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Abstract—We make a connection between steganography de-wet paper codes [12], and minimal embedding distortion
sign by minimizing embedding distortion and statistical ptysics. steganography [8], [10], [11], [18], [27] are examples of
The unique aspect of this work and one that distinguishes itrbm this philosophy. Despite its heuristic nature, the prifeipf

prior art is that we allow the distortion function to be arbit rary, o bedding distortion h d dth t
which permits us to consider spatially-dependent embeddin minimum embeading distoruon has produce € most secure

changes. We provide a complete theoretical framework and Steganographic methods for digital media known today, at
describe practical tools, such as the thermodynamic integtion least in terms of low statistical detectability as measured

for computing the rate—distortion bound and the Gibbs sampér ysing blind steganalyzers [13], [18], [20], [27]. Most of

for simulating the impact of optimal embedding schemes and nase schemes, however, use a distortion function that is
constructing practical algorithms. The proposed framewok re- dditi th t’ tal dist t . f individual pixel
duces the design of secure steganography in empirical coeeto 200IIVE — e (otal distortion IS a sum or individual pixe

the problem of finding local potentials for the distortion function ~ distortionscomputed from the cover imag&undamentally,
that correlate with statistical detectability in practice. By working ~ such a distortion function cannot capture interactions ragno

out the proposed methodology in detail for a specific choicefo embedding changes, which leads to suboptimality in practic
the distortion function, we experimentally validate the aproach 15 geficiency affects especially adaptive schemes fockvhi
and discuss various options available to the steganographén .
practice. the embedding changes have a tendency to form clusters
because the pixel distortion is derived from local content o
some content-dependent side-information. For exampke, th
embedding changes might follow edges or be concentrated
l. INTRODUCTION in textured regions.

HERE exist two general and widely used principles fog One discovers a relationship between both embedding prin-

desiani ‘ hi thods f irical E)Ies when the distortion function is defined as a weighted
_ designing steganographic methods Tor empirical COVEL 1, of the difference between feature vectors of cover and
objects, such as digital images. The first one is mod

i ; hy i hich the desi doot tego objects in some properly chosen feature space [1], [2
pre;elrw?gt:]h steganograpny md \g] Ic d € etilgner ba d%P Sar"i"example of which are spaces utilized by blind steganedyze
modet of the cover source and then designs the embeddin e projection onto the feature space is essentially ebpnva
either completely or approximately preserve the model,[lEt

[25], [28], [30], [33]. This way, one can provide mathematic modeling the objects in a lower-dimensional Euclidean

tee that th bedding i foctl space. Consequently, minimizing the distortion betweereco
guarantee that the embedaing 1S pertectly secure-.g.ercure) and stego objects in the feature space now becomes closely
within the chosen model. A problem is that empirical cov

. . e Yled to model preservation. Yet again, in this case the disto
objects are notoriously difficult to model accurately, aad,

historv teach th del mi ich b loited annot be written as a sum of individual pixel distortions
IStory teaches us, the model miSmatch can be exploted Q¥ pacqyse the features contain higher-order statistich

an attacker to construct a sensitive detection scheme. E\é%nsample transition probability matrices of piXG|S or DCT

worse, preserving an oversimplified mode_l could introdycec%efﬁCientS modeled as Markov chains [4], [22], [24], [31].
security Weakntai§s t[z(]j’ [19(:11’ FJQ{ ;An Ot:(;/lct))uft remedy IS © The importance of modeling interactions among embedding
use more complicaled mode’s that would betier approx'm%tﬁanges in steganography has been indirectly recognized by
the cover source. The major obs_tacle here is that mo_st m_*”ﬁ{b designers of MPSteg [3] (Matching Pursuit Steganograph
model-preservmg steganographic constructions are Bpéoi and YASS [29], [32]. In MPSteg, the authors use an overcom-
a certain model and do not adapt easily to more COmplﬁ‘ete basis and embed messages by replacing small blocks

models. - ; - :
. . . . ith other blocks with the hope of preserving dependencies

The second, quite pragmat_lc, approa_ch a_v0|d5 modelmg t\grer}long neighboring pixels. The YASS algorithm taught us that
cover source altogether and, instead, minimizes a hexailsti

. . : o ; . a high embedding distortion may not directly manifest as a
defined embedding distortion (impact). Matrix embeddirlg [6high statistical detectability, a curious property tham caost
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embedding using arbitrary distortion functions and a catgl much wider spectrum of researchers who are anticipated to
practical methodology for minimizing embedding distontio  incorporate the proposed methods in their corresponditusfie
steganography. The approach is flexible as well as modular
and allows the steganographer to work with non-additive
distortion functions. We provide algorithms for computing
the proper theoretical bounds expressing the maximal pdylo
embeddable with a bounded distortion, for simulating the We first recall a well-known and quite general fact that, for a
impact of a stegosystem operating on the bound, and @¥en expected embedding distortion, the maximal paylsad i
designing practica| Steganographic a|gorithms that dergmbeddEd when the embedding changes follow a Gibbs distri-
near the bound. The algorithms leverage standard tools u§gdion. This establishes a connection between steganiograp
in statistical physics, such as Markov chain Monte Carf@nd statistical physics, which, later in this paper, wilble
samplers or the thermodynamic integration. us to compute rate—distortion bounds, simulate the impact
The technical part of this paper starts in the next sectiodf optimal embedding, and construct practical embedding
where we recall the basic result that embedding changdgorithms.
made by a steganographic method that minimizes embeddingrirst, we introduce basic concepts, notation, and terminol
distortion must follow a particular form of Gibbs distriben.  0gy used throughout this paper. The calligraphic font wél b
The main purpose of this section is to establish termindised solely for sets, random variables will be typeset iritabp
ogy and make connections between the concepts usedléifters, while their corresponding realizations will belower-
steganography and those in statistical physics. In Sedtipn case. Vectors will be always typeset in boldface lower case,
we introduce the so-called separation principle, whicluides While we reserve the blackboard style for matrices (edg;
several distinct tasks that must be addressed when denglop$ theijth element of matrixA). The symbolR denotes the
a practical steganographic method. In particular, to daesiget of real numbers.
and evaluate practical schemes one needs to establish th@lthough the idea presented in this paper is certainly ap-
relationship between the maximal payload embeddable usipligable to steganography in other objects than digitalgesa
bounded distortion (the rate—distortion bound) and be @blewe describe the entire approach using the terms “image” and
simulate the impact of a scheme operating on the bourigixel” for concreteness to simplify the language and toaill
In the special case when the embedding distortion can &emooth transition from theory to experimental validation
expressed as a sum of distortions at individual pixels caatpu which is carried out for digital images.
from the cover image (the so-called non-interacting embedd ~ Animagex = (z1,...,x,) € X = I" is aregular lattice of
changes), the design of near-optimal embedding algorithlements (pixelsy; € Z,i € S, S = {1, ..., n}. The dynamic
has been successfully resolved in the past. For completeneange,Z, depends on the character of the image data. For
and because the proposed framework builds upon thesesiesekample, for an 8-bit grayscale imagé,= {0,1,...,255}.
we briefly summarize such known achievements in Section I\n general; can stand not only for light intensity values in a
Continuing with the case of a general distortion functian, iraster image but also for transform coefficients, paletécis,
Section V we describe two useful tools for steganographergdio samples, etc. The proposed framework remains valid
— the Gibbs sampler and the thermodynamic integration. Theen whene; is organized into an arbitrary graph structure.
Gibbs sampler can be used to simulate the impact of optimalFor notational simplicity and convenience, we adopt ad-
embedding and to construct practical steganographic seherditional conventions. Given7 C S, xy = {x;]i €
(in Sections VI and VII). The thermodynamic integration i} and x.y 2 {z;i € S — J}. The image
a method for estimating the entropy and partition functiofx1,...,z;—1, i, Tit+1,- .., Zn) Will be abbreviated ag;x..;.
in statistical physics and we use it for computing the rateMe will also use the Iverson brackér], defined agP] =1
distortion bound in steganography. The design of practicahen the statemen® is true and zero otherwise. Finally, we
embedding schemes begins in Section VI, where we studBservelog x for the logarithm at the base &f and useln z
distortion functions that can be written as a sum of locébr the natural basei(z) = —xlogz — (1 — z)log(l — z) is
potentials defined on cliques. In Section VII, we first discughe binary entropy function.
various options the new framework offers to the stegandgrap Every steganographic embedding scheme considered in this
designer and then make a connection between local poent@dper will be associated with a mapping that assigns to each
and image models used in blind steganalysis. The proposederx € X the pair{),n}. Here,) C X is the set of
framework is experimentally validated in Section VIII, wee all stego imageg into which x is allowed to be modified
we also discuss various implementation issues. Finally, tby embedding andr is a probability mass function opy
paper is concluded in Section IX. that characterizes the actions of the sender. The embedding
As this paper is directed towards researchers working in thkgorithm is such that, for a given cover the stego image
field of information security and forensics, the authorsded y € Y is sent with probabilitym(y). The stego image
to include in this paper some standard concepts and algwithis thus a random variabl& over ) with the distribution
commonly used in statistical physics and explain theirasid P(Y = y) = n(y). Technically, the sefy and all concepts
proposed usage in steganography. Even though this inolusgéterived from it in this paper depend on However, because
may seem redundant to some, we believe that this decisiors simply a parameter that wiex in the very beginningwve
makes this paper self-contained as well as readable tosimplify the notation and do not make the dependenceon

II. GIBBS DISTRIBUTION MINIMIZES EMBEDDING
DISTORTION



explicit. Finally, we note that the maximal expected pagloeembedding distortion does not exceed a given
that the sender can communicate to the receiver in this nmanne

is the entropy maximize H(m) = — ;}W(Y) log 7(y) (4)
yeE

H(m) £ H(Y) =~ w(y)logn(y). 1) subject to E.[D] = Y w(y)D(y) = D.. (5)
yeY yey

To put it another way, we define a steganographic meth& fixing the dist_ortion, the sender fixes the sec_:urity and_
from the point of view of how it modifies the cover and®Ms t0 communicate as large payload as possible at this
only then we deal with the issues of how to use it fol,evell of_ security. The maximization in (4) is carried over
communication and how to optimize its performance. THal distributionsm on . We will comment on whether the
optimization will involve finding the distributionr for given distortion constraint should be in the form of equality or
x, ), and payload (distortion). inequality shortly. _ _ o

We will consider the following special form of the sgt Payload-lim|ted sender.AIternatNer, in practice it may be
Y =T, xTs x - -- x T, whereZ; C Z. For example, in Least MO"® meaningful to consider the payload-limited sender who

Significant Bit (LSB) embeddingZ; = {z;,7;}, where the faces a complementary task of embeddingigen payload

bar denotes the operation of flipping the LSB. In LSB matcief m bits with minimal possible distortion. The optimization

ing [16] (also called+1 embedding) in an 8-bit grayscaleprOb!em is to determine a disiri_butionthet communicates a
imagex, Z; = {z; — 1,2, z; + 1} wheneverz; ¢ {0,255 required payload while minimizing the distortion:

andZ; is appropriately modified for the boundary cases. When minimize E,[D] = Z m(y)D(y) (6)
|Z;| = 2 or 3 for all 4, we will speak of binary and ternary ™

embedding, respectively. In general, however, we allow the
size of every sef; to be different. For example, pixels not
allowed to be modified during embedding (the so-called wet The optimal distributionr for both problems has the Gibbs
pixels [12]) haveZ; = {z;}. form

yey
subjectto H(w) = m. @)

By sending a slightly modified versign of the coverx, the mA(y) = L exp(—AD(y)), (8)
sender introduces a distortion, which will be measuredgusin Z(\)
a distortion function whereZ(\) is the normalizing factor
D:Y R, @) Z(\) =) exp(=AD(y)). 9)
yey

that is bounded, i.e|D(y)| < K, for all y € Y for some 1ne gptimality of ry follows immediately from the fact that

sufficiently largeK'. Note thatD also depends oRr. Allowing 4, any distributiony with E,[D] = 3>y, u(y)D(y) = D,

the distortion to be negative does not cause any problegs gifierence between their entrop)ieH(m) — H(p) =

pecedse an embedding algoritnm minimizlésif and only if Dxw(u||my) > 0 [38]. The scalar parameter > 0 needs

it minimizes the non-negative distortiad + K. The need for 1 pe determined from the distortion constraint (5) or from

negative distortion will be_com_e app_are_nt later in SectidhV 0 payload constraint (7), depending on the type of the
The expected embedding distortion introduced by the send@hder. Providedn or D, are in the feasibility region of

is their corresponding constraints, the value\ak unique. This
E.[D] = Z 7w(y)D(y). (3) follows from the fact that both the expected distortion amel t
yey entropy are monotone decreasingiinTo see this, realize that

. . ) bg/ direct evaluation
An important premise we now make is that the sender i

able te define the dietortion function SO _that it_is related QEM D] = —Vars, [D] <0, (10)
to statistical detectability. This assumption is motivated by oA

a rather large body of experimental evidence, such as [1@lhere Vary, [D] = Ex,[D? — (Ex, [D]). Substituting (8)

[20], that indicates that even simple distortion measunes$ tinto (1), the entropy of the Gibbs distribution can be writte
merely count the number of embedding changes correlate wgil

with statistical detectability in the form of decision errof

steganalyzers trained on cover and stego images. In general H(my) =log Z(\) + L)\Eﬂ [D]. (11)
steganographic methods that introduce smaller distodien In2 *
turb the cover source less than methods that embed withrlarggon differentiating and using (10), we obtain
distortion. ) 1 (20N
Distortion-limited sender. To maximize the security, the =y H(m\) = — + Er [D] = AWarg, [D] ] (12)
. SO : 2 oA In2 \ Z(\)
so-called distortion-limited sender attempts to find arigt \
tion 7 on ) that has the highest entropy and whose expected = —ﬁVarM [D] <O0. (13)
n

1The ability of a warden to distinguish between cover and sstiegages The menoioniciiy aleol m.eans that the equa"ty distortion
using statistical hypothesis testing. constraint in the optimization problem (5) can be replaced



with inequality, which is perhaps more appropriate givea th
motivating discussion above.

By varying A € [0,00), we obtain a relationship between
the maximal expected payload (1) and the expected embedding
distortion (3). For brevity, we will call this relationshithe
rate—distortion bound. What distinguishes this concepnhfa
similar notion defined in information theory is that we catesi
the bound for agiven coverx rather than forX, which is a
random variable. At this point, we feel that it is appropgiat
to note that while it is certainly possible to consideto be
generated by a cover source with a known distribution and
approach the design of steganography from a different point
of view, namely one in whichry, is determined by minimizing
the KL divergence between the distributions of cover angaste
images while satisfying a payload constraint, we do not do so
in this paper.

Finally, we note that the assumptio®(y)| < K implies
that all stego objects appear with nonzero probabitityy) >
ﬁ exp(—AK), a fact that is crucial for the theory developed
in the rest of this paper.

Remark 1:In statistical physics, the term distortion is
known as energy. The optimality of Gibbs distribution is
formulated as the Gibbs variational principle: “Among all
distributions with a given energy, the Gibbs distributid@) (
has the highest entropy.” The parametés called the inverse
temperature) = 1/kT, whereT is the temperature andthe
Boltzmann constant. The normalizing facté()) is called the
partition function.

2)

3)

IIl. THE SEPARATION PRINCIPLE

The design of steganographic methods that attempt to
minimize embedding distortion should be driven by their
performance. The obvious choice here is to contrast the per-
formance with the rate—distortion bound. This is a meanihgf
comparison for the distortion-limited sender who can asses

achieved. Depending on the form of the distortion
function D, establishing the bounds is usually rather
challenging and one may have to resort to numerical
methods (Section V-B). For an additive distortion (to be
precisely defined shortly), an analytic form of the bounds
may be obtained (Section V).

Simulating an optimal embedding method.Often, it

is very hard to construct a practical embedding method
that performs close to the bound. However, we may be
able to simulate the impact of such an optimal method
and thus subject it to tests using steganalyzers even when
we do not know how to construct a practical embedding
algorithm or even compute the bound (see Section V).
This is important for developers as one can effectively
“prune” the design process and focus on implementing
the most promising candidates. The simulator will also
inform the payload-limited sender about the potential
improvement in statistical undetectability should the the
oretical performance gap be closed. A simple example is
provided by the case of the Hamming distortion function
D(y) >ilyi # x;]. Here, the maximal relative
payloada = m/n (in bits per pixel or bpp) is bounded
by o < h(3), whereg = %De is the relative embedding
distortion known as the change rate. In this case, one can
simulate the embedding impact of the optimal scheme
by independently changing each pixel with probability
h=1(a).

Constructing a practical near-optimal embedding
method. This point is of most interest to practitioners.
The bounds and the simulator are necessary to evaluate
the performance of any practical scheme. The designer
tries to maximize the embedding throughput (the number
of bits embedded per unit time) while embedding as
close to the distortion bound as possible.

the performance of a practical embedding scheme by its fosdtoshould be stressed at this point that even though the aptim
payload w.r.t. the maximum payload embeddable using a fixdistribution of embedding modifications has a known analyti
distortion. This so-called “coding loss” informs the sendé expression (8), it may be infeasible to compute the indiaidu
how much payload is lost for a fixed statistical detectapilit probabilities=)(y) due to the complexity of evaluating the

On the other hand, it is much harder for the payload-limitguartition function Z(\), which is a sum over aly, whose
sender to assess how the increased distortion of a subdptiswunt can be a very large number even for small images.
practical scheme impacts statistical detectability incpca. (For example, there arg™ binary flipping patterns in LSB
We could resolve this rather important practical issue if wembedding.) This also implies that at present we do not know
were able to simulate the impact of a scheme that opeaasteshow to compute the expected distortion (3) or the entropy (1)
the bound® Because the problems of establishing the bound#hese tasks are postponed to Section V). Fortunately, imyma
simulating optimal embedding, and creating a practical eroases of practical interest we do not need to evaluaty)
bedding algorithm are really three separate problems, We cand will do just fine with being able to meresample fromr,.

this reasoning theeparation principlelt involves addressing The ability to sample fromr, is sufficient to simulate optimal
the following three tasks: embedding and realize practical embedding algorithms, and

1) Establishing the rate—distortion bounds. This means in our case, even compute the rate—distortion bound.

solving the optimization problems (4) or (6) and express-

ia the | t load beddabl / bound (in some special cases, however, such as when the embed-
INg the fargest payload embeddable using a boundg g changes do not interact, the distortiéh is additive
distortion (or minimal distortion needed to embed

. load). Th bounds inf the st nd one can easily compudeand the probabilities, evaluate
glt\)/entpterl]y Og ).t e?e ounas 't?] otrm ebs e?ﬁnogrtap?ﬂ% expected distortion and payload, and even construct nea
about the best performance that can be theoretica, %timal embedding schemes. As this special case will be used

2A scheme whose embedding distortion and payload lay on thes- ral‘g?ter in_ SeCtion_V” to design_steganqgraphywith more ggher
distortion bound derived for a given cover. distortion functionsD, we review it briefly in the next section.



IV. NON-INTERACTING EMBEDDING CHANGES where go; = |p§1) — p§0)| is now a vector of non-negative

When the distortion functiom is additive over the pixels, distortions, which allows us to apply the practical embeddi
" algorithm described in [8]. It accepts on its input a bit atre
D(y) = Zpi(yi), (14) ¢= (c1(x),...,cn(x)) (representing the covet), the vector
P of non-negative distortion®s, . . ., 0,), and a binary message.
with bounded; : Z; — R, we say that the embedding changed outputs a modified (stego) bit streagn € {0,1}" that
do not interact. In this case, the probability(y) can be CONveys the message as a syndrome of a suitably chosen
factorized into a product of marginal probabilities of chamy syndrome-trellis code so that the total embedding digtorti

the individual pixels (this follows directly from (8)): Yo oilyi # il is near minimal. It follows from (23)
n n Aps(ue) that binary embedding as defined in this section can be
_ N — EXPL—APi\Yi implemented in practice by applying this algorithm to the bi
m(y) = m(yi) = . 15
@) 11;[1 ) 11;[1 2ot exXP(—Api(ti)) (15) streamc; (X), X = (x§t1)7...,x§")).
The expected distortion and the maximal payload are: Finally, we note that the complete derivation of the rate-
" distortion bound for binary embedding appears, e.g., inpcha
En D] =33 mata)pilts), (16) ter7of (o
1=11t,€Z;
n V. SIMULATED EMBEDDING AND RATE—DISTORTION
H(m) ==Y ma(ti) logma(t:). a7) BOUND
=1 t;€Z;

The impact of optimal embedding can be simulated b In Section Il, we showed that minimal-embedding-distartio

. ! . Steganography should select the stego i ith probabilit
changingz; to y; With probabilities (y;) independently of Gy (Q;) mgexpf)(—y/\D(y)) expressed ingt]henf}(?rgn?ofpa Gibbs >(;is-
the Ch"’?”ges at other p|xels_. Slnc_e t_hese probabll]tlgs 02N Nyipution. We now explain a general iterative procedurengsi
b_e ea_sny evaluated for a fixedl finding A that satisfies the which one can sample from any Gibbs distribution and thus
d|5t0rt|0_n E=,[D] = Do) or the payload _H(m) " m) simulate optimal embedding. The method is recognized as one
constraint amounts to solving an algebraic equation Xor of the Markov Chain Monte Carlo (MCMC) algorithms known
(see [10] or [9]). Because both the expected distortion aggi the Gibbs samplérThis sampling algorithm will allow us

th? entro;t)_y alre mono:pnel W'mt’) tgjsoluflon.ﬁ] unf|qutel'ﬁ;he to construct practical embedding schemes in Sections VI and
only practical near-optimal embedding aigorithm tor € Vil We also explain how to compute the rate—distortion babun

known to the authors is based on syndrome-trellis codes [% r a fixed image using the thermodynamic integration. The

It will be instructional to work out as an example the.. . .
. . . . . Gibbs sampler and the thermodynamic integration appear, fo
details of the special case of binary embedding for whic kample, in [38] and [21], respectively.

I, = {a:gO),xg”} with xEO) = x;. Thus, p; attains only two
values,p\”) = p;(2\"), t = 0,1. We stress at this point that

we donot assume thap!”) = 0 or even thap!? > p\*. This A- The Gibbs sampler

fact will be important when implementing practical embetddi  We start by defining the local characteristics of a Gibbs field

schemes in Section VI-A. The above expressions simplify tas the conditional probabilities of thi¢h pixel attaining the

(1) valuey! conditioned on the rest of the image:
M exp(—=Ap; ") '
ma(z;)) = ) ©) (18) TA(YiY~i)
exp(=Ap; ") + exp(=Ap; ) m(Yi = gl Yoi = i) = = . (24
1 A ()\) (19) ZtiGL’ R (tini)
= = Z)Z y

1+ exp(—/\(pz(-o) - p§1>)) For all possible stego imaggsy’ € ), the local character-

istics (24) define the following matricd®(:), for each pixel

En Dl =3 s - ) 4 o), (2o € eon
=1

- vy’ \t) = !
H(my\) = E h(pi(A))- (21) 0 otherwise 25
i=1

The smallest distortion any binary embedding algorithm c4rVery matrix P(i) has |y rows and the same number of
impose Dy, = 37 min{p(O) p(l)} which would be in- columns (which means it is very large) and its elements are
min — i=1 i Mg ’

N (% o . ) mostly zero except whey' was obtained frony by modifying
curred when selecting; = z;", wheret; = argmin{p;”}. y; to y; and all other pixels stayed the same. BecdP&¢ is

Thus, N stochastic (the sum of its rows is one),
0 0 1 1
D(y) = Zﬂz(- My = 29 + oV [ys = 2] (22) P, (i) =1, for all rowsy, (26)
V.Y
i=1 . y'ey
_ (ti)
= Din + Z Qi [yi 7 T }’ (23) SMore detailed discussion regarding our choice of the MCM@ar

i=1 appear later in this section.



Algorithm 1 One sweep of a Gibbs sampler. pixels are updated sequentially in the order defined by the

1: Set pixel countet =1 visiting schedules. The pixels are updated based on their
2: while i < n do local characteristics (24) computed from the current &lue
3:  Compute the local characteristics: of the stego imagey. The entire sweep can be described

by a transition probability matriXP(c) obtained by matrix-

By 3o 3 (0 Yoi) € Loti (34) multiplications of the individual transition probabilitpatrices
4. Select oney, ;) € T,(; pseudorandomly according toP(c(i)):
] Ehi ?riblabilities (34) and changg ;) «— y;(i) Pyyi(0) 2 (P(o(1)) - P(a(2)) - - P(o(n)))y.y - (35)
6: end while After each sweep, the next sweep continues with the current
7. retun y imagey as its starting position. It should be clear from the

algorithm that at the end of each sweep each pikels a non-
zero probability to get into any of its states fraipndefined by

the embedding operation (becau3eas bounded). This means

P(i) s a transition probability matrix of some Markov chairy . \"a1ements op will be visited with positive probability

gguya.tiﬁ: such matrices satisfy the so-called detailed balan%%d thus the transition probability matrik(c) corresponds

to a homogeneous irreducible Markov process withngue
mA(y)Pyy (i) = ma(y' )Py y(i), forally,y’ € Y,i. (27) left eigenvector corresponding to a unit eigenvalue (uaiqu
stationary distribution). Because, is a left eigenvector
corresponding to a unit eigenvalue for each matfi%), it
is also a left eigenvector foP(c) and thus its stationary
distribution due to its uniqueness. A standard result from
A (a) T (Yiy~i) the theory of Markov chains (see, e.g. Chapter 4 in [38])
)Py (i) = m(y)zt,ef TA(tiymi) @8) " states that, for an irreducible Markov chain, no matter what
B )M distribution of embedding changes € [0,00)1” we start
by Tty ) (29) with, and independently of the visiting schedule with
Li€L TANTIE increased number of sweepk, the distribution of Gibbs
=m(y) m(y) (30) samples converges in norm to the stationary distributiqn

0 e P [ (P(0))" = mal| — O with k — oo (36)

( / -
= M) By (). (31) exponentially fast. This means that in practice we can abtai
Equality (a) follows from the definition ofP(i) (25), (b) from a sample fromr, after running the Gibbs sampler for a suffi-
the fact thaty.; = y’_,, and(c) from 7y (y) = m(y;y’.;) and ciently long time* The visiting schedule can be randomized in
again (25). each sweep as long as each pixel has a non-zero probability of
Next, we define the boldface symbmh € [0,00)!¥! as the being visited, which is a necessary condition for convecgen
vector of |Y| non-negative elements, = m\(y), y € ).
Using (27) and then (26), we can now easily show that tfi Simulating optimal embedding
vector, is the left eigenvector oP(i) corresponding to the  When applied to steganography, the Gibbs sampler allows
unit eigenvalue: the sender to simulate the effect of embedding using a scheme
. . that operates on the bound. It is interesting that this can be
(mAP())y = Z ™) Py (0) (32) done for any distortion functiod and without knowing the
rate—distortion bound. This is because the local chatigeter

=Y my)Pyy() =m@y).  (33) tics (24)

To see this, realize that unless.; = y/_;,, we are looking
at the trivial equality0 = 0. Fory.; = y’;, we have the
following chain of equalities:

e iy ep(AD(y)
In (32), (w\P(i))y is they’th element of the product of the i =yl Yei =yei) = > o7 exp(=AD(tiy~1))’
vectors and the matrixP(i). e (37)

We are now ready to describe the Gibbs sampler [14], whi
is a key element in our framework. Letbe a permutation of
the index setS called the visiting scheduler (i), i = 1,...,n
is theith element of the permutatiar). One sample fromr)
is then obtained by repeating a series of “sweeps” defin
below. As we explain the sweeps and the Gibbs sampler,
reader is advised to inspect Algorithm 1 to better undedstan’

((:jrg) not require computing the partition functiaf(\). We do
need to know the parametar though.

For the distortion-limited sender (5), the Gibbs sampler
auld be used directly to determine the proper value\ a
following manner. For a given, it is known (Theorem

.4 in [38]) that

the process. 1 @)
The sampler is initialized by setting to some initial EZD(Y ) = Ex,[D] ask — oo (38)
value. For faster convergence, a good choice is to select j=1

from L—_according to the |Olcal CharagteriSti@ﬁ(yz:XNi)- A 4The convergence time may vary significantly depending orGifibs field
sweep is a procedure applied to an image during which ailhand.



in L, and in probability, wherg'(/) is the image obtained after
the jth sweep of the Gibbs sampler. This requires running o + e 4+ e +
the Gibbs sampler and averaging the individual distortions |

for a sufficiently long time. When only a finite number of * T * e e
sweeps is allowed, the first few imaggsshould be discarded . + e + o +
to allow the Gibbs sampler to converge close enoughto e + o +
The value of\ that satisfied”,, [D] = D, can be determined,
for example, using a binary search over _Figure 1. _The four-_el(_ament cros;-neighborhood and thesltetien of the
To find X\ for the payload-limited sender (4), we need tc')”dex sets into two disjoint sublatticesSe and So.

evaluate the entropyd(w,), which can be obtained from o
Er, [D] using the method of thermodynamic integration [21].
From (10) and (13), we obtain ¢

Figure 2. All three possible cliques for the cross-neighbod.

i) = 2 ). (39)

Therefore, the entropy can be estimated frdip, [D] by

. : A notable alternative to the Gibbs sampler and the thermo-
integrating by parts:

dynamic integration for computing the rate—distortion bdis
A 1 A the Wang—-Landau algorithm [36] that estimates the so-dalle
ol ]} — — [ E.,,[D]dX. density of stego images (density of states in statisticgsiois),
% 02 g(D), defined as the number of stego imagewith distortion
(40) (energy) D. The partition function (and thus, via (11), the
The value of) that satisfies the entropy (payload) constrairgntropy) and the expected distortion can be computed from
can be again obtained using a binary search. Having obtaingd) by numerical integration:
the expected distortion and the entropy using the Gibbs

)\/

H(my) = H(my,) + [EE

sampler and the thermodynamic integration, the rate-tisto Z(A) = Z 9(D)exp(=AD)A, (41)

bound[H (), Ex, [D]] can be plotted as a curve parametrized p GID

by A. , _ Er,[D] = o5 > Dg(D)exp(-AD)A,  (42)
In practice, one has to be careful when using (38), since no (N DeD

practical guidelines exist for determining a sufficient roen hereD = {d AoV di = K, dny = K, di—dy_1 =
[ . . - 1y Unp gy 01 — —4ry, Unp — y Wy — Wg—1 —
of sweeps and heuristic C”t?”a are oft_en_used [5], [38\1A\'I is a set of discrete values into which the dynamic range of
Although the convergence to, is exponential in the number _K, K] is quantized
of sweeps, in general a large number of SWEEps may be neeg fhe a;uthors note that. in general it is not possible to de-
0 converge close enough. Gener-ally speaking, the Strthertermine ahead of time which method will provide satisfagtor
dependencies between embedding changes the more sweeps . : . .
. rformance. In our experiments described in Section VIII,
are needed by the Gibbs sampler. In theory, the convergeﬁgl:e

of MCMC methods, such as the Gibbs sampler, may also SIde thermodynamic integration worked very well and prodide

. . . . w o results identical to the much more complex Wang-Landau
down in the vicinity of “phase transitions,” which we loogel alqorithm
define here as sudden changes in the spatial distribution o?\‘ )

. . : ote that computing the rate—distortion bound is not nec-
embedding changes when only slightly changing the payloggsary for practical embedding. In Section VI, we introdace
(or distortion bound). ) ’

. . : . sgecial form of the distortion in terms of a sum over local
In our experiments reported later in this paper, the Gibh : . .
otentials. In this case, both types of optimal senders can

sampler always behaved well and converged fast. We atib te simulated using algorithms that do not need to compute

this _t_o the fact that the dependenme_s among embeddu\w n the fashion described above. This is explained in Sec-
modifications as measured using our distortion functiorms atr

rather weak and limited to short distances. The convergenégns VI-A and VI-B.

however, could become an issue for other types of cover

sources with different distortion functions. While it is g0 VI. L OCAL DISTORTION FUNCTION

sible to compute the rate—distortion bounds and simulateThanks to the Gibbs sampler, we can simulate the impact
optimal embedding using other MCMC algorithms, such af embedding that is optimal in the sense of (4) and (6)
the Metropolis-Hastings sampler [38], that may convergeefa without having to construct a specific steganographic sehem
than the Gibbs sampler and can exhibit a more robust behavidiis is important for steganography design as we can test
in practice, it is not clear how to adopt these algorithms fdhe effect of various design choices and parameters and then
practical embedding. This is because all known coding metimplement only the most promising constructs. Howeves it i
ods in steganography essentially sample from a distribudfo rather difficult to design near-optimal schemes for a gdnera
independent symbols. Thus, the Gibbs sampler comes out/ag/). Fortunately, it is possible to give the distortion functio

a natural choice (Section VI) because it works by updatirey specific form that will allow us to construct practical em-
individual pixels, which is exactly the effect of embeddindpedding algorithms. We will assume th&tis a sum of local
using syndrome-trellis codes [7], [8]. potentials defined on small groups of pixels called cliques.
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Figure 3. The eight-element neighborhood and the tesisellaf the index
setS into four disjoint sublattices marked with four differentnsbols.
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Figure 4. All possible cliques for the eight-element neigftiood.

This local form of the distortion will be still quite genertl

capture dependencies among embedding changes and it allowg(Y; = y!|y~:)
us to construct a large spectrum of diverse embedding saheme

— a topic left for Section VII.

First, we define a neighborhood system as a collection of

subsets of the index séy(:) C S|i = 1,...,n} satisfying: ¢

n(2),vi andi € n(j) if and only if j € n(i). The elements of

n(i) are called neighbors of pixel A subsetc C S is a clique

For the eight-element x 3 neighborhood, there are four
sublattices,S = J,, Sav, 1 < a,b < 2, whose structure
resembles the Bayer color filter array commonly used in aigit
cameras [9],

Sap = {(a+ 2k, b+ 20)[1 < a+ 2k <ny,1 < b+ 2l < ny}.
(44)

For a cliquec € C, we denote byV.(y) the local potential,
which is an arbitrary bounded function that depends only on
the values ofy in the cliquec, V.(y) = V.(y.). We remind
that V., may also depend oxr in an arbitrary fashion. We are
now ready to introduce a local form of the distortion funatio

as
D(y) = Z V;:(YC)'

ceC
The important fact is thab is a sum of functions with a small
support. Let us express the local characteristics (24)rimge
of this newly-defined form (45):
_ (AN eee Veliyni))
Ztiezi exp(—/\ Zcec ‘/C(ti}’w'))
@  XP(=AYecq VelWivi))
ZtieL- exp(—A Zcec(i) Ve(tiyn~i))’
(47)

whereC(i) = {¢ € Cli € ¢}, i = 1,...,n. Equality (a)

(45)

(46)

if each pair of different elements fromare neighbors. The seth0lds becausé’.(t;y.;) does not depend ot for cliques

of all cliques will be denoted. We do not use the calligraphic¢ # C(¢) as they do not contain thiéh element. Thus, the terms
font for a clique even though it is a set (and thus deviale for such cliques cancel from (47). This has a profound
here from our convention) to comply with a well establishetf’Pact on the local characteristics, making the realizatio

notation used in previous art.

In this section and in Section VII, we will need to addres$
pixels by their two-dimensional coordinates. We will thus b’/\*

switching between using the index s¢t= {1,...,n} and its
two-dimensional equivalent = {(i,7)|1 <i<n;,1 <j <
no} hoping that it will cause no confusion for the reader.

Example 1:The four-element cross neighborhood of pixe'i
x;,; consisting of{x;_1 j, Tit1,5, i j—1, i j+1  With a proper
treatment at the boundary forms a neighborhood system (8
Figure 1). The cliqgues contain either a single pixel (on
element) cliquegz; ;} or two horizontally or vertically neigh-
boring pixels, {x; j,z; j+1}, {®ij,®i+1,,;} (Figure 2). No

other cliques exist.

of Y; independenbf changes made outside of the union of
liques containing pixel and thus outside of the neighborhood
(7). For the cross-neighborhood system from Example 1,
changes made to pixels belonging to the sublatficelo not
interact and thus the Gibbs sampler can be parallelized by
first updatingall pixels from this sublattice in parallel and
hen updating in parallell pixels fromS,.°

The possibility to update all pixels in each sublattice &ll a

e provides a recipe for constructing practical embegldin

Schemes. Assum§ = S; U ... U S, with mutually disjoint

sublattices. We first describe the actions of a payloadithi
sender (follow the pseudo-code in Algorithm 2).

Example 2:The eight-elemenB x 3 neighborhood also A. Payload-limited sender
forms a neighborhood system (Figure 3). The cliques are asThe sender divides the payload-af bits into s equal parts
in Example 1 as well as all cliques containing pairs of diagf m /s bits, computes the local distortions

onally neighboring pixels{z; ;, zit1,j+1}, {®ij, Ti—1,j+1}

three-pixel cliqgues forming a right-angle triangle (e.g.,

{®ij,%ij+1,Tit1,4}), and four-pixel cliques forming & x 2
square {x; j, Ti j+1, Tit1,5, Ti+1,5+1 1) (follow Figure 4). No
other cliques exist for this neighborhood system.

Pi(Yiy~i) = Z Ve(yiy~i)
ceC(1)

(48)

for pixelsi € S;, and embeds the first message partSin
Then, it updates the local distortions of all pixels fréinand

Each neighborhood system allows tessellation of the index @mbeds the second part &, updates the local distortions
S into disjoint subsets (sublattices) whose union is therentiagain, embeds the next partds, etc. Because the embedding
setS, so that any two pixels in each lattice are not neighborshanges in each sublattice do not interact, the embeddimg ca

For example, for the cross-neighborhad= S, U S, where

S, ={(i,5)]i + j is odd}.
(43)

SC = {(7’5.])|7’+] iS ever}a

be realized as discussed in Section |V. After all sublastime

5The Gibbs random field described by the joint distributiog(y) with
distortion (45) becomes a Markov random field on the samehbeidiood
system. This follows from the Hammersley-Clifford theor¢sa].



Algorithm 2 One sweep of a Gibbs sampler for embeddinglgorithm 3 One sweep of a Gibbs sampler for a distortion-

m-bit message (payload-limited sender). limit sender,E,, [D] = D..

Require: § = &3 U...US, {mutually disjoint sublattices} Require: S = S; U...US, {mutually disjoint sublattices}
1: for k=11to s do 1: for k=11to s do
2. for everyi € S; do 2. for everyi € S; do
3: Use (48) to calculate cost of changipg— y; € Z; 3: Use (48) to calculate cost of changipg— v, € Z;
4. end for 4: end for
5. Embedm/s bits while minimizing} ;s pi(yiy~i)- 5:  Embedmy, bits while}”, pi(y;y~i) = De x [{c € C|cN
6: Updateys, with new values and keep.s, unchanged. Sk # 0}/[C).
7: end for 6: Updateys, with new values and keep.s, unchanged.
8: return y 7: end for

8: return y and)_, my {stego image and number of bits}

processed, we say that one embedding sweep was completed.

By repeating these embedding swefise resulting modified 4chieving the distortion (49). Note that we do not need to-com
images will converge to a sample from. pute the partition function for every image in order to reelli

The embedding in sublattics;, will introduce embedding the embedding. Moreover, in practice when the embedding
changes with probabilities (15), where the value\pfis deter- s jmplemented using syndrome-trellis codes [8], the gearc
mined by the individual distortiongp;(y;y~i)|i € Sk} (48) for the correct parametex, as described in Section V-B, is
to satisfy the payload constraint of embedding's bits in ot needed either as long as the distortion properties afeve
the kth sublattice (again, e.g., using a binary searchXor  gyplattice are the same. This is because the codes need the
Because each sublattice extends over a different portion |94 distortion pi(yly~:) (48) at each lattice pixel and not
the cover image while we split the payload evenly across thg embedding probabilities. (This eliminates the need\fpr
sublattices\, may slightly vary withk because of variations  r,q jssye of the minimal sufficient number of embedding
in the_|nd|V|duaI distortions. This represents_a deviatfimm sweeps for both algorithms needs to be studied specifically f
the Gibbs sampler. Fortunately, the sublattices can ofeen b, q, gistortion measure (see the discussion in the expetane
chosen so that the image does not differ too much on evegy.iion viil). By replacing a specific practical embedding
sublattice, which will guarantee that the sets of individug,athod with a simulator of optimal embedding, we can
distortions {p;(yy~;)|i € Sy} are also similar across thegimyate the impact of optimal algorithms (for both senjiers
sublattices. Thus, with an increased number of sweepwiill | it having to determine the value of the parameters
converge to an approximately common value and the whoiggcriped in Section V-B. We still need to compug for
process represents a correct Voo of the Gibbs sampler.gach guplattices, to obtain the probabilities of modifying

In binary embeddingZ; = {z;”, z; ’}), note thlat the two aach pixel (15), but this can be done as described in Sedfion |
distortions p{” (z\”y ;) = D(@"y,u), AV (@ Myi) =  without having to use the Gibbs sampler or the thermodynamic
D(:cz(.l)yn(i)) at pixel i depend on the current pixel valuesntegration.
in its neighborhoody(i). Therefore, botp!”’ andp!" can be  Finally, we comment on how to handle wet pixels within
non-zero at the same time and we can even héVQ< PZ(O) this framework. Since we assume that the distortion is bednd
It is the neighborhood of that ultimately determines whether(|D(y)| < K forally € )), wet pixels are handled by forcing

or not it is beneficial to preserve the value of the pixel! ~ Z: = {:}. Because this knowledge may not be available to
the decoder in practice, practical coding schemes shoedd tr

them either by setting;(y;) = co or to some large constant
for y; # x; (for details, see [8]).
A similar approach can be used to implement the distortion-
limited sender with a distortion limib.. Consider a simulation
of such embedding by a Gibbs sampler with the cortect C. Practical limits of the Gibbs sampler

(obtained f“’”.‘ a binary search_ as degcr|bed n Sectlor_1 V'B)Thanks to the bounds established in Section Il, we know that
on the sublatticeS, C S. Assuming again that all sublattices

have the same distortion properties, the distortion obthinthe maximal payload that can be embedded in this manner is

from cliques containing pixels fror§;, should be proportional the entropy ofr (11). Assuming the embedding proceeds on
g gp k prop the bound for the individual sublattices, the question ig ho
to the number of such cliques. Formally,

close the total payload embedded in the image igfier) ).
> (D] = D H{celClen Sy, # 0} (49) Following the Gibbs sampler, the configuration of the stego
™ (Y5 [Yrs,) ‘ IC] ' image will converge to a sample from 7. Let us now go

rough one more sweep. We denoteyp}! the stego image
Sggfore starting embedding in sublatti®e, £k = 1,...,s. In
each sublattice, the following payload is embedded:

B. Distortion-limited sender

As described in Algorithm 3, the sender can realize this
embedding as many bits to every sublattice as possible w

6After each embedding sweep, at each pixel the previous ehsrerased (]
and the pixel is reconsidered again, just like in the Gibbapser. H(ng ‘YNS,c = y~5k)' (50)
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We now use the following result from information theory. FoHere, f(x) = (fi1(x),..., fa(x)) € R? is a d-dimensional

any random variableXy, ..., X, feature vector of image andw = (w1, ..., wy) are weights.
s The properties ofD defined in this manner depend on the
ZH(X’C|X~’C) < H(X1,...,Xs), (51) properties of the functions;. In general, howeverD is
k=1 not additive. In the past, steganographers were forceddo us

someadditive approximatiomf D to realize the embedding in
practice. A general method for turning an arbitrary distort
measure into an additive proceeds is:

with equality only when all variables are independéittus,
we will have in general

H (Y)2S H(Ys, [Yos, =y H(Y) = H(r). . "
(Y) g (Ys,[Yes, =y2s,) < H(Y) = H(my) D) = 3" Digxr). (54)
(52) i=1
The term H—(Y) is recognized as the erasure entropy [34
[35] and it is equal to the conditional entrogf(Y (‘+1) | Y (1)
(entropy rate) of the Markov process defined by our Gib

W .
sampler (c.f., (35)), wher& " is the random variable 0b- o "minimized distortion function. Thanks to the methods

tained afterl sweeps of .the Gib_bs sampler. infroduced in Section V-B, this loss can now be contrasted
The erasure-entropy inequality (52) means that the em_beé jainst the rate—distortion bound for the original meadore

ding scheme will be suboptimal, unable to embed the maxi 1¥wever, we cannot build a practical scheme uniessan be
payloadH (). The actual loss can be assessed by evaluatiigisen a5 a sum olocal potentials. Next, we explain how to

the entropy off(7»), €.g., using the algorithms described i, 1, intg this form using the idea of a bounding distortion.
Section V. An example of such comparison is presented in

Section VIII-C. B. Bounding distorti

The last remaining issue is the choice of the potenitialsn - Bounding distortion
the next section, we show one example, wherare chosen Most features used in steganalysis can be written as a sum
to tie the principle of minimal embedding distortion to théf locally-supported functions across the image
preservation of the cover-source model. We also describe a X) = (k) (x E—1 d 55
specific embedding method and subject it to experimentgjusin Jex) ch (), o (55)
blind steganalyzers.

]Embedding with the additive measui@ can be simulated
(and realized) as explained in Section IV. The approxinmgtio
course, ensues a capacity loss due to a mismatch in

ceC

For example, thé&th histogram bin of imag& can be written

VII. PRACTICAL EMBEDDING CONSTRUCTIONS using the Iverson bracket as

We are now in the position to describe a practical embedding hi(x) = Z[xi =k, (56)
method that uses the theory developed so far. First and €S
foremost, the potentialt. should measure the detectability ofyhile the kith element of a horizontal co-occurrence matrix
embedding changes. We have substantial freedom in choosing n1 na—1
them and the design may utilize reasoning based on thealretic Cha(x) = Z Z [zi; = k][zi 1 =[] (57)

cover source models as well as heuristics stemming from
experiments using blind steganalyzers. The proper desﬁgnio
potentials is a complicated subject in itself and is beyon“c;il

i=1 j=1
a sum over horizontally adjacent pixels (horizontal tpirel
C

. . - .cliques). For such locally-supported features, we caniolata
the scope of this paper, whose main purpose is introducin
- : upper bound oD (y) = || f(x) — f(¥)||. ¥ € Y, that has the
a general framework rather than optimizing the design. Her . .
X o reckuwed form:
we describe a specific example of a more general approach tha
builds upon the latest results in steganography and stggama
and one that gave us an opportunity to validate the proposeﬁf(x) —fll
framework by showing an improvement over the current state

of the art in Section VIII.

M=

Wi

S P = 30 (y)\ (58)

ceC

=
Il

1

M=

wi Y|P x) = Py (59)

1 ceC

>
Il

A. Additive approximation

As argued in the introduction, the steganography design
principles based on model preservation and on minimizing

wil 19 (x) — £ (y)] (60)

[
(]
M=~

Q
m
Q
bl
Il

~~ =

distortion coincide when the distortion is defined as a nofm o _ Voly) (61)
the difference of feature vectors used to model cover images = o
o where
D(y) =176 = F) 2 Y wil 7o) = i)l (53) L
e Ve(y) = D wil S0 (x) = £ (y)l. (62)
k=1

"For k = 2, this result follows immediately fromH (X;|X2) + Followi . lained in Section I dekseri
H(X2|X1) = H(X1,Xs) — I(X1; X2). The result fors > 2 can be Following our convention explained in Section II, we delseri

obtained by induction oves. the methodology for a fixed cover image and thus do
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not make the dependence &f on x explicit. The sum . T /

> ccc Ve(y) will be called thebounding distortion . .
We now provide a specific example of this approach. The .7.>l7.7
choice is motivated by our desire to work with a modern, Y4RN
well-established feature set so that later, in Section,\ii D
can validate the usefulness of the proposed framework by con ./ .‘ N

structing a high-capacity steganographic method undste=t
using current state-of-the-art steganalyzer The matiand Figure 5. The union of all 12 cliques consisting of three [sxaranged in
I .' . . _,a straight line in thes x 5 square neighborhood.

justification of the feature set appears in [23]. It is a dligh

modification of the SPAM set [22], which is the basis of the

current most reliable blind steganalyzer in the spatial @om s tg avoid “overtraining” the embedding algorithm to a low-
The features are constructed by considering the diffen¢gmensional model as such algorithms may become detectable
between neighboring pixels (e.g., horizontally adjacexels) py a slightly modified feature set, an effect already rembrte
as a higher-order Markov chain and taking the sample joiff the DCT domain [19].

probability matrix (co-occurrence matrix) as the featlfse By embedding a messagd;”,(x) is modified to A, (y).
advantage of using the joint matrix instead of the transitiorhe differences between the features will thus serve as a
probability matrix is that the norm of the feature differencyeasure of embedding impact closely tied to the model (the

can be readily upper-bounded by the desired local form (6%jdicesi and j run from 1 to n; andn, — 2, respectively):
To formally define the feature for an; x ny image x,

let us consider the following co-occurrence matrix comgute Ak (y) = A (x)] = (65)
from horizontal pixel difference®;: (x) = x; j11 — 245, i = B 1 RN B
Lo mtd = Ly — 1 = o=y | 2P Dii) ) = (kD] (66)
]
ny n2—2
A (x) = (e —2) ; ; (D Dijy1)(x) = (k, D] (D Dijy1)(x) = (kvl)]’ (67)
(63) < 1 D= D— — (k.1 68
For compactness, in (63) we abbreviated the argument of ~ 7n1(n2 —2) %:H( i Digr)) = (k0] (68)
the Iverson bracket fronD; . (x) = k& D;7.,(x) = [ to - - _
i.j ij+1 — (D, D = (k,1 69
(D, Dij41)(x) = (k,1). Clearly, A7 (x) is the normalized i ”’kl”“(x) (kD) (69)
count of neighboring triples of pixel§z; ;, i i1, i 12} = > HFI(y), (70)
with differenceSa:MH — T = k and Tij4+2 — Tij+1 = l ceC™
in the entire image. The superscript arrow:™ denotes the where we defined the following locally-supported functions
fact that the differences are computed by subtracting tfie le
pixel from the right one. Similarly. HFD= (y) = . —
' ! ¢ n1 (ng — 2)
1 1 72 — — o — — .
A x) - - D;.—.7D;.—.7 ) x) = k’l) : [(Di,iji,j+1)(y) = (kal)] - [(Di,jaDi,jJrl)(x) = (kal)]
k,l( n1 (712 — 2) ;]ZZB[( 5J ,J—1 ( ( ] (71)
(64)

on all horizontal clique€— = {c|c = {(4, ), (4,5 +1), (i, 5+

2)}}. Notice that the absolute value had to be pulled into the
sum to give the potentials a small support. Again, we drop the
symbol for the cover imagex, from the argument oHc(k’l)

for the same reason why we do not make the dependence on

with D;_](X) = Tij-1 — Tij. By analogy, we can define
vertical, diagonal, and minor diagonal matricds ;, A]
AL, AL AN, AY. Al eight matrices are sample joint
probabilities of observing the differencds and [ between
three consecutive pixels along a certain direction. Duéh& t explicit for all other variables, sets, and functions.

an\'usymmetryDi,j (_X) = —Djj 4 (x) only ‘_41@_71’ Aip Axs Since the other three matrices can be written in this manner
Ay, are needed sincd;; = AT, _,, and similarly for other 55 \ell, we can write the distortion function in the followin

matrices. final form
Because neighboring pixels in natural images are strongly D(y) = ZVC(Y)’ (72)
dependent, each matrix exhibits a sharp peak argknd = e
(0,0) and then quickly falls off with increasing and!. When
such matrices are used for steganalysis [22], they aredtadc
to a small range, such asT < k,I < T, T = 4, to prevent
the onset of the “curse of dimensionality.” On the other handy/, (y) = Zwk,ch(k’l)H(y% for each cliquec € ¢, (73)
in steganography we can use large-dimensional modeéls ( ol
iSBS,)A\r?(?t?wag:Sria:tsé?\ ?ozirslljes:ntg;)ap;?sﬁ-rgﬁnzngggg: ft:;?”teos:oesl%rrerl‘d similarly for the other three cliqgue types. Notice that
’ we again introduced weights;; > 0 into the definition of
8Similar reasoning for constructing the distortion funatiwas used in the Ve so that we can adeSt them according to how sensitive

HUGO algorithm [23]. steganalysis is to the individual differences. For exampiee

now with C = C~ uC” ucClt ucC™, the set of three-pixel
cligues along all four directions, and



12

observe that a certain difference péir 1) varies significantly —— Bounding dist. ---- Additive approx.
over cover images, by assigning it a smaller weight we allow Binary +1 Ternary=+1
it to be modified more often, while those differences that - [- [ [ [
are stable across covers but sensitive to embedding sheuld b
intuitively assigned a larger value so that the embeddiresdo
not modify them too much. 0.4 -
To complete the picture, the neighborhood system here is
formed by 5 x 5 neighborhoods and thus the index set cant
be decomposed into nine disjoint sublattics= J,, Sas,
1<a,b<3,

T [
BOWS?2 database |

0.3

Sap = {(a+ 3k, b+ 3|1 <a+3k <ni,1 <b+ 3l <ngy}.
(74)

To better explain the effect of embedding changes on th
distortion, realize that each pixel belongs to three harizo [ T
tal, three vertical, three diagonal, and three minor-diedo h '
cligues. When a single pixet; ; is changed, it affects only
the 12 potentials whose cliqgue containg;. Let us say | | | |
that the original pixel valuesy = {z; ;,; j+1,%: j+2} had 0 0.1 0.2 0.3 0.4 0.5
differencesk, !, and the pixel value changed from ; to Relative payloady (bpp)

vi,; = ;; + 1. Then, the pixel differences will be modified

_ ; ; ; i 1t (k,1)— Figure 6. Comparison of-:1 embedding with optimal binary and ternary
tok-1, l._ConS|der|n_g JU.St.the contribution frorHco to coding with binary embedding algorithms based on the Gildsstruction
the potentialV,,, (73), it will increase by the sum af; (the \ith a bounding distortion and the additive approximatic described in
pair k, 1 is leaving cover) andui_1,; (& new pair appears in Section VIII-A. The error bars depict the minimum and maxmstegana-
the stego image). lyzer error Pg, (76) over five runs of SVM classifiers with different division

of images into training and testing set.

@ Average erro

KK
H oA

C. Other options

The framework presented in this paper allows the senderThe weights were chosen to be small for those triples
to formulate the local potentials directly instead of obitag (D; ;. D; 1, D;j42) = (k,I,m) that occur infrequently
them as the bounding distortion. For example, the cliqués images and large for frequented triples. Following the
and their potentials may be determined by the local imagécommendation described in [23], since the frequency of
content or by learning the cover source using the meth@gcurrence of the triples falls off quickly with their norm,
of fields of experts [26]. The merit of these possibilitiegve choose the weights as
can be evaluated by steganalyzers trained on a large set )
of images. The important question of optimizing the local W I,m = (cr+ k2412 +m2) , (75)
potential functions w.r.t. statistical detectability is inportant

direction the authors intend to explore in the future. with ¢ = 1 ando = 1. The purpose of the weights is to force
the embedding algorithm to modify those parts of the model

VIIl. EXPERIMENTS that are difficult to model accurately, forcing thus the ateg
In thi " lidate th qf K alyst to use a more accurate model. Here, the advantage goes
N INis section, we validate the proposed Tramework exXp&, ihe steganographer, because preserving a high-dinmerisio

'me”t‘?‘"y and_ include a comparison between simple St0aNQ: e vector is more feasible than accurately modeling it
graphic algorithms, such as binary and ternaryembedding Because the neighborhoadi) in this case containg x 7

and steganography implemented via the bounding distortign . L : )
I Lo ixels, the image was divided intt6 square sublattices on
and the additive approximation (54). For the case of the doun | . ; . .
. . . ) X which embedding was carried out independently. We tested
ing distortion, the capacity loss w.r.t. the optimal payoa, . . B , ,
. ) binary embeddingZ; = {x;,}}, where z; was selected
given by H(r)) is evaluated by means of the thermodynamic . ! ¢
; ) ) : randomly and uniformly from{x; — 1,z; + 1} and then
integration algorithm from Section V-B.

fixed for all experiments with covex. The payload-limited
sender was simulated using the Gibbs sampler constrained to
A. Tested embedding methods only two sweeps. Increasing the number of sweeps did not
For the methods based on additive approximation and tlead to further improvement. The curiously low number of
bounding distortion, we used as a feature vector the joisveeps sufficient to properly implement the Gibbs sampler
probability matrixA;7, . (x) defined similarly as in (63) with is most likely due to the fact that the dependencies dictated
the difference vector computed frofour consecutive pixels by the bounding distortion are rather weak. The simulation
(Dis Diji1, Diipe) = (k,1,m). As above, four such ma- of embedding for one image took less tharseconds when
trices corresponding to four spatial directions were cotegu implemented in C++ on a single-processor PC.
The matrices were used at their full siZe= 255 leading to To summarize, the following four steganographic methods
model dimensionalityl = 4 x 5113 ~ 5 - 108. were tested:
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1) Binary embedding using the Gibbs construction withdditive approximation is unable to cope with the intexacsi
setsZ; = {x;,2;} and bounding distortion (72) of (53) among changes and thus its detectability increases. Téudt re
with weights (75) for thed = 4 x 5113-dimensional however, may change for different distortion measures and
feature space given by matrices’, Aﬁm, AL.l,m’ cover sources. The fact that the Gibbs sampler with bounding

AN distortion did not bring a substantial performance improeat
k,l,m . . - . . .. L.
2) Additive approximation (54) of (53) for the same setgver the additive approximation indicates that the inteoas
7;, feature space, and norm as in 1). among embedding changes are in general quite weak (at least

3) Binary +1 embedding with the same sefs equipped as far as they are captured by the bounding distortion). The
with a matrix embedding scheme operating on the binal§w strength of interactions also explains why only two spgee
bound. of the Gibbs sampler were sufficient in practice.

4) Ternary+1 embedding withZ; = {x; — 1,2, x; + 1}
equipped with a ternary matrix embedding scheme og: Analysis of upper bounds
erating on the ternary bound (the bounds appear, e.g.
in [9]).

We note that practical near-optimal codes for the tw

As described in Section VI-C, Algorithm 2 for the payload-
limited sender is unable to embed the optimal payload of
H(m)) for three reasons. The performance may be affected

embedding methods can be found in [10] and [39]. by the small number of sweeps of the Gibbs sampler, the
parameter\ may vary slightly among the sublattices, and the
B. Testing methodology and final results algorithm embeds the erasure entrdpy (7,) < H(mw). The

Following the separation principle, we study the security §mbined effect of these factors is of great importance for
all schemes when operating on the rate—distortion bourld. Rfactitioners and is evaluated below for two images usirg th
tests were carried out on the BOWS2 database [1] containi##Ps sampler and the thermodynamic integration as exgdain
approximately10800 grayscale images with a fixed size ofn Section V-B. _ _

512 x 512 pixels coming from rescaled and cropped natural Since the Gibbs construction depends on the cover image
images of various sizes. Steganalysis was implementeg usth We present the results for two grayscale images of size
the second-order SPAM feature set with = 3 [22]. The 512 x 512 pixels coming from two different sources. The
image database was evenly divided into a training and antestfeSt image “0.png” is from the BOWS2 database and “Lenna”
set of cover and stego images, respectively. A soft-marghfS obtained from http://en.Wlklped|a.org/W|k|/F|Iemm.png.
support-vector machine was trained using the Gaussiareker@nd converted to grayscale using GNU Image Manipulation

The kernel width and the penalty parameter were determindgP9ram (GIMP). In both cases, we used the same Bets
using five-fold cross validation on the gridC,~) ¢ and the same feature set as in the previous section with the

{(10k 9|k € {~3,...,4},j € {-L—3,...,.—L+ 3}} bounding distortion with weight parameters= 1 andé§ = 1.
where L = log, d is the binary logarithm of the number of The image “0.png” contains more areas with edges and
features. textures than “Lenna” and thus for small distortions, ieo#fa

We report the results using a measure frequently used!@ger capacity than “Lenna” because the weights (75) atoun

steganalysis — the minimum average classification error edges and complex texture are small. This is apparent from
the slopes of the rate—distortion bounds in Figure 7.

Pg = (Pra + Pup)/2, (76)  The same figure compares the rate—distortion performance

where Ppp and Pyp are the false-alarm and missed-detectio?\f the payload-limited sender simulated by the Gibbs sample

probabilities. Smaller values aPg correspond to better ste-WIth only two sweeps as described in Algorithm 2. For a given

ganalysis and thus larger statistical detectability (loaecu- payload, the distortion was Obt?"”ed as an average ouer
rity) random messages. The comparison shows that the payload loss

Figure 6 displays the comparison of all four embeddin f AI%orithm 2 1o the opti_maIH(w?) isdq_uiteh S";.a”' Nate
methods listed above. The methods based on the the boun the erasure entropy/ ™ (), plotted in the figure has

distortion and the additive approximation (denoted as ‘fBbu e€n computed over the sublattices after two sweeps and thus

ing dist” and *Additive approx.”) are completely undetaiole already_co_ntains the impgct of all three factors discussed a
the beginning of this section.

for payloads smaller thaf.15 bpp, which suggests that the
embedding changes are made in pixels not covered by the

SPAM features. Since both schemes are binary With= IX. CONCLUSION

{z;, x}} with 2} randomly chosen fronfz; — 1, z; + 1}, they Currently, the most successful principle for designingcpra
become equivalent to simple binatyl embedding (Method 3) tical steganographic systems that embed in empirical sover
asa — 1 and thus become detectable. Comparing the capacis/based on minimizing a suitably defined distortion measure
both schemes allow communicating ten times larger payloddsplementation difficulties and a lack of practical embexddi
with Pg = 40% as compared to ternar¢1 embedding. The methods have so far limited the application of this princi-
advantage of using the Gibbs sampler with the bounding digle to a rather special class of distortion measures that are
tortion over the additive approximation becomes more ewideadditive over pixels. With the development of near-optimal
for larger payloads, where the embedding changes startlda-complexity coding schemes, such as the syndromastrell
interact. This confirms our expectation that in this range tltodes [8], this direction has essentially reached its &inittis
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Figure 7. Comparison of the payload loss of Algorithm 2 fovawoimages “0.png” and “Lenna” shown on the right. The raistedtion bounds were
obtained using the Gibbs sampler (38) and the thermodynartegration (40).

our firm belief that further substantial increase in seclag-p The proposed framework is called the Gibbs construction
load is possible only when the sender uses adaptive schemed it connects steganography with statistical physicsctwh
that place embedding changes based on the local content, ttumtributed with many practical algorithms. In particultre

dare to modify pixels in some regions by more than 1, ar@ibbs sampler combined with the thermodynamic integration
that consider interactions among embedding changes wiikn be used to derive the rate—distortion bound, simulate
preserving higher-order statistics among pixels. Thisepap the impact of optimal embedding, and realize near-optimal
an important step in this direction. embedding algorithms. These three tasks can be addressed
%?parately (the so-called “separation principle”) givitige
sender a great amount of design flexibility as well as control
over losses of practical schemes.

We offer the steganographer a complete methodology
embedding while minimizing an arbitrarily defined distorti
measureD. The absence of any restrictions dhmeans that
the remaining task left to the sender is to find a distortion An important case elaborated in this paper corresponds
measure that correlates with statistical detectability. #p- to D defined as a sum of local potentials over small pixel
pealing possibility is to defineD as a weighted norm of neighborhoods. Here, the optimal distribution of embeddin
the difference between cover and stego feature vectors useadifications reduces to a Markov random field and the Gibbs
in steganalysis. This immediately connects the princidfle sampler can be turned into a practical embedding algorithm
minimume-distortion steganography with the concept of niodable to consider dependencies among embedding changes.
preservation which has so far been limited to low-dimenaionWhen D cannot be written as a sum of local potentials, prac-
models. Being able to preserve a large-dimensional modiell (suboptimal) methods can be realized by approxingatin
gives the steganographer a great advantage over the digggan® either with an additive distortion measure or with local
because of the difficulties associated with learning a higpetentials. The problem of finding the best approximation
dimensional cover source model using statistical learnirfigr a given non-localD is of its own interest. We did not
tools. cover the task of minimizing the statistical detectabilitith



respect to the distortion function completely due to itseirgmt
complexity; it is left as part of our future effort.

We described the proposed methodology both for a payload-
limited sender and the distortion-limited sender. The ferm
embeds a fixed payload in every image with minimal dig3l
tortion, while the latter embeds the maximal payload for a
given distortion in every image. The distortion-limitechder
better corresponds to our intuition that, for a fixed sttt [14]
detectability, more textured or noisy images can carry gelar
secure payload than smoother or simpler images. The fag)
that the size of the hidden message is driven by the cover
image essentially represents a more realistic case of tich ba
steganography paradigm [17]. We postpone the study of the
distortion-limited sender to our future effort. [16]

Note that the distortion measure is used only by the sen
and thus does not need to be shared. The only information

[12]

f{] A. D. Ker.
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Contents VI volume 5681, pages 328-340, San Jose, CA, January 16—
20, 2005.

J. Fridrich, T. Pevny, and J. Kodovsky. Statisticallydetectable JPEG
steganography: Dead ends, challenges, and opporturiiids Dittmann
and J. Fridrich, editorsProceedings of the 9th ACM Multimedia &
Security Workshgppages 3-14, Dallas, TX, September 20-21, 2007.
S. Geman and D. Geman. Stochastic relaxation, Gibbsiliisons,
and the Bayesian restoration of imagéEEE Transactions on Pattern
Analysis and Machine Intelligencé(6):721-741, November 1984.

S. Hetzl and P. Mutzel. A graph-theoretic approach égahography. In
J. Dittmann, S. Katzenbeisser, and A. Uhl, edit@smmunications and
Multimedia Security, 9th IFIP TC-6 TC-11 International Gerence,
CMS 2005 volume 3677 of Lecture Notes in Computer Science, pages
119-128, Salzburg, Austria, September 19-21, 2005.

A. D. Ker. Steganalysis of LSB matching in grayscale ges. IEEE
Signal Processing Letterd2(6):441-444, June 2005.

Batch steganography and pooled steganalysis J. L.
Camenisch, C. S. Collberg, N. F. Johnson, and P. Salleeprggdin-

needed by the receiver to decode the message is its size which formation Hiding, 8th International Workshppolume 4437 of Lecture

can be communicated separately in the same cover image.
This opens up the intriguing possibility to develop embeddi [1g)
schemes able to learn the proper distortion function while
observing the impact of embedding on the cover source.

Finally, the proposed methodology can be applied to other
data hiding problems where the statistical detectabildpn-c
straint could be replaced by a perceptual distortion cairstr

The source code used for all experiments in this paper can
be found at http://dde.binghamton.edu/download/gibbs.
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