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Abstract—In this paper we discuss the ability of channel receiver obtaing” over themain channetienoted?,,, and an

codes to enhance cryptographic secrecy. Toward that end, we eavesdropper obtaing over awiretap channedenotedQ,,.
present the secrecy metric of degrees of freedom in an attaeks The secrecy condition is

knowledge of the cryptogram, which is similar to equivocaton.
Using this notion of secrecy, we show how a specific practical
channel coding system can be used to hide information aboubé
ciphertext, thus increasing the difficulty of cryptographic attacks. )
The system setup is the wiretap channel model where transntgd ~ Wyner showed that for rates up to the secrecy capaCity
data traverse through independent packet erasure channels encoders and decoders exist which can satisfy (1) and also
with public feedback for authenticated ARQ (Automatic Repeat  achieve arbitrarily low probability of error for intendedrties
reQuest). The code design relies on puncturing nonsystemat whenX — Y — 7 is a Markov chain. This is known as the
low-density parity-check codes with the intent of inflicting an . - ..

eavesdropper with stopping sets in the decoder. Furtherma, degrade_dmretap channel modell. Csiszar and Korner [3].Iater
the design amplifies errors when stopping sets occur such tha  generalized these results removing the degraded restrjdtut
receiver must guess all the channel-erased bits correctlptavoid  still showing thatC, > 0, only if Q,, is less noisythanQ,,.

an expected error rate of one half in the ciphertext. We exted Understanding of the theoretically achievable secreagsrat

previous results on the coding scheme by giving design crifi@ ot communication systems has continued to grow, as outlined
that reduces the effectiveness of a maximume-likelihood atck to . ANL dTT61. But th fth in chall

that of a message-passing attack. We further extend secuyit !n e.g. 4], [3], and[[6]. Bu an_o er o e_ main cha enge_s
analysis to models with multiple receivers and collaboratie iN this area has been the design of practical systems which

attackers. Cryptographic security is enhanced in all thesecases achieve the secrecy rates indicated by the theory. These

by exploiting properties of the physical-layer. The enhanement gsystems exploit noise in the channel at the physical layer of

is accurately presented as a function of the degrees of freeth  yho communications system. Practical designs maximizieg t

in the eavesdropper’'s knowledge of the ciphertext, and is en . . ) -

shown to be present when eavesdroppers have better Channe||nformatlon-theoretlc secrecy are not trivial. Most C_m

quality than legitimate receivers. suffer from one or more of several drawbacks. For instance,
code designs are oftentimes a function of specific channel pa
rameters (channel state information or CSI) seen by legtém

|. INTRODUCTION receivers and eavesdroppers. Without accurate CSI, to#tges

A. Cryptography and the Physical Layer of these systems are not guaranteed; therefore, chanrtéls wi

Any cryptosystems in place today measure securi\&?‘rying or unknowable parameters p_r_esentdesign issuber Ot

computationally. If all known attacks are computation¢0des offer secrecy for only specific types of channels, or
ally intractable, then the system is deemed to be secure. Ty when the eavesdropper's channel is degraded. Stidiroth
chief failings of this notion of security are the assumpsior€Signs are impractical in the real world due to design com-
placed on the attacker. First, it is assumed that the attacRiEXity, necessary side information for legitimate deoaglior
has limited resources to confront the problem, even if thoS&€r limitations. Finally, the most glaring shortcomirfgany
resources are state of the art. Second, it is assumed thatSHEEMe which derives security from the physical layer of a
attacker uses attacks which are publicly known, even thougfmmunications system, is that if an eavesdropper fimstar

a better attack may exist. Claude Shannon addressed tHe¥dnel than a legitimate receiver, the scheme is likelatio f
shortcomings by defining the notion erfect secrecy]. The extreme case is when an eavesdropper has a noise-free

If a secret messagé/ is encrypted into a cryptogrant channel an_dZ = X. Clearly this necgssitates any physical_-

using a secret keyk, then perfect secrecy is achieved if_ayer security s_che_meto be cqupled with some other protecti

H(M|E) = H(M). Shannon also proved that perfect secred}) Order to maintain secrecy in the worst case.

is only attainable if the key is at least as long/ds which is . o

clearly impractical. However, perfect secrecy also makes tB- Main Contributions

limiting assumption that an attacker has access to an fger- The intent of this paper is to develop the notionawm-

cryptogram, which may not be the case in practice. bined securitydue to cryptography and channel coding, thus
Aaron Wyner later introduced the wiretap channel modegdroviding a more complete security solution. To accomplish

along with a new condition for secredy [2]. Let a messagde this goal, we cast coding into a cryptographic enhancement

of length k& be encoded into a codeword of lengthn, and role, and seek to prevent an attacker from obtaining a noise-

then transmitted. The rate of the encodek is:.. A legitimate free cryptogram using channel coding. We present a new
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security metric for physical-layer schemes; namely, degreenhanced cryptographic secrecy over a wide range of CSI
of freedomD in an attacker's knowledge of the cryptogramparameters, and requires no secret key and no rate reduction
As a comparison, if bits inM are uniformly zero or one in data transmission.
and independent and identically distributed (i.i.d.) ntiperfect
secrecy implied = k. In fact we show that/ (X |Z) = E[D
for a specific case. Our notion of physicaI—I:E\ye!r s)ecurit[i)ng;ls C. Related Works
D addresses the effectiveness of attacks on a cryptographi©ur encoder makes use of fundamental practical design
layer. To be more precise, our notion of security answers tisieas which have been shown to offer secrecy. For example,
practical question, how does the complexity of an attack @ur encoder employs nonsystematic LDPC codes in order
the cryptography change without perfect knowledge of tte hide information bits and magnify coding errors. Secrecy
cryptogram? properties of these codes have been studield in [12]. Wedurth
It has been shown previously using correlation attacks &Wploy intentional puncturing of encoded bits, a technique
stream ciphers that certain cryptographic attacks adepsti- shown to offer security in[[13][[14]. Our scheme punctures
sible even on noisy cryptograms, although a threshold on tiéh the goal of inducingstopping setsn an eavesdropper’s
noise level exists such that errors beyond the thresholdecafeceived data. As a result, every transmitted bit is cruciel
the attack to fail [[7], [[8], [[9], [10]. Practical schemes sith decoding. Our intent is to punish an eavesdropper for every
provide enough confusion to exploit even the smallest amouRissing piece of information. Finally, in order to distrtbu
of noise in an eavesdropper's received data to cause fail@f@sures throughout the data set, the encoder interleadesl ¢
of these attacks on the cryptographic layer. Such systeRits among several transmitted packets. Similar ideas -of in
should be robust to varying channel parameters, imperfégfleaving coded symbols have been used[in [15]! [16] in
CSlI at the encoder, and nondegraded system models. In f&efjunction with wiretap codes developed [n[[17] to offer
good designs still offer security enhancement to cryptolgya Secrecy to various systems. The works| [18]. [19] give result
even when attackers have an advantage in signal quality of@rARQ and feedback wiretap systems.
legitimate receivers. Of course, all of this must be dondevhi It can be argued that the first practical secrecy coding
guaranteeing reliable communication between friendlyipar Scheme was presented by Ozarow and Wyner in an extension
Therefore, along with the new metric, this paper als8f the original wiretap paper.[4]. Here the general idea
analyzes combined cryptographic and physical-layer :iigcurOf partitioning a group pode into cosets to achieve secrecy
in a practical coding schemassing degrees of freedom toWas first presented. This technique was shown to apply to
characterize security. IfL[11], this scheme was shown tizinfl LDPC codes much more recently in [17], and achieves the
a passive eavesdropper using a message-passing decduerSFg"ecYy condition m_[{l)_ for n0|s_eless main channels when
stopping sets with very high probability when a legitimaté® Wiretap channel is either a binary erasure channel (BEC)
receiver and an eavesdropper view transmitted data thro®jh@ binary symmetric channel (BSC). This work in LDPC
statistically independent packet erasure channels (PE®. codes for secrecy has been furthered!inl [20], where large-
scheme relies on a nonsystematic low-density parity-che@kth LDPC codes are considered, and shown to meet the
(LDPC) code design, with puncturing and interleaving steff§$Crecy constraint inJ1) for n0|_seless main channel an_d BEC
in the encoder. Legitimate receivers are given access to {etap channel. A stronger notion of secrecy tHan (1) ie als
authenticated public feedback channel for Automatic Repe&chieved for these codes in certain cases. Finally, it shoul
reQuest (ARQ). In this paper, we broaden the security a-m|yge noted that Arikan’s polar codes [21] can offer secrecy for

of the scheme given in[11] by addressing the following pmintgeneral symmetric channels, although code constructian is
issue for non-erasure channels. Schemes have been presente

« Degrees of FreedomThe system security is analyzed, pp] and [23] which achieve the secrecy capacity under the
using the new metric. Computational secrecy is showlyngition in [1), although these schemes only offer secrecy
to grow exponentially with[ D], which is also shown 10 o qegraded wiretap channels. Furthermore, design okthes
be equal toH/ (:X|Z) for the prescribed encoder. codes is heavily contingent on perfect CSI at the encoder.

« Encoder DescriptionEnd-to-end details of the encoder Although our codes can be shown to achie® (1) only
and decoder are provided, as well as simulation resuf§qer certain puncturing criteria, the main contributidrre
Wh|(_:h_ma_tch theo_ret|ca_l expectatlons.__ .. coding scheme presented here is the cryptographic security

» Optimization: Design Cr'Fe”a are spemﬁeql tq MaXxXiMiZ&nhancements shown using degrees of freedom as a security
the degrees of freedom in the mf’;IX|mum-I|keI|hc_)oq altaGietric. Our scheme is robust against imperfect CSI, and
as well as the message-passing attack. This iNVONES 1ot matter, undetected eavesdroppers. According to ou
comparison of irregular LDPC codes with regular LDPG o\ jeqge, it is also the firgiractical secrecy scheme which

EOdes'_ S , | q | can operate on the general wiretap channel (nondegradeq cas
« Extensions:Security results are made general so as {pnan, bothQ,, and (., are erasure channels.

apply to mul_tiple receivers and ml_JItipIe co!laborative The rest of the paper is outlined as follows. In Section
a}ttackers. Ultimately, bOU”O_'S on the increase in compu@- we discuss the system model for which our encoder is
tional secrecy Qf an underlying _cryptosystem are SpeCIfI%%siggned, which is an adaptation of the wiretap channel inode
when the physical-layer encoding system is employedfrom [2]. The precise definition of degrees of freedom is also
Ultimately, this scheme has very few design constrainfersf given. SectionIll addresses background information reigar



Feedback Channel sole source of confusion for Eve is her own naturally ocowgri

J Om erasure pattern acrosg, [l
M v N As mentioned in Sectidn |, we defiphysical-layer security
Alice %{ Encode PEC() Decoder—— Bob for this system with the cryptographic layer in mind. Crypto
graphic attacks often assume an attacker has the luxury of an
Qu error-free version of\/ (or even some of the plaintext), but
A Wi our design aims to prevent this from occurring, by creating
‘PEC@ Decodef—— Eve degrees of freedom in the attacker’s knowledge\bf

Definition 1. The number oflegrees of freedoiim a received
Fig. 1. Wiretap channel model with feedback assuming paekasure Ccodeword is a random variabl@ which takes on the number
channels for both the main chanr@l,, and the wiretap chann€),,. of encoded Symbo|s for which an eavesdropper has no infor-
mation. Therefore, the probabilities of all symbol values o

) theseD symbols are equally likely.
LDPC codes and stopping sets. Our novel encoder and decoder

designs are presented in Sectibnk IV &nd V, respectivelgl-An  FOr binary codes witlD = d, a codeword of length can be

ysis of the security inherent in the system is then complet@fy of2¢ equally likely codewords, each mapping to a unique
in Section[V) for various scenarios, ultimately culminatin k-bit message inV. Since we assume that the attacker knows
in the most general case which encompasses multiple usé@ encoder, the maximum value bfis , and can be shown
and collaborating eavesdroppers. Finally, bounds reggrdf® have an information-theoretic definition. Since an &iac
enhancements of cryptographic security are presenteddgn Seas no knowledge of these bits, an average’of!~! guesses
tion [VITl along with end-to-end simulations of the systemMust be made to obtain them. Using this reasoning, the goals

Conclusions are provided in Sectiba VIIl. of our physical-layer design are: first, to ensure that 0 for
Bob so thatM = M; second, to makeé as large as possible

Il SYSTEM MODEL AND DEGREES OFFREEDOM ;girl ﬁv]ew ingé[t.hlrd, to ensure that attacks on the cryptogram
We begin by presenting the wiretap channel model [24]

with the addition of feedback in FigJ] 1. A user named l1l. LDPC CODES AND STOPPINGSETS
Alice wishes to transmit aencryptedbinary messagé/ = We employ LDPC codes [27] and exploit the phenomenon
(m',m? ..., ml) to a legitimate receiver named Bob, wher@f stopping sets to obtain security from the physical layer.
mé = (mé,mb,...,mi) € Mfori=1,2,...,L. It will be This section provides limited background of LDPC codes and
helpful to think of M as being broken up intd, blocks of stopping sets in order to establish the foundation upon lwhic
length k&, wherek is the dimension of the encoder to follow.to present our encoder.
The final blockm®” can be filled by concatenating random Let us define a general binary LDPC co@ewith block-
bits if needed. Let us also define the blocklengthof the length N, and dimensiork. Note that thisk is identical to
encoder. Then the coding rate ign. To be clearn is the & from sectiorll, butN the blocklength of the LDPC code,
length of a codeword after it has been punctured. We wil different fromn the blocklength of the encoder because
also assume that/ has been compressed, so that all possibieis the codeword length after puncturing. The parity check
bit combinations are equally likely in the alphablet. Prior to matrix H fully defines the code, and & — k& x N. We will
transmission, Alice encode¥, resulting in a collection ofy find it helpful to think of H in terms of its corresponding

packetsX = (x!,22,...,2") for transmission. Bob receivesTanner graphG¢ [28], [29]. The set of variable nodes is
the packets ag” through @Q,,, a PEC with probability of V' = (vy,vs,...,vx), While the set of check nodes is
erasured. An eavesdropper named Eve obtains the packets U = (u1,us, ..., un—k). Variable nodes correspond to the

although througt@).,,, an independent PEC with probability ofbits in a codeword. Checks correspond to rowsHin where
erasuree. An obvious extension of this model is to considethe set of bits that participate in the cheek is denoted
correlated erasures i@, andQ.,; however, in this paper we N; = {j : H; ; = 1} [28]. Then theith check is calculated in
always assume erasures are statistically independertllyrin GF(2) asu; = 3~ \, v; = 0. The notation\V; ; signifies all
M and M are the respective estimates/df by Bob and Eve. bits in theith check except thgth bit. Thejth variable node
The encoder and decoder exploit the independent naturesbfires an edge with th¢éh check node inG¢ if and only if
erased packets acro§s, and@,,. Of course, the system mustj € N;. The Tanner graph for a simple example is shown in
guarantee thad/ = M, while at the same time making EveFig.[2.
as ignorant as possible. The authenticated feedback chann®ecoding of an LDPC codeword over a BEC can be
available to Bob plays a key role in accomplishing botaccomplished using maximum-likelihood (ML) decodingl[30]
of these endeavors. This public noiseless channel is udsd solving a system of equations. However, the iterative
to request the retransmission of erased packets. Since itmigssage-passing (MP) decoder is commonly used due to its
authenticated, Alice is able to deduce whether Bob sent tbemputational efficiency. We briefly explain both decoders.

request, and can detec i i : i
q ’ tany tampering with the dafa [25];}Whl 11t is noted that results in SectignVI are provided for thisteyn, as well

restricts E\_/e to paSSive status [26]- Requests b_y Bob anEpUbas the more general model which allows an arbitrary numbdegifimate
and there is n@ecret keyemployed at the physical layer. Thereceivers and eavesdroppers.



clearly satisfies the notion of degrees of freedom from Defini
tion[1 for this decoder. Thus we see that the effectiveness of
the decoder is strictly bounded by the redundancy of the.code
While faster methods have been discovered for solving atine
system of equations, the straightforward decoder is knawn t
have complexity((1 — R)S + v§)§*> N3, whereR is the rate

of the code,8 and~ are constants which are also a function
of the elimination algorithm chosen to solve the system of
equationsy is the erasure probability in the channel, aNd

is the blocklength of the code [30].

B. Message-Passing Decoding

Let C, z, andy hold the same definitions as for the ML
decoder. The MP decoder is an iterative decoder based on
the Tanner graph representation @f The decoding process
passesnessagebetweerl/ andV along the edges @F-. One
Fig. 2.  Tanner graph for MP decoding over the BEC with a higittd version of the decoder is given as Algoritiin 1 (adapted from
stopping set due to erasures at variable negeandvs. [31]). The number of degrees of freedom in the MP decoder
Dyp is the cardinality of the smallest set of bit values that
must be supplied in order to decode all remaining bits. If the
decoder succeeds, thém,,p = 0. Clearly, this maintains the

Let us consider an LDPC codewarde C transmitted over definition of degrees of freedom given in Definitibh 1 when
a BEC and lety denote the received codeword. Note thaestricted to this decoder, because any bit combinationexfe
z; € {0,1} andy; € {0,1,e} wheree signifies an erased D,,p values decodes to a valid codeword, and each is equally
bit. We letC denote the set of known bits iy andC denote likely without further information. A bound on the correati
the set of erased bits ip. Furthermore,Hx and Hg can capabilities of the MP decoder is given by the following
be understood to be matrices formed by the columngiof proposition.
indexed byk- and k., respectively. Similarlyzxc and g are Proposition 2. The MP decoder over the BEC can correct no

vectors composed of only the bits indexed by the respect%eOre than — k erasures.

A. Maximum-Likelihood Decoding

sets/C and K.

Clearly, 0 = Ha" = Hyaxy + Hrap, wherezx = yx, Proof: In Algorithm [, each check node can correct at
and thusHyxzt = 27 is known. The maximum likelihood most one variable node, aftl| = N — k. [ ]
decoder must then solve for the channel-eraseduhitsising The MP decoder is suboptimal compared with the ML
the system of equations given by decoder, although the MP decoder has linear complexity in

T T the blocklength[[28]. A more detailed comparison of the two
Hgrg =27 (2)

decoders is offered in_[33].

This system has a unique solution when the erased bits are

such that the columns ofi are linearly independent [81]. Algorithm 1 Message-Passing Decoder over the BEG [31].
We can obtain a bound from this statement which we will uset: Initialize: For y; # e, setv; = y; and declare all such

to analyze security in the worst-case. variable nodes as known.

2: if (No variable nodes are known and no check node has
degree onejhen

Output the (possibly partial) codeword and stop.

Proposition 1. For a linear codeC' with blocklength/V and
dimensionk, the ML decoder over the BEC cannot have a_.
unigue solution if the number of erasures excedds k, that 4: else

is if |K| > N — k. 5: Delete all known variable nodes along with their
Proof: The rank of Hg equals the number of linearly adjacent edges.

independent rows or columns of the matrix ([32], pg. 244).6: end if
Since N — k is the number of rows iri, the rank of i can  7: For each variable nodg connected to a degree one check
never exceedV — k, and thus the ML decoder cannot produce nodeu;, declarev; as known and set; = >, ., = Vk-
a unique solution whefC| > N — k. | Jump to 2.

In fact, when the number of erasures exceéds- k, the
system in[(R) will be such that the degrees of freedom in the
ML decoderD,r, > |K|— (N —k), where we achieve equality )
if there areN — & linearly independent columns ific [30]. C- Stopping Sets
In any caseD,,y, is equal to the difference in the number of In order to makeD as large as possible for our system when
erased bits, and the number of linearly independent columans eavesdropper uses an MP decoder, we would like to design
of Hi, and is zero if this difference is negative. This definitiothe encoder block from Fi@l 1 so that every bit erased by the




channel adds a degree of freedom to the decoder. Stopping % LDPC ]ﬁ
M

Puncturg P
Block

BufferH Interleave])—(>

sets provide a means of accomplishing this task. Encode
- - : L blocks L blocks L blocks n packets
.al. [34 - :
Definition 2 (Di, et. al. [34]) A stopping seis a setS C V length’  length N lengthn Sizenl

such that all check nodes iN(S) are connected t& by at
least two edges, whe®¥ (S) signifies theneighborhoof S

and is defined as the set of all adjacent nodes to any memiigr3. Detailed block diagram of the encoder. Number and sizblocks
of S'in Gc¢. or packets are indicated at each step.

Notice that the empty set, by definition, is a stopping set, as

is any union of stopping sets. Thus, a_rr%/_set of variable nodes, Bits from encoded blocks are interleaved amongst several
has a unique maximal stopping set il iSee Fig[R for a transmitted packets so that a single erased packet results

simple example; clearly the erasures cannot be resolved usi i erasures in many encoded blocks of data.
Algorithm[I. This gives way to the following lemma, proved

in [34].
Lemma 1 (Di et. al. [34], Lemma 1.1)Let G be the Tanner A. Nonsystematic LDPC Codes

graph defined by the parity check matiik of a binary linear Recall from Sectiof]! thafi/ = (m!, m2,...,m%), where
block codeC, and assume thaf' is used to transmit over ,,,i _ (mi,mb,...,mi) € Mfori=1,2,... L. TheseL

the BEC. LetA be the set of erased bits in the receivegk)cks of encrypted message form the input to the nonsys-
codeword. Then, using Algorithi 1 @i, the set of erasures tematic LDPC encoder with blocklengfii and dimensiori:.
which remain after decoding comprise the unique maximghe output of the LDPC encodé? is given asL codewords
stopping set inA. of length N, denoted asB = (b',b%,...,b") where each

Since stopping sets cause the MP decoder to fail, punctur¥@Ftor b = (b, b5, ..., byy). Certainly, if the codeC' were
in the encoder will be done with an attempt to inflict Eve witifyStematic, then the bits @h* would appear explicitly in the
stopping sets. However, the ML decoder will still succee§ncoded block’. For secrecy purposes, nonsystematic codes
even in the presence of stopping sets, as long as the era&&employed.
bits have linearly independent columnsih We account for ~ Nonsystematic LDPC coding is typically implemented as a
both decoders in our design by using a particular ensemblet§P Stage process to improve encoder complexity [38]! [39],
LDPC codes wheré),;p can be made equal tB,;,, thus [12]. Let S be an invertible: x k scramblingmatrix in GF(2),
ensuring secrecy regardless of the decoder used by Eve. #Ré letG be ak x IV systematic generator matrix. Let be a

simplicity of MP decoding is also preserved for all legitima length# message. Then our LDPC encoding process applies
receiversl the scrambling matrix ton as

m' =msS. 3)
V. ENCODER

The encoder design is based on the fact that/; Z) < The data are then encoded usi@gby b = m/G to obtain a
I(M; X) because processing cannot increase information, 489th=V block of encoded data. Clearly at the decoder the
M — X — Z is a Markov process [37]. The key idea infnverse operation first requires the bits iofto be obtained
the decoder is to reduc& to the de‘coding threshold. Inthrough either MP or ML decoding. Sinceis systematic, the
other words, X can be used to recove¥ by design, but bits of m’ are explicit inb. The bits ofm can then be found
if any erasures remain i& following transmission, unique PY @Pplying the inverse af in the descrambling operation
decodability is not possible_. Proper design maximiib%r m=m'SL. (4)
Eve. The stages of encoding are portrayed in Eig. 3, where - . _
each stage fulfills a specific purpose within the overall goal'his process amplifies errors in the dGEOdlng process as a
of obtaining secrecy and reliability. The following priptés function of the sparsity of . Note that5™" can be obtained
are addressed in the design of this encoder. through e.g. LU decomposition [32], with modifications for

« Bits of M are hidden from immediate access in th&F(2). In our experience, randomly generated scrambling
decoded words using nonsystematic LDPC codes. matrices which are nonsingular are likely to have inversiéis w

« Scrambling prior to coding magnifies errors due to thist less than 50% of the entries equal to one on average. If
physical layer of the communication system. S matrices are randomly generated until one can be inverted

. The error-correction capabilities of the LDPC code a9 ObtainS~—, the resulting despreading operation is enough

. . . . . i i i 0
restricted by intentional puncturing of encoded bits. (Bolf €ause even a single errorin’ to result in roughly a 50%
obtains reliability through ARQ, rather than error correcE!Tor rate inm as shown in Section Mil. Although this can
tion.) be made more precise, the result is intuitive because a bit in
m is a linear combination of bits im’. Thus, if there are an

2For our purposes, we will sometimes ignore the empty set asppiag  odd number of bits in error in a given combination of say,
set and say that a set contains no stopping setmeaning that the maximal then that bit will be in error. On average the row Weight in
stopping set inA is 0. -1 . ’ i .

3For further information on stopping sets as they relate t®PCDcode © = 1S approximatelyk /2, and the expectatlon af/2 bits in
ensembles, seg [35] arld [36]. error holds for any number of errors in'.



Since only ong(S, S!) pair need be used by the systemAlgorithm 3 Checks for the existence of stopping sets in a
the matrices can be generated off-line, which does not taffé¢bset of variable nodes, C V' [11].
encoding and decoding complexity. However, the complexityl: Initialize: S = A
of both the encoder and the decoder is increased due to tReif (S # 0) then

matrix multiplications in[(B) and{4). Both of these opevat  3: Induce subgrapldé’ in G using (S U N(95)).
are O(k?®). General systematic encoder complexityd§N?) 4 if (3 a check node i’ with degree 1}hen
becausé& is not sparse by design [28], although improvements: Delete variable nodes froi which are adjacent
can be made using appropriate preprocessing as outlined in to check nodes of degree 1 @i, jump to 2.
[31]. The encoding technique specified n|[31] gives encodef: else
complexity of O(N +g?) whereg is thegapin an approximate  7: Return true.S is the maximal nonempty stop-
lower triangular form of the parity check matrix and is less ping set inA.
than N — k. The complexities for the ML and MP decoders 8: end if
are given in Sections TIIFA and 198 a&(N3) and O(N), 9: else
respectively. 10: Return false. There is no nonempty stopping set in
A.
11: end if

B. Puncturing

The next step in the encoding process is to apply a punctur-
ing pattern to each codeword 8. Let the puncturing pattern Lemma 2. The output of Algorithril2 is always @tceptable
R < V indicate which bits in eacld’ are to be punctured. puncturing pattern R as defined in Definitigh 3.

Recall thatV is the set of variable nodes in the Tanner graph _ i )
Ge. The punctured block® = (p',p2, ..., p"), where each Proof: We must first show that upon completion of

P = (pi,ph,...,pi) are shown in Figl3 to have lengih AIgorithm_lZz there are no stopp?ng sets R Assume_ for _
which was defined in Sectidnl Il to be the blocklength of th& contradiction thai has a stopping set. Then there is a bit
encoder. All bits which are not punctured belong to thecget ¢ € £ Which when added t@ during the construction process,

so thatV’ — R + Q: therefore, the length of each block i caused a stopping set to first appear. Then by Algorithm 2,

is equal to|Q| = n. The puncturing pattern is chosen in ordef ¢ R. This provides the contradiction. It remains to be proved

to induce stopping sets in an eavesdropper's received datalat Algorithmi3 operates as expected.

Definition 3. A puncturing pattern® is deemecacceptable ProPosition 3. Algorithm[3 always returns true when has
if and only if there are no stopping sets ®, and R + v & nonempty stopping set, and always returns false otherwise

contains some nonempty stopping skt for every variable Proof of Proposition: Suppose that the bits id were
nodev € Q. actually erasures over the BEC, and Algorithin 1 was used

Such a seR can be constructed using the random techniqd@ decode. Realize that erasures recovered intthéeration
outlined in Algorithm[2, which also calls Algorithr] 3 in of Algorithm [I correspond exactly to the nodes deleted in

order to check for stopping sets in a computationally tisleta the ith iteration of Algorithm[3B. If all bits can be resolved
manner [11]. using MP decoding then all nodes will be deleted in Algorithm

[3, and false is returned. If, however, MP decoding returns a
partial codeword, then Algorithria] 3 will return true because
all remaining bits have degree greater than one in the irdluce
subgraphG’. Therefore, by Lemmal1, the remaining nodes

Algorithm 2 Finds an acceptable puncturing pattétwithin
the set of all variable nodés.
1: Initialize: R = wv, for a randomly chosemw < V, and

Q=0. comprise the maximal stopping set af ]

2. if (V\(RUQ) # 0) then To complete the proof of Lemnid 2, we mu_st also show that

3 Choose anothes randomly fromV\(R U Q). for any v € Q, R+v ha_s a nonempty stopping set. Since in

4: Run Algorithm[3 with A = R + v to check for Algorithm[2 everyv € Q is such that for some subskt g R,
stopping sets. R’ + v has a stopping set, therefofe+ v has a stopping set

5 if (R4 has a stopping set, i.e. Algorithih 3 returndor anyv € Q. . u
true) then Thus, puncturing according t@? in each b for i =

6: Q=0Q+v. 1,2,..., L, guarantees that every bit in eaghis crucial for

7: else successful MP decoding.

8 R=R+o. Complexity of Algorithm[2 is linear in the blocklengtN,

o: end if because it choose¥ — 1 bits in a random order, and calls

10: Jump to 2. Algorithm [3 after each choice. The complexity of Algorithm

11: else [3 in the worst case, is quadratic jif| = N — &k the number

12: Terminate. of check nodes inG¢. Line 5 of the algorithm will be

13: end if repeated a maximum OZEN = 'U‘Z% times if a single

node is deleted each time the line is executed. Therefoee, th
complexity of finding an acceptable puncturing pattétns



at most quadratic inU|, and linear inN, i.e. has complexity removed through puncturing or erased by the channel usually
O(N|U|?). Thus the algorithm can be used in practical systeaxceeds the degrees of freedom in the decoder.
design to compute? off-line.

D. Interleaving

C. Regular vs. Irregular Codes The role of the interleaver is to ensure that all packets
dnust be obtained error-free for successful decoding in any
@nd all encoded blocks. To do this, we construct a collection
of n packets to be transmitted = (z',22,...,2") in the
following manner. Alice definesx a small positive integer
which is assumed to divide (not necessary but convenient

for notation and analysis) such that= n/«, and theith
Example 1. Let C be a regular rate-1/2 code wifi = 1000, packet is formed as

w, = 4, andw, = 8, wherew,. andw, are the fixed column

The overall ratek/n of the nonsystematic and puncture
code is a function of the rate of the systematic LDPC cod
and |R|. Simulations have shown that the size Bfis very
much a function of the degree distribution 6h although the
exact relationship is still unknown.

and row weights of the parity check matrix, respectively. at = (a1, @ 201)
The size of|R| appears to be Gaussian-distributed for this = (p%i_l)aﬂ,---,pﬁa,pfi_l)aﬂ,---,me---7
family of codes with a mean size of approximately 436, with L L) (5)

. . p(i—l)a+l7""pza .
variance roughly equal to 15. Let us examine, however, an _
irregular ensemble with the same rate and blocklength, dar ¢ = 1,2,...,7n. In words, we form the packet’ by
having the following edge degree distribution pajz) = concatenatingv bits from each encoded and punctured block

0.32660x + 0.1196022 + 0.18393z3 + 0.36988z* on variable p’ forj =1,2,..., L. Therefore, a single erased packet causes
node weights, ang((x) = 0.785552° + 0.2144525 on check « erasures in each punctured block at the decoder. Since we
node weights (seé [28] pg. 664), whefeis formed using the have designed? so that any erasure of a bit i results in
socket approach given in [30]. Here the distribution |¢f) MP decoding failure, we can be assured that any erased packet
is much tighter, ranging from 496 to 500. The size Bris Wwill cause all L blocks to fail in the MP decoder due to this
equal to 500 with probability roughly equal to 0.1, 499 withnterleaving. If R can be designed so thgR| = N — £, then
probability around 0.56, and 498 with probability near 0.26he same result holds for ML decoding by Lempia 3.

Thus with some degree of confidence, we can claim that fer

orollary 1. If |[R| = N — k and packets are formed

this rate-1/2 irregular code ensemble the random teChn'qé'(,ecording to [(5), then the number of degrees of freedom in

given in Algorithm[2 yields a puncturing pattern with sizqhe ith codeword isDi,, — Di , — |Ri| = o|R,| for
H ML — MP cl — P
nearly equal (and equal in some casesMe- k. i =1,2,...,L, where R, is a list of all erased packets.

As a direct result, a puncturing pattern generated for tif@irthermore, D}, = D}, Vi, j.
irregular code of the example has a unique property. Namely,

Proof: The first part is trivial and follows directly from
that for some pattern®,;p = D,y

Lemma[B and[{5). We see thddi,, = D},, because a
Lemma 3. Let R, denote the indices of the channel-erase@iissing packet means exactly degrees of freedom in each
bits of p*, and Dy, p and D,,;, denote the degrees of freedonblock, irrespective of decoder choice. [
using MP decoding and ML decoding, respectively. If an ir-

regular LDPC code is employed over the BEC with intentional V. DECODER FORLEGITIMATE USERS

puncturing determined by Algorithilh 2 in whi¢R| = N —k,  The decoder for legitimate users is simply the inverse of all
thenDy, = Dyp = |Re|. encoder operations. A user can decode all data as long as ever
Proof: The ML portion of this lemma follows from packet is received error-free. Legitimate users make use of
Proposition[1L, i.e. that the system of equations[ih (2) cdhe authenticated fgedback channel to requgst retran'srni;s
resolve a maximum oV — k erasures. SinceR| = N — k, of packets erased in Fhe main channel during transmission.
any erasure by the channel is guaranteed to give a degred §7€ delay and queueing aspects of ARQ protocols are well-
freedom in the decoder. The MP case is the same becaus@@gjressed in the literature, e.9.[40] and its references. T
Proposition[2, the MP decoder can correct at mbst- k decoding process is shown _plctorlally_ in Fig. 4. Oncg all
erasures. Thus any bits erased by the channel (or perhaﬁgke_ts are obtained i, the bits are deinterleaved back into
another set of bits of equal size) must be guessed in ord@fir intentionally punctured codewords. The MP decoder

to decode. Therefore, the effectiveness of the ML decoder'$sthen guaranteed to decode the puncturing in linear time
equal to that of the MP decoder wheR| = N — k. m With the blocklength to obtainB [28], and the inverse of

It should be noted that if the sum of systematic bits iff'® Scrambling matrix is applied to the systematic decoded
R+ R, is less thanD, a brute-force attack on these bitits using [(#) to obtainl/. Once all packets are known, this
might be more appealing to an attacker than decoding tfgcoder guarantees that = M.
entire codeword. To cover this possibilit{) can be thought
of as the minimum between the number of systematic bits VI. SECURITY AGAINST WIRETAPPERS
missing to the eavesdropper, and the degrees of freedora in thAn eavesdropper can decode the data using Bob’s decoder in
decoder. Although, in practice the number of systematis biFig.[4 if all packets are obtained error-free. The independe



Y Buff Deinterlea eP MessagdB[ Map |V Theorem 1. If |R| = N — k in the encoder, thert/n = 1,
umer ! VeI Passing| | to M and E[D] = H(X|Z) = (1 — Pr(Res))n.

1 packets L blocks L blocks L blocks Proof: Since|R| = N —k, thenn = |Q| = N — |R| = k.

sizeal lengthn  length N lengthk | et us consider the model for a single codewokd= 1). We
can then assumeindependent uses of a PEC with packets of
Fig. 4. Detailed block diagram of Bob's decoder. Number aind sf blocks 1€ngtha. Let X' be the input to the channel, auithe output,
or packets are indicated at each step. where o bits are erased with probabilityl — Pr(R.;)) or
received error-free with probabilifyr(R. ;) with each channel
o use. The input distribution on bits is uniform because the
of @ andQ.,, however, prevents Eve from receiving packefpyt distribution onM is uniform, and the encoding function
as a function of ande, the respective probabilities of erasuregf rate one forms a bijection oh bits. Thus, H(X) = a.
in @ and Q.. Let R.; be the event that a single packetiearly /(7| X) = H(1 — Pr(R.s)), and H(Z) = H(1 —
is received error-freeby at least one eavesdropper after aﬂ;r(Ref)) + Pr(R.s)a (see [37], pg. 188). Then,
retransmissions of the packet requested by any legitimate
receiver have been filled. This section shows the blanket H(X|Z) H(Z|X) - H(Z) + H(X) (7
security effect of our encoder over nearly the entire region = ol = Pr(Rey)). (8)
of possible(d, €) pairs by completely characterizirg for the _ _
system. We first shou to be binomially distributed, and then Therefore, withy independent uses of the channel (one for

provide security results for all scenarios studied as atfanc each packet)ll (X |2) = (1—Pr(Res))na = (1-Pr(Ref))n.
of R.;. Expressions fomR.; follow for the wiretap channel Since the mean of a binomial random variable is the product of

case, the broadcast scenario with intended receivers, the IS tWo parametersiz[D/a] = (1 — Pr(R.y))n, and therefore

case with/ collaborating eavesdroppers, and the most general  g[p] = (1 — Pr(Ref))no = (1 — Pr(Res))n. (9)
case with bothm legitimate receivers and collaborating
eavesdroppers. For cases beyond the simple wiretap scenari u

all m legitimate receivers are given access to the feedback! hus we see thak[D] is equal to the information-theoretic
channel, and all eavesdroppers are restricted to passive stai@ue of equivocation when the puncturing is accomplisteed s
through authentication on the channel. Retransmissiotisein that| 2| = N — k. Thereforeperfectsecrecy is obtained when
ARQ protocol are executed only after requests are receivit?] = k. Of course, this occurs whelr(R. ;) = 0, which
from all legitimate parties. implies that the eavesdropper obtains zero packets. Thiss, t
Since proper design of the encoder was shown to capgheme cannot achieve perfect secrecy. However, it can be
D to have the same realization for every codeword and BBOWN using the achievable ratesin [4] tH&tD] approaches
independent of the decoder in Coroll&y 1, we undersfaid  the maximum achievable equivocation fbfn = 1. These
represent the degrees of freedom in every codeword assunfi@gults now require expressions fbr(R.s) to complete the
either the ML or MP decoder for the rest of the paper. security characterization if.

A. General Security Theorems B. One Receiver and One Wiretapper

Lemma 4. The random variableD which governs the number The simplest case matches the setup given in[Eig. 1, and
of degrees of freedom in a received codeword is a scalé@s originally proved in[[11].

binomial random variable. Thus, far < < an, Lemma 5 (Harrison, et. al.[[I1]) In the wiretap channel

[8/a]-1 scenario with feedback, the probability that Eve obtains a
Pr(D>p)=1- E (77) (1 — Pr(Rey))" Pr(R.;)"*. single transmitted packet is given as
i .
i=0 1—e¢
6 Pr(Res) = ——. 10
©) H(Reg) = 71— (10)

Proof: By definition, packets are erased for eavesdroppers,

with probability (1 — Pr(R.y)). Since there arg independent . o qained by usind the expression R in

Bernoulli trials, each identically distributed, the sumenésed to plot (g) for diﬁ}érent 3alues og o and}?(Fig)[B sr%egs
packets|R,| is a binomial random variable with parameter%r(D > 1) for n — 100. Note thét \;vhenB _ 1 ' o is not

n and (1 » Pr(Rey)) [1]. Then, by Corollar[_B,D = o| R, required to evaluatd (6). This case is provided to show the
wherea bits from every codeword are sorted into each pack%trateau and falloff regions in the, ¢) grid for Pr(D > 8)
Thus, D is a scaled binomial random variable; Spec'f'ca")f'hroughout the plateau region, stopping sets occur in the MP

.D NI Bin(hn, 1- Pr(Ref))Oé'l SinlceDh_: O‘|RP|' th(;\]nD 2P decoder and the ML decoder has linearly dependent columns
implies thata|R,| > B. Clearly, this requires thafiz,| > in Hg with probability very close to one. The results of

[8/a]. The result in[(B) follows directly. T B 1—e \7
The expected value is therefore known due to the binomfafi”'nma‘d‘_]4 aq5 g“_/P_r(D > 1) = 1___ (1*65> » Which can
structure ofD. We also prove an important property in regard3€ €xamined in the limit &g — oc. Itis immediate that except

to E[D). for whend =1 ore =0, Pr(D > 1) goes to one for al(J, ¢)

pairs asn gets large. From Theorel 1, iR = N — &, then

Intuition of security for the wiretap channel in terms bf




Pr(D > 1) with n = 100 Pr(D > 50) with o =

andn = 5000
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Fig. 5. Pr(D > 1) whenn = 100, as a function of the respective erasureFig. 7. Pr(D > 50) whena = 1 andn = 5000, as a function of the
probabilities iNQ,, andQ.,, § ande. respective erasure probabilities @v,, and Q.,, § ande.

> i =
Pr(D > 1) Wlthn 5000 by settingPr(D > ) = 0.5 in (6), and deriving a function of

0 ande. This technique provides a unique threshold for each
specific set of values faf, «, andn.

Finally, let us inspect th&[D] according to Theoref 1 for
this case.

e(1—90) e(1—9)

ED] = 1—¢€d = 1—¢€d -

This function grows linearly witm which is equal tak when
|R| = N — k. Thus, to driveD to a large number in practice,
we simply must use a larger dimension in the encoder. Note
that in the expectation the choice @fdoes not affect security;
although,a = 1 allows n to be as large as possible, which
provides more confidence that ~ E[D] by the law of large
numbers ([41], pg. 193).

11)

C. Multiple Intended Receivers
Fig. 6. Pr(D > 1) whenn = 5000, as a function of the respective erasure . . .
probabilities iNQ.» and Q., § ande. In this section, we move past the single user case, and ad-

dress the more general broadcast channel originally ptegen

in [42]. There is also a single eavesdropper with probahilit

_k of an erased packet equal ¢aas before. This case allows us
«@

of security approaches one asgets large. Since largé to understand the repercussions on security of having more
necessitates large and N, the same holds true for thesdhan one user for which we allow feedback requests. We can

blocklength parameters. Codes with blocklength= 10,000 characterize security using Lemria 4 and Theoiém 1 in the
are deemed practical by today’s standards. &er 1 and for 7 USer case by finding an expression for(f.). Recall
a carefully choserR with size roughly 5000, then ~ 5000. that R.; is the event that Eve receives a single transmitted

This case is shown in Fig] 6, where as expected, all nontrivRcket as before. Let each user have an independent PEC
(8, ¢) pairs showPr(D > 1) ~ 1. with probability of erasure in théth user's channel a§; for

But of course, a single degree of freedom is easily guessllgﬁ 1,2,...,m. The following lemma is necessary to obtain

in an attack. Let us examine the effects on security when r(Hey).

takes on a larger value. This perspective is provided in[Big.Lemma 6. If Q1,Q.,...,Q,, are independent geometri-
wheren = 5000 andg = 50 with « = 1. As can be seen in the cally distributed random variables with success parangter
figure, there exists a cutoff region, wheeee) pairs withinthe Ay, X\o,..., A\, and T, = max(Q1,Q2,...,Qm), then the
plateau region will experience at legstdegrees of freedom probability mass function off},, is given as

with probability very close to one, while pairs outside the m m

region will haveD <  with probability close to one. Owing fm(t) = H(l — (1= — H(l -1 - )\i)t—l)_ (12)

to the severity of the cutoff, the threshold can be approtéaha =1 j=1

n=1o= k “Clearlyn grows withk; therefore, the probability
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Proof: The proof is omitted for the sake of brevity, but
follows from an inductive assumption on. ]

m m

oo (GO e T a =TT e,

i=1 i=1

Armed with this lemma, we can obtaifr(R.;) for the  With these pieces in place, we commence proving the

broadcast channel case. lemma.

Lemma 7. Using the broadcast channel withh independent Pr(R.;)

legitimate receivers and an eavesdropper

Pr(Rey) = i(ll__ef;) Z(ﬁ%

i=1

3 _t-e N
1—651‘5]'5]@

i<j<k

0 (=)
1- Hz 1 6
where the notation < j means the summation traverses over

all pairs (i, 7) such thati,j € {1,2,...,m} andi < j, and
similarly fori < j < k, etc.

Proof: Note that if theith user requests a single packet
until it is received, and in each transmission it is received
with probability ¢;, then the total number of times the user
must request the packet is governed by a geometric ran-
dom variable with success parameter— ¢; [41]. Define
Wy, Wa, ..., W,, as the geometric random variables govern-
ing the total number of transmissions necessary for users
1,2,...,m, respectively, to obtain the packet error-free. Then,
let W = max(Wy, Wa, ..., W,,). W governs the total number
of transmissions necessary for all legitimate parties teiwe
the packet.

By Lemmal®6, we know that

m

Pr(W = w) = ﬁ1_5w H — 5wt (13)
=1

because the success parameterlﬁzi,r is1—9¢; for i =
1,2,...,m. Finally, we point out that

H (1-6;) = 1— ZéJrZ&é — > 8id; 5k+---(—1)mﬁ5i
i<j i<j<k i=1
(14)
which implies that

Pr(W =w) = (1—%5;"4—255 —

1<J

01 50”) +

=1

> Pr(Res[W = w) Pr(W = w)
w=1

d(1-e) (H1_5w [Ta -6 1)

w=1 Jj=1

D. Collaborating Eavesdroppers

In this section we consider the case witheavesdrop-

R pers working together in order to obtain the cryptografm
_1+25w 1 Z 5;)" L4 ...+ each with a possibly unique probability of packet erasure

1<J €1,€2,...,

i ST = 65) = Y (8:6,) (1 — i)
=1

€;. All are assumed to obtain packets through inde-
m pendent PECs. It is simpler to first consider a single legitan
) user Bob with probability of packet erasureThen the general
result which assumes: friendly parties withi collaborating
eavesdroppers comes easily.

i<j Lemma 8. For [ eavesdroppers and a single legitimate re-
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Error propagation for incorrect guesses

ceiver,

l
Pr(Res) = 1H7716 (16)
1-0][im &

Proof: The proof is straightforward if we note that
collaborating eavesdroppers receive a single sent pachket i «
least one of them obtains the packet error-free. Uéthe
a geometric random variable with success parameters.
This governs the number of transmissions for each pack
Therefore,

Error rate inM

Pr(Rep) = Y Pr(Ref|W =w)Pr(W = w)

w=1

= (1- (H €)")(1—8)8 ! s 0 162 10°

i=1 0
l

—

= &

-0 w w
B ) Z 0% — (5 H Ei) Fig. 8. The simulated error rates in Eve’s decoded cryptaghd when
w=0 i=1 errors are made in guessing bit values fordegrees of freedom in Eve's
1— Hl received codewords.

" (17)
1-0 Hé:l €
: : : ields a d f freedom ibf, and let f
This answer provides an easy bridge to an extremely gen%,lgl S a degree of free Sm W, and complete recovery o
requires thatD bits in p* be guessed correctly. If a guess
result. I _ y
is incorrect, there will be at least as many errorsbinas
Corollary 2. For the scenario withn intended parties and  the minimum distance of the LDPC code. The descrambling
eavesdroppers with similar notation as before, process in[(#) magnifies any errors 4h to an expected bit
error rate of 0.5 inn*. Therefore, since all guesses are equally
1 1 likely, a brute-force attack o bits must be accomplished to
P _— ! —_— DY ! .
Pr(Res) = (1=€) Z 1—¢€d; Z 1 —€8;0, obtain eachi/.

i=1 i<j

m

1 Simulations of the end-to-end encoder and decoder clearly
(—1)m+1#> , (18)ndicate the expected bit error ratefti of 0.5 for an incorrect
1= €¢I, 6 guess. Simulations were performed using the irregular LDPC
wheree’ — Hliﬂ €. code of Exampléll withV = 1000 and k£ = 500. Puncturing
B . ) _ patterns used were such thd@| > 498 bits. S was formed
Proof: This proof is not included for the sake of brevityyandomly by setting roughly half of thie? entries equal to one
but is nearly identical to the proof of Lemnia 7 with sligh{yntj| such a matrix was invertible using the LU decompositio
alterations as indicated by the proof of Lemia 8 to allow fqp, GF(2). Lety be the number of bits in Eve’s guess which are

multiple eavesdroppers. B incorrect. We offer simulation results for= 1, 2, 3, 4, 5, 10,
15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, and 400 in
VIl. CRYPTOGRAPHICSECURITY ENHANCEMENTS Fig.[8. Eachy value was tested 300 times on both the MP and

The probabilistic security analysis in Sectibnl VI assumédL decoder, while a new puncturing pattefhwas generated
that attacks on the cryptography become more difficult §very 10 experiments, and a new code from the ensemble was
completely infeasible a® gets large. It remains to show theselected every 30 experiments. All tests produced erresrat
effect of the coding scheme on attacks of the cryptograpty.between 0.414 and 0.578 i/, while the mean depicted a
As an example, fast correlation attacks on stream ciphers 85002 bit error rate with no noticeable difference betwieéh
known to be possible, even if the cryptogram is error-préine.a2nd ML decoders, or betweenvalues, as Fid.18 indicates.
was noted in[[8],[[9],[110] that specific attacks from [7] were These results imply that unleds bits are guessed exactly,
made more difficult, and in some cases impossible due to ertbe cryptography must be attacked with an average bit error
rates in the cryptogram beyond a certain threshold. Céytaimate of 0.5 in)/. We can certainly expect such an attack to fail
as bit error rates approach 0.5 in the cryptogram, attacksfof fast correlation attacks on stream ciphers, but theonoti
the fast-correlation variety break down completely. that any attack on a cryptosystem could absorb such eres rat

Let P = (p',p?,...,p") be the collection of puncturedand still succeed is obviously shortsighted. However,esiac
codewords obtained by Eve, whefé = (pi,p5,...,p,), attack could feasibly be staged using a single block/fwe
and let B = (bl, b2, e b“) be the decoded codewordswill only guarantee failure of the attack if every block M is
whereb’ = (b, b5, ..., bY). Finally, define the implied block incorrect. Using similar logic, it can be said that if an eka
structure of Eve’s decoder output A = (m!,m?,...,m%), would succeed using the error-free ciphertgkt then it may
wherem’ = (7}, mj, ..., ). Each channel-erased bitjrt fail even if a single block inM/ is in error.
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Theorem 2. Define the complexity of a cryptographic attaclencoder and decoder were provided. Design criteria were
to beC4. Let D be the degrees of freedom of eachidflocks specified to maximizeD in a maximume-likelihood attack
in B. Then the expected complexity;, of a successful attack as well as a message-passing attack. This involved security
on the system is bounded as performance comparisons of LDPC codes with varying degree
_ _ distributions, where irregular codes were shown to outperf
281 = 27 B Oy < Cpy <2827V E)Ca (19) regular codes in maximizing). The expected value ob
Proof: By Corollary[d each codeword i has the same Was also shown to be equal tH(X|Z) in our encoder.
number of degrees of freedom. ThuB[D] is the average Probabilistic security results were obtained and made rgéne
number of bits that must be guessed in eact.gfunctured SO as to apply to multiple receivers and multiple collabiveat
codewords inP. Assume that an attacker guesses bit patterdackers. Simulation results were provided which show tha
on all codewords i simultaneously. The correct bit patternginless an attacker can gueBssymbols in the received data
of the channel-erased bits in tiiecodewordsP are uniformly correctly, the system yields a bit error rate of 0.5 in the
distributed over2Z[P] possibilities in each block. The lowercryptogram, thus necessitating a brute-force attackDobits
bound is formulated by the expected number of guesses uf@il each codeword. The end result on the expected increase
at least one ofL. codewords is found. Model the correctn attack complexity on the cryptosystem due to our scheme
bit patterns in theL codewords as i.i.d. discrete uniformis @ multiplier which is exponential ing[D]. The system
random variables of0, 1, . . .’QE[D]_l}, sayU,,U,,...,U;. was shown to provide cryptographic security enhancement,
Without loss of generality, assume that an attacker begi@¢en when eavesdroppers have an advantage over legitimate
by guessing zero for eacl; and proceeds in an orderlyreceivers in signal quality.
fashion. Then, the expected number of guesses until at least
one is correct is given byF[min(Uy,Us,...,Ur)]. Thus,
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