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Secret Key Agreement from Vector Gaussian
Sources by Rate Limited Public Communication

Shun Watanabe,Member, IEEE, and Yasutada OohamaMember, IEEE,

Abstract—We investigate the secret key agreement from corre-
lated vector Gaussian sources in which the legitimate parties can
use the public communication with limited rate. For the class
of protocols with the one-way public communication, we show
that the optimal trade-off between the rate of key generation
and the rate of the public communication is characterized as
an optimization problem of a Gaussian random variable. The
characterization is derived by using the enhancement technique
introduced by Weingarten et. al. for MIMO Gaussian broadcast
channel.

Index Terms—Enhancement Technique, Entropy Power In-
equality, Extremal Inequality, Key Agreement, Rate Limited
Public Communication Privacy Amplification, Vector Gaussian
Sources,

I. I NTRODUCTION

Key agreement is one of the most important problems
in the cryptography, and it has been extensively studied in
the information theory for discrete sources (e.g. [1], [2],
[3]) since the problem formulation by Maurer [4]. Recently,
the confidential message transmission [5], [6] in the MIMO
wireless communication has attracted considerable attention
as a practical problem setting (e.g. [7], [8], [9], [10], [11],
[12], [13], [14], [15]). Although the key agreement in the
context of the wireless communication has also attracted
considerable attention recently [16], the key agreement from
analog sources has not been studied sufficiently compared to
the confidential message transmission. As a fundamental case
of the key agreement from analog sources, we consider the
key agreement from correlated vector Gaussian sources in this
paper. More specifically, we consider the problem in which
the legitimate parties, Alice and Bob, and an eavesdropper,
Eve, have correlated vector Gaussian sources respectively, and
Alice and Bob share a secret key from their sources by using
the public communication. Recently, the key agreement from
Gaussian sources has attracted considerable attention in the
context of the quantum key distribution [17], which is also a
motivation to investigate the present problem. Fig. 1 illustrates
a scenario we are considering.

Typically, the first step of the key agreement protocol from
analog sources is the quantization of the sources. In literatures
(e.g. see [16], [18], [19]), the authors used the scalar quantizer,
i.e., the observed source is quantized in each time instant.
Using the finer quantization, we can expect the higher key
rate in the protocol, where the key rate is the ratio between the
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Fig. 1. An example of the scenarios treated in this paper. Thelegitimate
parties, Alice and Bob, and an eavesdropper, Eve, receive (vector) signals
from the base station respectively. Alice and Bob generate asecret key from
their received signalsX andY by using the public communication.

length of the shared key and the block length of the sources
that are used in the protocol. However, there is a problem
such that the finer quantization might increase the rate of the
public communication in the protocol. Although the public
communication is usually regarded as a cheap resource in the
context of the key agreement problem, it is limited by a certain
amount in practice. Therefore, we consider the key agreement
protocols with the rate limited public communication in this
paper. The purpose of this paper is to clarify the trade-off
between the key rate and the public communication rate of
the key agreement protocol from vector Gaussian sources.

The key agreement by rate limited public communication
was first considered by Csiszár and Narayan for discrete
sources [2]. For the class of protocols with one-way pub-
lic communication, they characterized the optimal trade-off
between the key rate and the public communication rate in
terms of the information theoretic quantities, i.e., they derived
the so-called single letter characterization. However, there are
two difficulties to extend their result to the vector Gaussian
sources.

First, the direct part of the proof in [2] heavily relies on
the finiteness of the alphabets of the sources, and cannot be
applied to continuous sources. This difficulty was solved by

http://arxiv.org/abs/1009.5760v2
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the authors in [20], and this result will be also used in this
paper.

Second, although the converse part of Csiszár and Narayan’s
characterization can be easily extended to continuous sources,
the characterization is not computable because the character-
ization involves auxiliary random variables and the rangesof
those random variables are unbounded for continuous sources.

In [20] for scalar Gaussian sources, the authors showed
that Gaussian auxiliary random variables suffice, and derived a
closed form expression of the optimal trade-off. In the problem
for scalar Gaussian sources, we first solved the problem in
which the sources are degraded, i.e., Alice’s source, Bob’s
source, and Eve’s source form a Markov chain in this order.
Then, we reduced the general case to the degraded case by
using the fact that scalar Gaussian correlated sources are
stochastically degraded [21].

In this paper for vector Gaussian sources, we show that
Gaussian auxiliary random variables suffice, and characterize
the optimal trade-off in terms of the (covariance) matrix
optimization problem. One of difficulties to show our resultis
that vector Gaussian sources are not stochastically degraded
in general, and cannot be reduced to the degraded case in the
same manner as scalar Gaussian sources. To circumvent this
difficulty, we utilize the enhancement technique introduced by
Weingartenet al. [22].

The rest of the paper is organized as follows: In Section II,
we explain our problem formulation. In Section III, we show
our main results and some numerical examples. In Sections
IV and V, our main results are proved. Finally, in Section VI,
the conclusion and the future research agenda are discussed.

II. PROBLEM FORMULATION

Let X , Y , andZ be correlated vector Gaussian sources on
R

mx , Rmy , andRmz respectively, whereR is the set of real
numbers. Then, letXn, Y n, andZn be i.i.d. copies ofX , Y ,
andZ respectively. Throughout the paper, upper case letters
indicate random variables, and the corresponding lower case
letters indicate their realizations. We also use the following
notations throughout the paper:Σ designates the covariance
matrix of (X,Y, Z). Σx, Σxy, andΣy|x designateE[XTX ],
E[XTY ], and the conditional covariance ofY given X etc..
N ∼ N (0, A) means that the random variableN is a Gaussian
vector with zero mean and covariance matrixA. We use|A|
to denote the determinant of the matrixA,

∣

∣

A
B

∣

∣ to denote|A|
|B| ,

and we denoteA � B (A ≺ B) if the matrixB−A is positive
semidefinite (definite). Throughout the paper, we assume that
Σ ≻ 0.

Although Alice and Bob can use public communication
interactively in general, we concentrate on the class of key
agreement protocols in which only Alice sends a message
to Bob over the public channel. First, Alice computes the
messageCn from Xn and sends the message to Bob over
the public channel. Then, she also compute the keySn. Bob
compute the keyS′

n from Y n andCn. Fig. 2 illustrates the
protocol with one-way public communication.

The error probability of the protocol is defined by

εn := Pr{Sn 6= S′
n}.

Fig. 2. The key agreement protocol with one-way public communication.
First, Alice sends the messageCn to Bob over the public channel, which
might be eavesdropped by Eve. Then, Alice compute the keySn and Bob
compute the keyS′

n. The rate of the public communication is limited byRp.

The security of the protocol is measured by the quantity

νn := log |Sn| −H(Sn|Cn, Z
n),

whereSn is the range of the keySn.
In this paper, we are interested in the trade-off between

the public communication rateRp and the key rateRk. The
rate pair(Rp, Rk) is defined to be achievable if there exists a
sequence of protocols satisfying

lim
n→∞

εn = 0,

lim
n→∞

νn = 0,

lim sup
n→∞

1

n
log |Cn| ≤ Rp,

lim inf
n→∞

1

n
log |Sn| ≥ Rk,

whereCn is the range of the messageCn transmitted over the
public channel. Then, the achievable rate region is defined as

R(X,Y, Z) := {(Rp, Rk) : (Rp, Rk) is achievable}.

In [20], the authors showed a closed form expression of
R(X,Y, Z) for the scalar problem, i.e.,mx = my = mz = 1.
In the next section, we show that the achievable rate region
for the vector problem can be characterized as a (covariance)
matrix optimization problem.

III. M AIN RESULT

A. Main Theorems

In this section, we show our main results. Since the security
quantitiesεn andνn only depend on the marginal distributions
of (X,Y ) and (X,Z) respectively, it suffice to consider
(X,Y, Z) of the form

Y = BX +Wy,

Z = EX +Wz,

whereB ∈ R
my×mx , E ∈ R

mz×mx , Wy ∼ N (0, Imy
) and

Wz ∼ N (0, Imz
). In the rest of this paper, we omit the

subscript of the identity matrix if the dimension is obvious
from the context.

One of the main results of this paper is the following.
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Theorem 1 Let RG(X,Y, Z) be the set of all rate pairs
(Rp, Rk) satisfying

Rp ≥
1

2
log

∣

∣

∣

∣

Σx

Σx|u

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

BΣxB
T + I

BΣx|uBT + I

∣

∣

∣

∣

,

Rk ≤
1

2
log

∣

∣

∣

∣

BΣxB
T + I

BΣx|uBT + I

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

EΣxE
T + I

EΣx|uET + I

∣

∣

∣

∣

for some0 ≺ Σx|u � Σx. Then, we have

R(X,Y, Z) = RG(X,Y, Z).

We are also interested in the asymptotic behavior of the
function

Rk(Rp) := sup{Rk : (Rp, Rk) ∈ R(X,Y, Z)}. (1)

Following the approach in [11], we can obtain a closed
form expression oflimRp→∞ Rk(Rp) as follows. Letφi, i =
1, . . . ,mx be the generalized eigenvalues [23, Chapter 6.3] of
the matrices

(

Σ
1

2

xB
TBΣ

1

2

x + Imx
,Σ

1

2

xE
TEΣ

1

2

x + Imx

)

.

Without loss of generality, we may assume that these gener-
alized eigenvalues are ordered as

φ1 ≥ · · · ≥ φρ > 1 ≥ φρ+1 ≥ · · · ≥ φmx
, (2)

i.e., a total ofρ of them are assumed to be greater than1.
Then, we have

lim
Rp→∞

Rk(Rp) = max
0�Σx|u�Σx

[

1

2
log

∣

∣

∣

∣

BΣxB
T + I

BΣx|uBT + I

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

EΣxE
T + I

EΣx|uET + I

∣

∣

∣

∣

]

=
1

2

ρ
∑

i=1

logφi. (3)

Since Eq. (3) can be proved almost in the same manner as
[11, Theorem 3], we omit a proof.

Whenmx = my = mz and bothB andE are invertible, it
suffice to consider the case in which

Y = X +Wy , (4)

Z = X +Wz , (5)

where the covariance matricesΣWy
andΣWz

are not neces-
sarily identity but are invertible. Following [22], we callthis
case the aligned case. As is usual with the vector Gaussian
problems (e.g. [22]), the general statement (Theorem 1) is
shown by detouring the statement for the aligned case.

Theorem 2 Let R∗
G(X,Y, Z) be the set of all rate pairs

(Rp, Rk) satisfying

Rp ≥ Ip(Σx|u)

:=
1

2
log

∣

∣

∣

∣

Σx

Σx|u

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

Σx +ΣWy

Σx|u +ΣWy

∣

∣

∣

∣

,

Rk ≤ Ik(Σx|u)

:=
1

2
log

∣

∣

∣

∣

Σx +ΣWy

Σx|u +ΣWy

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

Σx +ΣWz

Σx|u +ΣWz

∣

∣

∣

∣

for some0 ≺ Σx|u � Σx. Then, we have

R(X,Y, Z) = R∗
G(X,Y, Z).

Theorem 2 is shown in Section IV and Theorem 1 is shown
in Section V by using Theorem 2.

B. Numerical Examples

In this section, we show some numerical example to illus-
trate Theorem 1. In general, calculation ofRG(X,Y, Z) in-
volves a nonconvex optimization problem and is not tractable.
However for mx ≥ 2 and my = mz = 1, following
the method in [24] (see also [10]), we can transform the
calculation ofRG(X,Y, Z) into tractable form.

For mx ≥ 2 andmy = mz = 1, we have

Ip(Σx|u) =
1

2
log

∣

∣

∣

∣

Σx

Σx|u

∣

∣

∣

∣

−
1

2
log

bΣxb
T + 1

bΣx|ubT + 1
,

Ik(Σx|u) =
1

2
log

bΣxb
T + 1

bΣx|ubT + 1
−

1

2
log

eΣxe
T + 1

eΣx|ueT + 1
,

whereb, e ∈ R
mx . Noting the relation

eΣx|ue
T + 1

bΣx|ubT + 1
= 1 +

eΣx|ue
T − bΣx|ub

T + 1

bΣx|ubT + 1
,

we set

s = bΣx|ub
T ,

t =
eΣx|ue

T − bΣx|ub
T + 1

bΣx|ubT + 1
.

Let

Ip(Σx|u, s) :=
1

2
log

∣

∣

∣

∣

Σx

Σx|u

∣

∣

∣

∣

−
1

2
log(bΣxb

T + 1)

+
1

2
log(1 + s),

Ik(t) =
1

2
log

bΣxb
T + 1

eΣxeT + 1
+

1

2
log(1 + t).

Then we can easily find that

RG(X,Y, Z)

= {(Rp, Rk) : Rp ≥ Ip(Σx|u, s),

Rk ≤ Ik(t),

0 ≺ Σx|u � Σx,

t(bΣx|ub
T + 1) ≤ eΣx|ue

T − bΣx|ub
T ,

bΣx|ub
T ≤ s}.

For fixed (s, t), the optimization problem

minimize Ip(Σx|u, s)

subject to t(bΣx|ub
T + 1) ≤ eΣx|ue

T − bΣx|ub
T

bΣx|ub
T ≤ s

0 ≺ Σx|u � Σx

is a convex problem. By sweeping(s, t), we can calculate the
regionRG(X,Y, Z).

For

Σx =

[

2 0
0 2

]

, b =
[

1 0.5
]

, e =
[

0.7 0.35
]

, (6)
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Fig. 3. ”region“ is Rk(Rp) defined in Eq. (1) for the sources given by
Eq. (6). ”upper bound” is the quantityI(X;Y )− I(X;Z).
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Fig. 4. ”region“ is Rk(Rp) defined in Eq. (1) for the sources given by
Eq. (7). “upper bound islimRp→∞ Rk(Rp) which is explicitly given by
Eq. (3).

the regionRG(X,Y, Z) is plotted in Fig. 3. Note that this case
is degraded in the sense of [25, Definition 1], i.e.,X ↔ Y ↔
Z by appropriately choosing the correlation between(Y, Z).
In this case, the functionRk(Rp) converges toI(X ;Y ) −
I(X ;Z) asRp increases.

For

Σx =

[

2 0
0 2

]

, b =
[

1 0.5
]

, e =
[

0.5 1
]

, (7)

the region RG(X,Y, Z) is plotted in Fig. 4. Note that
(X,Y, Z) in this example is not degraded. AlthoughI(X ;Y )−
I(X ;Z) = 0 in this example, Fig. 4 clarifies that appropriate
quantization enables Alice and Bob to share a secret key at
positive key rate.

For non-degraded case,Rk(Rp) converges to the quantity
given by Eq. (3) instead ofI(X ;Y )−I(X ;Z) asRp increases,
and it is also plotted in Fig. 4.

IV. PROOF OFTHEOREM 2

A. Direct Part

In [20], the present authors proved the following proposi-
tion, which is an extension of [2, Theorem 2.6] to continuous
sources.

Proposition 3 For an auxiliary random variableU satisfying
the Markov chain

U ↔ X ↔ (Y, Z),

let (Rp, Rk) be a rate pair such that

Rp ≥ I(U ;X)− I(U ;Y ),

Rk ≤ I(U ;Y )− I(U ;Z).

Then, we have(Rp, Rk) ∈ R(X,Y, Z).

The direct part of Theorem 2 is shown by taking Gaussian
auxiliary random variableU such that the conditional covari-
ance matrix ofX givenU is Σx|u in Proposition 3. �

B. Converse Part

In the converse proof, we will use the following Proposition
and Corollary. The proposition was shown for discrete sources
in [2, Theorem 2.6], and it can be shown almost in the same
manner for continuous sources.

Proposition 4 ([2]) Suppose that a rate pair(Rp, Rk) is
included inR(X,Y, Z). Then, there exist auxiliary random
variablesU andV satisfying

Rp ≥ I(U ;X |Y ), (8)

Rk ≤ I(U ;Y |V )− I(U ;Z|V ), (9)

and the Markov chain

V ↔ U ↔ X ↔ (Y, Z). (10)

For degraded sources, we can simplify the above proposition
(see [20, Appendix B] for a proof).

Corollary 5 Suppose that(X,Y, Z) is degraded, i.e.,X ↔
Y ↔ Z. If (Rp, Rk) ∈ R(X,Y, Z), then there exists an
auxiliary random variableU satisfying

Rp ≥ I(U ;X |Y ) = I(U ;X)− I(U ;Y ), (11)

Rk ≤ I(U ;Y |Z) = I(U ;Y )− I(U ;Z), (12)

and the Markov chain

U ↔ X ↔ Y ↔ Z. (13)

We show a converse proof of Theorem 2 by contradiction.
Suppose that there exists a rate pair such that(Ro

p, R
o
k) ∈

R(X,Y, Z) and (Ro
p, R

o
k) /∈ R∗

G(X,Y, Z), where we assume
Ro

k > 0 to avoid the trivial case. Then, there exists0 ≺ Σo
x|u �

Σx such thatIp(Σo
x|u) ≤ Ro

p. Therefore, we can write

Ro
k = R∗

k + δ (14)
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for someδ > 0, whereR∗
k is given by the optimal value of

maximize Ik(Σx|u)

subject to Ip(Σx|u) ≤ Ro
p, (15)

0 ≺ Σx|u � Σx.

An optimal solutionΣ∗
x|u of this optimization problem satisfies

the Karash-Kuhn-Tucker (KKT) condition (see Appendix A
for the derivation)

µ(Σ∗
x|u)

−1 + (Σ∗
x|u +ΣWz

)−1

= (1 + µ)(Σ∗
x|u +ΣWy

)−1 +M,

(16)

M(Σx − Σ∗
x|u) = 0, (17)

µ(Ro
p − Ip(Σ

∗
x|u)) = 0, (18)

whereµ ≥ 0 andM � 0. From Eqs. (14) and (18), we have

Ro
k − µRo

p = Ik(Σ
∗
x|u)− µIp(Σ

∗
x|u) + δ. (19)

We shall find a contradiction to Eq. (19) by showing that for
any (Rp, Rk) ∈ R(X,Y, Z)

Rk − µRp ≤ Ik(Σ
∗
x|u)− µIp(Σ

∗
x|u). (20)

The proof of Eq. (20) roughly consists of three steps: In the
first step, we reduce the proof for the non-degraded sources
to that for the degraded sources by using the enhancement
technique introduced by Weingartenet. al. [22]. In the second
step, we change the variable so that we can use the entropy
power inequality (EPI). In the last step, we derive an upper
bound onRk − µRp by using the EPI, which turn out to be
tight.
Step 1: In this step, in order to reduce the proof for the
non-degraded sources to that for the degraded sources, we
introduce the covariance matrixΣW̃y

satisfying

(1 + µ)(Σ∗
x|u +ΣW̃y

)−1

= (1 + µ)(Σ∗
x|u +ΣWy

)−1 +M. (21)

Then, we have (see Appendix B for a proof)

0 ≺ ΣW̃y
� ΣWy

, (22)

ΣW̃y
� ΣWz

. (23)

Let W̃y be the Gaussian random vector whose covariance
matrix isΣW̃y

, and let

Ỹ = X + W̃y . (24)

From Eq. (23), we can find that the sources(X, Ỹ , Z) satisfy
X ↔ Ỹ ↔ Z. Furthermore, from Eq. (22), we can also find
thatX ↔ Ỹ ↔ Y , which implies

R(X,Y, Z) ⊂ R(X, Ỹ , Z).

Thus, it suffice to show that Eq. (20) holds for any(Rp, Rk) ∈
R(X, Ỹ , Z). In steps 2 and 3, we will show that

Rk − µRp ≤ Ĩk(Σ
∗
x|u)− µĨp(Σ

∗
x|u) (25)

for any (Rp, Rk) ∈ R(X, Ỹ , Z), where

Ĩp(Σx|u) :=
1

2
log

∣

∣

∣

∣

Σx

Σx|u

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

∣

Σx +ΣW̃y

Σx|u +ΣW̃y

∣

∣

∣

∣

∣

,

Ĩk(Σx|u) :=
1

2
log

∣

∣

∣

∣

∣

Σx +ΣW̃y

Σx|u +ΣW̃y

∣

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

Σx +ΣWz

Σx|u +ΣWz

∣

∣

∣

∣

.

Then, by using the relation (see Appendix C for a proof)

(Σx +ΣW̃y
)(Σ∗

x|u +ΣW̃y
)−1

= (Σx +ΣWy
)(Σ∗

x|u +ΣWy
)−1, (26)

we haveIk(Σ∗
x|u) = Ĩk(Σ

∗
x|u) and Ip(Σ

∗
x|u) = Ip(Σ

∗
x|u).

Thus, Eq. (25) implies that Eq. (20) holds for any(Rp, Rk) ∈
R(X, Ỹ , Z).

Step 2: First, we show Eq. (25) forµ = 0. In this case,
from Eqs. (16) and (21), we haveΣW̃y

= ΣWz
. Thus, from

Corollary 5, we have

Rk − 0 ·Rp ≤ I(U ;Y )− I(U ;Z) = 0 = Ĩk(Σ
∗
x|u).

Thus, we have the assertion.

In order to prove Eq. (25) forµ > 0, we change the variable
as follows. Since(X, Ỹ , Z) is jointly Gaussian, we can write

X = KxzZ +N1,

Ỹ = KỹxX +KỹzZ +N2

for Gaussian random vectorsN1, N2 with covariance matrices

ΣN1
= Σx|z := Σx −KxzΣzx,

ΣN2
= Σỹ|xz := Σỹ −KỹxΣxỹ −KỹzΣzỹ,

where the coefficients are given by

Kxz = ΣxzΣ
−1
z

and

[

Kỹz Kỹx

]

=
[

Σỹz Σỹx

]

[

Σz Σzx

Σxz Σx

]−1

. (27)

By noting the relations

I(U ;X |Ỹ ) = I(U ;X)− I(U ; Ỹ ),

I(U ; Ỹ |Z) = I(U ; Ỹ )− I(U ;Z),

I(U ;X |Z) = I(U ;X)− I(U ;Z),

I(U ;X |Ỹ ) = I(U ;X |Z)− I(U ; Ỹ |Z)
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for random variables satisfyingU ↔ X ↔ Ỹ ↔ Z, we have

Ĩk(Σx|u)− µĨp(Σx|u)

= I(U ; Ỹ |Z)− µI(U ;X |Ỹ )

= (1 + µ)I(U ; Ỹ |Z)− µI(U ;X |Z)

= [(1 + µ)h(Ỹ |Z)− µh(X |Z)]

+[µh(X |U,Z)− (1 + µ)h(Ỹ |U,Z)]

= [(1 + µ)h(Ỹ |Z)− µh(X |Z)]−
1 + µ

2
log |KỹxK

T
ỹx|

+µ[h(X |U,Z)− γh(X +K−1

ỹx N2|U,Z)]

= [(1 + µ)h(Ỹ |Z)− µh(X |Z)]−
1 + µ

2
log |KỹxK

T
ỹx|

+µ[h(X |U,Z)− γh(X +N3|U,Z)]

= [(1 + µ)h(Ỹ |Z)− µh(X |Z)]−
1 + µ

2
log |KỹxK

T
ỹx|

+µ

[

1

2
log(2πe)m|Σx|uz| −

γ

2
log(2πe)m|Σx|uz +ΣN3

|

]

,

(28)

where we setγ := 1+µ
µ > 1 andN3 := K−1

ỹx N2. It should be
noted that

|Kỹx| 6= 0 (29)

for µ > 0, which will be proved in Appendix D.
For the change of variable

φ : Σx|u 7→ Σx|uz = (Σ−1

x|u +Σ−1

Wz
)−1,

let Σ∗
x|uz := φ(Σ∗

x|u). From Eqs. (16) and (21) and the relation

Ĩk(Σx|u)− µĨp(Σx|u)

=
µ

2
log(2πe)m|Σx|u|+

1

2
log(2πe)m|Σx|u +ΣWz

|

−
(1 + µ)

2
log(2πe)m|Σx|u +ΣW̃y

|

+[(1 + µ)h(Ỹ )− h(Z)− µh(X)],

we have

∇Σx|u

[

Ĩk(Σ
∗
x|u)− µĨp(Σ

∗
x|u)

]

= 0.

By the chain rule for the derivative, we have

∇Σx|uz

[

Ĩk(φ
−1(Σ∗

x|uz))− µĨp(φ
−1(Σ∗

x|uz))
]

= ∇Σx|uz
φ−1(Σ∗

x|uz) · ∇Σx|u

[

Ĩk(Σ
∗
x|u)− µĨp(Σ

∗
x|u)

]

= 0.

Thus, from Eq. (28), we have

(Σ∗
x|uz)

−1 = γ(Σ∗
x|uz +ΣN3

)−1. (30)

Step 3: By noting that(X, Ỹ , Z) is degraded, from Corollary
5, for any(Rp, Rk) ∈ R(X, Ỹ , Z) we have

Rk − µRp

≤ I(U ; Ỹ |Z)− µI(U ;X |Ỹ )

= [(1 + µ)h(Ỹ |Z)− µh(X |Z)]−
1 + µ

2
log |KỹxK

T
ỹx|

+µ [h(X |U,Z)− γh(X +N3|U,Z)] , (31)

whereU is not necessarily Gaussian. By using the conditional
version of EPI [26], we have

h(X |U,Z)− γh(X +N3|U,Z) (32)

≤ h(X |U,Z)

−
γm

2
log

(

exp

[

2

m
h(X |U,Z)

]

+ exp

[

2

m
h(N3)

])

≤ f
(

h(N3)−
m

2
log(γ − 1);h(N3)

)

, (33)

where we set

f(t; a) := t−
γm

2
log

(

exp

[

2

m
t

]

+ exp

[

2

m
a

])

.

Note that the functionf(t; a) is concave function oft and takes
the maximum att = a − m

2
log(γ − 1) [27]. From Eq. (30),

we have

(γ − 1)−1ΣN3
= Σ∗

x|uz,

which implies

h(N3)−
m

2
log(γ − 1) =

1

2
log(2πe)m(γ − 1)−m|ΣN3

|

=
1

2
log(2πe)m|Σ∗

x|uz|.

Furthermore, sinceΣ∗
x|uz and ΣN3

are proportional to each
other, we have

|Σ∗
x|uz|

1/m + |ΣN3
|1/m = |Σ∗

x|uz +ΣN3
|1/m.

Thus, from Eqs. (31) and (33), we have

Rk − µRp

≤ [(1 + µ)h(Ỹ |Z)− µh(X |Z)]−
1 + µ

2
log |KỹxK

T
ỹx|

+µ

[

1

2
log(2πe)m|Σ∗

x|uz| −
γ

2
log(2πe)m|Σ∗

x|uz +ΣN3
|

]

= Ĩk(Σ
∗
x|u)− µĨp(Σ

∗
x|u).

�

Remark 6 One of the difficulties in the above proof is that,
after Step 1, we have to show the extremal inequality of the
form

µh(X |U) + h(X +Wz |U)− (1 + µ)h(X + W̃y|U)

≤
µ

2
log |Σ∗

x|u|+
1

2
log |Σ∗

x|u +ΣWz
|

−
(1 + µ)

2
log |Σ∗

x|u +ΣW̃y
|. (34)

This type of extremal inequality has appeared in [28, Corol-
lary 2] (scalar version has appeared in [29, Lemma 1]). In
[14], the extremal inequality was proved by using a vector
generalization of Costa’s entropy power inequality [30]. On
the otherhand, we showed Eq. (34) by using the change of
variable in Step 2 and by reducing to more tractable form
(Eq. (32)), which has appeared in the literature [27]. By this
reduction, we only need the standard EPI in our proof instead
of Costa’s type EPI, and our proof seems more elementary.
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V. PROOF OFTHEOREM 1

In this section, we show Theorem 1 by using Theorem 2. We
follow a similar approach as in [10, Section 4]. Since the direct
part can be proved by taking a Gaussian auxiliary random
variableU in Proposition 3 (see Section IV-A), we concentrate
on the converse part. Without loss of generality, we can assume
that the matricesB and E are square (but not necessarily
invertible). If that is not the case, we can apply singular value
decomposition (SVD) to show equivalent sources(X ′, Y ′, Z ′)
onR

mx ×R
mx ×R

mx such thatR(X ′, Y ′, Z ′) = R(X,Y, Z)
in a similar manner as [22, Section 5-B].

By using SVD, we can write the matrices as

B = UyΛyVy ,

E = UzΛzVz ,

whereUy, Vy, Uz andVz aremx × mx orthogonal matrices,
andΛy andΛz are diagonal matrices. Let

B̄ = Uy(Λy + αI)Vy ,

Ē = Uy(Λz + αI)Vz

for someα > 0. Then, let

Ȳ = B̄X +Wy,

Z̄ = ĒX +Wz .

SinceB̄ and Ē are invertible, Theorem 2 implies

R(X, Ȳ , Z̄) = RG(X, Ȳ , Z̄). (35)

In the following, we will show the following lemma.

Lemma 7 We have

R(X,Y, Z) ⊂ R(X, Ȳ , Z̄) +O(X, Ȳ , Z̄),

where

O(X, Ȳ , Z̄) =

{

(0, Rk) : 0 ≤ Rk ≤
1

2
log |ĒΣxĒ

T + I|

−
1

2
log |EΣxE

T + I|

}

.

By lettingα → 0, RG(X, X̄, Z̄) converges toRG(X,Y, Z)
and O(X, Ȳ , Z̄) converges to{(0, 0)}. Thus, Eq. (35) and
Lemma 7 implyR(X,Y, Z) ⊂ RG(X,Y, Z).
Proof of Lemma 7

Let

Cy = UyΛy(Λy + αI)−1Vy,

Cz = UzΛz(Λz + αI)−1Vz .

Then, we haveCyC
T
y ≺ I andCzC

T
z ≺ I. Thus, we can write

Y = Cy Ȳ +W ′
y,

Z = CzZ̄ +W ′
z

for W ′
y ∼ N (0, I −CyC

T
y ) andW ′

z ∼ N (0, I −CzC
T
z ), i.e.,

we have

X ↔ Ȳ ↔ Y, (36)

X ↔ Z̄ ↔ Z. (37)

From Proposition 4, for any(Rp, Rk) ∈ R(X,Y, Z), there
exist (U, V ) satisfying

Rp ≥ I(U ;X)− I(U ;Y ),

Rk ≤ I(U ;Y |V )− I(U ;Z|V ),

and (U, V ) ↔ X ↔ (Y, Z). Let

R̄p = I(U ;X)− I(U ; Ȳ ),

R̄k = I(U ; Ȳ |V )− I(U ; Z̄|V ).

Then, we have

Rp − R̄p ≥ I(U ;X)− I(U ;Y )− [I(U ;X)− I(U ; Ȳ )]

= I(U ; Ȳ )− I(U ;Y )

≥ 0,

where the second inequality follows from Eq. (36). On the
other hand, we have

Rk − R̄k ≤ I(U ;Y |V )− I(U ;Z|V )

−[I(U ; Ȳ |V )− I(U ; Z̄|V )]

= I(U ; Z̄|V )− I(U ;Z|V )

−[I(U ; Ȳ |V )− I(U ;Y |V )]

≤ I(U ; Z̄|V )− I(U ;Z|V )

= I(U, V ; Z̄)− I(U, V ;Z)

−[I(V ; Z̄)− I(V ;Z)]

≤ I(U, V ; Z̄)− I(U, V ;Z)

= I(X ; Z̄)− I(X ;Z)

−[I(X ; Z̄|U, V )− I(X ;Z|U, V )]

≤ I(X ; Z̄)− I(X ;Z)

=
1

2
log |ĒΣxĒ

T + I| −
1

2
log |EΣxE

T + I|,

where the second, third, and forth inequalities follow fromthe
Markov relations in Eqs. (36) and (37). �

VI. CONCLUSION

In this paper, we investigated the secret key agreement from
vector Gaussian sources by rate limited public communication.
We characterized the optimal trade-off between the key rate
and the public communication rate as a (covariance) matrix
optimization problem. Investigating an efficient method to
solve the optimization problem is a future research agenda.

APPENDIX A
DERIVATION OF THE KKT CONDITION

We first rewrite the optimization problem in Eq. (15) as a
standard form

minimize −Ik(Σx|u)

subject to Ip(Σx|u)−Ro
p ≤ 0 (38)

0 ≺ Σx|u � Σx.

Let Σ∗
x|u be an optimal solution for this problem, which is

also an optimal solution of Eq. (15). Then, we haveΣ∗
x|u ≻ 0

because of the constraintIp(Σ∗
x|u)−Ro

p ≤ 0. Thus, there exists
a positive definite matrixL satisfyingL ≺ Σ∗

x|u.
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Let us consider another optimization problem

minimize −Ik(Σx|u)

subject to Ip(Σx|u)−Ro
p ≤ 0 (39)

L � Σx|u � Σx.

Obviously,Σ∗
x|u is also an optimal solution for the problem in

Eq. (39), and the optimal values for Eqs. (38) and (39) are the
same. Although the optimization problem in Eq. (39) is not
convex, there exist Lagrange multipliersM1 � 0, M2 � 0,
andµ ≥ 0 satisfying

−
(

−∇Σx|u
Ik(Σ

∗
x|u) + µ∇Σx|u

(Ip(Σ
∗
x|u)−Ro

p)
)

= M2 −M1, (40)

M1(Σ
∗
x|u − L) = 0, (41)

M2(Σx − Σ∗
x|u)) = 0, (42)

µ(Rp − Ip(Σ
∗
x|u)) = 0 (43)

if the set of constraint qualifications (CQs) shown below are
satisfied (see [22, Appendix 4] for the detail). SinceΣ∗

x|u ≻ L,
Eq. (41) impliesM1 = 0. Thus, by noting the relation

Ik(Σx|u)− µIp(Σx|u)

=
µ

2
log(2πe)m|Σx|u|+

1

2
log(2πe)m|Σx|u +ΣWz

|

−
(1 + µ)

2
log(2πe)m|Σx|u +ΣWy

|

+[(1 + µ)h(Y )− h(Z)− µh(X)], (44)

and by settingM = 2M2, we have the KKT conditions in
Eqs. (16)–(18).

The CQs shown in [22, Appendix 4], which is an interpre-
tation of [31, CQ5a of Section 5.4] are the following: There
exists a matrixA satisfying

1) For anyu 6= 0 in the null space ofΣ∗
x|u − L, we have

u
TAu > 0.

2) For anyv 6= 0 in the null space ofΣx −Σ∗
x|u, we have

v
TAv < 0.

3)

Tr
[

∇Σx|u
(Ip(Σ

∗
x|u)−Ro

p)A
T
]

> 0.

To check whether the above CQs are satisfied, we suggest
A given by

A = α(L − Σ∗
x|u) + (Σx − Σ∗

x|u)

for α > 0. First we check (1). For anyu 6= 0 in the null space
of Σ∗

x|u − L, we have

u
TAu = u

T (Σx − Σ∗
x|u)u.

Suppose thatuT (Σx − Σ∗
x|u)u = 0. Then we have

0 = u
T
(

(Σ∗
x|u − L) + (Σx − Σ∗

x|u)
)

u

= u
T (Σx − L)u,

which is a contradiction becauseΣx ≻ L. Thus the condition
(1) is satisfied.

Next, we check (2). For anyv 6= 0 in the null space of
Σx − Σ∗

x|u, we have

v
TAv = v

T (L− Σ∗
x|u)v < 0

becauseL ≺ Σ∗
x|u.

Finally, we check (3). By noting

∇Σx|u
Ip(Σx|u) =

1

2
(Σx|u +ΣWy

)−1 −
1

2
Σ−1

x|u ≺ 0

for anyΣx|u ≻ 0, we have

Tr
[

∇Σx|u
(Ip(Σ

∗
x|u)−Ro

p)A
]

=
α

2
Tr

[{

(Σ∗
x|u +ΣWy

)−1 − (Σ∗
x|u)

−1
}

(L − Σ∗
x|u)

]

+
1

2
Tr

[{

(Σ∗
x|u +ΣWy

)−1 − (Σ∗
x|u)

−1
}

(Σx − Σ∗
x|u)

]

.

SinceL−Σ∗
x|u ≺ 0, by takingα > 0 to be sufficiently large,

the condition (3) is satisfied.

Remark 8 We need to introduce the optimization problem
in Eq. (39) because the arguments in [22, Appendix 4] is
guaranteed only under the condition such that the range of
the variableΣx|u is a closed set.

APPENDIX B
PROOF OFEQS. (22) AND (23)

By notingM � 0, we have

(Σ∗
x|u +ΣW̃y

)−1 = (Σ∗
x|u +ΣWy

)−1 +M

� (Σ∗
x|u +ΣWy

)−1.

Thus we have

ΣW̃y
� ΣWy

.

SinceΣWz
≻ 0, by substituting Eq. (21) into Eq. (16), we

have

(Σ∗
x|u +ΣW̃y

)−1

=
µ

1 + µ
(Σ∗

x|u)
−1 +

1

1 + µ
(Σ∗

x|u +ΣWz
)−1 (45)

≺ (Σ∗
x|u)

−1

whenµ > 0. Thus, we have

ΣW̃y
≻ 0.

Note thatΣW̃y
= ΣWz

≺ 0 whenµ = 0.
From Eq. (45), we have

(Σ∗
x|u +ΣW̃y

)−1 � (Σ∗
x|u +ΣWz

)−1,

where the strict inequality holds forµ > 0. Thus we have

ΣW̃y
� ΣWz

and especially

ΣW̃y
≺ ΣWz

(46)

for µ > 0. �
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APPENDIX C
PROOFS OFEQ. (26)

Eq. (26) can be derived by the following sequence of
equalities:

(Σx +ΣW̃y
)(Σ∗

x|u +ΣW̃y
)−1

=
[

(Σx − Σ∗
x|u) + (Σ∗

x|u +ΣW̃y
)
]

(Σ∗
x|u +ΣW̃y

)−1

= (Σx − Σ∗
x|u)(Σ

∗
x|u +ΣW̃y

)−1 + I

= (Σx − Σ∗
x|u)

[

(Σ∗
x|u +ΣWy

)−1 +M
]

+ I (47)

= (Σx − Σ∗
x|u)(Σ

∗
x|u +ΣWy

)−1 + I (48)

=
[

(Σx − Σ∗
x|u) + (Σ∗

x|u +ΣWy
)
]

(Σ∗
x|u +ΣWy

)−1

= (Σx +ΣWy
)(Σ∗

x|u +ΣWy
)−1, (49)

where Eq. (47) follows from Eq. (21) and Eq. (48) follows
from Eq. (17).

APPENDIX D
PROOF OFEQ. (29)

From Eqs. (24), (5) and (46), we can write

Z = X + W̃y +W ′, (50)

whereW ′ ∼ N (0,ΣW̃y
− ΣWz

). Thus, we have

Σỹz = Σỹ,

Σzx = Σxz = Σx.

Furthermore, we have

Σỹ ≺ Σz. (51)

From the block inversion of the matrix (e.g. see [32,
Appendix 5.5]) and Eq. (27), we have

Kỹx =
[

Σỹ Σx

]

[

−Σ−1
z ΣxS

−1

S−1

]

= (I − ΣỹΣ
−1
z )ΣxS

−1, (52)

where

S = Σx − ΣxΣ
−1
z Σx

is the Schur complement.
From Eq. (51), we have

I − Σ
1

2

ỹ Σ
−1
z Σ

1

2

ỹ ≻ I − Σ
1

2

ỹ Σ
−1

ỹ Σ
1

2

ỹ = 0.

Thus we have

|I − ΣỹΣ
−1
z | = |I − Σ

1

2

ỹ Σ
−1
z Σ

1

2

ỹ | 6= 0. (53)

By combining Eqs. (52) and (53), we have Eq. (29). �
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