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Abstract—In this paper we discuss the ability of channel
codes to enhance cryptographic secrecy. Toward that end, we
present the secrecy metric of degrees of freedom in an attacker’s
knowledge of the cryptogram, which is similar to equivocation.
Using this notion of secrecy, we show how a specific practical
channel coding system can be used to hide information about the
ciphertext, thus increasing the difficulty of cryptographic attacks.
The system setup is the wiretap channel model where transmitted
data traverse through independent packet erasure channels
with public feedback for authenticated ARQ (Automatic Repeat
reQuest). The code design relies on puncturing nonsystematic
low-density parity-check codes with the intent of inflicting an
eavesdropper with stopping sets in the decoder. Furthermore,
the design amplifies errors when stopping sets occur such that a
receiver must guess all the channel-erased bits correctly to avoid
an expected error rate of one half in the ciphertext. We extend
previous results on the coding scheme by giving design criteria
that reduces the effectiveness of a maximum-likelihood attack to
that of a message-passing attack. We further extend security
analysis to models with multiple receivers and collaborative
attackers. Cryptographic security is enhanced in all thesecases
by exploiting properties of the physical-layer. The enhancement
is accurately presented as a function of the degrees of freedom
in the eavesdropper’s knowledge of the ciphertext, and is even
shown to be present when eavesdroppers have better channel
quality than legitimate receivers.

I. I NTRODUCTION

A. Cryptography and the Physical Layer

M Any cryptosystems in place today measure security
computationally. If all known attacks are computation-

ally intractable, then the system is deemed to be secure. The
chief failings of this notion of security are the assumptions
placed on the attacker. First, it is assumed that the attacker
has limited resources to confront the problem, even if those
resources are state of the art. Second, it is assumed that the
attacker uses attacks which are publicly known, even though
a better attack may exist. Claude Shannon addressed these
shortcomings by defining the notion ofperfect secrecy[1].
If a secret messageM is encrypted into a cryptogramE
using a secret keyK, then perfect secrecy is achieved if
H(M |E) = H(M). Shannon also proved that perfect secrecy
is only attainable if the key is at least as long asM , which is
clearly impractical. However, perfect secrecy also makes the
limiting assumption that an attacker has access to an error-free
cryptogram, which may not be the case in practice.

Aaron Wyner later introduced the wiretap channel model,
along with a new condition for secrecy [2]. Let a messageM
of lengthk be encoded into a codewordX of lengthn, and
then transmitted. The rate of the encoder isk/n. A legitimate

receiver obtainsY over themain channeldenotedQm, and an
eavesdropper obtainsZ over awiretap channeldenotedQw.
The secrecy condition is

lim
k→∞

I(M ;Z)

k
= 0. (1)

Wyner showed that for rates up to the secrecy capacityCs,
encoders and decoders exist which can satisfy (1) and also
achieve arbitrarily low probability of error for intended parties
whenX → Y → Z is a Markov chain. This is known as the
degradedwiretap channel model. Csiszár and Körner [3] later
generalized these results removing the degraded restriction, but
still showing thatCs > 0, only if Qm is less noisythanQw.

Understanding of the theoretically achievable secrecy rates
of communication systems has continued to grow, as outlined
in e.g. [4], [5], and [6]. But another of the main challenges
in this area has been the design of practical systems which
achieve the secrecy rates indicated by the theory. These
systems exploit noise in the channel at the physical layer of
the communications system. Practical designs maximizing the
information-theoretic secrecy are not trivial. Most currently
suffer from one or more of several drawbacks. For instance,
code designs are oftentimes a function of specific channel pa-
rameters (channel state information or CSI) seen by legitimate
receivers and eavesdroppers. Without accurate CSI, the results
of these systems are not guaranteed; therefore, channels with
varying or unknowable parameters present design issues. Other
codes offer secrecy for only specific types of channels, or
only when the eavesdropper’s channel is degraded. Still other
designs are impractical in the real world due to design com-
plexity, necessary side information for legitimate decoding, or
other limitations. Finally, the most glaring shortcoming of any
scheme which derives security from the physical layer of a
communications system, is that if an eavesdropper has abetter
channel than a legitimate receiver, the scheme is likely to fail.
The extreme case is when an eavesdropper has a noise-free
channel andZ = X . Clearly this necessitates any physical-
layer security scheme to be coupled with some other protection
in order to maintain secrecy in the worst case.

B. Main Contributions

The intent of this paper is to develop the notion ofcom-
bined securitydue to cryptography and channel coding, thus
providing a more complete security solution. To accomplish
this goal, we cast coding into a cryptographic enhancement
role, and seek to prevent an attacker from obtaining a noise-
free cryptogram using channel coding. We present a new
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security metric for physical-layer schemes; namely, degrees
of freedomD in an attacker’s knowledge of the cryptogram.
As a comparison, if bits inM are uniformly zero or one
and independent and identically distributed (i.i.d.), then perfect
secrecy impliesD = k. In fact we show thatH(X |Z) = E[D]
for a specific case. Our notion of physical-layer security using
D addresses the effectiveness of attacks on a cryptographic
layer. To be more precise, our notion of security answers the
practical question, how does the complexity of an attack on
the cryptography change without perfect knowledge of the
cryptogram?

It has been shown previously using correlation attacks on
stream ciphers that certain cryptographic attacks are still pos-
sible even on noisy cryptograms, although a threshold on the
noise level exists such that errors beyond the threshold cause
the attack to fail [7], [8], [9], [10]. Practical schemes should
provide enough confusion to exploit even the smallest amount
of noise in an eavesdropper’s received data to cause failure
of these attacks on the cryptographic layer. Such systems
should be robust to varying channel parameters, imperfect
CSI at the encoder, and nondegraded system models. In fact,
good designs still offer security enhancement to cryptography,
even when attackers have an advantage in signal quality over
legitimate receivers. Of course, all of this must be done while
guaranteeing reliable communication between friendly parties.

Therefore, along with the new metric, this paper also
analyzes combined cryptographic and physical-layer security
in a practical coding schemeusing degrees of freedom to
characterize security. In [11], this scheme was shown to inflict
a passive eavesdropper using a message-passing decoder with
stopping sets with very high probability when a legitimate
receiver and an eavesdropper view transmitted data through
statistically independent packet erasure channels (PEC).The
scheme relies on a nonsystematic low-density parity-check
(LDPC) code design, with puncturing and interleaving steps
in the encoder. Legitimate receivers are given access to an
authenticated public feedback channel for Automatic Repeat-
reQuest (ARQ). In this paper, we broaden the security analysis
of the scheme given in [11] by addressing the following points.

• Degrees of Freedom:The system security is analyzed
using the new metric. Computational secrecy is shown
to grow exponentially withE[D], which is also shown to
be equal toH(X |Z) for the prescribed encoder.

• Encoder Description:End-to-end details of the encoder
and decoder are provided, as well as simulation results
which match theoretical expectations.

• Optimization:Design criteria are specified to maximize
the degrees of freedom in the maximum-likelihood attack
as well as the message-passing attack. This involves
comparison of irregular LDPC codes with regular LDPC
codes.

• Extensions:Security results are made general so as to
apply to multiple receivers and multiple collaborative
attackers. Ultimately, bounds on the increase in computa-
tional secrecy of an underlying cryptosystem are specified
when the physical-layer encoding system is employed.

Ultimately, this scheme has very few design constraints, offers

enhanced cryptographic secrecy over a wide range of CSI
parameters, and requires no secret key and no rate reduction
in data transmission.

C. Related Works

Our encoder makes use of fundamental practical design
ideas which have been shown to offer secrecy. For example,
our encoder employs nonsystematic LDPC codes in order
to hide information bits and magnify coding errors. Secrecy
properties of these codes have been studied in [12]. We further
employ intentional puncturing of encoded bits, a technique
shown to offer security in [13], [14]. Our scheme punctures
with the goal of inducingstopping setsin an eavesdropper’s
received data. As a result, every transmitted bit is crucialfor
decoding. Our intent is to punish an eavesdropper for every
missing piece of information. Finally, in order to distribute
erasures throughout the data set, the encoder interleaves coded
bits among several transmitted packets. Similar ideas of in-
terleaving coded symbols have been used in [15], [16] in
conjunction with wiretap codes developed in [17] to offer
secrecy to various systems. The works [18], [19] give results
for ARQ and feedback wiretap systems.

It can be argued that the first practical secrecy coding
scheme was presented by Ozarow and Wyner in an extension
of the original wiretap paper [4]. Here the general idea
of partitioning a group code into cosets to achieve secrecy
was first presented. This technique was shown to apply to
LDPC codes much more recently in [17], and achieves the
secrecy condition in (1) for noiseless main channels when
the wiretap channel is either a binary erasure channel (BEC)
or a binary symmetric channel (BSC). This work in LDPC
codes for secrecy has been furthered in [20], where large-
girth LDPC codes are considered, and shown to meet the
secrecy constraint in (1) for noiseless main channel and BEC
wiretap channel. A stronger notion of secrecy than (1) is also
achieved for these codes in certain cases. Finally, it should
be noted that Arıkan’s polar codes [21] can offer secrecy for
general symmetric channels, although code construction isan
issue for non-erasure channels. Schemes have been presented
in [22] and [23] which achieve the secrecy capacity under the
condition in (1), although these schemes only offer secrecy
for degraded wiretap channels. Furthermore, design of these
codes is heavily contingent on perfect CSI at the encoder.

Although our codes can be shown to achieve (1) only
under certain puncturing criteria, the main contribution of the
coding scheme presented here is the cryptographic security
enhancements shown using degrees of freedom as a security
metric. Our scheme is robust against imperfect CSI, and
for that matter, undetected eavesdroppers. According to our
knowledge, it is also the firstpractical secrecy scheme which
can operate on the general wiretap channel (nondegraded case)
when bothQm andQw are erasure channels.

The rest of the paper is outlined as follows. In Section
II, we discuss the system model for which our encoder is
designed, which is an adaptation of the wiretap channel model
from [2]. The precise definition of degrees of freedom is also
given. Section III addresses background information regarding
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Alice Encoder PEC(δ)

Qm

Decoder Bob
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Qw
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Fig. 1. Wiretap channel model with feedback assuming packeterasure
channels for both the main channelQm and the wiretap channelQw.

LDPC codes and stopping sets. Our novel encoder and decoder
designs are presented in Sections IV and V, respectively. Anal-
ysis of the security inherent in the system is then completed
in Section VI for various scenarios, ultimately culminating
in the most general case which encompasses multiple users
and collaborating eavesdroppers. Finally, bounds regarding
enhancements of cryptographic security are presented in Sec-
tion VII along with end-to-end simulations of the system.
Conclusions are provided in Section VIII.

II. SYSTEM MODEL AND DEGREES OFFREEDOM

We begin by presenting the wiretap channel model [24]
with the addition of feedback in Fig. 1. A user named
Alice wishes to transmit anencryptedbinary messageM =
(m1,m2, . . . ,mL) to a legitimate receiver named Bob, where
mi = (mi

1,m
i
2, . . . ,m

i
k) ∈ M for i = 1, 2, . . . , L. It will be

helpful to think ofM as being broken up intoL blocks of
lengthk, wherek is the dimension of the encoder to follow.
The final blockmL can be filled by concatenating random
bits if needed. Let us also define the blocklengthn of the
encoder. Then the coding rate isk/n. To be clear,n is the
length of a codeword after it has been punctured. We will
also assume thatM has been compressed, so that all possible
bit combinations are equally likely in the alphabetM. Prior to
transmission, Alice encodesM , resulting in a collection ofη
packetsX = (x1, x2, . . . , xη) for transmission. Bob receives
the packets asY through Qm, a PEC with probability of
erasureδ. An eavesdropper named Eve obtains the packetsZ,
although throughQw, an independent PEC with probability of
erasureǫ. An obvious extension of this model is to consider
correlated erasures inQm andQw; however, in this paper we
always assume erasures are statistically independent. Finally,
M̃ andM̂ are the respective estimates ofM by Bob and Eve.

The encoder and decoder exploit the independent nature of
erased packets acrossQm andQw. Of course, the system must
guarantee thatM̃ = M , while at the same time making Eve
as ignorant as possible. The authenticated feedback channel
available to Bob plays a key role in accomplishing both
of these endeavors. This public noiseless channel is used
to request the retransmission of erased packets. Since it is
authenticated, Alice is able to deduce whether Bob sent the
request, and can detect any tampering with the data [25], which
restricts Eve to passive status [26]. Requests by Bob are public,
and there is nosecret keyemployed at the physical layer. The

sole source of confusion for Eve is her own naturally occurring
erasure pattern acrossQw.1

As mentioned in Section I, we definephysical-layer security
for this system with the cryptographic layer in mind. Crypto-
graphic attacks often assume an attacker has the luxury of an
error-free version ofM (or even some of the plaintext), but
our design aims to prevent this from occurring, by creating
degrees of freedom in the attacker’s knowledge ofM .

Definition 1. The number ofdegrees of freedomin a received
codeword is a random variableD which takes on the number
of encoded symbols for which an eavesdropper has no infor-
mation. Therefore, the probabilities of all symbol values on
theseD symbols are equally likely.

For binary codes withD = d, a codeword of lengthn can be
any of2d equally likely codewords, each mapping to a unique
k-bit message inM. Since we assume that the attacker knows
the encoder, the maximum value ofD is k, and can be shown
to have an information-theoretic definition. Since an attacker
has no knowledge of these bits, an average of2E[D]−1 guesses
must be made to obtain them. Using this reasoning, the goals
of our physical-layer design are: first, to ensure thatD = 0 for
Bob so thatM̃ = M ; second, to makeD as large as possible
for Eve; and third, to ensure that attacks on the cryptogram
fail if M̂ 6= M .

III. LDPC CODES AND STOPPINGSETS

We employ LDPC codes [27] and exploit the phenomenon
of stopping sets to obtain security from the physical layer.
This section provides limited background of LDPC codes and
stopping sets in order to establish the foundation upon which
to present our encoder.

Let us define a general binary LDPC codeC with block-
length N , and dimensionk. Note that thisk is identical to
k from section II, butN the blocklength of the LDPC code,
is different from n the blocklength of the encoder because
n is the codeword length after puncturing. The parity check
matrix H fully defines the code, and isN − k ×N . We will
find it helpful to think of H in terms of its corresponding
Tanner graphGC [28], [29]. The set of variable nodes is
V = (v1, v2, . . . , vN ), while the set of check nodes is
U = (u1, u2, . . . , uN−k). Variable nodes correspond to theN
bits in a codeword. Checks correspond to rows inH , where
the set of bits that participate in the checkui is denoted
Ni = {j : Hi,j = 1} [28]. Then theith check is calculated in
GF(2) asui =

∑

j∈Ni
vj = 0. The notationNi,j signifies all

bits in theith check except thejth bit. Thejth variable node
shares an edge with theith check node inGC if and only if
j ∈ Ni. The Tanner graph for a simple example is shown in
Fig. 2.

Decoding of an LDPC codeword over a BEC can be
accomplished using maximum-likelihood (ML) decoding [30],
by solving a system of equations. However, the iterative
message-passing (MP) decoder is commonly used due to its
computational efficiency. We briefly explain both decoders.

1It is noted that results in Section VI are provided for this system, as well
as the more general model which allows an arbitrary number oflegitimate
receivers and eavesdroppers.



4

v1

v2

v3

v4

v5

v6

v7

u1

u2

u3

1

0

e

e

0

e

e

1

1

1

Fig. 2. Tanner graph for MP decoding over the BEC with a highlighted
stopping set due to erasures at variable nodesv3 andv5.

A. Maximum-Likelihood Decoding

Let us consider an LDPC codewordx ∈ C transmitted over
a BEC and lety denote the received codeword. Note that
xi ∈ {0, 1} and yi ∈ {0, 1, e} where e signifies an erased
bit. We letK denote the set of known bits iny, andK̄ denote
the set of erased bits iny. Furthermore,HK and HK̄ can
be understood to be matrices formed by the columns ofH
indexed byK and K̄, respectively. Similarly,xK andxK̄ are
vectors composed of only the bits indexed by the respective
setsK and K̄.

Clearly, 0 = HxT = HKx
T
K + HK̄x

T
K̄

, wherexK = yK,
and thusHKx

T
K = zT is known. The maximum likelihood

decoder must then solve for the channel-erased bitsxK̄ using
the system of equations given by

HK̄x
T
K̄ = zT . (2)

This system has a unique solution when the erased bits are
such that the columns ofHK̄ are linearly independent [31].
We can obtain a bound from this statement which we will use
to analyze security in the worst-case.

Proposition 1. For a linear codeC with blocklengthN and
dimensionk, the ML decoder over the BEC cannot have a
unique solution if the number of erasures exceedsN − k, that
is if |K̄| > N − k.

Proof: The rank ofHK̄ equals the number of linearly
independent rows or columns of the matrix ([32], pg. 244).
SinceN − k is the number of rows inH , the rank ofHK̄ can
never exceedN−k, and thus the ML decoder cannot produce
a unique solution when|K̄| > N − k.

In fact, when the number of erasures exceedsN − k, the
system in (2) will be such that the degrees of freedom in the
ML decoderDML ≥ |K̄|−(N−k), where we achieve equality
if there areN − k linearly independent columns inHK̄ [30].
In any case,DML is equal to the difference in the number of
erased bits, and the number of linearly independent columns
of HK̄, and is zero if this difference is negative. This definition

clearly satisfies the notion of degrees of freedom from Defini-
tion 1 for this decoder. Thus we see that the effectiveness of
the decoder is strictly bounded by the redundancy of the code.
While faster methods have been discovered for solving a linear
system of equations, the straightforward decoder is known to
have complexity((1 − R)β + γδ)δ2N3, whereR is the rate
of the code,β andγ are constants which are also a function
of the elimination algorithm chosen to solve the system of
equations,δ is the erasure probability in the channel, andN
is the blocklength of the code [30].

B. Message-Passing Decoding

Let C, x, and y hold the same definitions as for the ML
decoder. The MP decoder is an iterative decoder based on
the Tanner graph representation ofC. The decoding process
passesmessagesbetweenU andV along the edges ofGC . One
version of the decoder is given as Algorithm 1 (adapted from
[31]). The number of degrees of freedom in the MP decoder
DMP is the cardinality of the smallest set of bit values that
must be supplied in order to decode all remaining bits. If the
decoder succeeds, thenDMP = 0. Clearly, this maintains the
definition of degrees of freedom given in Definition 1 when
restricted to this decoder, because any bit combination of these
DMP values decodes to a valid codeword, and each is equally
likely without further information. A bound on the correction
capabilities of the MP decoder is given by the following
proposition.

Proposition 2. The MP decoder over the BEC can correct no
more thanN − k erasures.

Proof: In Algorithm 1, each check node can correct at
most one variable node, and|U | = N − k.

The MP decoder is suboptimal compared with the ML
decoder, although the MP decoder has linear complexity in
the blocklength [28]. A more detailed comparison of the two
decoders is offered in [33].

Algorithm 1 Message-Passing Decoder over the BEC [31].
1: Initialize: For yi 6= e, set vi = yi and declare all such

variable nodes as known.
2: if (No variable nodes are known and no check node has

degree one)then
3: Output the (possibly partial) codeword and stop.
4: else
5: Delete all known variable nodes along with their

adjacent edges.
6: end if
7: For each variable nodevj connected to a degree one check

nodeui, declarevj as known and setvj =
∑

k∈Ni,j
vk.

Jump to 2.

C. Stopping Sets

In order to makeD as large as possible for our system when
an eavesdropper uses an MP decoder, we would like to design
the encoder block from Fig. 1 so that every bit erased by the
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channel adds a degree of freedom to the decoder. Stopping
sets provide a means of accomplishing this task.

Definition 2 (Di, et. al. [34]). A stopping setis a setS ⊆ V
such that all check nodes inN(S) are connected toS by at
least two edges, whereN(S) signifies theneighborhoodof S
and is defined as the set of all adjacent nodes to any member
of S in GC .

Notice that the empty set, by definition, is a stopping set, as
is any union of stopping sets. Thus, any set of variable nodes
has a unique maximal stopping set in it.2 See Fig. 2 for a
simple example; clearly the erasures cannot be resolved using
Algorithm 1. This gives way to the following lemma, proved
in [34].

Lemma 1 (Di et. al. [34], Lemma 1.1). Let G be the Tanner
graph defined by the parity check matrixH of a binary linear
block codeC, and assume thatC is used to transmit over
the BEC. LetA be the set of erased bits in the received
codeword. Then, using Algorithm 1 onG, the set of erasures
which remain after decoding comprise the unique maximal
stopping set inA.

Since stopping sets cause the MP decoder to fail, puncturing
in the encoder will be done with an attempt to inflict Eve with
stopping sets. However, the ML decoder will still succeed,
even in the presence of stopping sets, as long as the erased
bits have linearly independent columns inH . We account for
both decoders in our design by using a particular ensemble of
LDPC codes whereDMP can be made equal toDML, thus
ensuring secrecy regardless of the decoder used by Eve. The
simplicity of MP decoding is also preserved for all legitimate
receivers.3

IV. ENCODER

The encoder design is based on the fact thatI(M ;Z) ≤
I(M ;X) because processing cannot increase information, and
M → X → Z is a Markov process [37]. The key idea in
the decoder is to reduceX to the decoding threshold. In
other words,X can be used to recoverM by design, but
if any erasures remain inZ following transmission, unique
decodability is not possible. Proper design maximizesD for
Eve. The stages of encoding are portrayed in Fig. 3, where
each stage fulfills a specific purpose within the overall goals
of obtaining secrecy and reliability. The following principles
are addressed in the design of this encoder.

• Bits of M are hidden from immediate access in the
decoded words using nonsystematic LDPC codes.

• Scrambling prior to coding magnifies errors due to the
physical layer of the communication system.

• The error-correction capabilities of the LDPC code are
restricted by intentional puncturing of encoded bits. (Bob
obtains reliability through ARQ, rather than error correc-
tion.)

2For our purposes, we will sometimes ignore the empty set as a stopping
set and say that a setA contains no stopping sets, meaning that the maximal
stopping set inA is ∅.

3For further information on stopping sets as they relate to LDPC code
ensembles, see [35] and [36].

LDPC
Encoder

Puncture
Block

Buffer Interleaver
M

L blocks
lengthk

B

L blocks
lengthN

P

L blocks
lengthn

X

η packets
sizeαL

Fig. 3. Detailed block diagram of the encoder. Number and size of blocks
or packets are indicated at each step.

• Bits from encoded blocks are interleaved amongst several
transmitted packets so that a single erased packet results
in erasures in many encoded blocks of data.

A. Nonsystematic LDPC Codes

Recall from Section II thatM = (m1,m2, . . . ,mL), where
mi = (mi

1,m
i
2, . . . ,m

i
k) ∈ M for i = 1, 2, . . . , L. TheseL

blocks of encrypted message form the input to the nonsys-
tematic LDPC encoder with blocklengthN and dimensionk.
The output of the LDPC encoderB is given asL codewords
of length N , denoted asB = (b1, b2, . . . , bL) where each
vector bi = (bi1, b

i
2, . . . , b

i
N ). Certainly, if the codeC were

systematic, then the bits ofmi would appear explicitly in the
encoded blockbi. For secrecy purposes, nonsystematic codes
are employed.

Nonsystematic LDPC coding is typically implemented as a
two stage process to improve encoder complexity [38], [39],
[12]. Let S be an invertiblek×k scramblingmatrix in GF(2),
and letG be ak×N systematic generator matrix. Letm be a
length-k message. Then our LDPC encoding process applies
the scrambling matrix tom as

m′ = mS. (3)

The data are then encoded usingG by b = m′G to obtain a
length-N block of encoded data. Clearly at the decoder the
inverse operation first requires the bits ofb to be obtained
through either MP or ML decoding. SinceG is systematic, the
bits of m′ are explicit inb. The bits ofm can then be found
by applying the inverse ofS in the descrambling operation

m = m′S−1. (4)

This process amplifies errors in the decoding process as a
function of the sparsity ofS−1. Note thatS−1 can be obtained
through e.g. LU decomposition [32], with modifications for
GF(2). In our experience, randomly generated scrambling
matrices which are nonsingular are likely to have inverses with
just less than 50% of the entries equal to one on average. If
S matrices are randomly generated until one can be inverted
to obtainS−1, the resulting despreading operation is enough
to cause even a single error inm′ to result in roughly a 50%
error rate inm as shown in Section VII. Although this can
be made more precise, the result is intuitive because a bit in
m is a linear combination of bits inm′. Thus, if there are an
odd number of bits in error in a given combination of saymi,
then that bit will be in error. On average, the row weight in
S−1 is approximatelyk/2, and the expectation ofk/2 bits in
error holds for any number of errors inm′.
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Since only one(S, S−1) pair need be used by the system,
the matrices can be generated off-line, which does not affect
encoding and decoding complexity. However, the complexity
of both the encoder and the decoder is increased due to the
matrix multiplications in (3) and (4). Both of these operations
areO(k3). General systematic encoder complexity isO(N2)
becauseG is not sparse by design [28], although improvements
can be made using appropriate preprocessing as outlined in
[31]. The encoding technique specified in [31] gives encoder
complexity ofO(N+g2) whereg is thegapin an approximate
lower triangular form of the parity check matrix and is less
thanN − k. The complexities for the ML and MP decoders
are given in Sections III-A and III-B asO(N3) andO(N),
respectively.

B. Puncturing

The next step in the encoding process is to apply a punctur-
ing pattern to each codeword inB. Let the puncturing pattern
R ∈ V indicate which bits in eachbi are to be punctured.
Recall thatV is the set of variable nodes in the Tanner graph
GC . The punctured blocksP = (p1, p2, . . . , pL), where each
pi = (pi1, p

i
2, . . . , p

i
n) are shown in Fig. 3 to have lengthn,

which was defined in Section II to be the blocklength of the
encoder. All bits which are not punctured belong to the setQ
so thatV = R+Q; therefore, the length of each block inP
is equal to|Q| = n. The puncturing pattern is chosen in order
to induce stopping sets in an eavesdropper’s received data.

Definition 3. A puncturing patternR is deemedacceptable
if and only if there are no stopping sets inR, and R + v
contains some nonempty stopping setSv for every variable
nodev ∈ Q.

Such a setR can be constructed using the random technique
outlined in Algorithm 2, which also calls Algorithm 3 in
order to check for stopping sets in a computationally tractable
manner [11].

Algorithm 2 Finds an acceptable puncturing patternR within
the set of all variable nodesV .

1: Initialize: R = v, for a randomly chosenv ∈ V , and
Q = ∅.

2: if (V \(R ∪Q) 6= ∅) then
3: Choose anotherv randomly fromV \(R ∪Q).
4: Run Algorithm 3 with A = R + v to check for

stopping sets.
5: if (R+ v has a stopping set, i.e. Algorithm 3 returns

true) then
6: Q = Q+ v.
7: else
8: R = R+ v.
9: end if

10: Jump to 2.
11: else
12: Terminate.
13: end if

Algorithm 3 Checks for the existence of stopping sets in a
subset of variable nodes,A ⊆ V [11].

1: Initialize: S = A
2: if (S 6= ∅) then
3: Induce subgraphG′ in G using (S ∪N(S)).
4: if (∃ a check node inG′ with degree 1)then
5: Delete variable nodes fromS which are adjacent

to check nodes of degree 1 inG′, jump to 2.
6: else
7: Return true.S is the maximal nonempty stop-

ping set inA.
8: end if
9: else

10: Return false. There is no nonempty stopping set in
A.

11: end if

Lemma 2. The output of Algorithm 2 is always anacceptable
puncturing pattern R as defined in Definition 3.

Proof: We must first show that upon completion of
Algorithm 2, there are no stopping sets inR. Assume for
a contradiction thatR has a stopping set. Then there is a bit
v ∈ R which when added toR during the construction process,
caused a stopping set to first appear. Then by Algorithm 2,
v /∈ R. This provides the contradiction. It remains to be proved
that Algorithm 3 operates as expected.

Proposition 3. Algorithm 3 always returns true whenA has
a nonempty stopping set, and always returns false otherwise.

Proof of Proposition: Suppose that the bits inA were
actually erasures over the BEC, and Algorithm 1 was used
to decode. Realize that erasures recovered in theith iteration
of Algorithm 1 correspond exactly to the nodes deleted in
the ith iteration of Algorithm 3. If all bits can be resolved
using MP decoding then all nodes will be deleted in Algorithm
3, and false is returned. If, however, MP decoding returns a
partial codeword, then Algorithm 3 will return true because
all remaining bits have degree greater than one in the induced
subgraphG′. Therefore, by Lemma 1, the remaining nodes
comprise the maximal stopping set ofA.

To complete the proof of Lemma 2, we must also show that
for any v ∈ Q, R + v has a nonempty stopping set. Since in
Algorithm 2 everyv ∈ Q is such that for some subsetR′ ⊆ R,
R′ + v has a stopping set, thereforeR+ v has a stopping set
for any v ∈ Q.

Thus, puncturing according toR in each bi for i =
1, 2, . . . , L, guarantees that every bit in eachpi is crucial for
successful MP decoding.

Complexity of Algorithm 2 is linear in the blocklengthN ,
because it choosesN − 1 bits in a random order, and calls
Algorithm 3 after each choice. The complexity of Algorithm
3 in the worst case, is quadratic in|U | = N − k the number
of check nodes inGC . Line 5 of the algorithm will be
repeated a maximum of

∑|U|
i=1 i =

|U|2+|U|
2 times if a single

node is deleted each time the line is executed. Therefore, the
complexity of finding an acceptable puncturing patternR is
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at most quadratic in|U |, and linear inN , i.e. has complexity
O(N |U |2). Thus the algorithm can be used in practical system
design to computeR off-line.

C. Regular vs. Irregular Codes

The overall ratek/n of the nonsystematic and punctured
code is a function of the rate of the systematic LDPC code,
and |R|. Simulations have shown that the size ofR is very
much a function of the degree distribution onC, although the
exact relationship is still unknown.

Example 1. Let C be a regular rate-1/2 code withN = 1000,
wc = 4, andwr = 8, wherewc andwr are the fixed column
and row weights of the parity check matrix, respectively.
The size of|R| appears to be Gaussian-distributed for this
family of codes with a mean size of approximately 436, with
variance roughly equal to 15. Let us examine, however, an
irregular ensemble with the same rate and blocklength, but
having the following edge degree distribution pair:η(x) =
0.32660x+ 0.11960x2 + 0.18393x3 + 0.36988x4 on variable
node weights, andχ(x) = 0.78555x5 + 0.21445x6 on check
node weights (see [28] pg. 664), whereH is formed using the
socket approach given in [30]. Here the distribution on|R|
is much tighter, ranging from 496 to 500. The size onR is
equal to 500 with probability roughly equal to 0.1, 499 with
probability around 0.56, and 498 with probability near 0.26.
Thus with some degree of confidence, we can claim that for
this rate-1/2 irregular code ensemble the random technique
given in Algorithm 2 yields a puncturing pattern with size
nearly equal (and equal in some cases) toN − k.

As a direct result, a puncturing pattern generated for the
irregular code of the example has a unique property. Namely,
that for some patternsDMP = DML.

Lemma 3. Let Rc denote the indices of the channel-erased
bits ofpi, andDMP andDML denote the degrees of freedom
using MP decoding and ML decoding, respectively. If an ir-
regular LDPC code is employed over the BEC with intentional
puncturing determined by Algorithm 2 in which|R| = N − k,
thenDML = DMP = |Rc|.

Proof: The ML portion of this lemma follows from
Proposition 1, i.e. that the system of equations in (2) can
resolve a maximum ofN − k erasures. Since|R| = N − k,
any erasure by the channel is guaranteed to give a degree of
freedom in the decoder. The MP case is the same because by
Proposition 2, the MP decoder can correct at mostN − k
erasures. Thus any bits erased by the channel (or perhaps
another set of bits of equal size) must be guessed in order
to decode. Therefore, the effectiveness of the ML decoder is
equal to that of the MP decoder when|R| = N − k.

It should be noted that if the sum of systematic bits in
R + Rc is less thanD, a brute-force attack on these bits
might be more appealing to an attacker than decoding the
entire codeword. To cover this possibility,D can be thought
of as the minimum between the number of systematic bits
missing to the eavesdropper, and the degrees of freedom in the
decoder. Although, in practice the number of systematic bits

removed through puncturing or erased by the channel usually
exceeds the degrees of freedom in the decoder.

D. Interleaving

The role of the interleaver is to ensure that all packets
must be obtained error-free for successful decoding in any
and all encoded blocks. To do this, we construct a collection
of η packets to be transmittedX = (x1, x2, . . . , xη) in the
following manner. Alice definesα a small positive integer
which is assumed to dividen (not necessary but convenient
for notation and analysis) such thatη = n/α, and theith
packet is formed as

xi = (xi
1, x

i
2, . . . , x

i
αL)

= (p1(i−1)α+1, . . . , p
1
iα, p

2
(i−1)α+1, . . . , p

2
iα, . . . ,

pL(i−1)α+1, . . . , p
L
iα). (5)

for i = 1, 2, . . . , η. In words, we form the packetxi by
concatenatingα bits from each encoded and punctured block
pj for j = 1, 2, . . . , L. Therefore, a single erased packet causes
α erasures in each punctured block at the decoder. Since we
have designedR so that any erasure of a bit inpj results in
MP decoding failure, we can be assured that any erased packet
will cause allL blocks to fail in the MP decoder due to this
interleaving. IfR can be designed so that|R| = N − k, then
the same result holds for ML decoding by Lemma 3.

Corollary 1. If |R| = N − k and packets are formed
according to (5), then the number of degrees of freedom in
the ith codeword isDi

ML = Di
MP = |Ri

c| = α|Rp| for
i = 1, 2, . . . , L, where Rp is a list of all erased packets.
Furthermore,Di

ML = Dj
MP∀i, j.

Proof: The first part is trivial and follows directly from
Lemma 3 and (5). We see thatDi

ML = Dj
MP because a

missing packet means exactlyα degrees of freedom in each
block, irrespective of decoder choice.

V. DECODER FORLEGITIMATE USERS

The decoder for legitimate users is simply the inverse of all
encoder operations. A user can decode all data as long as every
packet is received error-free. Legitimate users make use of
the authenticated feedback channel to request retransmission
of packets erased in the main channel during transmission.
Time delay and queueing aspects of ARQ protocols are well-
addressed in the literature, e.g. [40] and its references. The
decoding process is shown pictorially in Fig. 4. Once all
packets are obtained inY , the bits are deinterleaved back into
their intentionally punctured codewords̃P . The MP decoder
is then guaranteed to decode the puncturing in linear time
with the blocklength to obtainB̃ [28], and the inverse of
the scrambling matrix is applied to the systematic decoded
bits using (4) to obtainM̃ . Once all packets are known, this
decoder guarantees that̃M = M .

VI. SECURITY AGAINST WIRETAPPERS

An eavesdropper can decode the data using Bob’s decoder in
Fig. 4 if all packets are obtained error-free. The independence
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Buffer Deinterleaver
Message
Passing

Map
to M
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η packets
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P̃

L blocks
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B̃

L blocks
lengthN

M̃

L blocks
lengthk

Fig. 4. Detailed block diagram of Bob’s decoder. Number and size of blocks
or packets are indicated at each step.

of Qm andQw, however, prevents Eve from receiving packets
as a function ofδ andǫ, the respective probabilities of erasures
in Qm and Qw. Let Ref be the event that a single packet
is received error-freeby at least one eavesdropper after all
retransmissions of the packet requested by any legitimate
receiver have been filled. This section shows the blanket
security effect of our encoder over nearly the entire region
of possible(δ, ǫ) pairs by completely characterizingD for the
system. We first showD to be binomially distributed, and then
provide security results for all scenarios studied as a function
of Ref . Expressions forRef follow for the wiretap channel
case, the broadcast scenario withm intended receivers, the
case withl collaborating eavesdroppers, and the most general
case with bothm legitimate receivers andl collaborating
eavesdroppers. For cases beyond the simple wiretap scenario,
all m legitimate receivers are given access to the feedback
channel, and alll eavesdroppers are restricted to passive status
through authentication on the channel. Retransmissions inthe
ARQ protocol are executed only after requests are received
from all legitimate parties.

Since proper design of the encoder was shown to cause
D to have the same realization for every codeword and be
independent of the decoder in Corollary 1, we understandD to
represent the degrees of freedom in every codeword assuming
either the ML or MP decoder for the rest of the paper.

A. General Security Theorems

Lemma 4. The random variableD which governs the number
of degrees of freedom in a received codeword is a scaled
binomial random variable. Thus, for1 ≤ β ≤ αη,

Pr(D ≥ β) = 1−

⌈β/α⌉−1
∑

i=0

(

η

i

)

(1− Pr(Ref ))
i Pr(Ref )

η−i.

(6)

Proof: By definition, packets are erased for eavesdroppers
with probability(1−Pr(Ref )). Since there areη independent
Bernoulli trials, each identically distributed, the sum oferased
packets|Rp| is a binomial random variable with parameters
η and (1− Pr(Ref )) [41]. Then, by Corollary 3,D = α|Rp|
whereα bits from every codeword are sorted into each packet.
Thus, D is a scaled binomial random variable; specifically
D ∼ Bin(η, 1 − Pr(Ref ))α. SinceD = α|Rp|, thenD ≥ β
implies thatα|Rp| ≥ β. Clearly, this requires that|Rp| ≥
⌈β/α⌉. The result in (6) follows directly.

The expected value is therefore known due to the binomial
structure ofD. We also prove an important property in regards
to E[D].

Theorem 1. If |R| = N − k in the encoder, thenk/n = 1,
andE[D] = H(X |Z) = (1 − Pr(Ref ))n.

Proof: Since|R| = N −k, thenn = |Q| = N −|R| = k.
Let us consider the model for a single codeword (L = 1). We
can then assumeη independent uses of a PEC with packets of
lengthα. LetX be the input to the channel, andZ the output,
whereα bits are erased with probability(1 − Pr(Ref )) or
received error-free with probabilityPr(Ref ) with each channel
use. The input distribution onα bits is uniform because the
input distribution onM is uniform, and the encoding function
of rate one forms a bijection onk bits. Thus,H(X) = α.
Clearly H(Z|X) = H(1 − Pr(Ref )), andH(Z) = H(1 −
Pr(Ref )) + Pr(Ref )α (see [37], pg. 188). Then,

H(X |Z) = H(Z|X)−H(Z) +H(X) (7)

= α(1 − Pr(Ref )). (8)

Therefore, withη independent uses of the channel (one for
each packet),H(X |Z) = (1−Pr(Ref ))ηα = (1−Pr(Ref ))n.
Since the mean of a binomial random variable is the product of
its two parameters,E[D/α] = (1−Pr(Ref ))η, and therefore

E[D] = (1 − Pr(Ref ))ηα = (1− Pr(Ref ))n. (9)

Thus we see thatE[D] is equal to the information-theoretic
value of equivocation when the puncturing is accomplished so
that |R| = N−k. Therefore,perfectsecrecy is obtained when
E[D] = k. Of course, this occurs whenPr(Ref ) = 0, which
implies that the eavesdropper obtains zero packets. Thus, this
scheme cannot achieve perfect secrecy. However, it can be
shown using the achievable rates in [4] thatE[D] approaches
the maximum achievable equivocation fork/n = 1. These
results now require expressions forPr(Ref ) to complete the
security characterization inD.

B. One Receiver and One Wiretapper

The simplest case matches the setup given in Fig. 1, and
was originally proved in [11].

Lemma 5 (Harrison, et. al. [11]). In the wiretap channel
scenario with feedback, the probability that Eve obtains a
single transmitted packet is given as

Pr(Ref ) =
1− ǫ

1− ǫδ
. (10)

Intuition of security for the wiretap channel in terms ofD
can be gained by using the expression forPr(Ref ) in (10)
to plot (6) for different values ofβ, α, andη. Fig. 5 shows
Pr(D ≥ 1) for η = 100. Note that whenβ = 1, α is not
required to evaluate (6). This case is provided to show the
plateau and falloff regions in the(δ, ǫ) grid for Pr(D ≥ β).
Throughout the plateau region, stopping sets occur in the MP
decoder and the ML decoder has linearly dependent columns
in HK̄ with probability very close to one. The results of

Lemmas 4 and 5 givePr(D ≥ 1) = 1−
(

1−ǫ
1−ǫδ

)η

, which can
be examined in the limit asη → ∞. It is immediate that except
for whenδ = 1 or ǫ = 0, Pr(D ≥ 1) goes to one for all(δ, ǫ)
pairs asη gets large. From Theorem 1, if|R| = N − k, then
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Fig. 5. Pr(D ≥ 1) whenη = 100, as a function of the respective erasure
probabilities inQm andQw, δ and ǫ.
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Fig. 6. Pr(D ≥ 1) whenη = 5000, as a function of the respective erasure
probabilities inQm andQw, δ and ǫ.

η = n
α = k

α . Clearlyη grows withk; therefore, the probability
of security approaches one ask gets large. Since largek
necessitates largen and N , the same holds true for these
blocklength parameters. Codes with blocklengthN = 10, 000
are deemed practical by today’s standards. Forα = 1 and for
a carefully chosenR with size roughly 5000, thenη ≈ 5000.
This case is shown in Fig. 6, where as expected, all nontrivial
(δ, ǫ) pairs showPr(D ≥ 1) ≈ 1.

But of course, a single degree of freedom is easily guessed
in an attack. Let us examine the effects on security whenβ
takes on a larger value. This perspective is provided in Fig.7,
whereη = 5000 andβ = 50 with α = 1. As can be seen in the
figure, there exists a cutoff region, where(δ, ǫ) pairs within the
plateau region will experience at leastβ degrees of freedom
with probability very close to one, while pairs outside the
region will haveD < β with probability close to one. Owing
to the severity of the cutoff, the threshold can be approximated
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Fig. 7. Pr(D ≥ 50) when α = 1 and η = 5000, as a function of the
respective erasure probabilities inQm andQw, δ and ǫ.

by settingPr(D ≥ β) = 0.5 in (6), and deriving a function of
δ and ǫ. This technique provides a unique threshold for each
specific set of values forβ, α, andη.

Finally, let us inspect theE[D] according to Theorem 1 for
this case.

E[D] =
ǫ(1− δ)

1− ǫδ
ηα =

ǫ(1− δ)

1− ǫδ
n. (11)

This function grows linearly withn which is equal tok when
|R| = N − k. Thus, to driveD to a large number in practice,
we simply must use a larger dimension in the encoder. Note
that in the expectation the choice ofα does not affect security;
although,α = 1 allows η to be as large as possible, which
provides more confidence thatD ≈ E[D] by the law of large
numbers ([41], pg. 193).

C. Multiple Intended Receivers

In this section, we move past the single user case, and ad-
dress the more general broadcast channel originally presented
in [42]. There is also a single eavesdropper with probability
of an erased packet equal toǫ as before. This case allows us
to understand the repercussions on security of having more
than one user for which we allow feedback requests. We can
characterize security using Lemma 4 and Theorem 1 in the
m user case by finding an expression forPr(Ref ). Recall
that Ref is the event that Eve receives a single transmitted
packet as before. Let each user have an independent PEC
with probability of erasure in theith user’s channel asδi for
i = 1, 2, . . . ,m. The following lemma is necessary to obtain
Pr(Ref ).

Lemma 6. If Q1, Q2, . . . , Qm are independent geometri-
cally distributed random variables with success parameters
λ1, λ2, . . . , λm, and Tm = max(Q1, Q2, . . . , Qm), then the
probability mass function onTm is given as

fm(t) =

m
∏

i=1

(1 − (1− λi)
t)−

m
∏

j=1

(1− (1 − λi)
t−1). (12)
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Proof: The proof is omitted for the sake of brevity, but
follows from an inductive assumption onm.

Armed with this lemma, we can obtainPr(Ref ) for the
broadcast channel case.

Lemma 7. Using the broadcast channel withm independent
legitimate receivers and an eavesdropper

Pr(Ref ) =

m
∑

i=1

(

1− ǫ

1− ǫδi

)

−
∑

i<j

(

1− ǫ

1− ǫδiδj

)

+

∑

i<j<k

(

1− ǫ

1− ǫδiδjδk

)

− · · ·+

(−1)m+1

(

1− ǫ

1−
∏m

i=1 δi

)

where the notationi < j means the summation traverses over
all pairs (i, j) such thati, j ∈ {1, 2, . . . ,m} and i < j, and
similarly for i < j < k, etc.

Proof: Note that if theith user requests a single packet
until it is received, and in each transmission it is received
with probability δi, then the total number of times the user
must request the packet is governed by a geometric ran-
dom variable with success parameter1 − δi [41]. Define
W1,W2, . . . ,Wm as the geometric random variables govern-
ing the total number of transmissions necessary for users
1, 2, . . . ,m, respectively, to obtain the packet error-free. Then,
letW = max(W1,W2, . . . ,Wm). W governs the total number
of transmissions necessary for all legitimate parties to receive
the packet.

By Lemma 6, we know that

Pr(W = w) =

m
∏

i=1

(1− δwi )−
m
∏

j=1

(1− δw−1
i ) (13)

because the success parameter forWi is 1 − δi for i =
1, 2, . . . ,m. Finally, we point out that
m
∏

i=1

(1−δi) = 1−
m
∑

i=1

δi+
∑

i<j

δiδj−
∑

i<j<k

δiδjδk+· · · (−1)m
m
∏

i=1

δi

(14)
which implies that

Pr(W = w) =



1−
m
∑

i=1

δwi +
∑

i<j

(δiδj)
w − · · ·+

(−1)m(
m
∏

i=1

δi)
w

)

+



−1 +

m
∑

i=1

δw−1
i −

∑

i<j

(δiδj)
w−1 + · · ·+

(−1)m+1(

m
∏

i=1

δi)
w−1

)

=

m
∑

i=1

δw−1
i (1− δi)−

∑

i<j

(δiδj)
w−1(1− δiδj)

+ · · ·+ (−1)m+1(

m
∏

i=1

δi)
w−1(1−

m
∏

i=1

δi).

With these pieces in place, we commence proving the
lemma.

Pr(Ref ) =

∞
∑

w=1

Pr(Ref |W = w) Pr(W = w)

=

∞
∑

w=1

(1− ǫw)





m
∏

i=1

(1− δwi )−
m
∏

j=1

(1− δw−1
i )





=

∞
∑

w=1

(1− ǫw)

(

m
∑

i=1

δw−1
i (1− δi)−

∑

i<j

(δiδj)
w−1(1− δiδj) + · · ·

+ (−1)m+1(

m
∏

i=1

δi)
w−1(1−

m
∏

i=1

δi)

)

=
m
∑

i=1

1− δi
δi

∞
∑

w=1

(1− ǫw)δwi −

∑

i<j

1− δiδj
δiδj

∞
∑

w=1

(1− ǫw)(δiδj)
w + · · ·

+(−1)m+1 1−
∏m

i=1 δi
∏m

i=1 δi

∞
∑

w=1

(1− ǫw)(

m
∏

i=1

δi)
w

=

m
∑

i=1

1− δi
δi

(

∞
∑

w=0

δwi −
∞
∑

w=0

(ǫδi)
w

)

−

m
∑

i<j

1− δiδj
δiδj

(

∞
∑

w=0

(δiδj)
w −

∞
∑

w=0

(ǫδiδj)
w

)

+ · · ·+ (−1)m+1 1−
∏m

i=1 δi
∏m

i=1 δi
×

(

∞
∑

w=0

(
m
∏

i=1

δi)
w −

∞
∑

w=0

(ǫ
m
∏

i=1

δi)
w

)

=

m
∑

i=1

(

1− ǫ

1− ǫδi

)

−
m
∑

i<j

(

1− ǫ

1− ǫδiδj

)

+ · · ·+

(−1)m+1

(

1− ǫ

1−
∏m

i=1 δi

)

. (15)

D. Collaborating Eavesdroppers

In this section we consider the case withl eavesdrop-
pers working together in order to obtain the cryptogramM ,
each with a possibly unique probability of packet erasure
ǫ1, ǫ2, . . . , ǫl. All are assumed to obtain packets through inde-
pendent PECs. It is simpler to first consider a single legitimate
user Bob with probability of packet erasureδ. Then the general
result which assumesm friendly parties withl collaborating
eavesdroppers comes easily.

Lemma 8. For l eavesdroppers and a single legitimate re-
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ceiver,

Pr(Ref ) =
1−

∏l
i=1 ǫi

1− δ
∏l

i=1 ǫi
. (16)

Proof: The proof is straightforward if we note that
collaborating eavesdroppers receive a single sent packet if at
least one of them obtains the packet error-free. LetW be
a geometric random variable with success parameter1 − δ.
This governs the number of transmissions for each packet.
Therefore,

Pr(Ref ) =

∞
∑

w=1

Pr(Ref |W = w) Pr(W = w)

=

∞
∑

w=1

(1− (

l
∏

i=1

ǫi)
w)(1− δ)δw−1

=
1− δ

δ

(

∞
∑

w=0

δw − (δ

l
∏

i=1

ǫi)
w

)

=
1−

∏l
i=1 ǫi

1− δ
∏l

i=1 ǫi
. (17)

This answer provides an easy bridge to an extremely general
result.

Corollary 2. For the scenario withm intended parties andl
eavesdroppers with similar notation as before,

Pr(Ref ) = (1− ǫ′)





m
∑

i=1

1

1− ǫ′δi
−
∑

i<j

1

1− ǫ′δiδj
+ · · ·+

(−1)m+1 1

1− ǫ′
∏m

i=1 δi

)

, (18)

whereǫ′ =
∏l

i=1 ǫi.

Proof: This proof is not included for the sake of brevity,
but is nearly identical to the proof of Lemma 7 with slight
alterations as indicated by the proof of Lemma 8 to allow for
multiple eavesdroppers.

VII. C RYPTOGRAPHICSECURITY ENHANCEMENTS

The probabilistic security analysis in Section VI assumes
that attacks on the cryptography become more difficult or
completely infeasible asD gets large. It remains to show the
effect of the coding scheme on attacks of the cryptography.
As an example, fast correlation attacks on stream ciphers are
known to be possible, even if the cryptogram is error-prone.It
was noted in [8], [9], [10] that specific attacks from [7] were
made more difficult, and in some cases impossible due to error
rates in the cryptogram beyond a certain threshold. Certainly
as bit error rates approach 0.5 in the cryptogram, attacks of
the fast-correlation variety break down completely.

Let P̂ = (p̂1, p̂2, . . . , p̂L) be the collection of punctured
codewords obtained by Eve, wherêpi = (p̂i1, p̂

i
2, . . . , p̂

i
n),

and let B̂ = (b̂1, b̂2, . . . , b̂L) be the decoded codewords,
whereb̂i = (b̂i1, b̂

i
2, . . . , b̂

i
N). Finally, define the implied block

structure of Eve’s decoder output aŝM = (m̂1, m̂2, . . . , m̂L),
wherem̂i = (m̂i

1, m̂
i
2, . . . , m̂

i
k). Each channel-erased bit in̂pi
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Fig. 8. The simulated error rates in Eve’s decoded cryptogram M̂ whenγ
errors are made in guessing bit values forD degrees of freedom in Eve’s
received codewords.

yields a degree of freedom in̂bi, and complete recovery of
b̂i requires thatD bits in p̂i be guessed correctly. If a guess
is incorrect, there will be at least as many errors inb̂i as
the minimum distance of the LDPC code. The descrambling
process in (4) magnifies any errors inb̂i to an expected bit
error rate of 0.5 inm̂i. Therefore, since all guesses are equally
likely, a brute-force attack onD bits must be accomplished to
obtain eachm̂i.

Simulations of the end-to-end encoder and decoder clearly
indicate the expected bit error rate in̂M of 0.5 for an incorrect
guess. Simulations were performed using the irregular LDPC
code of Example 1 withN = 1000 andk = 500. Puncturing
patterns used were such that|R| ≥ 498 bits. S was formed
randomly by setting roughly half of thek2 entries equal to one
until such a matrix was invertible using the LU decomposition
in GF(2). Letγ be the number of bits in Eve’s guess which are
incorrect. We offer simulation results forγ = 1, 2, 3, 4, 5, 10,
15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, and 400 in
Fig. 8. Eachγ value was tested 300 times on both the MP and
ML decoder, while a new puncturing patternR was generated
every 10 experiments, and a new code from the ensemble was
selected every 30 experiments. All tests produced error rates
in between 0.414 and 0.578 in̂M , while the mean depicted a
0.5002 bit error rate with no noticeable difference betweenMP
and ML decoders, or betweenγ values, as Fig. 8 indicates.

These results imply that unlessD bits are guessed exactly,
the cryptography must be attacked with an average bit error
rate of 0.5 inM̂ . We can certainly expect such an attack to fail
for fast correlation attacks on stream ciphers, but the notion
that any attack on a cryptosystem could absorb such error rates
and still succeed is obviously shortsighted. However, since an
attack could feasibly be staged using a single block ofM̂ , we
will only guarantee failure of the attack if every block in̂M is
incorrect. Using similar logic, it can be said that if an attack
would succeed using the error-free ciphertextM , then it may
fail even if a single block inM̂ is in error.
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Theorem 2. Define the complexity of a cryptographic attack
to beCA. LetD be the degrees of freedom of each ofL blocks
in B̂. Then the expected complexityCPL of a successful attack
on the system is bounded as

2E[D](1− 2−1/L)CA ≤ CPL ≤ 2E[D](2−1/L)CA. (19)

Proof: By Corollary 1 each codeword in̂B has the same
number of degrees of freedom. Thus,E[D] is the average
number of bits that must be guessed in each ofL punctured
codewords inP̂ . Assume that an attacker guesses bit patterns
on all codewords in̂P simultaneously. The correct bit patterns
of the channel-erased bits in theL codewordsP̂ are uniformly
distributed over2E[D] possibilities in each block. The lower
bound is formulated by the expected number of guesses until
at least one ofL codewords is found. Model the correct
bit patterns in theL codewords as i.i.d. discrete uniform
random variables on{0, 1, . . . , 2E[D]−1}, sayU1, U2, . . . , UL.
Without loss of generality, assume that an attacker begins
by guessing zero for eachUi and proceeds in an orderly
fashion. Then, the expected number of guesses until at least
one is correct is given byE[min(U1, U2, . . . , UL)]. Thus,
we calculatePr(min(U1, U2, . . . , UL) ≥ z) = Pr(U1 ≥
z,Pr(U2 ≥ z), . . . , UL ≥ z) = (Pr(U1 ≥ z)(Pr(U2 ≥
z) . . . (Pr(UL ≥ z) =

(

2E[D] − z

2E[D]

)L

. (20)

Now, solve forz in Pr(min(U1, U2, . . . , UL) ≥ z) = 0.5 for
a close bound on the expectation to get the lower bound.

The upper bound is calculated similarly, but we assume that
all patterns must be guessed in order to guarantee success,
therefore, the bound is given by finding thez that solves
Pr(max(U1, U2, . . . , UL) < z) = 0.5.

As a check on these bounds, forL = 1 we expect2E[D]−1

guesses on average for a successful attack. In this case, both
bounds meet at2E[D]−1CA, as expected. Although these
bounds are helpful, whenL > 1 the bounds are not as tight,
and thus provide limited insight into the true increase in com-
plexity of the attack. More than likely, an attack will require at
least a certain number of consecutive blocks inM to execute
successfully [7]. Clearly a 0.5 bit error rate in any block
would destroy an attack with these requirements. Therefore,
the upper bound in (19) serves as a good approximation to
the expected amount of work necessary to complete the attack,
with L being set by the attack specifications. Thus we see, that
our system appends a multiplier which is exponential inE[D]
to the complexity of a cryptographic attack through practical
physical-layer security.

VIII. C ONCLUSIONS

In conclusion, we have presented the security metric of
degrees of freedomD in an eavesdropper’s received code-
words, and applied this metric to a physical-layer coding
scheme to show cryptographic security enhancements due to
channel coding. The coding scheme relies on the nature of
independent packet erasure channels and ARQ to provide
secrecy and reliability, respectively. End-to-end details of the

encoder and decoder were provided. Design criteria were
specified to maximizeD in a maximum-likelihood attack
as well as a message-passing attack. This involved security
performance comparisons of LDPC codes with varying degree
distributions, where irregular codes were shown to outperform
regular codes in maximizingD. The expected value ofD
was also shown to be equal toH(X |Z) in our encoder.
Probabilistic security results were obtained and made general
so as to apply to multiple receivers and multiple collaborative
attackers. Simulation results were provided which show that
unless an attacker can guessD symbols in the received data
correctly, the system yields a bit error rate of 0.5 in the
cryptogram, thus necessitating a brute-force attack onD bits
for each codeword. The end result on the expected increase
in attack complexity on the cryptosystem due to our scheme
is a multiplier which is exponential inE[D]. The system
was shown to provide cryptographic security enhancement,
even when eavesdroppers have an advantage over legitimate
receivers in signal quality.
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