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Abstract

Visual cryptography scheme (VCS) is a kind of secret sharing scheme which allows the

encoding of a secret image into 𝑛 shares that distributed to 𝑛 participants. The beauty of

such scheme is that a set of qualified participants is able to recover the secret image without

any cryptographic knowledge and computation devices. Extended visual cryptography scheme

(EVCS) is a kind of VCS which consists of meaningful shares (compared to the random shares

of traditional VCS). In this paper, we propose a construction of EVCS which is realized by

embedding random shares into meaningful covering shares, and we call it the embedded ex-

tended visual cryptography scheme (embedded EVCS). Experimental results compare some of

the well-known EVCS’s proposed in recent years systematically, and show that the proposed

embedded EVCS has competitive visual quality compared with many of the well-known EVCS’s

in the literature. Besides, it has many specific advantages against these well-known EVCS’s

respectively.
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1 Introduction

The basic principle of visual cryptography scheme (VCS) was first introduced by Naor and

Shamir. VCS is a kind of secret sharing scheme [1, 2] that focuses on sharing secret images. The

idea of the visual cryptography model proposed in [3] is to split a secret image into two random

shares (printed on transparencies) which separately reveals no information about the secret image

other than the size of the secret image. The secret image can be reconstructed by stacking the two

shares. The underlying operation of this scheme is logical operation OR. In this paper, we call a

VCS with random shares the traditional VCS or simply the VCS. In general, a traditional VCS

takes a secret image as input, and outputs 𝑛 shares that satisfy two conditions: (1) Any qualified

subset of shares can recover the secret image; (2) Any forbidden subset of shares cannot obtain any

information of the secret image other than the size of the secret image. An example of traditional

(2, 2)-VCS can be found in the following Figure 1, where, generally speaking, a (𝑘, 𝑛)-VCS means

any 𝑘 out of 𝑛 shares could recover the secret image. In the scheme of Figure 1, shares (a) and (b)

are distributed to two participants secretly, and each participant cannot get any information about

the secret image, but after stacking shares (a) and (b), the secret image can be observed visually

by the participants. VCS has many special applications, for example, transmitting military orders

to soldiers who may have no cryptographic knowledge or computation devices in the battle field.
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Many other applications of VCS, other than its original objective (i.e. sharing secret image), have

been found, for example, authentication and identification [4], watermarking [5] and transmitting

passwords [6] etc..

Figure 1: An example of traditional (2, 2)-VCS with image size 128×128.

The associated secret sharing problem and its physical properties such as contrast, pixel expan-

sion and color were extensively studied by researchers worldwide. For example, Naor et al. [3] and

Blundo et al. [7] showed constructions of threshold VCS with perfect reconstruction of the black

pixels. Ateniese et al. [8] gave constructions of VCS for the general access structure. Krishna et

al., Luo et al., Hou et al. and Liu et al. considered color visual cryptography schemes [9–12]. Shyu

et al. proposed a scheme which can share multiple secret images [13]. Furthermore, Eisen et al.

proposed a construction of threshold VCS for specified whiteness levels of the recovered pixels [14].

The term of extended visual cryptography scheme (EVCS) was first introduced by Naor et al.

in [3], where a simple example of (2, 2)-EVCS was presented. In this paper, when we refer to a

corresponding VCS of an EVCS, we mean a traditional VCS that have the same access structure

with the EVCS. Generally, an EVCS takes a secret image and 𝑛 original share images as inputs,

and outputs 𝑛 shares that satisfy the following three conditions: (1) Any qualified subset of shares

can recover the secret image; (2) Any forbidden subset of shares cannot obtain any information of

the secret image other than the size of the secret image; (3) All the shares are meaningful images.

Examples of EVCS can be found in the experimental results of this paper, such as Figure 4, 5 and

6.

EVCS can also be treated as a technique of steganography. One scenario of the applications

of EVCS is to avoid the custom inspections, because the shares of EVCS are meaningful images,

hence there are fewer chances for the shares to be suspected and detected.

There have been many EVCS’s proposed in the literature. Droste [15], Ateniese et al. [16]

and Wang et al. [17] proposed three EVCS’s, respectively, by manipulating the share matrices.

Nakajima et al. [18] proposed a (2, 2)-EVCS for natural images. Tsai et al. [19] proposed a sim-

ple EVCS, where its shares were simply generated by replacing the white and black sub-pixels

in a traditional VCS share with transparent pixels and pixels from the cover images respectively.

Furthermore, Zhou et al. and Wang et al. [20–22] presented an EVCS by using halftoning tech-

niques. Their methods made use of the complementary images to cover the visual information of
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the share images. Recently, Wang et al. proposed three EVCS’s by using error diffusion halftoning

technique [23] to obtain nice looking shares. Their first EVCS also made use of complementary

shares to cover the visual information of the shares as the way proposed in [20]. Their second

EVCS imported auxiliary black pixels to cover the visual information of the shares. In such a

way, each qualified participants did not necessarily require a pair of complementary share images.

Their third EVCS modified the halftoned share images and imported extra black pixels to cover

the visual information of the shares.

However, the limitations of these EVCS’s mentioned above are obvious. The first limitation is

that the pixel expansion is large (Formal definitions of pixel expansion will be given in Definition 1

of Section 2.1). For example, the pixel expansion of the EVCS in [16] is 𝑚+𝑞, where 𝑚 is the pixel

expansion of the secret image and 𝑞 is the chromatic number of a hyper-graph, in any case the value

of 𝑞 satisfies 𝑞 ≥ 2. The construction in [15] has the pixel expansion
∑𝑛

𝑞=1 2
𝑞−1𝑏𝑞, where 𝑏𝑞 is the

number of elements of 𝑆 which contains exactly 𝑞 elements, and 𝑆 is the set of the qualified subsets.

For example, for a (3, 3)-EVCS, the pixel expansion will be 13 (see the last example of Section 7

in [15]). The pixel expansion of the (𝑘, 𝑛)-EVCS in [17] is 𝑚+𝑚0 where 𝑚0 ≥ ⌈𝑛/(𝑘 − 1)⌉. The

second limitation is the bad visual quality of both the shares and the recovered secret images; this

is confirmed by the comparisons in [20]. Unfortunately, the EVCS in [20] has other limitations,

first it is computation expensive, second, the void and cluster algorithm makes the positions of the

secret pixels dependent on the content of the share images and hence decrease the visual quality

of the recovered secret image, third and most importantly, a pair of complementary images are

required for each qualified subset and the participants are required to take more than one shares for

some access structures, which will inevitably cause the attentions of the watchdogs at the custom

and increase the participants’ burden. The same problems also exist in the first method proposed

by Wang et al. [23]. For Wang et al.’s second method, each qualified subset does not require

complementary images anymore; however, this method is only for threshold access structure, and

the auxiliary black pixels of their EVCS also darkened the shares. In fact, the way of generating

auxiliary black pixels of this method can be viewed as a special case of our approach in Section 4

of this paper. For Wang et al.’s third method, the halftoned share images are modified and extra

black pixels are imported to cover the visual information of the shares. The limitation of this

method is that, the visual effect of each share will be affected by the content of other shares, and

the content of the input original share images should be chosen in a selected way.

Tsai et al.’s EVCS [19] is simple, but it may not satisfy the contrast condition of anymore. And

the recovered secret image contains the mixture of the visual information of share images. Consider

the essence of mixing grey-level pixels; the secret information may be hard to be recognized by

human eyes.

At last, the EVCS proposed in [18] is only for (2, 2) access structure, besides their limitations

on the access structure, the scheme may have security issues when relaxing the constraint of the
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dynamic range. (Explicit discussions on the security of the EVCS in [18] can be found in Section

4.2 of [18]).

The rest of this paper is organized as follows: Section 2 gives some preliminary results about

VCS and the halftoning technique. In Section 3, we introduce the formal definition of embedded

EVCS, and give the main idea about our construction. In Section 4, we give two methods to

generate the covering shares. In Section 5, we embed the traditional VCS into the covering shares

and discuss the bounds of our scheme. In Section 6, we propose a method to further reduce the

black ratio, which enhances the visual quality of the shares. In Section 7, we give some experimental

results and comparisons. At last, in Section 8, we conclude the paper.

2 Preliminaries

In this section, we give some definitions about VCS and some preliminary results about the

halftoning technique by using the dithering matrix.

2.1 Definitions of traditional VCS

Suppose all the participants of a secret sharing scheme is 𝒱 = {0, 1, . . . , 𝑛 − 1}. The spec-

ifications of all qualified and forbidden subsets of participants constitute an access structure

(Γ𝑄𝑢𝑎𝑙,Γ𝐹𝑜𝑟𝑏), where Γ𝑄𝑢𝑎𝑙 is the superset of qualified subsets, and Γ𝐹𝑜𝑟𝑏 is the superset of for-

bidden subsets, and Γ𝑄𝑢𝑎𝑙 ∩ Γ𝐹𝑜𝑟𝑏 = ∅. In this paper we only consider the access structure with

Γ𝑄𝑢𝑎𝑙 ∪ Γ𝐹𝑜𝑟𝑏 = 2𝒱 . The superset Γ𝑄𝑢𝑎𝑙 is monotone because if part of the participants in a set

𝐵(∈ Γ𝑄𝑢𝑎𝑙) can recover the shared secret, then it is obvious that all the participants in 𝐵 can

recover the shared secret as well. Let

Γ𝑚 = {𝐴 ∈ Γ𝑄𝑢𝑎𝑙 : ∀𝐵 ⊈ 𝐴⇒ 𝐵 /∈ Γ𝑄𝑢𝑎𝑙} and Γ𝑀 = {𝐴 ∈ Γ𝐹𝑜𝑟𝑏 : ∀𝐵 ⊋ 𝐴⇒ 𝐵 /∈ Γ𝐹𝑜𝑟𝑏}

Then Γ𝑚 is called the minimal qualified access structure, Γ𝑀 is called the maximal forbidden access

structure. For the superset of subsets 𝒞 ⊆ 2𝒱 , define 𝑐𝑙(𝒞) = {𝐵 ⊆ 𝒱 : ∃𝐴 ∈ 𝒞 𝑠𝑡. 𝐵 ⊇ 𝐴}. We call

𝑐𝑙(𝒞) the closure of 𝒞. Since Γ𝑄𝑢𝑎𝑙 is monotone, then 𝑐𝑙(Γ𝑚) = Γ𝑄𝑢𝑎𝑙. From the above discussion

it is known that the qualified access structure Γ𝑄𝑢𝑎𝑙 and the minimal qualified access structure Γ𝑚

are determined by each other, so when we discuss the qualified access structure, we only need to

give discussions on the minimal qualified access structure in the rest of this paper.

The threshold access structure is a special case of the general access structure. More specifically,

a threshold (𝑘, 𝑛) access structure is a general access structure satisfies the following

Γ𝑄𝑢𝑎𝑙 = {𝐵 ⊆ 𝒱 : ∣𝐵∣ ≥ 𝑘} and Γ𝐹𝑜𝑟𝑏 = {𝐵 ⊆ 𝒱 : ∣𝐵∣ ≤ 𝑘 − 1}

and

Γ𝑚 = {𝐵 ⊆ 𝒱 : ∣𝐵∣ = 𝑘} and Γ𝑀 = {𝐵 ⊆ 𝒱 : ∣𝐵∣ = 𝑘 − 1}
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Take a (2, 3) access structure as an example. We have Γ𝑄𝑢𝑎𝑙 = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},
Γ𝐹𝑜𝑟𝑏 = {{}, {1}, {2}, {3}}, Γ𝑚 = {{1, 2}, {2, 3}, {1, 3}} and Γ𝑀 = {{1}, {2}, {3}}.

In this paper, we will focus on black and white secret image only, where the white pixel is

denoted by 0 and the black pixel is denoted by 1. Generally, a VCS consists of a pair of collections

of matrices (𝐶0, 𝐶1). The matrices in the collections (𝐶0, 𝐶1) are called share matrices, where each

share matrix consists of 𝑛 ×𝑚 sub-pixels. However, many studies make use of basis matrices to

simplify their discussions (see examples in [7, 8, 14, 16, 17, 24]). Now we give the formal definition

of the basis matrix VCS as follows.

Definition 1 (Basis Matrix VCS [8]) Let (Γ𝑄𝑢𝑎𝑙,Γ𝐹𝑜𝑟𝑏) be an access structure on a set of 𝑛

participants. The boolean 𝑛×𝑚 matrices 𝑀0 and 𝑀1 are the basis matrices of a visual cryptography

scheme if there exist values {ℎ𝑋 : 𝑓𝑜𝑟 𝑋 ∈ Γ𝑄𝑢𝑎𝑙} and 𝛼(> 0) satisfying:

1. (Contrast) If 𝑋 = {𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑝} ∈ Γ𝑄𝑢𝑎𝑙, then the OR of rows 𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑝 of 𝑀0 is a vector

𝑣 that satisfies 𝑤(𝑣) ≤ (ℎ𝑋 − 𝛼𝑚), whereas, for 𝑀1, we have that 𝑤(𝑣) ≥ ℎ𝑋 .

2. (Security) If 𝐹 = {𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑝} ∈ Γ𝐹𝑜𝑟𝑏, then the 𝑝×𝑚 matrices obtained by restricting 𝑀0

and 𝑀1 to rows 𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑝 are equal up to a column permutation.

In the above definition,

∙ 𝑤(𝑣) is the hamming weight of a vector 𝑣.

∙ 𝑚 is called the pixel expansion of the traditional VCS. Besides, in this paper, we also define

the secret image pixel expansion as the pixel expansion of the recovered secret image over

the original secret image, and we define the share pixel expansion as the pixel expansion of

the final output shares over the original share images.

∙ 𝛼 is called the contrast of the recovered secret image.

∙ ℎ𝑋 is called the threshold of a qualified subset 𝑋.

When the dealer encodes a secret pixel he just needs to randomly choose a share matrix in 𝐶0

(resp. 𝐶1) for a white (resp. black) pixel and distributes the 𝑖− 𝑡ℎ row, containing 𝑚 sub-pixels,

to the 𝑖 − 𝑡ℎ participant. In another word, a share matrix in 𝐶0 (resp. 𝐶1) can be seemed as a

random column permutation of the basis matrix 𝑀0 (resp. 𝑀1). When decoding the secret pixel,

the participants only need to stack their shares, i.e. they print their shares on the transparencies

and stack the transparencies. Then the secret pixel can be observed visually by human eyes. This

approach of construction of VCS will have small memory requirements (it keeps only the basis

matrices) and it is efficient (to choose a matrix in 𝐶0 (𝑟𝑒𝑠𝑝. 𝐶1) as it only needs to generate a

permutation of the basis matrices randomly).
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2.2 Halftoning technique by using dithering matrix

One of the main drawbacks of the VCS’s proposed in [3, 7, 8, 16] is that, they cannot deal

with the grey-scale image. MacPherson [24] proposed a VCS to deal with the grey-scale image,

however, it has large pixel expansion 𝑐×𝑚, where 𝑐 is the number of the grey-levels and 𝑚 is the

pixel expansion of the corresponding black and white VCS. In order to deal with the grey-scale

image, the halftoning technique was introduced into the visual cryptography [11, 18, 25–27]. The

halftoning technique (or dithering technique) is used to convert the grey-scale image into the binary

image. This technique has been extensively used in printing applications which has been proved to

be very effective. Once we have the binary image, the VCS proposed in [3, 7, 8, 16] can be applied

directly. However, the concomitant loss in quality is unavoidable in this case.

Many kinds of halftone algorithms have been proposed in the literature. In this paper, we make

use of the patterning dithering [28]. The patterning dithering makes use of a certain percentage of

black and white pixels, often called patterns, to achieve a sense of grey scale in the overall point

of view. The pattern consists of black and white pixels, where different percentage of the black

pixels stands for the different greynesses. The halftoning process is to map the grey scale pixels

from the original image into the patterns with certain percentage of black pixels. The halftoned

image is a binary image. However, in order to store the binary images one needs a large amount

of memory. A more efficient way is by using the dithering matrix. The dithering matrix is a 𝑐× 𝑑

integer matrix, denoted as 𝐷. The entries, denoted as 𝐷𝑖,𝑗 for 0 ≤ 𝑖 ≤ 𝑐 − 1 and 0 ≤ 𝑗 ≤ 𝑑 − 1,

of the dithering matrix are integers between 0 and 𝑐𝑑 − 1, which stand for the grey-levels in the

dithering matrix. Denote 𝑔 ∈ {0, ⋅ ⋅ ⋅ , 𝑐𝑑} as the grey-levels of a pixel in the original image. The

halftoning process is formally described in Algorithm 1.

Generally, for an input image 𝐼 of size 𝑝× 𝑞, the halftoning process runs on each pixel in 𝐼 as

follows.

Algorithm 1 The halftoning process for each pixel in 𝐼:

Input: The 𝑐× 𝑑 dithering matrix 𝐷 and a pixel 𝑥 with grey-level 𝑔 in input image 𝐼

Output: The halftoned pattern at the position of the pixel 𝑥

For 𝑖 = 0 to 𝑐− 1 do

For 𝑗 = 0 to 𝑑− 1 do

If 𝑔 ≤ 𝐷𝑖𝑗 then print a black pixel at position (i,j);

Else print a white pixel at position (i,j);

To describe the halftoning process clearer, take the dithering matrix with 10 (= 3 × 3 + 1)

grey-levels as an example, where the grey-levels of the original image range from 0 to 9.

Example 1 Dithering matrix with 10 grey-levels 𝐷0 is shown in Matrix 1.
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𝐷0 =

7 0 5

2 4 6

3 8 1

Matrix 1: Dithering matrix with 10 grey-levels 𝐷0.

In Algorithm 1, the halftoning process causes the 𝑐𝑑 pixel expansion on the input image. We

call it the halftone pixel expansion. In the rest of the paper, we denote 𝑠 as the halftone pixel

expansion, i.e. 𝑠 = 𝑐𝑑. Take the above dithering matrix 𝐷0 as an example, the halftoned patterns

of the grey-levels 0, ⋅ ⋅ ⋅ , 9 are shown in Figure 2.

Figure 2: The halftoned patterns of the dithering matrix 𝐷0 of the grey-levels 0, ⋅ ⋅ ⋅ , 9.

3 A sketch and the main idea of the proposed embedded EVCS

In this section, we will give an overview of our construction. First we introduce the formal

definition of embedded EVCS.

Definition 2 (embedded EVCS) Denote 𝑀0 and 𝑀1 as the basis matrices of a traditional VCS

with access structure (Γ𝑄𝑢𝑎𝑙,Γ𝐹𝑜𝑟𝑏) and pixel expansion 𝑚. In order to encode a secret image 𝐼,

the dealer takes 𝑛 grey-scale original share images as inputs, and converts them into 𝑛 covering

shares which are divided into blocks of 𝑡 sub-pixels (𝑡 ≥ 𝑚). By embedding the rows of 𝑀0 and 𝑀1

(after randomly permuting their columns) into the blocks, the embedded EVCS outputs 𝑛 shares

𝑒0, ⋅ ⋅ ⋅ , 𝑒𝑛−1, and there exist values {ℎ𝑋 : 𝑓𝑜𝑟 𝑋 ∈ Γ𝑄𝑢𝑎𝑙}, 𝛼 and 𝜌 satisfying:

1. The stacking result of each block of a qualified subset of shares can recover a secret pixel.

More precisely, if 𝑋 = {𝑖1, ⋅ ⋅ ⋅ , 𝑖𝑝} ∈ Γ𝑄𝑢𝑎𝑙, denote 𝐵𝑖1 , ⋅ ⋅ ⋅ , 𝐵𝑖𝑝 as the blocks at the same

position of the shares 𝑒𝑖1 , ⋅ ⋅ ⋅ , 𝑒𝑖𝑝, then for a white secret pixel, the OR of 𝐵𝑖1 , ⋅ ⋅ ⋅ , 𝐵𝑖𝑝 is a

vector 𝑣 that satisfies 𝑤(𝑣) ≤ ℎ𝑋−𝛼𝑡, and that for a black secret pixel, it satisfies 𝑤(𝑣) ≥ ℎ𝑋 .

2. Part of the information of the original share images is preserved in the shares. Define 𝜌 =

(𝑡−𝑚)/𝑡 be the ratio of the information of the original share images that preserved in the

shares, and it satisfies 𝜌 > 0.

In Definition 2, the first condition ensures that the secret image can be visually observed

by stacking a qualified subset of shares. The second condition ensures that the shares are all
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meaningful in the sense that parts of the information of the original share images are preserved.

The value 𝜌 reflects the ratio of the information of the original share images that preserved in the

shares. Explicitly, the value of 𝜌 is between 0 and 1, where 𝜌 = 0 means that no information of the

original share images can be observed, and 𝜌 = 1 means that all the information of the original

share images can be observed. Generally, when 𝜌 > 0, the shares can be considered as meaningful.

The larger the value of 𝜌 is the better visual quality the shares will have. At last, Definition 2 does

not have the security condition. The secret image is, in fact, encrypted by the corresponding VCS,

and then we embed its shares into the covering shares. Hence, the security of the embedded EVCS

is guaranteed by the security of the corresponding VCS, i.e. the security condition of Definition 1.

Furthermore, we need to point out that, in [16], Ateniese et al. proved the optimality of their

scheme under their definition of EVCS. Under the definition of Ateniese et al., all the information of

the original share images is preserved in the shares. However, as the second condition of the above

Definition 2 indicates, only parts of the information of the original share images are preserved in

the shares, i.e. Definition 2 is a relaxed model of the EVCS model proposed in [16]. Hence our

scheme can have smaller pixel expansion by sacrificing part of the information of the original share

images. We claim that our definition is reasonable, because the information of the original share

images is not as important as that of the secret image for the participants. Besides, experimental

results of this paper show that preserving all the information of original share images does not

imply better visual quality of the final output shares.

The idea of our embedded EVCS contains two main steps: (1) Generate 𝑛 covering shares,

denoted as 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1; (2) Generate the embedded shares by embedding the corresponding

VCS into the 𝑛 covering shares, denoted as 𝑒0, 𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛−1.

In step 1, we generate the covering shares for an access structure Γ𝑚. We take 𝑛 grey-scale

original share images, denoted as 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1, as the inputs, and output 𝑛 binary meaningful

shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1, where the stacking results of the qualified shares are all black images, i.e.

the information of the original share images are all covered. We call the 𝑛 output meaningful shares

the covering shares in the rest of this paper. (In fact, the stacking results are not necessarily to

be all black images, we will discuss this case in Section 6, and before Section 6, we assume that

the stacking results are all black images). The covering shares have the advantage that, when the

qualified subsets are stacked, all the information of the patterns in the original share images is

covered. Hence the visual quality of the recovered secret image is not affected. Otherwise, the

information of the original share images may appear in the recovered secret image, and hence

results in bad visual quality. A method to generate covering shares will be introduced in Section 4.

In step 2, we first make use of the corresponding VCS to encode a secret image, and then

embed the shares of the corresponding VCS into the covering shares that generated in step 1; we

call the output shares of step 2 the embedded shares. In such a way, when we stack a qualified

subset of embedded shares the secret image will appear, because the stacking result of covering
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shares covers all the information of the original share images. The detailed information about the

embedding process will be introduced in Section 5.

4 Generating the covering shares by using the dithering matrices

In this section, we propose a method to construct the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1 by using

the 𝑛 input original share images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1.

Let 𝐷0 be the dithering matrix in Example 1. Suppose the grey-levels of all the pixels in the

image 𝐼0 are smaller than 4, then the positions corresponding to 𝐷0
00, 𝐷

0
02, 𝐷

0
11, 𝐷

0
12 and 𝐷0

21 of

all the pixels in the image 𝐼
′
0 are always black after being halftoned by 𝐷0, where 𝐷0

𝑖𝑗 is the entry

in the 𝑖-th row and 𝑗-th column of 𝐷0. We now give another dithering matrix 𝐷1:

𝐷1 =

1 8 3

6 4 2

5 0 7

Matrix 2: Dithering matrix 𝐷1 for 10 grey-levels.

If an image 𝐼1 has all its pixels with grey-levels smaller than 5, after running Algorithm 1, we

get that, the positions correspond to 𝐷1
01, 𝐷

1
10, 𝐷

1
20 and 𝐷1

22 of all the pixels in the image 𝐼
′
1 are

always black. Hence, when we stack the images 𝐼
′
0 and 𝐼

′
1, the resulting image will be an all black

image and 𝐼
′
0 and 𝐼

′
1 are covering shares. At this point, we can embed the share matrices of the

(2, 2)-VCS into the images 𝐼
′
0 and 𝐼

′
1.

Generally, in order to construct the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1 for the general access struc-

ture Γ𝑚, we need to construct 𝑛 dithering matrices 𝐷0, 𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛−1. By halftoning the input

original share images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 (after being properly darkened where the darkening method

is proposed in Section 4.2 Equation 1), we get the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1 satisfying that

the stacking results of the qualified covering shares are all black images.

Define the positions of the dithering matrix as the elements in the universal set 𝒢 = {𝑔0, 𝑔1,
𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−1}, i.e. the universal set contains all the grey-levels in the dithering matrix, where 𝑠 is

the halftone pixel expansion. We denote the sets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 as 𝑛 subsets of 𝒢, each subset

𝐴𝑖 corresponds to a participant 𝑖 ∈ 𝒱 and a covering share 𝑠𝑖. For any qualified subset 𝑄 ∈ Γ𝑚,

the union of the corresponding subsets of 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 covers 𝒢, i.e. ∪𝑗∈𝑄𝐴𝑗 = 𝒢. In the rest

of this paper, we call the subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 the covering subsets as they correspond to the

covering shares respectively.

Here, we introduce two new concepts: the black ratio for a subset 𝐴𝑖 and the average black

ratio (Section 4.2 explains the reason for the necessity of these two concepts). Define the black

ratio of the covering subset 𝐴𝑖 for the universal set 𝒢 to be 𝑅(𝐴𝑖,𝒢) = ∣𝐴𝑖∣/∣𝒢∣, and define the

average black ratio to be 𝑅̄(𝒢) = (
∑𝑛−1

𝑖=0 ∣𝐴𝑖∣)/(𝑛∣𝒢∣). The black ratio of the covering subsets

9



and the average black ratio are expected to be as small as possible (we will explain the reason in

Section 4.2 as well).

At this point, it is clear that in order to generate the covering shares, we need three steps:

(1) Generate the covering subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 given a Γ𝑚; (2) Convert the subsets into the

dithering matrices 𝐷0, 𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛−1; (3) Halftone the original share images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 to

generate the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1 by using 𝐷0, 𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛−1.

The rest parts of this section are organized as follows: In Section 4.1 we show a method to

generate the covering subsets and in Section 4.2 we show a method to convert the covering subsets

into the dithering matrices and show how to halftone the original share images.

4.1 Generating the covering subsets with minimum average black ratio

Our approach is to construct the covering subsets first for the case of threshold access structure

and then extend to the general access structure. In this paper, the covering subsets for threshold

access structure are called threshold covering subsets and the covering subsets for the general access

structure are called general covering subsets.

Recall that 𝑠 is the halftone pixel expansion, and 𝑛 is the number of shares. Because 𝑠 is

independent of the value of 𝑛, we have the following three cases: 1. 𝑠 = 𝑛, 2. 𝑠 < 𝑛 and 3. 𝑠 > 𝑛.

First we consider the case 𝑠 = 𝑛.

Construction 1 (The construction of (𝑘, 𝑛) threshold covering subsets)

Let 𝑠 = 𝑛. Denote the universal set as 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑛−1}. Define the covering subsets

𝐴𝑖 ={𝑔(0+𝑖) mod 𝑛, 𝑔(1+𝑖) mod 𝑛, ⋅ ⋅ ⋅ , 𝑔(𝑛−𝑘+𝑖) mod 𝑛}.

We have the following theorem:

Theorem 1 For the universal set 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑛−1}, Construction 1 generates 𝑛 covering subsets

𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1, satisfying that the union of any 𝑘 out of 𝑛 subsets is the universal set 𝒢. The

black ratio of each covering subset is 𝑅(𝐴𝑖,𝒢) = (𝑛− 𝑘 + 1)/𝑛 for 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛 − 1. Furthermore

these covering subsets have the minimum average black ratio 𝑅̄(𝒢) = (𝑛− 𝑘 + 1)/𝑛.

Proof: First, we prove that the subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 are covering subsets. Let the 𝑛 × 𝑛

matrix 𝑇 be the incidence matrix of 𝐴𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛− 1, whose entries are defined as

𝑇𝑖𝑗 =

⎧⎨⎩ 1 𝑖𝑓 𝑔𝑖 ∈ 𝐴𝑗 ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
. Then we have
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𝑇 =

𝐴0 𝐴1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝐴𝑛−1
𝑔0
𝑔1
...
...

𝑔𝑛−𝑘−1
𝑔𝑛−𝑘
𝑔𝑛−𝑘+1

...

...
𝑔𝑛−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
...

...
. . .

...
...

...
. . .

...
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
...

...
. . .

...
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because there are 𝑘 − 1 0’s in each row, so the union of any 𝑘 out of 𝑛 subsets must contain

at least one 1 for each row, which implies that the union of any 𝑘 out of 𝑛 subsets is the universal

set. Since there are 𝑛− 𝑘+ 1 1’s in each column, so the black ratio of each covering subset equals

to (𝑛− 𝑘 + 1)/𝑛, and the average black ratio equals to (𝑛− 𝑘 + 1)/𝑛.

Then we prove that the average black ratio for 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 is minimum: Suppose 𝑛 subsets

𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 are the covering subsets for the (𝑘, 𝑛) threshold access structure with universal

set being 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑛−1}. By constructing the incidence matrix for 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1, denote

it as 𝑇 , then we have that the number of the 0’s in each row of 𝑇 should be less than 𝑘, otherwise,

there always exists a collection of subsets that the union of these subsets is not the universal set

(i.e. the subsets correspond to the 𝑘 0’s in the row). This means that the minimum number of the

1’s in each row must be at least 𝑛 − 𝑘 + 1. So, the total number of the 1’s in the matrix 𝑇 is at

least 𝑛(𝑛− 𝑘 + 1), and the average black ratio is at least (𝑛− 𝑘 + 1)/𝑛. □

In the above construction, all the subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 have the same cardinality, i.e. have

the same black ratio. However, it is not necessary. The following corollary gives a way to change

the black ratio of the covering subsets, while the average black ratio remains the same as the

original covering subsets. This change will result in that some covering subsets will have their

black ratio decreased by sacrificing the black ratio increase of other covering subsets. This makes

sense because in practical applications, different covering subsets may have different importance

and hence have different sensitivity on their black ratios.

Corollary 1 Denote the universal set as 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑛−1}, and denote the (𝑘, 𝑛) threshold

covering subsets generated by Construction 1 as 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1. For any two covering subsets

𝐴𝑖 and 𝐴𝑗, where 𝑖 ∕= 𝑗, for any element 𝑥 ∈ 𝐴𝑖 and 𝑥 /∈ 𝐴𝑗, we remove 𝑥 from 𝐴𝑖 and put 𝑥 into

𝐴𝑗, denote the new constructed subsets as 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1, then the subsets 𝐴

′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 are

still (𝑘, 𝑛) threshold covering subsets. Furthermore, the average black ratio of 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1

remains the same as that of 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1.

Proof: Let 𝑇 be the incidence matrix of 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1, and suppose the element 𝑥 belongs

to row 𝑟 for 𝑟 ∈ {0, ⋅ ⋅ ⋅ , 𝑛 − 1}. Then after 𝑥 being transferred from 𝐴𝑖 to 𝐴𝑗 , the number of 0’s

in the row 𝑟 remains the same. So the union of any 𝑘 out of 𝑛 subsets of 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 will

11



cover the universal set, as what the original covering subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 do. Furthermore,

because the total number of 1’s in the incidence matrix 𝑇 is not changed, so the average black

ratio remains the same. Hence the corollary follows. □

The following example demonstrates how Corollary 1 works.

Example 2 For the (3, 4) threshold covering subsets 𝐴0 = {𝑔0, 𝑔1}, 𝐴1 = {𝑔1, 𝑔2}, 𝐴2 = {𝑔2, 𝑔3}
and 𝐴3 = {𝑔0, 𝑔3}, we get to know that the black ratio of the four covering subsets are 𝑅(𝐴𝑖,𝒢) =
∣𝐴𝑖∣/∣𝒢∣ = 1/2 for 𝑖 = 0, 1, 2, 3, and the average black ratio is 𝑅̄(𝒢) = 1/2.

By moving the element 𝑔0 from the covering subset 𝐴0 to 𝐴1, and by moving the element 𝑔1

from the covering subset 𝐴0 to 𝐴2, then the four covering subsets are converted into 𝐴
′
0 = ∅,

𝐴
′
1 = {𝑔0, 𝑔1, 𝑔2}, 𝐴

′
2 = {𝑔1, 𝑔2, 𝑔3} and 𝐴

′
3 = {𝑔0, 𝑔3}, and the black ratio of the four covering

subsets are: 𝑅(𝐴
′
0,𝒢) = ∣𝐴

′
0∣/∣𝒢∣ = 0, 𝑅(𝐴

′
1,𝒢) = ∣𝐴

′
1∣/∣𝒢∣ = 3/4, 𝑅(𝐴

′
2,𝒢) = ∣𝐴

′
2∣/∣𝒢∣ = 3/4 and

𝑅(𝐴
′
3,𝒢) = ∣𝐴

′
3∣/∣𝒢∣ = 1/2, and the average black ratio is still 𝑅̄(𝒢) = 1/2.

At this point, if the input images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 have different requirements on the black ratio

of the shares, this can be made feasible according to Corollary 1.

We then construct the covering subsets for the cases 𝑠 < 𝑛 and 𝑠 > 𝑛 for the universal set

𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑠−1} in Construction 2 and 3 respectively:

Construction 2 We consider the case 𝑠 < 𝑛: We make use of the covering subsets 𝐴0, ⋅ ⋅ ⋅ , 𝐴𝑛−1

of Construction 1. Let 𝐴
′
0, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 be generated by removing the elements 𝑔𝑠, 𝑔𝑠+1, ⋅ ⋅ ⋅ , 𝑔𝑛−1

from the covering subsets 𝐴0, ⋅ ⋅ ⋅ , 𝐴𝑛−1. i.e. 𝐴
′
𝑖 = 𝐴𝑖−{𝑔𝑠, 𝑔𝑠+1, ⋅ ⋅ ⋅ , 𝑔𝑛−1}, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛− 1. The

subsets 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 will satisfy that the union of any 𝑘 out of 𝑛 shares will cover the new

universal set 𝒢 = {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−1} of 𝑠 elements, i.e. 𝐴
′
0, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1 are the covering subsets

for the case 𝑠 < 𝑛.

Construction 3 We consider the case 𝑠 > 𝑛. We make use of the covering subsets 𝐴0, 𝐴1,

⋅ ⋅ ⋅ , 𝐴𝑛−1 of Construction 1. First, we add 𝑛 − (𝑠 mod 𝑛) elements into the universal set 𝒢 =

{𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−1}, denote the 𝑛−(𝑠 mod 𝑛) elements as 𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑛−(𝑠 mod 𝑛)−1. Let 𝑠
′
= 𝑠+𝑛−

(𝑠 mod 𝑛), then we divide the 𝑠
′
elements of the new universal set 𝒢′

= {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠′−1} into
𝑠
′
/𝑛 groups, where each of the 𝑠

′
/𝑛 groups has 𝑛 elements, denote the 𝑠

′
/𝑛 groups as 𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑠′/𝑛.

For each 𝐺𝑖, we treat it as a universal set, and call Construction 1 to construct the covering

subsets. Then we will have the following subsets: 𝐴1
0, 𝐴

1
1, ⋅ ⋅ ⋅ , 𝐴1

𝑛−1, 𝐴2
0, 𝐴

2
1, ⋅ ⋅ ⋅ , 𝐴2

𝑛−1, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ,
𝐴

𝑠
′
/𝑛

0 , 𝐴
𝑠
′
/𝑛

1 , ⋅ ⋅ ⋅ , 𝐴𝑠
′
/𝑛

𝑛−1 , where denote 𝐴𝑗
𝑖 as the 𝑖-th covering subset belongs to the group 𝐺𝑗. Then

let the 𝑛 covering subsets for the universal set 𝒢′
, denoted as 𝐴

′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1, be 𝐴

′
0 = 𝐴1

0 ∪𝐴2
0 ∪

⋅ ⋅ ⋅∪𝐴𝑠
′
/𝑛

0 , 𝐴
′
1 = 𝐴1

1∪𝐴2
1∪⋅ ⋅ ⋅∪𝐴𝑠

′
/𝑛

1 , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 𝐴′
𝑛−1 = 𝐴1

𝑛−1∪𝐴2
𝑛−1∪⋅ ⋅ ⋅∪𝐴𝑠

′
/𝑛

𝑛−1 , and they satisfy that

the union of any 𝑘 out of the 𝑛 subset will cover the universal set 𝒢′
= {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠′−1}. At

this point, by removing the elements 𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑛−(𝑠 mod 𝑛)−1 from the subsets 𝐴
′
0, 𝐴

′
1, ⋅ ⋅ ⋅ , 𝐴

′
𝑛−1, and

denote the new subsets as 𝐴
′′
0 , 𝐴

′′
1 , ⋅ ⋅ ⋅ , 𝐴

′′
𝑛−1. Then the 𝑛 covering subsets 𝐴

′′
0 , 𝐴

′′
1 , ⋅ ⋅ ⋅ , 𝐴

′′
𝑛−1 satisfy
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that the union of any 𝑘 out of 𝑛 subsets will cover the universal set 𝒢 = {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−1}, i.e.
𝐴

′′
0 , ⋅ ⋅ ⋅ , 𝐴

′′
𝑛−1 are the covering subsets for the case 𝑠 > 𝑛.

An example of Construction 2 and 3 can be found in Example 3 which will be introduced later

to cover more cases. Furthermore, we have the following corollary about the average black ratio

for the cases 𝑠 < 𝑛 and 𝑠 > 𝑛:

Corollary 2 For the universal set 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑠−1} and the threshold access structure (𝑘, 𝑛),

the covering subsets constructed by Construction 2 and 3 for the case 𝑠 < 𝑛 and 𝑠 > 𝑛, respectively,

have the minimum average black ratio.

Proof: Because the number of the 0’s in each row of the incidence matrix remains unchanged

during Construction 2 and 3, and according to Theorem 1, the corollary follows immediately. □

We now construct the covering subsets for the general access structure Γ𝑚. A simple con-

struction for the general covering subsets can be: Denote 𝐵 ∈ Γ𝑚 as a qualified subset and

𝑚𝑖𝑛{∣𝐵∣ : 𝐵 ∈ Γ𝑚} be the minimum number of the cardinality of all the qualified subsets 𝐵 in

Γ𝑚. Then the construction of the general covering subsets 𝐴0, 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛−1 can be converted into

the construction of the (𝑚𝑖𝑛{∣𝐵∣ : 𝐵 ∈ Γ𝑚}, 𝑛) threshold covering subsets. The constructions of

the general covering subsets for the cases 𝑠 < 𝑛 and 𝑠 > 𝑛 can be the same as the construction

of the (𝑚𝑖𝑛{∣𝐵∣ : 𝐵 ∈ Γ𝑚}, 𝑛) threshold covering subsets. This construction is simple, however,

the disadvantage of this construction is that it has high black ratio for each covering subset (i.e.

(𝑛−𝑚𝑖𝑛{∣𝐵∣ : 𝐵 ∈ Γ𝑚}+ 1)/𝑛). Take the general access structure Γ𝑚 = {{0, 1}, {1, 2}, {2, 3}} as
an example: the black ratio for each covering subset will be (4− 2 + 1)/4 = 3/4.

In order to reduce the black ratio of covering subsets, we then propose a construction for general

covering subsets by using the technique of cumulative array that introduced in [29].

Construction 4 Denote Γ𝑀 as the maximal forbidden access structure for the general access

structure (Γ𝑄𝑢𝑎𝑙,Γ𝐹𝑜𝑟𝑏). A cumulative map (𝐴,𝒢) for the Γ𝑄𝑢𝑎𝑙 is a finite set 𝒢 along with a

mapping 𝐴 : 𝒱 → 2𝒢 such that for 𝑄 ⊆ 𝒱 implies that,
∪

𝑎∈𝑄𝐴𝑎 = 𝒢 ⇔ 𝑄 ∈ Γ𝑄𝑢𝑎𝑙, where 𝐴𝑎 is

the subset mapped from 𝑎 ∈ 𝒱.
We can construct a cumulative map (𝐴,𝒢) for Γ𝑄𝑢𝑎𝑙 by using Γ𝑀 as follows: Assume Γ𝑀 =

{𝐹0, ⋅ ⋅ ⋅ , 𝐹𝑡−1}. Let the universal set be 𝒢 = {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑡−1} and for any 𝑖 ∈ 𝒱, let 𝐴𝑖 = {𝑔𝑗 ∣ 𝑖 /∈
𝐹𝑗 , 0 ≤ 𝑗 ≤ 𝑡 − 1}. For any 𝑋 ∈ Γ𝑄𝑢𝑎𝑙 we have

∪
𝑖∈𝑋 𝐴𝑖 = 𝒢. Note that for any set 𝑋 ∈ Γ𝐹𝑜𝑟𝑏,

we have
∪

𝑖∈𝑋 𝐴𝑖 ∕= 𝒢.

Construction 4 produces the general covering subsets with 𝑠 = 𝑡 elements. The constructions

of the covering subsets of the cases 𝑠 < 𝑡 and 𝑠 > 𝑡 for general access structure can be the same

as the threshold ones, i.e. Construction 2 and 3. The following example shows how the above

constructions work.
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Example 3 We make use of the general access structure: Γ𝑚 ={{0, 1}, {1, 2}, {2, 3}}. We have

the maximal forbidden access structure be Γ𝑀 ={{0, 2}, {0, 3}, {1, 3}}. So, we get to know that

𝑡 = 3 and we have 𝐴0 = {𝑔2}, 𝐴1 = {𝑔0, 𝑔1}, 𝐴2 = {𝑔1, 𝑔2} and 𝐴3 = {𝑔0}. The incidence matrix,

denoted as 𝐾, of the subsets 𝐴0, 𝐴1, 𝐴2 and 𝐴3 is: (Where 𝐾𝑖𝑗 is the entry of 𝐾 at the 𝑖-th row

and 𝑗-th column, and is defined as 𝐾𝑖𝑗 =

⎧⎨⎩ 1 𝑖𝑓 𝑔𝑖 ∈ 𝐴𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.)

𝐾 =

𝐴0 𝐴1 𝐴2 𝐴3

𝑔0
𝑔1
𝑔2

⎡⎣ 0 1 0 1
0 1 1 0
1 0 1 0

⎤⎦
According to Construction 3, we assume 𝑠 = 4, and since 𝑡 = 3, we add two elements 𝑎0 and

𝑎1, then we have 𝑠
′
= 6, hence the incidence matrix, denoted as 𝐾

′
, for the subsets 𝐴

′
0, 𝐴

′
1, 𝐴

′
2

and 𝐴
′
3 becomes: (Where 𝐾 ′

𝑖𝑗 is the entry of 𝐾 ′ at the 𝑖-th row and 𝑗-th column, and is defined as

𝐾
′
𝑖𝑗 =

⎧⎨⎩ 1 𝑖𝑓 𝑔𝑖 ∈ 𝐴𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
)

𝐾
′
=

𝐴
′
0 𝐴

′
1 𝐴

′
2 𝐴

′
3

𝑔0
𝑔1
𝑔2
𝑔3
𝑎0
𝑎1

⎡⎢⎢⎢⎢⎣
0 1 0 1
0 1 1 0
1 0 1 0
0 1 0 1
0 1 1 0
1 0 1 0

⎤⎥⎥⎥⎥⎦
By removing the elements 𝑎0 and 𝑎1, we get the general covering subsets 𝐴

′′
0 = {𝑔2}, 𝐴

′′
1 =

{𝑔0, 𝑔1, 𝑔3}, 𝐴
′′
2 = {𝑔1, 𝑔2} and 𝐴

′′
3 = {𝑔0, 𝑔3}. The black ratios for the four covering subsets

are: 𝑅(𝐴
′′
0 ,𝒢) = ∣𝐴′′

0 ∣/∣𝒢∣ = 1/4, 𝑅(𝐴
′′
1 ,𝒢) = ∣𝐴′′

1 ∣/∣𝒢∣ = 3/4, 𝑅(𝐴
′′
2 ,𝒢) = ∣𝐴′′

2 ∣/∣𝒢∣ = 1/2 and

𝑅(𝐴
′′
3 ,𝒢) = ∣𝐴

′′
3 ∣/∣𝒢∣ = 1/2 and the average black ratio is 𝑅̄(𝒢) = 1/2.

4.2 Converting the covering subsets into dithering matrices

In this part, we will construct the dithering matrices 𝐷𝑖 by using the covering subsets 𝐴𝑖,

𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑛− 1. The dithering matrix 𝐷𝑖 should satisfy that, the grey-levels at the positions in

𝐴𝑖 of 𝐷𝑖 are larger than 𝑠− ∣𝐴𝑖∣. As we previously defined, the dithering matrix is an 𝑠(= 𝑐× 𝑑)

integer matrix.

Construction 5 We define the starting dithering matrix, denoted as 𝐷, as described in Matrix 3.

(The starting dithering matrix is a random matrix with 𝑠 entries, where each entry of 𝐷 contains

a grey-level, and each grey-level of {0, ⋅ ⋅ ⋅ , 𝑠− 1} appears in 𝐷 once. Particularly, if 𝑠 is a square

number, we can choose a magic square as the starting dithering matrix 𝐷. For example 𝐷0 and

𝐷1 in Matrix 1 and 2 respectively.)

We construct the dithering matrix 𝐷𝑖 by using the starting dithering matrix 𝐷 and the covering

subset 𝐴𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛 − 1. Suppose 𝐴𝑖 = {𝑔𝑖0 , 𝑔𝑖1 , ⋅ ⋅ ⋅ , 𝑔𝑖𝑡−1}. We swap the grey-levels in 𝐴𝑖
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𝐷 =

𝑔0 𝑔1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔𝑐−1

𝑔𝑐 𝑔𝑐+1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔2𝑐−2

...
...

. . .
...

...
...

. . .
...

𝑔(𝑑−1)𝑐 𝑔(𝑑−1)𝑐+1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔𝑠−1

Matrix 3: The starting dithering matrix 𝐷.

with the grey-levels {𝑠− 1, 𝑠− 2, ⋅ ⋅ ⋅ , 𝑠− 𝑡}. Particularly, one can swap the grey-level 𝑔𝑖𝑗 with the

grey-level 𝑠− 1− 𝑗 in D for 𝐴𝑖, where 𝑗 = 0, ⋅ ⋅ ⋅ , 𝑡− 1.

Repeat the above process for all the covering subsets 𝐴𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛 − 1, we get 𝑛 dithering

matrixes 𝐷0, ⋅ ⋅ ⋅ , 𝐷𝑛−1 respectively.

An example of Construction 5 can be found in Example 4.

At this point, we halftone the input original share images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 by using the dithering

matrices 𝐷0, 𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛−1, and hence get the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1. The stacking result

of the qualified covering shares will be an all black image. However, we have to point out that, this

construction requires that the grey-levels of all the pixels in each image have to be no larger than

𝑠− ∣𝐴𝑖∣ respectively, where 𝑠 is the halftone pixel expansion, i.e. 𝑠 = ∣𝒢∣. This constraint requires
the dealer to choose the input images carefully. Images that do not satisfy this requirement need

to be darkened before being halftoned. A simple method to darken an image 𝐼𝑖 satisfying that the

grey-levels of all the pixels in 𝐼𝑖 are no larger than 𝑠− ∣𝐴𝑖∣ is as follows,

𝐼𝑖(𝑥, 𝑦)← 𝐼𝑖(𝑥, 𝑦) ⋅ 𝑠− ∣𝐴𝑖∣
𝑚𝑎𝑥(𝐼𝑖)

(1)

where 𝐼𝑖(𝑥, 𝑦) is the grey-level of the pixel at the position (𝑥, 𝑦) in 𝐼𝑖 and 𝑚𝑎𝑥(𝐼𝑖) is the largest

grey-level of the pixels in 𝐼𝑖.

The darkening process will inevitably cause the loss in the visual quality of the shares. So the

value of 𝑠− ∣𝐴𝑖∣ is expected to be as large as possible, and hence the value of ∣𝐴𝑖∣/𝑠 is expected to

be as small as possible, i.e. the black ratio of 𝐴𝑖 is expected to be as small as possible. Hence the

black ratio 𝑅(𝐴𝑖,𝒢) = ∣𝐴𝑖∣/𝑠 reflects the requirements on a single input image 𝐼𝑖. Furthermore,

we introduced the notion average black ratio which reflects the requirements on darkness of all

the input images 𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 from an overall point of view. Another reason we introduce the

concept of the average black ratio is that: One cannot design the threshold covering subsets with all

of them having minimum black ratio simultaneously (Corollary 1), but one can design the threshold

covering subset with minimum average black ratio (Theorem 1, Corollary 1 and Corollary 2), so

the average black ratio provides a more appropriate criterion about the effectiveness of the covering

subsets. We will propose further methods to decrease the average black ratio in Section 6 under

different conditions.
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Note that, after halftoning 𝐼𝑖 by using 𝐷𝑖 of Construction 5, the pixels corresponding to the

covering subset 𝐴𝑖 in dithering matrix 𝐷𝑖 will be black pixels. If those pixels are regularly arranged

in 𝐷𝑖. Some grid patterns are likely to appear in the halftoned shares from an overall point of

view. According to our experiments, using random matrix or magic square as the starting dithering

matrix 𝐷 can mitigate this phenomenon. That is the reason for choosing random matrix or magic

square as the starting dithering matrix in Construction 5.

5 Embedding the corresponding VCS into the covering shares

After generating the covering shares, the embedding process can be realized by the following

algorithm.

Algorithm 2 The embedding process:

Input: The 𝑛 covering shares constructed in Section 4, the corresponding VCS (𝐶0, 𝐶1) with pixel

expansion 𝑚 and the secret image 𝐼.

Output: The 𝑛 embedded shares 𝑒0, 𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛−1.

Step 1: Dividing the covering shares into blocks that contain 𝑡(≥ 𝑚) sub-pixels each.

Step 2: Choose 𝑚 embedding positions in each block in the 𝑛 covering shares.

Step 3: For each black (resp. white) pixel in 𝐼, randomly choose a share matrix 𝑀 ∈ 𝐶1 (resp.

𝑀 ∈ 𝐶0).

Step 4: Embed the 𝑚 sub-pixels of each row of the share matrix 𝑀 into the 𝑚 embedding positions

chosen in Step 2.

In the above Algorithm 2, suppose the size of each covering shares is 𝑝 × 𝑞. We first divide

each covering shares into (𝑝𝑞)/𝑡 blocks with each block contains 𝑡 sub-pixels, where 𝑡 ≥ 𝑚. In

case 𝑝𝑞 is not a multiple of 𝑡, then some simple padding can be applied, for which the detail is

skipped here. We choose 𝑚 positions in each 𝑡 sub-pixels to embed the 𝑚 sub-pixels of 𝑀 . In this

paper, we call the chosen 𝑚 positions that are used to embed the secret information the embedding

positions. In order to correctly decode the secret image only by stacking the shares, the embedding

positions of all the 𝑛 covering shares should be the same. At this point, by stacking the embedded

shares, the 𝑡 −𝑚 sub-pixels that have not been embedded by secret sub-pixels are always black,

and the 𝑚 sub-pixels that are embedded by the secret sub-pixels recover the secret image as the

corresponding VCS does. Hence the secret image appears.

Because 𝑡 ≥ 𝑚, we have the following two cases: When 𝑡 = 𝑚, the embedded EVCS degenerates

to a VCS, because all the information of the covering shares is covered by the secret sub-pixels of

the share matrices of the corresponding VCS. When 𝑡 > 𝑚, we have 𝜌 = (𝑡−𝑚)/𝑡 > 0, which
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implies that the scheme is an embedded EVCS. In this embedded EVCS, there are 𝑡−𝑚 sub-pixels

in the covering shares 𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛−1 that preserve the information of the original share images

𝐼0, 𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛−1 and the remaining 𝑚 sub-pixels carry the secret information of the secret image.

Hence, we get to know that the smallest secret image pixel expansion is 𝑚 + 1 when we use the

above algorithm.

To summarize the above discussion we have the following theorem.

Theorem 2 When embedding 𝑚 sub-pixels of the basis matrix into the 𝑚 embedding positions of

each block of 𝑡 sub-pixels in the covering shares, if 𝑡 = 𝑚, then the scheme is a VCS, and if 𝑡 > 𝑚

the scheme is an embedded EVCS. □

Because the 𝑚 sub-pixels in the share matrix correspond to one secret pixel in the secret image,

and the 𝑚 sub-pixels in the share matrix are embedded into 𝑡 positions in the 𝑛 covering shares,

we get to know that, one pixel in the secret image corresponds to 𝑡 sub-pixels of the embedded

shares in our construction. Hence, the secret image pixel expansion is 𝑡 in our construction.

By examining Algorithm 2, it is easy to note that the share pixel expansion can be different

from the secret image pixel expansion. The secret image pixel expansion is independent of the share

pixel expansion. Because we can choose the block size 𝑡 to be arbitrarily large (we assume the

covering shares can be arbitrarily large), the secret image pixel expansion can be arbitrarily large.

In our scheme, because the original share images are only expanded when they are halftoned, the

share pixel expansion equals to the halftone pixel expansion. In the rest of the paper, we denote

𝑠 as the share pixel expansion or equivalently the halftone pixel expansion. To avoid the image

distortion during the halftoning process, we usually let 𝑠 be a square number. For example: 4, 9,

16, etc..

When the secret image is much smaller than the covering shares, we may have a number of

choices of the values of 𝑡. For a bigger 𝑡, there are more sub-pixels (say 𝑡 − 𝑚) preserving the

information of the covering shares, and hence we have better visual quality for the shares. So

there exists a trade-off between the secret image pixel expansion and visual quality of the shares.

Furthermore, for bigger halftone pixel expansion, the dithering matrix can simulate more grey-

levels; hence have better visual quality for the shares. So another trade-off lies between the share

pixel expansion and the visual quality of the shares. (Recall that the share pixel expansion equals

to the halftone pixel expansion.)

The above discussions show that our scheme is flexible with regard to the share pixel expansion,

secret image pixel expansion and the visual quality of the shares.
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6 Further improvements on the visual quality of the shares

In this section, we propose a method to reduce the black ratio, which will enhance the visual

quality of the shares. We first describe the method for the case 𝑠 = 𝑡 in Section 6.1, then consider

the case 𝑠 ∕= 𝑡 in Section 6.2, where 𝑠 is the share pixel expansion (halftone pixel expansion) and 𝑡

is the secret image pixel expansion.

6.1 Reducing the black ratio of the covering subsets for 𝑠 = 𝑡

The black ratio of 𝐴𝑖 requires the grey-levels of all the pixels in the original input images 𝐼𝑖

to be no larger than 𝑠− ∣𝐴𝑖∣. So, for an input image, the dealer needs firstly to darken the input

image to satisfy the requirement. If the black ratio is high, the darkening process will decrease the

visual quality of the covering shares, so the black ratio is expected to be as small as possible. Recall

that in the embedding process, the 𝑚 out of every 𝑡 sub-pixels in the covering shares are replaced

by the sub-pixels of the basis matrix of the corresponding VCS. Hence, there is no difference

whether these 𝑚 sub-pixels are all black or not in the stacking result of the qualified covering

shares. Our method of reducing the black ratio is realized by reducing the number of the elements

in the universal set. The universal set can be modified as follows: Let the new universal set be

𝒢′
= {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−𝑚−1}, which contains 𝑠 −𝑚 elements, recall that the universal set before

was 𝒢 = {𝑔0, 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑠−1}, which contains 𝑠 elements, we have 𝒢′ ⊂ 𝒢. The stacking result of

the qualified covering shares only needs to satisfy that the positions corresponding to the universal

set 𝒢′
are all black.

A modified version of the methods proposed in Section 4 to generate the dithering matrix is as

follows.

Construction 6 The construction of the dithering matrix with reduced black ratio:

Step 1: Choose the 𝑚(< 𝑠) embedding positions in the starting dithering matrix, and denote the

grey-levels in the embedding positions as {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑚−1}. Remove these positions from the

universal set 𝒢, and denote the new universal set as 𝒢′
={𝑔′0, 𝑔′1, 𝑔′2, ⋅ ⋅ ⋅ , 𝑔′𝑠−𝑚−1}, i.e. the

rest grey-levels other than that in the embedding positions.

Step 2: Generate the covering subsets 𝐴′
𝑖 for the universal set 𝒢′

, by using the methods proposed

in Section 4.1, where 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛− 1.

Step 3: Convert the covering subsets 𝐴′
𝑖 into the dithering matrix 𝐷′

𝑖, by using the method proposed

in Section 4.2, where 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛− 1.

Step 4: For each dithering matrix 𝐷′
𝑖, swap the grey-levels {𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑚−1} in the embedding posi-

tions with grey-levels {𝑠−∣𝐴𝑖∣−1, ⋅ ⋅ ⋅ , 𝑠−∣𝐴𝑖∣−𝑚} in a similar way as that of Construction 5.

Denote the final dithering matrix as 𝐷𝑖, where 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑛− 1.
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Note that, in Construction 6, the reason for Step 4 is as follows: In Step 3, we get the dithering

matrix 𝐷′
𝑖, and after halftoning a share image 𝐼𝑖 by 𝐷′

𝑖, the pixels correspond to grey-levels {𝑠 −
1, ⋅ ⋅ ⋅ , 𝑠 − ∣𝐴𝑖∣} will be halftoned into black pixels with certainty. Beside these pixels, the pixels

correspond to grey-levels {𝑠−∣𝐴𝑖∣−1, ⋅ ⋅ ⋅ , 𝑠−∣𝐴𝑖∣−𝑚} will be halftoned into black pixels with the

largest possibility, compared to that of the rest grey-levels. Hence, if these pixels (correspond to

grey-levels {𝑠−∣𝐴𝑖∣−1, ⋅ ⋅ ⋅ , 𝑠−∣𝐴𝑖∣−𝑚}) are replaced by the secret sub-pixels of the corresponding

VCS. The halftoned shares will look brighter than other pixels are replaced.

To demonstrate how Construction 6 works, we give the following example.

Example 4 We construct the dithering matrices of an embedded (2, 2)-EVCS. Suppose the basis

matrices of the corresponding VCS are: 𝑀0 =

[
01
01

]
and 𝑀1 =

[
10
01

]
. Let the halftone pixel

expansion be 𝑠 = 9, and let the starting dithering matrix 𝐷 be as follows.

𝐷 =

7 0 5

2 4 6

3 8 1

In this example, we choose the positions with grey-levels 3 and 4 as the embedding positions.

Then the new universal set will be 𝒢 = {𝑔′0, 𝑔′1, 𝑔′2, ⋅ ⋅ ⋅ , 𝑔′6} = {8, 7, 6, 5, 2, 1, 0}. Then the covering

subsets can be 𝐴0 = {8, 7, 6, 5} and 𝐴1 = {2, 1, 0}. The black ratio of each 𝐴𝑖 will be 𝑅(𝐴0,𝒢) =
∣𝐴0∣/𝑠 = 4/9 and 𝑅(𝐴1,𝒢) = ∣𝐴1∣/𝑠 = 1/3, which require the grey-levels of the input images to be

smaller than 5 and 6 respectively. It should be noted that these grey-levels are bigger than the ones

in the beginning of Section 4.

According to Construction 6, the dithering matrices, 𝐷0 and 𝐷1 corresponding to the covering

subsets 𝐴0 and 𝐴1 are as follows (identical to the Matrix 1 and Matrix 2 respectively).

𝐷0 =

7 0 5

2 4 6

3 8 1

𝐷1 =

1 8 3

6 4 2

5 0 7

Matrix 4: The dithering matrices 𝐷0 and 𝐷1.

It is easy to verify that, when the grey-levels of the pixels in the input image 𝐼0 (resp. 𝐼1) are

smaller than 5 (resp. 6), the stacking result of the above dithering matrices will result that the

positions correspond to grey-levels {8, 7, 6, 5, 2, 1, 0} are all black.

The experimental results of Example 4 are shown in Figure 6 in Section 7, where the dithering

matrices are from Matrix 4.

Another experimental results of an embedded (3, 3)-EVCS is given in Figure 4 (in Section 7),

where the stacking result of the shares (a), (b) and (c) is the secret image (d). The basis matrices
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of the corresponding VCS are: 𝑀0 =

⎡⎣ 0110
0101
0011

⎤⎦ and 𝑀1 =

⎡⎣ 1001
0101
0011

⎤⎦. Let the halftone pixel

expansion be 𝑠 = 16, the starting dithering matrix be magic square as follows.

𝐷 =

0 14 13 3

11 5 6 8

7 9 10 4

12 2 1 15

Then the dithering matrices 𝐷0, 𝐷1 and 𝐷2 for the three covering shares are given in Matrix 5,

where the entries with grey-levels {8, 9, 10, 11} are the embedding positions.

𝐷0 =

15 10 9 12

0 5 6 3

7 2 1 4

8 13 14 11

𝐷1 =

0 10 9 3

4 14 13 7

12 6 5 15

8 2 1 11

𝐷2 =

0 9 10 3

12 5 6 15

7 14 13 4

11 2 1 8

Matrix 5: The dithering matrices 𝐷0, 𝐷1 and 𝐷2 for an embedded (3, 3)-EVCS.

6.2 Reducing the black ratio of the covering subsets for 𝑠 ∕= 𝑡

Denote 𝑙𝑐𝑚(𝑎, 𝑏) as the least common multiple of the two integers 𝑎 and 𝑏. Our method

is to construct 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices for the 𝑖-th input original share image, denoted

as 𝐷𝑖,0, ⋅ ⋅ ⋅ , 𝐷𝑖,𝑙𝑐𝑚(𝑠,𝑡)/𝑠−1. The 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices are used to halftone 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠

adjacent pixels of the input original share images at a time. The 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices can

be divided into 𝑙𝑐𝑚(𝑠, 𝑡)/𝑡 blocks with 𝑡 sub-pixels for each block, we embed𝑚 secret sub-pixels into

each block. Hence each dithering matrix has a different universal set. For each universal set, we

construct the dithering matrix by using the method that is similar to Construction 6 respectively.

Hence we get the 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices for each input original share image. The whole

process of generating the dithering matrices can be formally described as follows.

Construction 7 The construction of the 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices for each input original

share image for 𝑠 ∕= 𝑡:

Step 1: Concatenate 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 starting dithering matrices with 𝑠 entries, and divide these start-

ing dithering matrices into 𝑙𝑐𝑚(𝑠, 𝑡)/𝑡 blocks.

Step 2: Choose the 𝑚 embedding positions in each block.

Step 3: Concatenate the 𝑙𝑐𝑚(𝑠, 𝑡)/𝑡 blocks, and divide them into 𝑙𝑐𝑚(𝑠, 𝑡)/𝑠 dithering matrices.
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Step 4: For each dithering matrix, remove the embedding positions, and the rest positions in each

dithering matrix constitute the universal set for this dithering matrix.

Step 5: Generate the dithering matrixes according to Construction 6.

To demonstrate how the above steps can be executed, we give the following example for an

embedded (2, 2)-EVCS.

Example 5 We take the embedded (2, 2)-EVCS as an example, i.e. the pixel expansion of the

corresponding VCS is 𝑚 = 2. Suppose the halftone pixel expansion is 9, i.e. 𝑠 = 9. Suppose that

we embed the secret information into every 6 sub-pixels, i.e. 𝑡 = 6. Then we need to construct

𝑙𝑐𝑚(9, 6)/9 = 2 dithering matrices for each input original share image. Let the starting dithering

matrices 𝐷 of the two dithering matrices that have the same pattern as shown in Matrix 6.

We first concatenate 𝑠 starting matrices and divide them into 3 blocks as shown in Matrix 7.

𝐷 =

7 0 5

2 4 6

3 8 1

Matrix 6

7 0 5 7 0 5

2 4 6 2 4 6

3 8 1 3 8 1

Matrix 7

We choose the positions 7 and 0 in the first block, and the positions 6 and 2 in the second

block, and the positions 8 and 1 in the third block. By removing these positions, we get the uni-

versal set for each dithering matrix as follows: For the first dithering matrix, the universal set is

𝒢 = {1, 2, 3, 4, 5, 8} and for the second dithering matrix, the universal set is 𝒢′
= {0, 3, 4, 5, 6, 7}.

According to Construction 3, we have the covering subsets for 𝒢 as 𝐴0 = {2, 3, 4}, 𝐴1 = {6, 7, 8},
and for 𝒢′

as 𝐴
′
0 = {0, 3, 4}, 𝐴′

1 = {5, 6, 7}. Then according to Construction 6, we can construct

the 2 dithering matrices 𝐷𝑖,0 and 𝐷𝑖,1 for the 𝑖-th share, where 𝑖 = 0, 1, as shown in Matrix 8.

𝐷0,0∣∣𝐷0,1 =

4 5 0 2 8 0

7 2 3 3 6 1

6 1 8 7 5 4

𝐷1,0∣∣𝐷1,1 =

4 3 6 7 0 8

2 7 5 3 1 6

0 8 1 2 5 4

Matrix 8

At this point, we can halftone 2 pixels of the input original share images at a time, and embed

3 pixels of the secret image at a time.

7 Experimental results and comparisons

In this section, we give the experimental results for the algorithms and constructions in this

paper. We also compare the proposed embedded EVCS with many of the well-known EVCS’s in

the literature.
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First, we give the original images that will be used in the paper (Figure 3): Lena, airplane,

baboon and the secret image. The size of the four images is 256×256; they will be scaled to their

proper size when necessary.

Figure 3: The original share images (airplane, baboon and lena) and the secret image.

We provide two well-known objective numerical measurements for the visual quality, the peak

signal-to-noise ratio (PSNR) and the universal quality index (UQI) [30]. In this paper, the PSNR

is adopted to assess the distortion of each share image with its original halftoned share image (i.e.

without the darkening process). In such a way, the PSNR values in Table 9 and 10 can reflect the

effects of a combination of the following possible processes in EVCS’s: Darkening, embedding and

modification. The PSNR is defined as follows,

𝑃𝑆𝑁𝑅 = 10 log
2552

𝑀𝑆𝐸
(2)

where MSE is the mean squared error (MSE). The UQI is adopted to assess the distortion of

each share image with its original grey-scale share image (after being scaled to the size of shares).

Hence, the UQI value can reflect the effect of the halftoning process besides that of the darkening,

embedding and modification processes in EVCS’s. The formal definition of UQI can be found

in [30]. In this paper, the block size of UQI is set to be 8 for all the experiments.

The original halftoned share images of the proposed schemes, here, are generated by applying

Algorithm 1 on the original share images in Figure 3 directly, and the dithering matrix that is used

during the halftoning process of each original share image, after being halftoned, is the same as

that is used in the proposed scheme respectively. The original halftoned share images of the Zhou

et al. and Wang et al.’s schemes in Figure 5 are generated by the blue noise halftoning technique

and error diffusion halftoning technique on the original share images in Figure 3 directly.

We give two experimental results for the Construction 6, where the black ratio is reduced.

The three images of Figure 6 are the experimental results of an embedded (2, 2)-EVCS, where

the stacking of the two shares on the left will be the recovered image on the right. The share

pixel expansion and secret image pixel expansion are 9 and 9 respectively. The contrast of the

recovered secret image is 1/9. The PSNR and UQI values can be found in Table 10. Figure 4 show

the experimental results of an embedded (3, 3)-EVCS 1, where the stacking of the shares airplane,

1One may observe grid patterns in the shares of Figure 4 and 6. In fact when the shares are in their original size
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baboon and lena is the recovered secret text “LOIS”. The share pixel expansion and secret image

pixel expansion are 16 and 16 respectively. The contrast of the recovered secret image is 1/16.

The PSNR and UQI values can be found in Table 9.

Figure 4: The shares and the recovered secret image of an embedded (3, 3)-EVCS after reducing

the black ratios, the image size is 1024×1024.

Then we give the experimental results (Figure 5 and 6) to compare the visual quality of the

shares between the proposed scheme and several well-known schemes proposed in [15–17, 23, 25],

where, for each scheme, the stacking of the two shares on the left will be the recovered image on

the right. The corresponding pixel expansions, contrast, PSNR and UQI values of each scheme

can be found in Table 10.

The three images in the first line are the experimental results of the schemes proposed in [16],

the grid patterns are not obvious, and the grid patterns are exaggerated when we use latex to scale the image to a

smaller size.
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[15] and [17] with pixel expansion 9. Note that, the schemes proposed in [16], [15] and [17] have the

same basis matrices for the case of (2, 2)-EVCS, hence they have the same experimental results.

Because they do not support grey scale input share images, we first halftone the original share

images into black and white images, then apply the schemes proposed in [16], [15] and [17], the

PSNR values, in Table 9, are obtained by comparing the shares with the original halftoned share

images. According to Figure 5, Figure 6 and Table 10, it is clear that, the visual quality of the

share images of EVCS’s proposed in [16], [15] and [17] is not as good as that of the proposed

scheme.

The three images in the second line are the experimental results of the schemes proposed in [25]

with share pixel expansion 9. Note that, the PSNR of first share image is larger than that of our

scheme because it does not need the darkening process; however, the PSNR of the second share

image is smaller than that of our scheme because it needs to be converted to its complementary

image. According to the UQI values for the same original share image, the visual quality of the

first share image is better than that of ours (0.0445 vs. 0.0293); the main reason is that, it does not

need the darkening process. However, the visual quality of the second share image is worse than

that of ours (-0.0315 vs. 0.0281). The main disadvantage of this EVCS is that, two complementary

share images are needed; hence, it is much more likely to incur the watchdog’s attention.

The three images in the third line are the experimental results of the second EVCS proposed in

[23] with share pixel expansion 9. Note that the PSNR values are not as good as that of ours, and

the UQI values are about the same to that of ours. The reason is the existence of ABPs (Auxiliary

black pixels) in their scheme. The ABPs can be viewed as noises, and are diffused to other parts

of the share images during the error diffusion halftoning process. And this is the very reason that

their shares are vaguer than that of ours, e.g. in the share “Airplane”, the word “FORCE” on the

body of the airplane is not recognizable in their first share, while in our share the word “FORCE”

can be recognized visually. Note that, the shares in the third line look smoother than that of ours.

In fact, this is the most advantage of the second EVCS in [23].

The three images in the fourth line are the experimental results of the third EVCS proposed

in [23] with share pixel expansion 9. Note that, the PSNR values of their scheme are smaller

than that of ours, because it requires modifications to the halftone shares. However, the UQI

values of their scheme are larger than that of ours, because it does not require darkening the

images. According to the Figure 5, it can be observed that the main disadvantage of this EVCS

is that, the visual content of each share image appears in each other. Actually, the third EVCS

of [23] requires choosing approximately complementary share images. However, we choose the most

popular images in the digital image processing society for simulation. The reasons are as follows:

First, for a (2, 2)-EVCS, if we choose complementary share images, the third EVCS of [23] will

be the same as the EVCS of [25]; Second, different share images affect the visual quality of the

output shares significantly. It will be unfair if we choose different share images for the third EVCS
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of [23]; At last, if we choose approximately complementary share images, the experimental results

will conceal the disadvantage of the third EVCS of [23], i.e. the content of the share images affects

each other. That is unfair for other schemes either.

At this point, from a subjective point of view, we can conclude that, the proposed EVCS, Zhou

et al.’s EVCS and Wang et al.’s second EVCS all have their own advantages respectively. Among

the five EVCS’s in Figure 5 and 6, we can observe that proposed EVCS preserves the most details

of the share images. For example, in the share “Airplane”, only in our scheme one can recognizes

the word “FORCE” on the body of the airplane. Zhou et al.’s EVCS generates the brightest shares.

Wang et al.’s second EVCS generates the smoothest shares.

In order to get a clear insight of the visual quality of the experimental images in this section,

we also give the objective numerical measurements as follows (Table 9 and 10), where PE’ and

PE” stand for share pixel expansion and secret image pixel expansion respectively.

Content PSNR UQI

interaction share 1 share 2 share 3 share 1 share 2 share 3 Contrast PE’ PE”

Figure 4 No 8.69db 8.62db 8.93db 0.0311 0.0699 0.0215 1/16 16 16

Table 9: Objective numerical measurements of Figure 4.

Content PSNR UQI

interaction share 1 share 2 share 1 share 2 Contrast PE’ PE”

[15–17] No 3.19db 3.77db 0.0008 0.0032 2/9 9 9

[25] Yes 9.54db 0.51db 0.0445 -0.0315 1/9∗ 9 9

Method 2 of [23] No 3.16db 4.08db 0.0254 0.0304 1/9 9 9

Method 3 of [23] Yes 4.62db 4.11db 0.0578 0.0332 1/9 9 9

Proposed scheme No 5.67db 6.01db 0.0293 0.0281 1/9 9 9

Table 10: Objective numerical measurements of Figure 5 and 6.

In Table 10, the mark ∗ in the second line means that, the recovered secret image is disturbed

by the visual contents of the share images. Note that, the void-and-cluster algorithm, applied in

Zhou et al.’s scheme for choosing the secret pixel positions, is the very reason of this phenomenon.

Note that, the second column of Table 9 and 10 indicates whether the contents of the shares

interact on each other, i.e. the contents of the shares relate to the contents of other shares. If the

contents of the shares interact on each other, two drawbacks are obvious: First, the visual quality

of the shares will be decreased; Second, it is much more likely to incur the watchdog’s attention.

Consider the content interaction between shares in EVCS of [25] and third EVCS of [23], it is

unfair to compare the visual quality of a single share. In such a case, the second EVCS of [23] is

most competitive to our EVCS for that is has similar UQI values for both shares to that of our
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Figure 5: Comparing the experimental results of the proposed scheme and the scheme proposed in

[15, 16, 23, 25] for the case of (2, 2)-EVCS. The size of all the images is 768×768.26



Figure 6: Proposed (2, 2)-EVCS. The size of all the images is 768×768.

scheme. However, the PSNR values of the second EVCS of [23] are inferior to that of ours. It also

reflects the fact that their EVCS preserves fewer details of share images than that of ours.

Besides the visual quality, compared with the known EVCS’s in the literature [15, 16, 18, 20],

the proposed scheme also has the following advantages:

∙ First, the EVCS’s proposed in [15, 16] can only deal with binary input share images, while

our proposed embedded EVCS can deal with grey-scale input images.

∙ Second, the minimum secret image pixel expansion of the proposed embedded EVCS is 𝑚+1,

however, the secret image pixel expansion of the EVCS in [16] is 𝑚 + 𝑞 (𝑞 ≥ 2), and the

secret image pixel expansion of the EVCS in [15] is
∑𝑛

𝑞=1 2
𝑞−1𝑏𝑞, which is much larger than

that of the proposed embedded EVCS, and the secret image pixel expansion of the EVCS

in [17] is 𝑚+𝑚0 where 𝑚0 ≥ ⌈𝑛/(𝑘 − 1)⌉.

∙ Third, the EVCS proposed in [18] is only for the (2,2) access structure, and the scheme

may have security issues when relaxing the constraint of the dynamic range as already noted

in [18]. Besides, Wang et al.’s [23] second EVCS is also only for threshold access structure.

Our proposed embedded EVCS can be applied on general access structure and is always

unconditionally secure which is inherited from the corresponding VCS. In fact, the way of

generating auxiliary black pixels of Wang et al. can be viewed as a special case of the

proposed method in Section 4.

∙ Fourth, the EVCS schemes proposed in [20–22] and the first EVCS proposed in [23] require a

pair of complementary input share images for each qualified subset, and the participants are

required to take more than one shares for some access structure, while our proposed embedded

EVCS does not have such requirement for the input share images, and each participant only

needs to take one share.

∙ Fifth, compared with the third EVCS proposed in [23], the shares of our scheme do not affect

each other and the original share image can be chosen arbitrarily.
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∙ At last, the proposed embedded EVCS is flexible in the sense that there exist two trade-offs

between the share pixel expansion and the visual quality of the shares and between the secret

image pixel expansion and the visual quality of the shares. This flexibility allows the dealer

to choose the proper parameters for different applications.

8 Conclusions

In this paper, we proposed a construction of EVCS which was realized by embedding the random

shares into the meaningful covering shares. The shares of the proposed scheme are meaningful

images, and the stacking of a qualified subset of shares will recover the secret image visually.

We show two methods to generate the covering shares, and proved the optimality on the black

ratio of the threshold covering subsets. We also proposed a method to improve the visual quality

of the share images. According to the comparisons with many of the well-known EVCS in the

literature [15, 16, 18, 20, 21, 23], the proposed embedded EVCS has many specific advantages

against different well-known schemes, such as can deal with grey-scale input images, has smaller

pixel expansion, always unconditionally secure, does not require complementary share images,

one participant only needs to carry one share and can be applied for general access structure.

Furthermore, our construction is flexible in the sense that there exist two trade-offs between the

share pixel expansion and the visual quality of the shares and between the secret image pixel

expansion and the visual quality of the shares.

Comparisons on the experimental results show that, the visual quality of the share of the

proposed embedded EVCS is competitive with that of many of the well-known EVCS’s in the

literature.
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