence of successive extracted
bits follows from the fact that the excursions used for eaithate naturally separated by a coherence
time interval or more, allowing the channel to decorrelaidiine. Finally, we note that our approach
does not preclude a final privacy amplification step, thoupplieation of such a post-processing step
is straightforward and might be desirable in order to enghet no information is gleaned by an

eavesdropper.

C. Performance Evaluation and Experimental Validation

The central quantities of interest in our protocol are thee raf generation of secret bits and the
probability of error. The controls available to us are theapzetersiq!,q",m and the rate at which
Alice and Bob probe the channel between themselygesWe assume the channel is not under our
control and the rate at which the channel varies can be repted by the maximum Doppler frequency,
f4- The typical Doppler frequency for indoor wireless enviremts at the carrier frequency 24 GHz
is fy = ¥ ~ 22x10° _ g Hz assuming a velocity of 1 m/s. We thus expect typical Doppler frequencies

X 3% 108
in indoor environments in the.4 GHz range to be roughly0 Hz. For automobile scenarios, we can

expect a Doppler of~ 200 Hz in the 2.4 GHz range. We assume, for the sake of discussion, that the
parameter of interest’ is a Gaussian random variable and the underlying stochpisitessF(t) is a
stationary Gaussian process. A Gaussian distributio¥’faray be obtained, for example, by takifgto
be the magnitude of the in-phase component of a Rayleigindagiiocess between Alice and Bob [51].
We note that the assumption of a Gaussian distributiorf'da for ease of discussion and performance
analysis, and our algorithm is valid in the general case wlhlee distribution is symmetric about the
mean.

The probability of error,p. is critical to our protocol. In order to achieve a robust keismatch
probability px, the bit-error probabilityp. must be much lower thap,. A bit-error probability ofp, =
10~7 ~ 10~ 8 is desirable for keys of lengthV = 128 bits. The probability of bit-errory, is the probability
that a single bit generated by Alice and Bob is different &t tilvo users. Consider the probability that
the i** bit generated by Bob isK'}; = 0” at some index given that Alice has chosen this index, but she

has generated the bitk", = 1. As per our Gaussian assumption on the paramgtend estimatesy
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andY, this probability can be expanded as
Pr(Kp; =0,Ky =1)
Pr(K' = 1) B

qar
27.‘. (1—2m)/2 T 2m 1
/ / / |K2 e exp { — 50" Kg_q 2}l Ja

(2m—1) terms
S S @m)-? )
T —m
/ aYemiven exp {— wTK x}d
X X
af af
—_———

(m) terms

Pr(Ki =0/K)y=1) = (8)

where K,,, is the covariance matrix of: successive Gaussian channel estimates of Alice Idgng_;

is the covariance matrix of the Gaussian vedtay, Y1, Xo,...,Y,,_1, X,,) formed by combining the
m channel estimates of Alice and the — 1 estimates of Bob in chronological order. The numerator in
(8) is the probability that o2m — 1 successive channel estimates pelonging to Alice, andn — 1 for
Bob), all m of Alice’s estimates lie in an excursion aboye while all m — 1 of Bob’s estimates lie in
an excursion below_. The denominator is simply the probability that all of Alieen estimates lie in
an excursion above, .

We compute these probabilities for various valuesnofand present the results of the probability
of error computations in Figurig 2. The results confirm thaamgeér value ofm will result in a lower
probability of error, as a larger. makes it less likely that Alice’s and Bob’s estimates lie jpposite
types of excursions. Note that if either user’'s estimatesatdie in an excursion at a given index, a bit
error is avoided because that index is discarded by bottsuser

How many secret bits/second (bps) can we expect to derive dréading channel using level crossings?
An approximate analysis can be done using the level-crggsite for a Rayleigh fading process, given
by LOR = /27 fype—*" [51], wheref, is the maximum Doppler frequency apds the threshold level,
normalized to the root mean square signal level. Settirg 1, gives LCR ~ f4. This tells us that we
cannot expect to obtain more secret bits per second thanrtte of f;. In Figure[3 (a) and (b), we
plot the rate in s-bits/sec as a function of the channel pbate for a Rayleigh fading channel with
maximum Doppler frequencies gf; = 10 Hz and f; = 100 Hz respectively. As expected, the number
of s-bits the channel yields increases with the probing, fat¢ saturates at a value on the orderfof

In order for successive bits to be statistically independémey must be separated in time by more
than one coherence time interval. While the precise relaligp between coherence time and Doppler
frequency is only empirical, they are inversely related #rid generally agreed that the coherence time

is smaller in magnitude (Coherence tirfig, is sometimes expressed in terms fafas T, = 167’#2)
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than1/f;. Therefore, on average, if successive bits are separatedtinye interval ofl/f,, then they
should be statistically independent.
More precisely, the number of secret bps is the number oeséds per observation times the probing

rate. Therefore

Ry, = H(bins) x Pr(KY = K%) x % 9)

= 2§ x Pr(KYy = 1,KjB =1)

_2_ = e{—%xTK;iflx}d2m—1x7
/ /X |K2m | Kom—1|1/2

(2m 1) terms
where H (bins) is the entropy of the random variable that determines which(b ¢4 or < ¢_) of
the quantizer the observation lies in, which in our case lsquassuming that the two bins are equally
Iikelj%. The probing ratef; is normalized by a factor o, because a single ‘observation’ in our algorithm
is a sequence afi channel estimates.

Figure[3 confirms the intuition that the secret bit rate maditith increasingm, since the longer
duration excursions required by a larger valueiofire less frequent. In Figuré 4(a), we investigate how
the secret-bit rate?; varies with the maximum Doppler frequengy, i.e., the channel time-variation.
We found that for a fixed channel probing rate (in this cgses 4000 probes/sec), increasinfy results
in a greater rate but only up to a point, after which the selgitetate begins to fall. Thus, ‘running faster’
does not necessarily help unless we can increase the prodtiag; proportionally. Figurd 4(b) shows
the expected decrease in secret-bit rate as the quantieds tee value oty is varied to movey andq”
further apart. Hereqr denotes the number of standard deviations from the mean iahwie quantizer
levels are placed.

We examined the performance of the secrecy generationnsyeteugh experiments. The experiments
involved three terminals, Alice, Bob and Eve, each equippitd an 802.11a development board.

In the experiments, Alice was configured to be an access &), and Bob was configured to be a
station (STA). Bob sends Probe Request messages to Alicerepties with Probe Response messages as
quickly as possible. Both terminals used the long preambignent [2] of their received Probe Request
or Probe Response messages to compute 64-point CIRs. Tést fad¢ak in each CIR (the dominant

multipath) was used as the channel parameter of interestthe X andY sample inputs to the secret

2The levelsq; andg_ are chosen so as to maintain equal probabilities for the tws. b
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key generation system. To access such peak data, FPGA-tastedhized logic was added to the 802.11
development platform. Eve was configured to capture the @Résponse messages sent from Alice in
the experiments.

Two experiments were conducted. In the first experimengeAlind Eve were placed in a laboratory.
In a second experiment, Alice and Eve remained in the samiigmsswhile Bob circled the cubicle
area of the office.

Figure[®(a) shows an example of Alice’s, Bob’s, and Eve’'spbiht CIRs obtained through a single
common pair of Probe Request and Probe Response messageseéin from the figure that Alice’s
and Bob’s CIRs look similar, while they both look differembifn Eve’s CIR. We show the traces for
Alice and Bob resulting from 200 consecutive CIRs in Figufle)5The similarity of Alice’s and Bob’s
samples, as well as their difference from Eve’s samplesewaigent from the figure.

While our experiments ran for 22 minutes, in the interest of space and clarity we show Gitly
CIRs collected over a duration ef 77 seconds. Each user locally computesand ¢_ as in [6), [(7).
We chosex = % for our experiments.

Figure[6 shows the traces collected by Alice and Bob afteok@iof slow shadow fading components
using a simple local windowed mean. This is to prevent lomipgs$ of 1s and0s, and to prevent the
predictable component of the average signal power fronctfig our key generation process. Using the
small scale fading traces, our algorithm generafes: 125 bits in 110 seconds: = 4), yielding a key
rate of aboutl.13 bps. Figurd b shows the bits that Eve would generate if shiedathrough with the
key-generation procedure. The results from our secondrigmpet with a moving Bob are very similar
to the ones shown for the first experiment, producing’ bps. withm = 4 anda = % Note that while
figured3 an@l4 depict the secret bit rate that can be achieveke specified values of Doppler frequency,
our experimental setup does not allow us to measureablyaidhe precise Doppler frequency and the
secret bits rates we report from our experiments correspohdthe indoor channel described.

In order to verify the assumption that Eve does not gain aejulisnformation by passive observation
of the probes transmitted by Alice and Bob, we empiricallynpoited the mutual information using the
method in [56] between the signals received at the legigmesiers and compare this with that between
the signals received by Eve and a legitimate user. The seglithis computation, summarized in Table |,
serve as an upper bound to confirm that Eve does not gatheigmificaint information about the signals
received at Alice and Bob. Although this information lea&agyminimal relative to the mutual information
shared between Alice and Bob, it might nonetheless be ptudemmploy privacy amplification as a post-

processing to have a stronger assurance that Eve has leaoniefbrmation about the key established
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between Alice and Bob. Finally, we note that with suitabléuga of the parameters chosen for the level
crossing algorithm, the bits extracted by Alice and Bob datistically random and have high-entropy
per bit. This has been tested for and previously reporte@&} {ising a suite of statistical randomness

tests provided by NIST [3].

1. QUANTIZATION -BASED SECRETKEY GENERATION FORWIRELESSCHANNELS

We now present a more powerful and general approach tharetieédrossing approach discussed in
Section Il for obtaining secret keys from the underlyingif@gdphenomena associated with a with a richly
scattering wireless environment. Whereas the level-argsggorithm was best suited for extracting keys
from channel states whose distributions are inherentlynsgtric, our second approach is applicable to
more general channel state distributions. Further, thisrsg approach approach is capable of generating
significantly more than a single bit per independent chamealization, especially when the channel
estimation SNRs are high.

To accomplish this we propose a new approach for the quaiotizaf sources whose statistics are
not known, but are believed to be similar in the sense of liptliigh SNR” - a notion we shall define
more precisely below. Our quantization approach is maiydby considering a simpler setting of a
Gaussian source model and addressing certain deficienties wan be observed in that model. This
problem has been addressed by [62] using a simple “BICM-i#gproach [13] to the problem. A more
general treatment which introduces multi-level coding barfiound in [13] and also [12], however for our
purposes, the simple "BICM-like” approach of [62] and [18]dufficient. To motivate our approach to
“universal” quantization we need to take this solution amgiiove on it - the process which we describe

next.

A. Over-quantized Gaussian Key Generation System

We begin our discussion of the over-quantized Gaussian Keye@tion System by reviewing the
simple approach to the problem described in [62]. A blockgdimn of a basic secret key generation
system is shown in Figufé 7. Alice’s secrecy processingistmef four blocks: Quantizer, Source Coder,
Channel Coder and the Privacy Amplification (PA) process Quantizer quantizes Alice’s Gaussian
samplesX™. The Source Coder converts the quantized samples to a ibig Xi,. The Channel Coder
computes the syndron® of the bit stringX,. A rate 1/2 LDPC code is used in [62]. This syndrome
is sent to Bob for his decoding &X,. As discussed in Section I, the transmission of the syndrizme

assumed to take place through an error-free public chaimptactice this can be accomplished through
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the wireless channel with the use of standard reliabilishteéques (e.g., CRC error control and ARQ).
Finally, privacy amplification (if needed) is implementedthe PA block.

Figure[8(a) present the results obtained by using variogsrihm options discussed in [62]. We
observe from this figure that at high SNR (5dB), the secret key rates resulting from Gray coding are
within 1.1 bits of the secret key capacity (5). However, thp etween the achieved secret key rates and
the secret key capacity is larger at low SNR. In this subisectve demonstrate how the basic system
can be improved such that the gap at low SNR is reduced. Wictestirselves to Gray coding, as this
is clearly the better source coding approach.

We start with the observation that the quantization peréatrby Alice involves some information
loss. To compensate for this, Alice could quantize her sampt a higher level than the one apparently
required for the basic secret key generation purpose. Segpfhat quantization to bits is required by
the baseline secrecy generation scheme. Alice then gearttz + m bits using Gray coding as a source
coder. We refer to the most significant bits as theegularly quantized bitand them least significant
bits as theover-quantized bitsThe over-quantized bitB are sent directly to Bob through the error-free
public channel.

The Channel Decoder (at Bob) uses the syndr@mnef the regularly quantized bitX,, the over-
guantized bitsB and Bob’s Gaussian sampl&s’ to decodeX,. Again, it applies the modified belief-
propagation algorithm (cf. [35]), which requires the pérti.R. The LLR calculation is based on both
Y™ andB.

Suppose one of Alice’s Gaussian sampléss quantized and Gray coded to bit& 1, -, X v+m)-
With Bob’s corresponding Gaussian sampleand Alice’s over-quantized bit€Xy, 11, , Xpp1m) =
(@y41,- -+ s ayym), the probability ofX;;, 1 <i < v, being 0 is derived below:

Pr(Xb,i = O|Y =Y, Xb,v+1 = Qy41, """ 7Xb,v+m = av+m)
Pr(Xb,i = 07 Xb,v+1 = Qy41," " aXb,vm = av-i—m’Y = y)
Pr(Xb,v—l—l = Qy41, """ 7Xb,vm = av+m|Y = y)

quim _
2= PG s X <glY =9)la,,6-0=0 1t g-n=an T Leting-D=avim (10)
- vtm — — )
Yl Pr(gi-1 S X <GV = y) - 1ge

i—D=av et -1 =auim

7=1
where1 is an indicator function and the functia® (j), 1 <i < k, 0 < j < 2¥ — 1, denotes the'"
bit of the k-bit Gray codeword representing the integeiThe quantization boundarigs < - - - < Govtm

depend on the quantization scheme used. For instance, #rgization boundaries of thequiprobable
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guantizersatisfy

7 1 2 1
e aNdr = ——, j=1,--- 2", 11
/q VarN grem D
Now,
_ _ _ P _
Pl"(Qj—l <X < (]j|Y = y) = PT(Qj—l < my + Zp < Qj|Y = y)
P P
- Pr(gi 41— — <2z g o -
r(Gj—1 PrnYS % <q P+Ny)
- P - P
_ qj—1 — p+Ny _ q; — p+Ny
2PN+ N2 2PN+ N?
P+N P+N

where the functiony(k,y), 0 < k < 2", is defined as

= P
%k — pxNY
9(k,y) =Q ; (12)
(k:9) <\/(2PN+N2)/(P+N)>
and @ is the usual Gaussian tail function [50]. Hence, the prditgtof (LQ) is given by

2v+m . .
Zj:l l9(G —1,9) —9(i,y)] - lgi, (-1)=0" 1(;51}”(j_1):av+] e lgem =gy

v+m

Qu+t+m . .
2=t 90 =1y) =90 v 1avt Gony—ans = Lavtm (= D)=avsm

v4+m

(13)

It should be noted that when equiprobable quantizationdsl uhe over-quantized bif3 and the regularly
guantized bitsX,; are independent as shown below. Suppose a saMpkequiprobably quantized and
source coded te bits (Xj1,--- , X,¢). For an arbitrary bit sequende,,--- ,a;) and a setS C 7 =
{1,--- ,t}, we have

Pr ({Xbﬂ' =a;:1€E T})
Pr ({Xbﬂ' =a;:1€E T\S})

PI‘({X{,,Z‘ =aqa;:1€ S}‘{Xb,l =q;:1€ T\S}) =

2_(%7_78” oISl — Pr({Xy, — i i € S)),

which implies the amount of secrecy information remainimi, after the public transmission is at least

| Xy —|S| bitsH Note that this conclusion does not hold for other quantratipproaches (e.g., MMSE

guantization) and, therefore, equiprobable quantizatioould be used if over-quantization is applied.
On the other hand, it is implied by (IL3) that the over-quadibits B and the regularly quantized

bits X; are dependent given Bob’s samplg8. Hence,I(X;; B|Y™) > 0. It follows from the Slepian-

Wolf theorem (cf. [21]) that with the availability of the orguantized bitsB, the number of syndrome

3Relying on hash functions for privacy amplification regsitle use of Rényi entropy. However, we can use [11, Theorem

3] to equivocate Rényi and Shannon entropies.
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bits |S| required by Bob to successfully deco®g is approximatelyH (X,;|Y™, B), which is less than

H(Xy|Y™), the number of syndrome bits transmitted in the basic systanother words, the secret
key rate achieved by the over-quantized system is apprma'drw%I(Xb; Y™, B), which is larger than

%I (Xp; Y™), the secret key rate achieved by the basic system.

To obtain an upper limit on the performance improvement thadr-quantization may provide us,
we can imagine sending the entire (real-valued) quantiaagiror as a side information. There are a
number of issues with this approach. Clearly, distortigreftransmission of real-valued quantities is not
practically feasible. However, as we are looking for a bqume can ignore this. More importantly, the
transmission of raw quantization errors may reveal infaromaaboutX,. For example, to equiprobably
guantize a zero mean, unit variance Gaussian random wangith 1 bit per sample, the quantization
intervals are(—oo, 0] and (0, c0), with respective representative value -0.6745 and 0.6%4ppose a
sampleX is of value 2, then its quantization error 2s— 0.6745 = 1.3255. This implies thatX must
be in the interval(0, ), since otherwise, the quantization error does not exce@t¥8. Thereby, it
iS necessary to process the raw quantization errors suthhigrocessed quantization errors do not
contain any information abouX,. For this purpose, it is desirable to transform quantiratorors to
uniform distribution. To do so, we first process an input skem with the cumulative distribution
function (CDF) of its distribution and then quantize. Thansformed quantization error is then given by
E=¢(X)—¢(q(X)), wherep(z) is the CDF forX andq(X) is the representative value of the interval
to which X belongs. The quantization errofs* = (E4,--- , E,,), which are then uniformly distributed
on [—2~-(+1) 2=(+1] are sent to Bob through the error-free public channel.

The rest of the process (encoding/decoding and PA) proceelsfore. However, the LLR computation

must be modified to use probability density functions, rathan probabilities:

v

= Y (-1 e gy), (14)

=1

where the functiorG: () is defined in[(ID) and the functiol(e, j,y) is defined as

. P+ N 1 j—0.5 P 2
h A + —
(€,5) 2(2PN + N?2) <¢ (e v ) P+ Ny> ’

for —2-(*tD) < ¢ < 2=+ 1 < j < 2v, with the functiong being the CDF forX. The derivation of

Pr(X, =0Y =y,E =e)

1
" Pr(X, =1Y =y,E =e)

(@4) is similar to that of[(113), which is omitted here.
Figure[8(b) shows simulation results for 2-bit over-quzation and the upper bound. We note, as

expected, that the overall gap to capacity has been redocablout 1.1 dB at the low-SNR.
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B. A Universal Secret Key Generation System

In the previous sub-section we discussed secret key garerfar a jointly Gaussian model. The
random variablesX andY in the model are jointly Gaussian distributed and the digtibn parameter
SNR is known at both terminals. However, in many practicalditions, the correlated random variables
at the two terminals may not be subject to a jointly Gaussiatmilution, and the distribution parameters
are usually unknown or estimated inaccurately.

We address this problem by describing a method for LLR géiegrand subsequent secrecy generation
that makes very few assumptions on the underlying disidhutAs we shall see this method is largely
based on the over-quantization idea we introduced above.

1) System DescriptionCompared to the basic system (Figlie 7) developed for thesskaumodel,
the universal system includes two additional Data Convduitecks (one at Alice; the other at Bob), and
modified Quantizer and Channel Decoder blocks. The inputslite’s Data Converter blocks ar&™
and the outputs of Alice’s Data Converter block are sent ® rtiodified Quantizer block. The inputs
to Bob’s Data Converter blocks ai€™ and the outputs of Bob’s Data Converter block are sent to the
modified Channel Decoder block.

The purpose of the Data Converter is to convert the input t&snp”™, Y™ to uniformly distributed
samplesU”, V", whereU,,V; € [0,1). The conversion is based on the empirical distribution @iuin
samples. Given thé" sampleX; of input samples\™, denote byK, (X;) the number of samples K"
which are strictly less thaiX; plus the number of samples X" which are equal toX; but their indices
are less thar. The output of the Data conversion block corresponding’tds given byU; = %

To justify the use of this approach, we show tlh&t asymptotically tends to an i.i.d. sequence, each
uniformly distributed between 0 and 1. Thus, while for anyitéirblock length the sequendgé™ is
not comprised of independent variables, it is assymtdyidald. uniform. Consider an i.i.d. sequence
X" = (X1, --,X,) . Denote by¢ the actual CDF ofX;. Let W; = ¢(X;), i = 1,--- ,n. Then
Wq,--- W, is an i.i.d. sequence, each uniformly distributed betweand1. Hence, it suffices to show
that the sequencé™ converges to the sequenté”.

Convergence of the empirical distribution to the true dsiion is a well-established fact in probability
known as the Glivenko-Cantelli Theorem [54]. However, weda stronger statement which gives the
rate of such convergence. This is known as the Dvoretzkyeki@/olfowitz Theorem [26] and is stated
in the following lemma.

Lemma 1: [26] Let X, --, X,, be real-valued, i.i.d. random variables with distributiomction F'.
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Let F,, denote the associate empirical distribution function aefiby
1 n
E, = - L 0,2] (Xi)s .

For anye > 0,

Pr (sup |y (x) — F(x)| > z—:> < 2e7 (15)
TER

O

We will also need the notion of &P convergence of random sequences [18]. Tienorm of a
sequenceX™, p > 1, is defined by||X"||, = (> ]Xi\l’)i. A sequenceX™ is said to converge irl?
to Y™, 0 < p < oo, if limy,, £ [||X™ — Y"||,] = 0. We then have the following lemma [18, Theorem
4.1.4].

Lemma 2:If a sequenceX™ converges to another sequenicéin I.?, 0 < p < oo, thenX™ converges
to Y™ in probability. O

We can now show the desired statement.

Theorem 1:The sequencé&™ converges to the sequen@é” in probability.

Proof: According to Lemmal2, we only need to shdian,, ., E[||U™ — W™||4] = 0. Here,

el — WLl = € (f)rw—wy s(é‘ erUi—Wz-ﬁU

i=1 %

- (Setwomn)
For anyi =1,--- ,n, we have
1

1
Ellu;—wilf] = /()Pr(\Ui—Wi]4>u)du:/o Pr(yU,-—Wiy>ui>du

1 ,
< / 2e ™2 qy, 17)
0

where [(17) follows from[(15). By letting = v/« and integrating by parts, we show

g[|U_W|4] <4/1t6—2ntdt_i_e_zn(2+l)<i (]_8)
' B - n? n n’ =~ n?
Combining [16) and[(18), we obtain
n n g 1 : 1
U —wn|la) < (Z@ =n7t,
=1
which tends to 0 as — oco. This completes the proof of the theorem. O

The conversion fromX™ (or Y") to U™ (or V™) can be accomplished using a procedure that requires

no computation and relies only on a sorting algorithm. It tiesimportant side benefit that the output is
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inherently fixed-point, which is critical in the implemetitan of most modern communication systems.
Let A be the number of bits to be used for each output sarfipl&@ his implies thatU; is of valuezi;;,
0 < j <24 — 1. Denote byC(j), 0 < j < 24, the number of output samples of valébél. The values

of C(j) are determined by the following pseudo-code:

C(0) « 0;
for j =1 to 24
CGj) + | 3] - iz c e

end

where | x| is the largest integer less than For an input sampleX; with
k+1

k
Y CG) < Ka(Xi) <Y CU),
j=0 Jj=0

the corresponding outpuf; is given byziA.

To efficiently implement this process, we follow a three spepcess: i) sort the input samplés™
in ascending order; ii) convert sorted samples to valgjze,so < j < 24 — 1; iii) associate each input
sample with its converted value.

Suppose input samples™ are sorted taX™, whereX; < --- < X,,. The index mapping betweeki™
and X" is also recorded for the use in the association step.

The values ofX™ are converted td/" using the algorithm defined via the pseudo-code below. The
algorithm distributes: items amongA bins in a “uniform” way even whem does not dividen. The
process is based on the rate-matching algorithms used iremmagkllular systems, e.g. [1], and is also

similar to line-drawing algorithms in computer graphics.

c <+ 0; k «+ 0; j«1;
while (j < n)
¢4+ c+ gx;
while (¢ > 1)
[7]%—2%; Jj—J+1 c—c—1;
end

k+— k+1;

end

The last step rearrangéé" to outputsU™ such that theé' output sampleJ; is associated with the

it" input sampleX;.
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Although the above procedures ustas the total number of possible values to be assigned, ingene
any integerM may be substituted fo2, in which case the unit intervdD, 1) is partitioned intoA/
equal sub-intervals, with the data distributed among theraraformly as possible.

To equiprobably quantize uniformly distributed samplé$ with v bits per sample, the Quantizer

determines the quantization boundaries as

Gi=5p 0<i<2

For a simple decoding process, the quantization efras defined as the difference betwe&nand the
lower bound of the interval to whicti belongs. Hence, the quantization erfoiis uniformly distributed
between 0 and}v. The transmission of such quantization err#% = (Ey,--- , E,) over the public
channel does not reveal any information abit

For the case of fixed point inputg™, if the number of bits per samplein the Quantizer block used
for generatingX, is less than the numbet of bits used forU, then the Quantizer block obtains the
quantized value and the quantization error §osimply from the firstv bits and the lastd — v bits out
of the A bits for U, respectively.

Bob’s Data Converter performs the same operations as Alid¢ie Channel Decoder calculates the
per-bit LLR based on the outputs of Bob’s Data Converter blg€ and the received quantization errors
E™. Unlike the jointly Gaussian model, the joint distributiofi X andY in this case is unknown and
the accurate LLR is generally incomputable.

We provide an extremely simple but effective way of compytine LLR. Heuristically, the LLR is
related to the distances froii to the possible/ values that caus&,; = 1 and that caus&;; = 0.

Suppose a uniform samplé is quantized and Gray coded to b{t& ;,--- , X} ,) and the quantization

error of U is E. The heuristic LLRL; for X3 ;, 1 < i < v, is derived through the following pseudo-code:
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fori=1tow
Li < 2F — 2V +1 — 2-(v=it1),
if V<05
V « 2V,
E « 2F;
else
V+1-2V;
E 2" _9p:
end

end

Consider an example df = 0.2 andv = 1. This quantization error indicates the two possible values
of U are 0.2 and 0.7, which correspondsXg; = 0 and X ; = 1, respectively. IfVV = 0.3, which is
closer to the possibl& value 0.2, then it is more likely thaX, ; is equal to ‘0’ and the LLR forXj ;
should be positive. It follows from the pseudo-code abowt th = 0.3. If V' = 0.5, which is closer to
the possibleJ value 0.7, then it is more likely thaX, ; is equal to ‘1’ and the LLR forX} ; should be
negative. It follows from the codes above that = —0.1.

As theL; obtained in the codes above is generally within the rande df1], the likelihood probability
of each bit is restricted to the range [0f27,0.73]. Hence, it is desirable to re-scalg to the operational
range of the modified belief-propagation algorithm by nuljiing with a constant.

2) Simulation and Experimental ValidationMe examine the performance of the proposed approach
in a simulation environment with the jointly Gaussian chelrmodel and with real channels.

In order to examine the performance of the universal systegrgpply it to the jointly Gaussian model,
though noting that the parametels N of the jointly Gaussian model are not utilized in the uniatrs
system. The secret key rates achieved by the universahsyste shown in Figurg] 9. For comparison, the
secret key capacity and the upper bound for the secret keg eathieved by the over-quantized system
are also plotted in the same figure. It is seen from the figuaethe universal system performs well at low
SNR, but deviates at high SNR. The deviation may be due tor#uetoff made between the regularly
guantized bits and the over-quantized bits. A differentie¢raff can push the deviation point higher at
the expense of more communication (of over-quantized bits) higher LDPC decoding complexity.

We experimentally validated the feasibility of the abovevarsal approach using 802.11 setup de-

scribed earlier. In the two experiments stated in SectiorBtb sent Probe Request messages at an
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average rate of 110 |H5Typically, Bob received the corresponding Probe Resporessage from Alice
within 7 ms after a Probe Request message was sent. It istedparTable | that in the first experiment,
the mutual information between Alice and Bob’s samples isual3.294 bits/sample, while the mutual
information between Bob and Eve's samples is about 0.04Zabiple. In the second experiment, the
mutual information between Alice and Bob’s samples is abb@tl8 bits/sample, while the mutual
information between Bob and Eve’s samples is 0 within thaieary of the measurement. This suggests
that the respective secret key capacﬁtea‘sthe first and the second experimental environments aret&6o

(~ (3.294-0.047) bits/sample 0.11 second/sample) bps and 11 bps, provided that the chavhrerence
time is around 110 ms.

Next, we check the secret key rates achieved by the univeyséém. For the purpose of generating
keys in a short time duration, we apply a LDPC code with a gdyock length in the universal system.
The code is a (3,6) regular LDPC code of codeword length 480 Bhe quantization parameteris
chosen as 3 for the first experiment and 2 for the second empati This implies that for each run of
the system, a block of 134%(400/3) first experimental samples or 200 second experimental lesnip
sent to the universal system.

Our experimental results show that in both cases, Bob istalsieccessfully decode Alice’s bit sequence
X, of 400 bits. With the reduction of 200 bits, revealed as sgnur bits over the public channel, both
terminals remain with 200 secret bits. In order to removecibreelation between the 200 secret bits and
Eve’s samples in the first experiment, which shows non-zartuat information, we may need to squash
out an additional 74 0.047 x 134) bits from the 200 secret bits, resulting in 193 secret liinsidering
the period of collecting these 134 or 200 samples, we coeclbdt the secret key rate achieved by the

universal system is about 13 bps for the first experiment abg<for the second experiment.

IV. CONCLUSIONS

The wireless medium creates the unique opportunity to éxfdeation-specific and time-varying
information present in the channel response to generateniation-theoretically secret bits, which may
be used as cryptographic keys in other security serviceis. atility follows from the property that in
a multipath scattering environment, the channel impulspaase decorrelates in space over a distance

that is of the order of the wavelength, and that it also detates in time, providing a resource for fresh

“Here, we assume the channel coherence time is less than alrtedll0 ms. Hence, two consecutive CIRs at either terminal
are assumed to be mutually independent.

SWe abuse the notion of capacity a bit as this “capacity” agsuni.d. channel samples.
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randomness. In this paper, we have studied secret key gatraander the assumption of a Rayleigh or
Rician fading channel, and under a more general settingewverdo not make any assumption on the
channel distribution. We have developed two techniquegioducing identical secret bits at either end
of a wireless communication link and have evaluated eadimigue using channel measurements made
using a modified 802.11 system. The first technique is basd@deonbservation of correlated excursions
in the measurements at the two users while the second tesheiaploys error-correction codes. The
former method trades off the performance of the latter witloveer complexity and does not require
knowledge of the channel coherence time. Since the timgingnature of the channel acts as the source
of randomness, it limits the number of random bits that caexteacted from the channel for the purpose
of a cryptographic key. The second method applies to morergédistributions for the shared channel
information between a transmitter and receiver, and is ablachieve improved secret key rates at the
tradeoff of increased complexity. Our evaluations indécdiat typical indoor wireless channels allow us
to extract secret bits at a practically useable rate, withimal information about these secret bits being
learned by an eavesdropper. Lastly, we note that as a fingltbee legitimate participants in the protocol
may wish to employ privacy amplification to provide addeduassce that the eavesdropper cannot infer

the bits being generated.
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