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Secret Key Agreement from Vector Gaussian
Sources by Rate Limited Public Communication

Shun Watanabdyiember, |IEEE, and Yasutada Ooham&lember, |EEE,

Abstract—We investigate the secret key agreement from corre- .
lated vector Gaussian sources in which the legitimate partis can Base Station
use the public communication with limited rate. For the clas
of protocols with the one-way public communication, we show
that the optimal trade-off between the rate of key generatio .
and the rate of the public communication is characterized as Allce \\' T ))) BOb
an optimization problem of a Gaussian random variable. The \\ ))
characterization is derived by using the enhancement techique N\
introduced by Weingarten et. al. for MIMO Gaussian broadcast
channel.
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Index Terms—Enhancement Technique, Entropy Power In-
equality, Extremal Inequality, Key Agreement, Rate Limited X
Public Communication Privacy Amplification, Vector Gaussian
Sources,
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. INTRODUCTION
Key agreement is one of the most important problen Evem

Y

in the cryptography, and it has been extensively studied

the information theory for discrete sources (elg. [1l, [2

[3]) since the problem formulation by Maurer| [4]. Recently

the confidential message transmissibh [B], [6] in the MIMC

wireless Cc_)mmumcatlon ha; attracted considerable ajtentFig. 1. An example of the scenarios treated in this paper. [Egimate

as a practical problem setting (e.@! [7]) [8]) [9]. [10]._I11 parties, Alice and Bob, and an eavesdropper, Eve, receetds) signals

[12], [13], [14], [15])_ Although the key agreement in thefror_n the t_)ase ;tation respectively. Alice and Bc_)b gener&te_cae't key from

context of the wireless communication has also attract8l§" eceived signals andy” by using the public communication.

considerable attention recently [16], the key agreemenhfr

analog sources has not been studied sufficiently compared to

the confidential message transmission. As a fundamental clength of the shared key and the block length of the sources

of the key agreement from analog sources, we consider that are used in the protocol. However, there is a problem

key agreement from correlated vector Gaussian sourcessin $uch that the finer quantization might increase the rate ef th

paper. More specifically, we consider the problem in whicpublic communication in the protocol. Although the public

the legitimate parties, Alice and Bob, and an eavesdroppedmmunication is usually regarded as a cheap resource in the

Eve, have correlated vector Gaussian sources respectively context of the key agreement problem, it is limited by a derta

Alice and Bob share a secret key from their sources by usiagiount in practice. Therefore, we consider the key agreemen

the public communication. Recently, the key agreement fropiotocols with the rate limited public communication inghi

Gaussian sources has attracted considerable attentidrein gaper. The purpose of this paper is to clarify the trade-off

context of the quantum key distribution [17], which is also hetween the key rate and the public communication rate of

motivation to investigate the present problem. Elg. 1 flaies the key agreement protocol from vector Gaussian sources.

a scenario we are considering. The key agreement by rate limited public communication
Typically, the first step of the key agreement protocol frofyas first considered by Csiszar and Narayan for discrete

analog sources is the quantization of the sources. Infite#a sources[[2]. For the class of protocols with one-way pub-

(e.g. see [16],[18]/[19]), the authors used the scalar tgem lic communication, they characterized the optimal traffe-o

i.e., the observed source is quantized in each time instapétween the key rate and the public communication rate in

Using the finer quantization, we can expect the higher kegrms of the information theoretic quantities, i.e., theyived

rate in the protocol, where the key rate is the ratio betwhen tthe so-called single letter characterization. Howevestgrare

A part of this paper was presented at 2010 IEEE InternatiSyatposium two difficulties to extend their result to the vector Gaussia
on Information Theory in Austin U.S.A.. sources.
The authors are with the Department of Information Sciemzelatelligent First, the direct part of the proof i |[2] heavily relies on

Systems, University of Tokushima, 2-1, Minami-josanjinfakushima, 770- -
8%/06 Japan e_ma{Bhun_Wm oohan}@is.tokus%ima-t.acfp. the finiteness of the alphabets of the sources, and cannot be

Manuscript received ; revised applied to continuous sources. This difficulty was solved by
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the authors in[[20], and this result will be also used in thi A|ice Bob
paper. :

Second, although the converse part of Csiszar and Naaye - P’Ubl'c Channel s
characterization can be easily extended to continuousesur X E> Cn R i Cn, ¥
the characterization is not computable because the clearac U P O

ization involves auxiliary random variables and the rangfes

those random variables are unbounded for continuous sgurt Sn
In [20] for scalar Gaussian sources, the authors show

that Gaussian auxiliary random variables suffice, and ddrav Eve Cn . Al

closed form expression of the optimal trade-off. In the peob

for scalar Gaussian sources, we first solved the problemrig. 2. The key agreement protocol with one-way public comication.

which the sources are degraded, i.e., Alice’s source, Boliist, Alice sends the message, to Bob over the public channel, which

source, and Eve’s source form a Markov chain in this ord 'ﬁqh;ukt): tﬁzvf:g?pﬁﬁg gt’eiﬁhgﬁ%li?t%%?ﬂ%ﬁﬁoahiﬁﬁgg EB;ZP

Then, we reduced the general case to the degraded case by

using the fact that scalar Gaussian correlated sources are

F S

Sl

n

stochastically degraded [21]. _ The security of the protocol is measured by the quantity
In this paper for vector Gaussian sources, we show that
Gaussian auxiliary random variables suffice, and chaiiaeter Vn = log|Sp| — H(Sn|Cn, Z"),

the optimal trade-off in terms of the (covariance) matri{?vhere S
optimization problem. One of difficulties to show our regslt n
that vector Gaussian sources are not stochastically dedra
in general, and cannot be reduced to the degraded case in
same manner as scalar Gaussian sources. To circumvent
difficulty, we utilize the enhancement technique introdibg

is the range of the key,,.
In this paper, we are interested in the trade-off between
e public communication rat&®, and the key rate?. The
rate pair(R,, Rx) is defined to be achievable if there exists a
% Euence of protocols satisfying

Weingartenet al. [22]. lim ¢, = 0,
The rest of the paper is organized as follows: In Sedfibn I, ";H‘;OV _ 0
we explain our problem formulation. In Sectibn] lll, we show nsoo )
our main results and some numerical examples. In Sections i 1
imsup —log|C,| < R,

[Vland[V, our main results are proved. Finally, in Secfion VI, n—oo M
i i 1
the conclusion and the future research agenda are discussed liminf ~log|S,| > R,
n—oo N
[I. PROBLEM FORMULATION whereC,, is the range of the messagg, transmitted over the

Let X, Y, andZ be correlated vector Gaussian sources diblic channel. Then, the achievable rate region is defised a
R™=, R™v, andR™= respectively, wher® is the set of real o ) : .
numbers. Then, leX™, Y™, andZ™ be i.i.d. copies ofX, Y, R(X.Y, Z) = {(Byp, By : (Ry, ) Is achievablg.
and Z respectively. Throughout the paper, upper case lettergn [20], the authors showed a closed form expression of
indicate random variables, and the corresponding lowee cg8(X, Y, Z) for the scalar problem, i.em, = m, = m, = 1.
letters indicate their realizations. We also use the fall@v In the next section, we show that the achievable rate region
notations throughout the papeX: designates the covariancefor the vector problem can be characterized as a (covanance
matrix of (X,Y, Z). ¥q, Y4y, and X, |, designateE[X” X], matrix optimization problem.
E[XTY], and the conditional covariance &f given X etc..
N ~ N(0, A) means that the random variabieis a Gaussian . MAIN RESULT
vector with zero mean and covariance matfix We use|A|

to denote the determinant of the matrix |§| to denote‘%;, A. Main Theorems

and we denotel < B (A < B) if the matrix B — A is positive In this section, we show our main results. Since the security
semidefinite (definite). Throughout the paper, we assunte tigglantitiess,, andv,, only depend on the marginal distributions
- 0. of (X,Y) and (X, Z) respectively, it suffice to consider

Although Alice and Bob can use public communicatiofX,Y; Z) of the form
interactively in general, we concentrate on the class of key Y — BX4W
agreement protocols in which only Alice sends a message v
to Bob over the public channel. First, Alice computes the Z = EX+W,
messageC,, from X" and sends the message to Bob OV§{nere B R Xme | B e R™=Xma W, ~ N(0, I, ) and
the public channel. Then, she also compute the ¥gyBob W. ~ N(0,I.). In the rest of this paper, we yomit the
compute the keys;, from Y™ and C',. Fig.[2 illustrates the g nscript of the identity matrix if the dimension is obvious
protocol with one-way public communication. from the context.

The error probability of the protocol is defined by One of the main results of this paper is the following.
en = Pr{S, # S.}.
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Theorem 1 Let Rq(X,Y,Z) be the set of all rate pairsfor some0 < X, < X,. Then, we have
(Rp, Ry) satisfying R(X,Y,Z) = RE(X,Y, Z).

1 Y 1 By, BT +1 . . . .
R, > 51 g5 |~ 508 ‘3273;_1 , Theoreni 2 is shown in Sectién]lV and Theoreim 1 is shown
olu alut” F in Section Y by using Theorefd 2.
R 1 ‘BE BT+I‘ 1 ‘EEIET—FI‘
L < = z

Y T T Y S P AT .
BY, BT+ 1| 2 EY BT +1 B. Numerical Examples

for some0 < Em < ¥,. Then, we have In this section, we show some numerical example to illus-
trate Theoren]1. In general, calculation Bt (X,Y, Z) in-
R(X,Y,Z) =Re(X,Y, Z). volves a nonconvex optimization problem and is not traetabl

We are also interested in the asymptotic behavior of tkgowever form, > 2 andm, = m. = 1, following
function the method in[[24] (see also [10]), we can transform the
calculation ofR¢(X,Y, Z) into tractable form.
Ry (Ry) :=sup{Ry : (Rp, Ri) € R(X,Y, Z)}. (1) Form, >2andm, =m, = 1, we have
Following the approach in[[11], we can obtain a cIosedI 5 B 11 pI 1 by, bT +1
form expression ofimp, o Ri(R,) as follows. Letg;,i = p(Jafu) 5108 Yol 2 08 b b + 17
tlﬁé'r'ﬁgtlﬁczz the generalized eigenvalues|[23, Chapter 6.3] ofI ) = llo b3, b7 + 1 1 ) es,el +1
MSald) = OB BT 1 2 B ey, e+ 1

1 T 1 1 T 1
(Esz B + I, X B7 BN + Imw) ‘ whereb, e € R™=. Noting the relation

Without loss of generality, we may assume that these gener- X, e’ +1 eXgjuel — byub" +1
alized eigenvalues are ordered as DY bT + 1 - DY b + 1 ’
P12 20, >12¢pp1 2 2 s (2) we set
i.e., a total ofp of them are assumed to be greater tHan s = b2m|ubTa
Then, we have eXgjuel — by bt +1
t =
B, BT +1 b2, 0T + 1
li = log | =——————

R, 1H}oo Rk(R ) 0521?&);22 |: o8 ‘ Bzz\uB + I‘ Let

1 EX,ET +1 1 PO

— Zlog | ——=2— "~ — _Z T
5 Og‘EEI|uET +IH I, (Zu,8) - 5 log’Emm log(bE bt +1)
1 14
= 5 logor 3) +3 5 los(1+5)
=1 R SN YU |

Since Eq.[(B) can be proved almost in the same manner as Li(t) = 2 8y T 11 + 510g(1 +1).

[11, Theorem 3], we omit a proof.

. . .. Then we can easily find that
Whenm, = m, = m, and bothB and E are invertible, it y

suffice to consider the case in which Ra(X,Y,Z)
Y = X+W, 4) ={(Bp, B): Ry = Lp(Esu,s),
Z = X+W., ) Re < Li(t),
here th i tricddy, and ¥ t 0% S 3 2,
where the covariance matric and Xy, are not neces- T T T
sarily identity but are invertible. ?:ollowing [22], we cahis tbZub” +1) < eXgpue’ — b¥gpb,
case the aligned case. As is usual with the vector Gaussian bzm|ubT < s)

problems (e.g.[[22]), the general statement (Theorém 1) HSr fixed (s, 1),

the optimization problem
shown by detouring the statement for the aligned case.

minimize L,(Zsu, 8)
Theorem 2 Let R (X,Y,Z) be the set of all rate pairs subject to t(me‘ubT +1)< ezmeT _ bEmbT

(Rp, Ry) satisfying b aub” < s
— llog‘ Yo |1 Og‘ﬂ , is a convex problem. By sweepirig, t), we can calculate the
2 Soful 2 Yglu + 2w, regionRq(X,Y, Z).
R, < I;C(Eﬂu) For
1 Yo+ Ewy 1 Yo+ 2w, 2 0
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0.25 , : : . IV. PROOF OFTHEOREM[Z
A. Direct Part

In [20], the present authors proved the following proposi-
tion, which is an extension of[2, Theorem 2.6] to continuous

0.2

0.15r- 1 sources.
o
01f 1 Proposition 3 For an auxiliary random variabl€ satisfying
the Markov chain
0.05¢ 1 U+ X< (Y, 2),
region
0 ) ) upper bound----—--—- let (R,, Ri) be a rate pair such that
0 0.5 1 1.5 2

R, > I(U;X)-I(U;Y),
Ry < IU;Y)-I(U;Z).
Fig. 3. region“ is Ry (Rp) defined in Eq.[{L) for the sources given by

Eq. [8). "upper bound” is the quantity(X;Y) — I(X; Z). Then, we haVQRP’ Rk) € R(X’ Y, Z)'
The direct part of Theorelm 2 is shown by taking Gaussian
04 , , , : : , , : auxiliary random variablé/ such that the conditional covari-
ance matrix ofX givenU is X, in PropositiorB. O
035} 1
03} 1
B. Converse Part
025 1 In the converse proof, we will use the following Proposition
& o2} ) and Corollary. The proposition was shown for discrete sesirc

in [2, Theorem 2.6], and it can be shown almost in the same

015k 1 manner for continuous sources.
0.1} i
005k Proposition 4 ([2]) Suppose that a rate paifR,, Ry) is

region |
upper bou‘nd~~~~;

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6
R R, > I(U;X|Y), ®)
R, < I(U;)Y|V)-I(U; Z|V), 9)

included inR(X,Y, Z). Then, there exist auxiliary random
variablesU and V' satisfying

Fig. 4. region is Ry (R;) defined in Eq.[{L) for the sources given by

Eq. [@). “upper bound idimpg, - Ri(Rp) which is explicity given by and the Markov chain
Eq. [3).

VeolUe X (Y,2). (10)

For degraded sources, we can simplify the above proposition

the regiorR (X, Y, Z) is plotted in Fig[B. Note that this case(See [20, Appendix B] for a proof)

is degraded in the sense of [25, Definition 1], i.E.c» Y <
Z by appropriately choosing the correlation betwd&h2).
In this case, the functio;(R,) converges tol(X;Y) —
I(X; Z) as R, increases.

Corollary 5 Suppose thatX,Y, 7) is degraded, i.e.X «+
Y < Z. If (Ry,,R;) € R(X,Y,Z), then there exists an
auxiliary random variablé/ satisfying

For
R, =z IU;X|Y)=IU;X)-1(U;Y), (11)
< IU)Y|\Z)=1U;Y)-1(U;Z 12
EIZ[gg},b:[l 05],e=[05 1], (7 Be < IUY|Z)=1U:Y)-1U:2), (12
and the Markov chain
the region R¢(X,Y,Z) is plotted in Fig.[#. Note that U XY ez (13)

(X,Y, Z) inthis example is not degraded. AlthoughX; Y)—
I(X;Z) =0 in this example, Fig:]4 clarifies that appropriates

guantization enables Alice and Bob to share a secret keyﬁX Y. Z) and (R%, R?) ¢ R% (X, Y, Z), where we assume
PR} P k G » 4 )

positive key rate. R} > 0toavoid the trivial case. Then, there exiétsc X7, =<
For non-degraded cas&;(R,) converges to the quantity 3, such thatl,(3°, ) < Re. Therefore, we can write

given by Eq.[(B) instead df(X;Y)—I(X; Z) asR,, increases, alu’ =P

and it is also plotted in Fid.]4. v=R;+¢ (24)

We show a converse proof of Theor&€m 2 by contradiction.
ppose that there exists a rate pair such (i} Ry) €
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for somes > 0, whereR;: is given by the optimal value of for any (R,, Rx) € R(X,Y, Z), where

maximize  I(X;,)

: o N Y.+ Xy
subject to Ip(ZmIU) = Rp’ (15) IP(EIM) = % log ’ EEJE B % log b)) Emiy ’
0= Spp = o olu alu T 2y,
. . I e s 1 Yo + Xy 1 Y.+ %
An optimal solutions? | of this optimization problem satisfies Ie(Zp.) = 3 log ﬁ — 5 log ‘ # .
the Karash-Kuhn-Tucker (KKT) condition (see Appenfix A alu T 2w, alu + 2w,

for the derivation)
. . B Then, by using the relation (see Appendix C for a proof)

= (1+p)(Sh, +Sw,) "+ M, - -
( M)( z|u Wy) (Em+EWy)( z\u+EWy) '

(16) .
= (S 4 S ) (S, ) 26
M(Z, —%%,) = 0, (17) ( w,) (B + 2w,) (26)
RS —I,(% = 0, 18 ~
PRy = Ip(351.)) (18) e have 1,(S2,) = Iu(53,) and 1,(S5,) = 1,(S5,):
wherep > 0 and M = 0. From Egs.[(I#) and_(18), we have Thus, Eq.[(Zb) implies that EJ.{R0) holds for aﬁyp,RkB €
RO RO . I E* I E* 6 19 R(X7Y7 Z)
b=l = (Eap) =l (Bp) + 0. (19) Sep 2: First, we show Eq.[(25) fop, = 0. In this case,
We shall find a contradiction to E_{19) by showing that foi©om Egs. [16) and[(21), we havey, = Xy, . Thus, from
any (R,,R;) e R(X.,Y,Z) Corollary[8, we have

Ry —0-R, <I(U;Y) = I(U; 2) = 0 = Ix(55,,).

The proof of Eq.[(2D) roughly consists of three steps: In the
first step, we reduce the proof for the non-degraded SOUreAsy;s, we have the assertion.

to that for the degraded sources by using the enhancemer]t .
. . : h order to prove EqL(25) for > 0, we change the variable
technique introduced by Weingarten al. [22]. In the second as follows. Since X, Y, Z) is jointly Gaussian, we can write

step, we change the variable so that we can use the entropy

power inequality (EPI). In the last step, we derive an upper

bound onR; — R, by using the EPI, which turn out to be X = K,..Z+ Ny,

tight. Y = KpX+KpZ+ N,
Sep 1: In this step, in order to reduce the proof for the

non-degraded sources to that for the degraded sources,fwe . d ith : :
introduce the covariance matri;;, satisfying or Gaussian random vectofé;, N, with covariance matrices

(1 + M)(Ez\u + EWy)_l EN] = Egc|z = E;IJ - szzzwa
= (1 + N)( ;Iu + EWy)il + M. (21) YN, = mez = EQ — ngng — Kg Ezg,

Then, we have (see AppendiX B for a proof)
where the coefficients are given by

0<%y, < Zw,, (22)
EWy = EWZ. (23) sz _ szzz—l
Let W, be the Gaussian random vector whose covariance
matrix is Xy, , and let and
Y =X+ W, (24) s oy 1t
. N . Kj. Kijo | =] 25 Zgo | [ s } (27)
From Eqg. [2B), we can find that the sourde$ Y, Z) satisfy xz x

X <Y « Z. Furthermore, from Eq[(22), we can also find

that X < Y « Y, which implies By noting the relations
R(X,Y,Z) C R(X,Y,Z). . -
IU;XY) = I(U;X)-I(U;Y),
Thus, it suffice to show that Eq.(20) holds for &y, Rx) € IU;Y|Z2) = I(U;Y)-I(U;Z2),
R(X,Y,Z). In steps 2 and 3, we will show that U:X|Z) = I(U:X)-I(U:2),
Ry — pRy < In(23),) — plp(33),) (25) I(U; X|Y) 1(U; X|2) = 1(U; Y| Z)
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for random variables satisfyingf <+ X <+ Y « Z, we have whereU is not necessarily Gaussian. By using the conditional
- - version of EPI[[26], we have
I, (Exlu) - ﬂIp(Ez\u)

= I(U;Y|Z) - pl(U; X|Y) MX|U, Z) — vh(X + N3|U, Z) (32)
= (1+wIU;Y|Z) - pl(U; X|2) < (XU, Z)
= [+ p)h(Y|Z) — ph(X|2)] —%log (exp [%h(XW, Z)] + exp [%h(Ng)])

+Huh(X|U, Z) = (1 + wh(Y|U, 2)]

m
= [0+ wh(T1Z) - (X 12— E g regnl) = (h(%) = 5 toaly = s (N3)), o
L ulh(X|U, Z) — yh(X + K5Z1N2|U, 2)] where we set
= [(14 ph(Y|Z) — ph(X|2)] - HTH log | Ky K 1| ftia) =t — % log <exp {%t] + exp [%a]) :

Fulh(X|U, Z) — vh(X + N3|U, Z)]
= [0+ WA(F1Z) — uh(X12)] — 5P og | R K

yz'

Note that the functiorf (¢; a) is concave function of and takes
the maximum at = a — % log(y — 1) [27]. From Eq. [(3D),
we have

1
+ 1 3 log(2me)™ X, )y2| — %1og(2we)m|21‘uz + 381
(28)

(7 - 1)712]\[3 = E;|uz7
which implies
where we sety := ”T“ > 1 and N3 := K;.'N,. It should be m 1
noted that h(N3) — ) log(y—1) = B log(2me)™ (v — 1) "X N, |

|Kgo| # 0 (29) = %log(27re)m|2* |

zluz
for > 0, which will be proved in AppendikD.

' Furthermore, sinc&*, = and X, are proportional to each
For the change of variable Ns prop

z|uz
other, we have
(b : Em\u — Em\uz = (2_1 + E;Vlz)ilv

z|u |E* |1/m + |2N3|1/m — |E* + 2N3|1/m'

zluz z|uz

lety; . = ¢(Ew|u). From Eqs.[(16) and (21) and the reIa'uonl_husy from Eqs.[(31) and(B3), we have

fk(zmlu) - pr(2m|u) Ry — R,
o M m 1 m ~ 1
=3 log(2me)™ X4 ,] + 3 log(2me)™ [X4u + Xw, | < (14 ph(Y|Z) — ph(X|2)] — 1+p log |K7§xKgx|
T2 log(2me)™ |Zypw + Xy, | i | 5 log(2me)™ |87 .| - %mg(zwe)mm;‘uz + Y|

+[(1 + p)h(Y) — h(Z) — ph(X)], = Ii( 2| ) — pdp( 2l

we have
} } O
Vs, [1(Z0) = nh(23,)] = 0.
By the chain rule for the derivative, we have Remark 6 One of the difficulties in the above proof is that,

after Step 1, we have to show the extremal inequality of the

Vs |07 (S)) — 1D (67 (20| form
x|uz Tjuz x|u r|u r|u 1
~ . < Llog|Ty, |+ 5 log |23, + Sw|
Thus, from Eq.[(28), we have _0+p . O ) (34)
* -1 _ * —1
( z\uz) o V(Eﬂfluz +EN,) 7 (30) This type of extremal inequality has appearedlin [28, Corol-
Sep 3: By noting that(X, Y, Z) is degraded, from Corollary lary 2] (scalar version has appeared [in][29, Lemma 1]). In
for any (R,, Ry,) € R(X,Y, Z) we have [14], the extremal inequality was proved by using a vector
P T generalization of Costa’s entropy power inequallity| [30h O
Ry — uR, the otherhand, we showed E@.(34) by using the change of
< I(U;Y|Z) - pI(U; X|Y) variable in Step 2 and by reducing to more tractable form

. 1+pu (Eg. (32)), which has appeared in the literaturel [27]. By thi
= [+ wh(Y|Z) = ph(X]Z)] - —5— log |KiKjz|  reduction, we only need the standard EPI in our proof instead
+u[h(X|U, Z) — yh(X + N3|U, Z)], (31) of Costa’s type EPI, and our proof seems more elementary.
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V. PROOF OFTHEOREM[I]

From Propositio 4, for anyR,,, Rx) € R(X,Y, Z), there

In this section, we show Theordh 1 by using Thediém 2. Vi&ist (U, V) satisfying

follow a similar approach as in [10, Section 4]. Since thectr

part can be proved by taking a Gaussian auxiliary random
variableU in Propositior B (see Section IV}A), we concentrate

R, > I(U;X)-1(U;Y),
Ry < I(UYV)-IU; Z|V),

on the converse part. Without loss of generality, we canmaesuand (U, V) < X « (Y, Z). Let

that the matricesB and E are square (but not necessarily _

invertible). If that is not the case, we can apply singulduga
decomposition (SVD) to show equivalent sour¢as, Y’ 7")
onR™= x R™= x R™= such thatR(X',Y’, Z") = R(X,Y, Z)
in a similar manner as [22, Section 5-B].

By using SVD, we can write the matrices as
B = UyA,V,,
E = UZAZ‘/Z7

whereU,, V,,U, andV, arem, x m, orthogonal matrices,

andA, and A, are diagonal matrices. Let
B = U,(A, +al)V,,
E = UyA,+al)V,

for somea > 0. Then, let
Y = BX+W,,
A EX +W,.
Since B and E are invertible, Theorei 2 implies
R(X,Y,Z) = Ra(X,Y, ). (35)

In the following, we will show the following lemma.

Lemma 7 We have
R(X,Y,Z) Cc R(X,Y,Z)+ O(X,Y, Z),
where

OX,Y,2) —

1 _ _
{(O,Rk) C0< Ry, < §1og|EEmET + I
1 T
—510g|EEzE +1I);.

By letting o — 0, R (X, X, Z) converges tR¢ (X, Y, Z)
and O(X,Y,Z) converges to{(0,0)}. Thus, Eq. [[3b) and
LemmalT implyR(X,Y, Z) C Ra(X,Y, Z).

Proof of Lemmal[7

Let

Cy
C:

UyAy(Ay +aI)7lVya
U A (A, +al) V.

Then, we havce?’yCyT < IandC.CT < I. Thus, we can write

Y
Z

= C,Y+W,,

C.Z + W,

for W) ~ N(0,1 - C,C) andW, ~ N(0,1 —C.CT), i.e.,
we have

(36)
(37)

Ry
Ry,

IU; X) - 1(U;Y),
U Y|V) = I(U; Z|V).

Then, we have

R,—R, > I(U;X)—-IU;Y)~[[(U;X)~IU;Y)]
I(U;Y) - I(U;Y)

0,

>

where the second inequality follows from E{.](36). On the
other hand, we have
Ri — Ry, IU;Y|V) = I(U; Z|V)
—[[(U;Y|V) = I(U; Z|V)]
I(U;Z|V) - I(U; Z|V)
U YV) - 1(U; Y V)]
I(U; Z|V) = I(U; Z|V)
(U, V;Z)-1(U,V; Z)
—[1(v:2) - 1(V; 2)]
I(U,V;Z) - I(U,V;2Z)
I(X;7) - 1(X; Z)
—[I(X; Z|U, V) — I(X; Z|U, V)]
I(X;2) - 1(X;2)
% log|EX,ET + 1| - % log|EX,.ET + 1|,

<

<

where the second, third, and forth inequalities follow frima
Markov relations in Eqs[{36) an@ (37). O

VI. CONCLUSION

In this paper, we investigated the secret key agreement from
vector Gaussian sources by rate limited public commurdoati
We characterized the optimal trade-off between the key rate
and the public communication rate as a (covariance) matrix
optimization problem. Investigating an efficient method to
solve the optimization problem is a future research agenda.

APPENDIXA
DERIVATION OF THE KKT CONDITION

We first rewrite the optimization problem in Eq._{15) as a
standard form

minimize  —Ix (X))
subjectto  I,(¥;,) — Ry <0 (38)
0= Zm|u =<3,

Let E;‘u be an optimal solution for this problem, which is
also an optimal solution of Eq[_{IL5). Then, we have -0
because of the constraify(3; ) — R} < 0. Thus, there exists
a positive definite matrix, satisfyingL < X*
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Let us consider another optimization problem Next, we check[{2). For any # 0 in the null space of
o EI—E*‘ , we have
minimize  —I(3,.) i
subjectto  I,(S,p,) — RS <0 (39) viAv =vI(L=%3,)v <0
L =Ygy = Xe. becausel < ¥

Obviously,% , is also an optimal solution for the problem in Finally, we check[(8). By noting

Eq. (39), and the optimal values for Eds.](38) dnd (39) are the
same. Although the optimization problem in EG.1(39) is not
convex, there exist Lagrange multipliedd; = 0, My > 0,
and p > 0 satisfying

Y )y = 3T[{E 3w - e -]
L) = O (41) 1 * —1 * —1 *
’ +;Tr Emu+2 y - z|u 21_ z|lu/| -
. N ) ST [{ (S + Sw) ™ = (22071 ( Bl
(R, — Ip(zim)) 0 (43) SincelL - _E;W =< O by _tal_<|ngoz > 0 to be sufficiently large,
the condition[(B) is satisfied.
if the set of constraint qualifications (CQs) shown below are

satisfied (see [22, Appendix 4] for the detail). Since, >~ L, Remark 8 We need to introduce the optimization problem
Eq. (41) implies)M; = 0. Thus, by noting the relation in Eq. (39) because the arguments inl[22, Appendix 4] is
uaranteed only under the condition such that the range of
Ik(EmIU) - qu(Emw) 9 y g

1 the variableX,, is a closed set.
- g log(2me)™|Zapu| + 5 10g(27€) ™ Zapu + S|

1 1
Voo (Bat) = 5 (Eepu + Sw,) ! 22% <0

for any ¥, = 0, we have

[Vzm( b(Zh) — Bo)A

Ml(zﬂu
M (e — 33,,))

(1+ p) APPENDIXB
log(2me)™ (X5, + Zw, | PROOF OFEQs. (22) AND (23)
+H(1+ w)h(Y) = h(Z) — ph(X)], (44) By noting M = 0, we have
and by settingMl = 2M,, we have the KKT conditions in (X + 2w ) = (Eg.+ Sw,) '+ M

The CQs shown in[22, Appendix 4], which is an interpre-
tation of [31, CQ5a of Section 5.4] are the following: Ther&hus we have
exists a matrixA satisfying

. Y 2 Xw, -
1) For anyu # 0 in the null space oE;‘u — L, we have Wy = =Wy
u’ Au > 0. SinceXy, > 0, by substituting Eq.[{21) into Eq_(IL6), we
2) For anyv # 0 in the null space ob, — E;‘u, we have have
vlAv < 0. " 1
3) ( ol T ZWy)
H * —1 1
o = — )+ —E .2 45
T&"[sz\u(fp@m) R )AT} > 0. T Set) g (e + 2we) ™ (49)
* —1
To check whether the above CQs are satisfied, we suggest ( ”'“)
A given by when g > 0. Thus, we have
for a > 0. First we checkl(1). For any # 0 in the null space Note that¥;;, = Xy, < 0 wheny = 0.
of 337, — L, we have From Eq. KZE), we have
ulAu=uT (2, — ML (2w + 5w, ) = (X3 + Sw.)
Suppose that” (2, E*‘ )u = 0. Then we have where the strict inequality holds fgr > 0. Thus we have
Y, X
0 = u” (( ilu - L)+ (2, — E;Iu)) u W, = =W
and especiall
= u’(%, - L)u, f y
EWy < EWZ (46)

which is a contradiction because, = L. Thus the condition
(@ is satisfied. for u > 0. O
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APPENDIXC
PROOFS OFEQ. (28) [1]

Eqg. (26) can be derived by the following sequence of
equalities: 2]

Xz + Xy, ) (3, + Sy, )~

= (%2 = Z2) + (Ehu + Bw,)| (Sl + T, )
= (B =X, + By, )1+I

= (B- m)[( x|u+2wy)‘1+M}+1 (47) Bl

(3]
(4

= (Ex + EWy)( 2w T 2w, ) : (49)

where Eq. [(47) follows from Eq[{21) and Ed._[48) follows (8]

from Eq. [17).
9]

APPENDIXD
PROOF OFEQ. (29) [10]
From Eqgs.[(24),[(5) and_(#6), we can write

- 11
Z=X+W,+W/, (50) -
whereW’ ~ N(0, EWy — Xw,). Thus, we have [12]
Y5, = Y, [13]

Ezm = ELIJZ = ELE

[14]
Furthermore, we have

S < 3. (51) [15]

From the block inversion of the matrix (e.g. see [32
Appendix 5.5]) and Eq[{27), we have

51 -1

= (I-%327hH%,857Y (52) g
where

9
S=%, —x,5l%, (]

. [20]
is the Schur complement.

From Eq. [51), we have

144! 1 [21]
I—%2%"%; -1— 222 25—0.

Thus we have [22]
- 5,501 = T - £250'52] 0. (53) [23)

By combining Eqgs.[(§2) and (53), we have Hq.l(29). O [24]
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