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Abstract—Internet worm attacks pose a significant threat to network security and management. In this work, we coin the term Internet
worm tomography as inferring the characteristics of Internet worms from the observations of Darknet or network telescopes that
monitor a routable but unused IP address space. Under the framework of Internet worm tomography, we attempt to infer Internet worm
temporal behaviors, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts.
Specifically, we introduce statistical estimation techniques and propose method of moments, maximum likelihood, and linear regression
estimators. We show analytically and empirically that our proposed estimators can better infer worm temporal characteristics than a
naive estimator that has been used in the previous work. We also demonstrate that our estimators can be applied to worms using
different scanning strategies such as random scanning and localized scanning.

Index Terms—Internet worm tomography, Darknet, statistical estimation, host infection time, worm infection sequence.

✦

1 INTRODUCTION

S INCE Code Red and Nimda worms were released in
2001, epidemic-style attacks have caused severe dam-

ages. Internet worms can spread so rapidly that existing
defense systems cannot respond until most vulnerable hosts
have been infected. For example, on January 25th, 2003,
the Slammer worm reached its maximum scanning rate of
more than 55 million scans per second in about 3 minutes,
and infected more than 90% of vulnerable machines within
10 minutes [1]. It cost over one billion US dollars in
cleanup and economic damages. Therefore, worm attacks
pose significant threats to the Internet and meanwhile
present tremendous challenges to the research community.

To counteract these notorious plague-tide attacks, various
detection and defense strategies have been studied in recent
years. According to where the detectors are located, these
strategies can generally be classified into three categories:
source detection and defenses, detecting infected hosts in the
local networks [2], [3], [4], [5]; middle detection and defenses,
revealing the appearance of worms by analyzing the traffic
going through routers [6], [7], [8]; and destination detection

and defenses, monitoring unwanted traffic arriving at Dark-
net or network telescopes, a globally routable address space
where no active services or servers reside [9], [10], [11],
[12], [13]. There are two types of Darknet: active Darknet

that responds to malicious scans to elicit the payloads of
the attacks [11], [12], and passive Darknet that observes
unwanted traffic passively [10], [13].

Different from source and middle detection and defenses,
destination detection and defenses offer unique advantages
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in observing large-scale network explosive events such
as distributed denial-of-service (DDoS) attacks [14] and
Internet worms [15], [1], [16]. There is no legitimate reason
for packets destined to Darknet. Hence, most of the traffic
arriving at Darknet is malicious or unintended, including
hostile reconnaissance scans, probe activities from active
worms, DDoS backscatter, and packets from mis-configured
hosts. Moreover, it has been shown that for a large-scale
worm event, most of infected hosts, if not all, can be
observed by the Darknet with a sufficiently large size [17].

In this work, we focus on the destination detection and
defenses. Specifically, we study the problem of inferring
the characteristics of Internet worms from Darknet obser-
vations. We refer to such a problem as Internet worm tomog-
raphy, as illustrated in Fig.1. Most worms use scan-based
methods to find vulnerable hosts and randomly generate
target IP addresses. Thus, Darknet can observe partial scans
from infected hosts. Together with the worm propagation
model and the statistical model, Darknet observations can
be used to detect worm appearance [18], [19], [20], [21] and
infer worm characteristics (e.g., infection rate [22], number
of infected hosts [17], [23], and worm infection sequence
[24], [25], [26]). Internet worm tomography is named after
network tomography, which infers the characteristics of the
internal network (e.g., link loss rate, link delay, and topol-
ogy) through the observations from end systems [27], [28].
Network tomography can be formulated as a linear inverse
problem. Internet worm tomography, however, cannot be
translated into the linear inverse problem due to the specific
properties of worm propagation, and thus presents new
challenges.

Under the framework of Internet worm tomography,
researchers have studied worm temporal characteristics
and have attempted to answer the following important
questions:

• Host infection time: When exactly does a specific host
get infected? This information is critical for the recon-
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Fig. 1. Internet worm tomography.

struction of the worm infection sequence [25].
• Worm infection sequence: What is the order in which

hosts are infected by worm propagation? Such an
order can help identify patient zero or initially infected
hosts [24].

The information of both the infection time and the infec-
tion sequence is important for defending against worms.
First, the identification of patient zero or initially infected
hosts and their infection times provide forensic clues for
law enforcement against the attackers who wrote and
spread the worm. Second, the knowledge of the infection
sequence provides insights into how a worm spread across
the Internet (e.g., characteristics on who infected whom)
and how network defense systems were breached.

A simple estimator has been proposed in [25] to infer
worm temporal behaviors. The estimator uses the observa-
tion time when an infected host scans the Darknet for the
first time as the approximation of the host infection time to
infer the worm infection sequence. Such a naive estimator,
however, does not fully exploit all information obtained
by the Darknet. Moreover, an attacker can design a smart
worm that uses lower scanning rates for patient zero or
initially infected hosts and higher scanning rates for other
infected hosts. In this way, the smart worm would weaken
the performance of the naive estimator.

The goal of this paper is to infer the Internet worm
temporal characteristics accurately by exploiting Darknet
observations and applying statistical estimation techniques.
Our research work makes several contributions:

• We propose method of moments, maximum likelihood,
and linear regression statistical estimators to infer the
host infection time. We show analytically and empir-
ically that the mean squared error of our proposed
estimators can be almost half of that of the naive
estimator in inferring the host infection time.

• We extend our proposed estimators to infer the worm
infection sequence. Specifically, we formulate the prob-
lem of estimating the worm infection sequence as a
detection problem and derive the probability of error
detection for different estimators. We demonstrate an-
alytically and empirically that our method performs
much better than the algorithm proposed in [25].

Infected host Darknet

Monitor

Observed 

hit times0t 1t 2t it 1it + 1nt − nt

1δ iδ 1nδ −

H

0δ

Fig. 2. An illustration of Darknet observations.

• We show empirically that our estimators have a better
performance in identifying patient zero or initially
infected hosts of the smart worm than the naive esti-
mator. We also demonstrate that our estimators can be
applied to worms using different scanning strategies
such as random scanning and localized scanning.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces estimators for inferring the host infection
time. Section 3 presents our algorithms in estimating the
worm infection sequence. Section 4 gives simulation results.
Section 5 discusses the assumptions, the limitations, and
the extensions of our estimators. Finally, Section 6 reviews
related work, and Section 7 concludes the paper.

2 ESTIMATING THE HOST INFECTION TIME

We use Darknet observations to estimate when a host gets
infected and use hit to denote the event that a worm scan
hits the Darknet. As shown in Fig. 2, suppose that a certain
host is infected at time t0. The Darknet monitors a portion
of the IPv4 address space and can observe some scans
from this host and record hit times t1, t2, · · · , tn, where n
is the number of hit events from this host. The problem
of estimating the host infection time can then be stated as
follows: Given the Darknet observations t1, t2, · · · , tn, what
is the best estimate of t0?

To study this problem, we make the following assump-
tions: 1) There is no packet loss in the Internet. 2) An
infected host uses its actual source IP address and does
not apply IP spoofing, which is the case for TCP worms.
3) The scanning rate s (i.e., the number of scans sent by an
infected host per time unit) is time-invariant for an infected
host, whereas the scanning rates of infected hosts can be
different from each other. The last assumption comes from
the observation that famous worms, such as Code Red,
Nimda, Slammer, and Witty, do not apply any scanning
rate variation mechanisms. An infected host always scans
for vulnerable hosts at the maximum speed allowed by
its computing resources and network conditions [29]. In
Section 5, we will revisit and discuss these assumptions.

Obviously, inferring t0 from Darknet observations is
affected by the Internet-worm scanning methods. In this pa-
per, we focus on random scanning and localized scanning.
However, if a scan from an infected host hits Darknet with
a time-invariant probability, our estimation techniques are
independent of worm-scanning methods. To analytically
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estimate the host infection time, we consider a discrete-
time system. For random scanning (RS), a worm selects
targets randomly and scans the entire IPv4 address space
with Ω addresses (i.e., Ω = 232). We assume that Darknet
monitors ω addresses. Thus, the probability for a scan to
hit the Darknet is ω/Ω; and the probability of a hit event in
the discrete-time system (i.e., the probability that Darknet
observes at least one scan from the same infected host in a
time unit) is

PrRS(hit event) = 1−
(

1−
ω

Ω

)s

. (1)

Since s is time-invariant for a given infected host,
PrRS(hit event) is also time-invariant.

Localized scanning (LS) preferentially searches for vul-
nerable hosts in the “local” address space [30]. For simplic-
ity, in this paper we only consider the /l LS: pa(0 ≤ pa < 1)
of the time, a “local” address with the same first l bits
as the attacking host is chosen as the target; 1 − pa of
the time, a random address is chosen. We consider a
centralized Darknet that occupies a continuous address
space and monitors ω addresses. Moreover, we assume that
the Darknet is contained in a /l prefix with no vulnerable
hosts. For example, network telescopes used by CAIDA are
such a centralized Darknet and contain a /8 subnet. Since
no infected hosts exist in the /l subnet where the Darknet
resides, the probability for a worm scan to hit the Darknet
is (1 − pa) · ω/Ω. Therefore, the probability of a hit event
in the discrete-time system is

PrLS(hit event) = 1−
(

1− (1 − pa) ·
ω

Ω

)s

, (2)

which is time-invariant. Since PrRS(hit event) has a sim-
ilar form as PrLS(hit event) and is the special case of
PrLS(hit event) when pa = 0, we use p (0 < p < 1) to denote
the hit probability in general for both cases to simplify our
discussion.

Denote δ0 as the time interval between when a host gets
infected and when Darknet observes the first scan from
this host, i.e., δ0 = t1 − t0, as shown in Fig. 2. Denote δi
as the time interval between i-th hit and (i + 1)-th hit on
Darknet, i.e., δi = ti+1− ti, i ≥ 1. Thus, δ0, δ1, · · · , δn−1 are
independent and identically distributed (i.i.d.) and follow
a geometric distribution with parameter p, i.e.,

Pr(δ = k) = p · (1− p)k−1, k = 1, 2, 3, · · · , (3)

E(δ) =
1

p
= µ, Var(δ) =

1− p

p2
. (4)

Denote µ as the mean value of δ and µ̂ as the estimate of
µ. We then estimate t0 by subtracting µ̂ from t1, i.e.,

t̂0 = t1 − µ̂. (5)

Therefore, our problem is reduced to estimating µ. Table 1
summarizes the notations used in this paper.

TABLE 1
Notations used in this paper.

Notations Definition
Ω Size of the scanning space (Ω = 232)
ω Size of the Darknet
s Scanning rate (scans/time unit)
σ Standard deviation of the scanning rate
pa Probability that an address with the same first l bits as

the attacking host is chosen by LS
p Probability that at least one scan from the same infected

host hits the Darknet in a time unit
t0 Host infection time
t̂0 Estimated host infection time
ti Discrete time tick when the infected host hits the Dark-

net for the i-th time (i ≥ 1)
δi Time interval between two consecutive hits of the Dark-

net (δi = ti+1 − ti, i ≥ 1)
n Number of hit events observed at the Darknet for an

infected host
µ Mean of δ
µ̂ Estimation of µ

D Sequence distance
Si Worm infection sequence

Ŝi Estimated worm infection sequence
N Length of the worm infection sequence considered for

evaluation

2.1 Naive Estimator

Since δ follows the geometric distribution as described by
Equation (3), Pr(δ) is maximized when δ = 1. Then, a naive
estimator (NE) of µ is

µ̂NE = 1. (6)

Thus, the NE of t0 is

t̂0NE = t1 − µ̂NE = t1 − 1. (7)

Note that t̂0NE depends only on t1, but not on t2, t3, · · · , tn.
This estimator has been used in [25] to infer the host
infection time and the worm infection sequence. In this
paper, however, we consider more advanced estimation
methods.

2.2 Method of Moments Estimator

Since E(δ) = µ, we design a method of moments estimator

(MME), i.e.,

µ̂MME = δ =
1

n− 1

n−1
∑

i=1

δi =
tn − t1
n− 1

. (8)

Thus, the MME of t0 is

t̂0MME = t1 − µ̂MME = t1 −
tn − t1
n− 1

. (9)

Note that t̂0MME is not only related to t1, but also to n and
tn.

2.3 Maximum Likelihood Estimator

Rewrite the probability mass function of δ in Equation (3)
with respect to µ,

Pr(δ;µ) = 1
µ

(

1− 1
µ

)δ−1

, δ = 1, 2, 3, · · · . (10)
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Since δ1, δ2, · · · , δn−1 are i.i.d., the likelihood function is
given by the following product

L(µ) =
n−1
∏

i=1

Pr(δi;µ)

=
( 1

µ

)n−1(

1−
1

µ

)(
n−1∑

i=1

δi)−(n−1)

. (11)

We then design a maximum likelihood estimator (MLE), i.e.,

µ̂MLE = argmax
µ

L(µ). (12)

Rather than maximizing L(µ), we choose to maximize its
logarithm lnL(µ). That is,

d

dµ
lnL(µ) = 0 (13)

=⇒ µ̂MLE =
1

n− 1

n−1
∑

i=1

δi =
tn − t1
n− 1

, (14)

which has the same expression as the MME. Thus,

t̂0MLE = t1 − µ̂MLE = t1 −
tn − t1
n− 1

. (15)

2.4 Linear Regression Estimator

Under the assumption that the scanning rate of an individ-
ual infected host is time-invariant, the relationship between
ti and i can be described by a linear regression model as
illustrated in Fig. 3, i.e.,

ti = α+ β · i+ εi, (16)

where α and β are coefficients, and εi is the error term. To
fit the observation data, we apply the least squares method
to adjust the parameters of the model. That is, we choose
the coefficients that minimize the residual sum of squares
(RSS)

RSS =
n
∑

i=1

[ti − (α+ β · i)]2. (17)

The minimum RSS occurs when the partial derivatives with
respect to the coefficients are zero























∂RSS

∂α
= −2

n
∑

i=1

(ti − α− β · i) = 0

∂RSS

∂β
= −2

n
∑

i=1

i · (ti − α− β · i) = 0,

(18)

which leads to










α̂ = t− β̂ · i

β̂ =
i · t− i · t

i2 − (i)2
,

(19)

where the bar symbols denote the average values






















i =
1

n

n
∑

i=1

i, i2 =
1

n

n
∑

i=1

i2

t =
1

n

n
∑

i=1

ti, i · t =
1

n

n
∑

i=1

i · ti.

(20)

Hit sequence

H
it
 t
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e
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Fig. 3. Linear regression model.

TABLE 2
Comparison of estimator properties (µ̂).

µ̂ Bias(µ̂) Var(µ̂) MSE(µ̂)

µ̂NE = 1 1− 1
p

0
(1−p)2

p2

µ̂MME = µ̂MLE = tn−t1
n−1

0 1−p

p2(n−1)
1−p

p2(n−1)

µ̂LRE = i·t−i·t

i2−(i)2
0

6(n2+1)(1−p)

5n(n2
−1)p2

6(n2+1)(1−p)

5n(n2
−1)p2

We then design a linear regression estimator (LRE), i.e.,

µ̂LRE = β̂ = t̂1 − t̂0. (21)

Thus, the LRE of t0 is

t̂0LRE = t1 − µ̂LRE = t1 −
i · t− i · t

i2 − (i)2
. (22)

There is another way to estimate t0, which uses the point
of interception shown in Fig. 3 as the estimation of t0, i.e.,

t̂0
′

LRE = α̂ = t− µ̂LRE · i. (23)

However, we find that the mean squared error of t̂0
′

LRE

increases when n increases. That is, the performance of
the estimator worsens with the increasing number of hits,
which makes this estimator undesirable.

2.5 Comparison of Estimators

To compare the performance of the naive estimator and our
proposed estimators, we compute the bias, the variance,
and the mean squared error (MSE). For estimating µ,






Bias(µ̂) = E(µ̂)− µ
Var(µ̂) = E [(µ̂− E(µ̂))2]
MSE(µ̂) = E [(µ̂− µ)2] = Bias2(µ̂) + Var(µ̂).

(24)

Here, the bias denotes the average deviation of the estimator
from the true value; the variance indicates the distance
between the estimator and its mean; and the MSE char-
acterizes the closeness of the estimated value to the true
value. A smaller MSE indicates a better estimator. Table 2
summarizes the results of NE, MME (or MLE), and LRE
for estimating µ. The details of the derivations of Table
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TABLE 3
Comparison of estimator properties (t̂0).

t̂0 Bias(t̂0) Var(t̂0) MSE(t̂0)

t̂0NE = t1 − µ̂NE
1−p

p

1−p

p2
(1−p)(2−p)

p2
(≈

2(1−p)

p2
, when p ≪ 1)

t̂0MME = t̂0MLE = t1 − µ̂MME 0 1−p

p2
· n

n−1
1−p

p2
· n

n−1
(≈ 1−p

p2
, when n ≫ 1)

t̂0LRE = t1 − µ̂LRE 0 1−p

p2
· 5n3+6n2

−5n+6
5n(n2

−1)
1−p

p2
· 5n3+6n2

−5n+6
5n(n2

−1)
(≈ 1−p

p2
, when n ≫ 1)

2 are given in Appendix A. It is noted that MME and
LRE are unbiased, while NE is biased. Moreover, MME
and LRE have a smaller MSE than NE if n > 2 and
p < 0.5, a condition that is usually satisfied. Specifically,
when n → ∞, MSE(µ̂MME) → 0 and MSE(µ̂LRE) → 0, but
MSE(µ̂NE) → (1 − p)2/p2. It is also observed that MME is
slightly better than LRE in terms of MSE when n > 2.

Similarly, we compute the bias, the variance, and the
MSE of the estimators for estimating t0 in Table 3. The
details of the derivations of Table 3 are given in Appendix
B. We also observe that MME (or MLE) and LRE are
unbiased, whereas NE is biased. Moreover, MSE(t̂0MME) and
MSE(t̂0LRE) are smaller than MSE(t̂0NE), and MSE(t̂0MME) is
the smallest when n > 3 and p < 0.5. Specifically, in
practice, Darknet only covers a relatively small portion of
the IPv4 address space (i.e., ω ≪ Ω), which leads to p ≪ 1.
Thus, we have the following theorem:

Theorem 1: When the Darknet observes a sufficient num-
ber of hits (i.e., n ≫ 1) and p ≪ 1,

MSE(t̂0MME) ≈ MSE(t̂0LRE) ≈
1

2
MSE(t̂0NE). (25)

That is, the MSE of our proposed estimators is almost half
of that of the naive estimator. That is, our proposed esti-
mators are nearly twice as accurate as the naive estimator
in estimating the host infection time.

3 ESTIMATING THE WORM INFECTION SE-
QUENCE

In this section, we extend our proposed estimators for
inferring the worm infection sequence.

3.1 Algorithm

Our algorithm is that we first estimate the infection time
of each infected host. Then, we reconstruct the infection
sequence based on these infection times. That is, if t̂0A < t̂0B,
we infer that host A is infected before host B. It is noted
that the algorithm used in [25] to infer the worm infection
sequence can be regarded as using this approach with the
naive estimator.

The naive estimator, however, can potentially fail to
infer the worm infection sequence in some cases. Fig. 4
shows an example, where hosts A and B get infected at
t0A and t0B, respectively, and t0A < t0B. Moreover, these
two infected hosts have scanning rates sA < sB such that
Darknet observes t1A > t1B. If the naive estimator is used,
t̂0A > t̂0B, which means that host A is incorrectly inferred
to be infected after host B. Intuitively, if our proposed

Observed

hit times0Bt

0 At

1Bt

1At iAt

iBt

1i At +

iAδ

iBδ nAt

nBt1i Bt +

1n At −

1n Bt −

Fig. 4. A scenario of the worm infection sequence.

estimators are applied, it is possible to obtain t̂0A < t̂0B and
thus recover the real infection sequence.

3.2 Performance Analysis

To analytically show that our estimators are more accurate
than the naive estimator in estimating the worm infection
sequence, we formulate the problem as a detection problem.
Specifically, in Fig. 4, suppose that host B is infected after
host A (i.e., t0A < t0B). If t̂0A < t̂0B, we call it “success” de-
tection; otherwise, if t̂0A > t̂0B, we call it “error” detection1.
We intend to calculate the probability of error detection for
different estimators.

Note that δ0A = t1A − t0A and δ0B = t1B − t0B follow the
geometric distribution (i.e., Equation (3)) with parameter
pA and pB, respectively. Here, pA (or pB) is the probability
that at least one scan from host A (or B) hits the Darknet in
a time unit and follows Equation (1) for random scanning
and Equation (2) for localized scanning. Moreover, pA (or
pB) depends on sA (or sB) so that if sA < sB, then pA < pB.
Since ω ≪ Ω, we have pA ≪ 1 and pB ≪ 1. Hence, for
simplicity we use the continuous-time analysis and apply
the exponential distribution to approximate the geometric
distribution for δ0A and δ0B [31], i.e.,

f(x;λ) =

{

λe−λx, x ≥ 0
0, x < 0,

(26)

where λ = pA or pB.

To calculate the probability of error detection for different
estimators, we first define a new random variable

Z = δ0A − δ0B, (27)

and calculate its probability density function (pdf) fZ(z).
From Equation (26), we can obtain the pdf of δ′0B = −δ0B,
which is

fδ′0B
(x) =

{

pB e
pBx, x ≤ 0

0, x > 0.
(28)

1. We ignore the case t̂0 A = t̂0B here.
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(a) PrNE(error). (b) PrMME(error).

Fig. 5. Analytical results of Pr(error) when changing pA and pB (τ = 50 time units).

Since δ0A and δ′0B are independent, the pdf of Z = δ0A + δ′0B

is given by the convolution of fδ0A
(x) and fδ′0B

(x), i.e.,

fZ(z) =

∫ +∞

−∞

fδ0A
(x)fδ′0B

(z − x) dx. (29)

For z ≥ 0, this yields

fZ(z) =

∫ +∞

z

pA e
−pAx · pB e

pB(z−x) dx

= pApB

pA+pB
e−pAz. (30)

For z < 0, we obtain

fZ(z) =

∫ +∞

0
pA e

−pAx · pB e
pB(z−x) dx

= pApB

pA+pB
epBz. (31)

Hence,

fZ(z) =







pApB

pA+pB
e−pAz, z ≥ 0

pApB

pA+pB
epBz, z < 0.

(32)

3.2.1 Naive Estimator

The naive estimator uses t̂0 = t1 − 1 to estimate t0. Thus,
the probability of error detection is

PrNE(error) = Pr(t1A − 1 > t1B − 1) = Pr(δ0A > τ + δ0B), (33)

where τ = t0B − t0A, the time interval between the infection
of host A and host B; and τ > 0. We then have

PrNE(error) = Pr(δ0A − δ0B > τ)

= Pr(Z > τ)

=

∫ +∞

τ

pApB

pA+pB
e−pAz dz

= pB

pA+pB
e−pAτ . (34)

Note that another way to derive PrNE(error) is based on the
memoryless property of the exponential distribution and
Pr(δ0A > δ0B) = pB/(pA + pB), i.e.,

PrNE(error) = Pr(δ0A > τ + δ0B) = Pr(δ0A > τ)Pr(δ0A > δ0B),
(35)

which leads to the same result.

3.2.2 Proposed Estimators

We assume that Darknet observes a sufficient number of
scans from hosts A and B so that our proposed estimators
can estimate µA (i.e., 1

pA
) and µB (i.e., 1

pB
) accurately. Then,

the probability of error detection of our proposed estima-
tors is

PrMME(error) = PrMLE(error) = PrLRE(error)

= Pr(t1A −
1
pA

> t1B −
1
pB
)

= Pr(δ0A − δ0B > τ + 1
pA

−
1
pB
)

= Pr(Z > τ + pB−pA

pApB
)

=

∫ +∞

τ+
pB−pA
pApB

fZ(z) dz. (36)

When τ + pB−pA

pApB
≥ 0,

PrMME(error) =

∫ +∞

τ+
pB−pA
pApB

pApB

pA+pB
e−pAz dz

= pB

pA+pB
e
−pA

(

τ+
pB−pA
pApB

)

. (37)

When τ + pB−pA

pApB
< 0,

PrMME(error) =

∫ 0

τ+
pB−pA
pApB

pApB

pA+pB
epBz dz +

∫ +∞

0

pApB

pA+pB
e−pAz dz

= 1
pA+pB

(

pA + pB − pA e
pB

(

τ+
pB−pA
pApB

)

)

.(38)

3.2.3 Performance Comparison

Since PrNE(error) = Pr(Z > τ) and PrMME(error) = Pr
(

Z >
τ + pB−pA

pApB

)

, for a given τ (τ > 0), comparing Equation (34)
with Equations (37) and (38),

{

PrNE(error) > PrMME(error), pA < pB

PrNE(error) < PrMME(error), pA > pB.
(39)

Hence, it is unclear which estimator is better based on
the expressions of PrNE(error) and PrMME(error). How-
ever, we can compare the performance of our estimators
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Fig. 6. Analytical results of Pr(error) when changing τ .

with the naive estimator through numerical analysis. We
first demonstrate the probabilities of error detection (i.e.,
PrNE(error) and PrMME(error)) as the functions of pA and pB

in Fig. 5, where τ = 50 time units. It can be seen that for
the naive estimator, when host A hits the Darknet with a
very low probability, PrNE(error) is almost 1 regardless of
pB. However, the worst case of PrMME(error) is slightly above
0.6 when pB is small. Moreover, we show the probabilities
of error detection as a function of τ with a given pair of
pA and pB in Fig. 6. The performance of two estimators
improves as τ increases. Furthermore, the sum of the

integral
∫ 500
0 PrNE(error) dτ of the two figures is 41.43, while

the sum of the integral
∫ 500
0 PrMME(error) dτ in these two

cases is only 34.76. This shows that the improvement gain
of our estimators over the naive estimator when pA < pB

outweighs the degradation suffered when pA > pB, indicat-
ing the benefits of applying our estimators.

Note that pA, pB, and τ can be random variables. To
evaluate the overall performance of each estimator, we
consider the average probability of error detection over pA,
pB, and τ , i.e.,

E [Pr(error)] =

∫

τ

∫

pA

∫

pB

Pr(error) · f(pA, pB, τ) d pB d pA dτ.

(40)
Since pA, pB, and τ are independent,

f(pA, pB, τ) = f(pA) · f(pB) · f(τ). (41)

We then consider some cases in which we are interested
and apply the numerical integration toolbox in Matlab [32]
to calculate the triple integration. For example, we assume
that sA and sB follow a normal distribution N(u, σ2) and τ
is uniform over (0, τ1]. We find that when u, σ2, and τ1 are
set to realistic values, we always have

E [PrNE(error)] > E [PrMME(error)]. (42)

That is, our proposed estimators perform better than NE on
average, which will further be verified in Section 4 through
simulations.

Moreover, in Fig. 5(a), it can be seen that the majority
of detection error for the naive estimator comes from the
case that pA < pB. Specifically, it is obvious to derive the
following theorem from Equations (34) and (37).

Theorem 2: When pA < pB,

PrMME(error) = PrMLE(error) = PrLRE(error)

= PrNE(error) · e
−

(

1−
pA
pB

)

. (43)

That is, the error probability is decreased by a factor of

e
−

(

1−
pA
pB

)

by applying our estimators as compared with the
naive estimator.

4 SIMULATION RESULTS

In this section, we use simulations to verify our analytical
results and then apply estimators to identify the patient
zero or the hitlist. As far as we know, there is no publicly
available data to show the real worm infection sequence.
That is, there is no dataset available with the real infection
sequence to serve as the ground truth and a comparison
basis for performance evaluation. Therefore, we apply em-
pirical simulations to provide the simulated worm infection
time and infection sequence.

4.1 Estimating the Host Infection Time

We evaluate the performance of estimators in estimating
the host infection time. For the case of random-scanning
worms, we simulate the behavior of a host infected by
the Code Red v2 worm. The host is infected at time tick
0 and uses a constant scanning rate. The time unit is set
to 20 seconds. The Darknet records hit times during an
observation window. We consider the effects of the Darknet
size, the scanning rate, and the observation window size on
the performance of the estimators. The results are averaged
over 100 independent runs. Fig. 7 compares the perfor-
mance of NE, MME, and LRE with different Darknet sizes
from 218 to 225, a scanning rate of 358 scans/min, and an
observation window size of 800 mins. The three sub-figures
show the mean of estimators for µ, the mean of estimators
for t0, and the MSE of estimators for t0. Fig. 8 compares
the three estimators with different scanning rates from 158
scans/min to 558 scans/min, a Darknet size of 220, and an
observation window size of 800 mins. Similarly, Fig. 9 is
with different observation window sizes from 50 mins to
800 mins, a scanning rate of 358 scans/min, and a Darknet
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Fig. 7. Simulation results of changing the Darknet size for random scanning (all cases are for scanning rate: 358 scans/min,
observation window size: 800 mins).
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Fig. 8. Simulation results of changing the scanning rate for random scanning (all cases are for Darknet size: 220 IP
addresses, observation window size: 800 mins).
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Fig. 9. Simulation results of changing the observation window size for random scanning (all cases are for scanning rate:
358 scans/min, Darknet size: 220 IP addresses).

size of 220. It is observed that for all cases, our proposed
estimators have a better performance (i.e., unbiasedness and
smaller MSE) than the naive estimator in estimating the
host infection time. Specifically, the simulation results verify
Theorem 1, i.e., that the MSE of our estimators is almost
half of that of the naive estimator, when the observation
window size is sufficiently large (e.g., > 200 mins).

Next, we study a host infected by localized-scanning
worms and adopt the same simulation parameters and
settings as the above. The main difference is that here
the host preferentially searches for vulnerable hosts in the

“local” address space with a probability pa. In Fig. 10, pa is
set to 0.7, and we compare MSE(t̂0) for different estimators.
We find that the results are similar to those for the random-
scanning case shown in Fig.s 7-9. The MSE(t̂0) in Fig. 10,
however, is larger for all cases since the localized-scanning
worm hits the Darknet less frequently than the random-
scanning worm. In Fig. 11, we compare the performance
of NE, MME, and LRE with different pa from 0 to 0.9,
a scanning rate of 358 scans/min, a Darknet size of 220,
and an observation window size of 800 mins. Similarly,
the results show that our estimators are unbiased and the
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Fig. 10. (a) Simulation results of changing the Darknet size for localized scanning (pa = 0.7, scanning rate: 358 scans/min,
observation window size: 800 mins). (b) Simulation results of changing the scanning rate for localized scanning (pa = 0.7,
Darknet size: 220 IP addresses, observation window size: 800 mins). (c) Simulation results of changing the observation
window size for localized scanning (pa = 0.7, scanning rate: 358 scans/min, Darknet size: 220 IP addresses).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

pa

m
ea

n
(µ̂

)
(t

im
e

u
n
it
)

 

 

mean(µ̂NE)
mean(µ̂M M E)
mean(µ̂LRE)
µ

(a) Comparison of µ̂.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

50

100

150

200

250

300

350

pa

m
ea

n
(t̂

0
)

(t
im

e
u
n
it
)

 

 

mean(t̂0NE)
mean(t̂0M M E)
mean(t̂0LRE)
t0

(b) Comparison of t̂0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
x 10

5

pa

M
S
E
(t̂

0
)

(t
im

e
u
n
it

2
)

 

 

MSE(t̂0NE)
MSE(t̂0M M E)
MSE(t̂0LRE)
analytical MSE(t̂0NE)
analytical MSE(t̂0M M E)

analytical MSE(t̂0LRE)

(c) Comparison of MSE(t̂0).

Fig. 11. Simulation results of changing pa for localized scanning (all cases are for scanning rate: 358 scans/min, Darknet
size: 220 IP addresses, observation window size: 800 mins).

MSE of our estimators is almost half of that of the naive
estimator.

4.2 Estimating the Worm Infection Sequence

We evaluate the performance of our algorithms in es-
timating the worm infection sequence and simulate the
propagation of the Code Red v2 worm. The simulator
is extended from the code provided by [33], where the
parameter setting is based on the worm characteristics. The
Code Red worm has a vulnerable population of 360,000.
Different infected hosts may have different scanning rates.
Thus, we assign a scanning rate (scans/min) from a normal
distribution N(358, σ2) to a newly infected host. Moreover,
we start our simulation at time tick 0 from one infected
host. The time unit is set to 20 seconds. Detailed informa-
tion about how the parameters are chosen can be found in
Section VII of [22]. Each point in Fig. 12 is averaged over 20
independent runs. Table 4 gives the results of a sample run
with a Darknet size of 220, an observation window size
of 1,600 mins, and σ = 110. In the table, Si is the actual
infection sequence (i.e., Si = i), whereas Ŝi is the estimated
sequence. In this example, we find that MME and LRE can
pinpoint the patient zero successfully, while NE fails.

To compare the performance of estimators quantitatively,

TABLE 4
A sample run of simulations for random scanning.

Si ŜiNE ŜiMME ŜiLRE t0 t̂0NE t̂0MME t̂0LRE

1 2 1 1 0 114 20 20
2 1 2 2 85 98 74 73
3 3 3 3 105 165 116 116
: : : : : : : :

520 498 533 534 593 622 589 589
521 433 488 477 594 611 581 580

: : : : : : : :

we consider a simple l1 sequence distance, i.e.,

D =
N
∑

i=1

∣

∣

∣Si − Ŝi

∣

∣

∣, (44)

where N is the length of the infection sequence considered.
Note that the smaller the sequence distance is, the better
the estimator performance will be. Fig. 12(a) shows the
sequence distances of NE, MME, and LRE with varying
Darknet sizes from 219 to 224, an observation window size
of 1,600 mins, N = 1,000, and σ = 115. It is observed that
when the Darknet size increases, the performance of all esti-
mators improves dramatically. Moreover, the performance
of MME and LRE is always better than that of NE. For
example, when the Darknet size equals 219, MME and LRE
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Fig. 12. Simulation results of the sequence distance for random scanning. (a) Changing the Darknet size
(

N = 1,000,
observation window size: 1,600 mins, scanning rate: N(358, 1152)

)

. (b) Changing the scanning rate standard deviation
(

N
= 1,000, observation window size: 1,600 mins, Darknet size: 220 IP addresses

)

. (c) Changing the length of the infection
sequence considered

(

observation window size: 1,600 mins, Darknet size: 220 IP addresses, scanning rate: N(358, 1152)
)

.
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Fig. 13. Simulation results of the sequence distance for localized scanning. (a) Changing the scanning rate standard
deviation

(

pa = 0.7, N = 1,000, observation window size: 1,000 mins, Darknet size: 224 IP addresses
)

. (b) Changing the
length of the infection sequence considered

(

pa = 0.7, observation window size: 1,000 mins, Darknet size: 224 IP addresses,
scanning rate: N(358, 1152)

)

. (c) Changing the pa
(

N = 1,000, observation window size: 1,000 mins, Darknet size: 224 IP
addresses, scanning rate: N(358, 1152)

)

.

improve the inference accuracy by 24%, compared with
NE. Fig. 12(b) demonstrates the sequence distances of these
three estimators by changing the standard deviation of the
scanning rate (i.e., σ) from 100 to 125. In the figure, the
Darknet size is 220, the observation window size is 1,600
mins, and N = 1,000. It is noted that when σ increases, the
performance of all estimators deteriorates. The performance
of MME and LRE, however, is always better than that of
NE. For example, when σ = 120, MME and LRE reduce the
sequence distance by 30%, compared with NE. In Fig. 12(c),
we increase the length of the infection sequence considered,
N , from 1,000 to 11,000. Here the Darknet size is 220, the
observation window size is 1,600 mins, and σ = 115. It
is intuitive that the sequence distances of all estimators
become larger as N increases. However, MME and LRE
are always better than NE.

Next, we extend our simulator to imitate the spread
of localized-scanning worms. Specifically, we consider /8
localized-scanning worms and a centralized /8 Darknet
with 224 IP addresses. We still use the Code Red v2 worm
parameters and the same setting as random scanning,
except that the observation window size is 1,000 mins

(this is because localized-scanning worms spread faster).
The distribution of vulnerable hosts is extracted from the
dataset provided by DShield [34]. DShield obtains the
information of vulnerable hosts by aggregating logs from
more than 1,600 intrusion detection systems distributed
throughout the Internet. Specifically, we use the dataset
with port 80 (HTTP) that is exploited by the Code Red v2
worm to generate the vulnerable-hosts distribution. Each
point in Fig. 13 is averaged over 20 independent runs. Fig.
13 compares the sequence distances of different estimators
for localized scanning. Specifically, the results in Fig. 13(a)
and (b) are similar to those in Fig. 12(b) and (c). In Fig.
13(c), we compare the performance of the estimators by
increasing pa from 0 to 0.7. Here, N = 1,000, and σ = 115.
It is observed that the sequence distances of all estimators
increase as pa becomes larger. However, our estimators are
always better than NE. For example, when pa = 0.5, MME
and LRE increase the inference accuracy by 27%, compared
with NE.

Therefore, our proposed estimators perform much better
than the naive estimator for both random-scanning and
localized-scanning worms in estimating the worm infection
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(a) Random scanning.
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(b) Localized scanning.

Fig. 14. Comparison of estimators when changing the hitlist size. (a) Random scanning (all cases are for Darknet size:
220 IP addresses, observation window size: 1000 mins, hitlist hosts scanning rate: N(50, 202), other hosts scanning rate:
N(358, 1102)). (b) Localized scanning (all cases are for pa = 0.7, Darknet size: 224 IP addresses, observation window size:
1000 mins, hitlist hosts scanning rate: N(50, 202), other hosts scanning rate: N(358, 1102)).

sequence.

4.3 Identifying the Patient Zero or the Hitlist

As discussed in Section 1, a smart worm can assign lower
scanning rates to the initially infected host(s) and higher
scanning rates to other infected hosts. In this way, the
Darknet might observe later infected hosts first, and there-
fore the smart worm would weaken the performance of
the naive estimator. In Fig. 14, we compare the perfor-
mance of estimators in identifying the hitlist of such a
smart worm. Specifically, the worm assigns scanning rates
from N(50, 202) to the host(s) on the hitlist and scanning
rates from N(358, 1102) to other infected hosts. Then, we
calculate the percentage of the host(s) on the hitlist that are
successfully identified by an estimator. For example, if the
size of the hitlist is 100 and 50 hosts that belong to the hitlist
are identified among the first 100 hosts of the estimated
infection sequence, the successful identification percentage
of the estimator is 50%. The results are averaged over 100
independent runs. Fig. 14(a) shows the case of random
scanning, where the Darkent size is 220 and the observation
window size is 1,000 mins. It is seen that our estimators
have a higher successful identification percentage and a
smaller variance than the naive estimator. For instance,
when the size of the hitlist is 1 (i.e., the worm starts from the
patient zero), MME and LRE can pinpoint the patient zero
around 80% of the time, while NE can detect it only 70% of
the time. When the size of the hitlist is 10 or 100, compared
with NE, our proposed estimators increase the number of
successfully identified hosts from 5 to 7 or 51 to 72, and
reduce the variance from 2.6 to 1.6 or 23 to 13, respectively.
Fig. 14(b) shows the results of localized scanning, where the
Darkent size is 224 and pa = 0.7, and all other parameters
are the same as the case of random scanning. The results
are similar to those in Fig. 14(a). Therefore, the simulation
results demonstrate that our proposed estimators are much

more effective in identifying the histlist of the smart worm
than the naive estimator.

5 DISCUSSIONS

In this section, we first analyze the chance that Darknet
misses an infected host and then discuss the limitations
and the extensions of our proposed estimators.

5.1 Host Missing Probability

By applying Darknet observations, we have made an as-
sumption: The infected host will hit the Darknet. Then, an
intuitive question would be: What is the probability that the
Darknet misses an infected host within a given observation
window?

We consider the case of localized scanning and regard
random scanning as a special case of localized scanning
when pa = 0. The probability for a scan from an infected
host to hit the Darknet is (1 − pa) · ω/Ω; and then the
probability that the Darknet misses observing the host in a
time unit is (1 − (1 − pa) · ω/Ω)

s. Thus, the host missing
probability (i.e., the probability that the Darknet misses the
infected host in a k time units observation window) is

PrLS(missing) =
(

1− (1− pa) ·
ω

Ω

)s·k

. (45)

In Fig. 15, we show the host missing probability as the
observation window size changes. In this example, we set
ω = 224, time unit = 20 seconds, and s = 358 scans/min.
We find that if pa = 0.7, the infected host will almost hit
the Darknet for sure when the observation window size
is larger than 20 mins. If pa = 0, which is the case of
random scanning, a 5-min observation window is sufficient
to guarantee the capture of the infected host. Therefore,
in our previous analysis and simulation, the assumption
that the Darknet can observe scans from the infected host,
especially at the early stage, is reasonable. Moreover, our
estimator can still work even for self-stopping worms [35].
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Fig. 15. Host missing probability (pa = 0.7, Darknet size: 224

IP addresses, scanning rate: 358 scans/min).

5.2 Estimator Limitations and Extensions

Our proposed estimators are built based on some assump-
tions listed in Section 2. Attackers that design future worms
may exploit these assumptions to weaken the accuracy of
our estimators. In the following, we discuss some limita-
tions of our estimators and the potential extensions.

5.2.1 Darknet Avoidance

The majority of active worms up to date do not attempt
to avoid the detection of Darknet. As a result, CAIDA’s
network telescopes have been observing many active Inter-
net worms such as Code Red, Slammer, Witty, and even
recently the Conficker worm (also known as the April
Fool’s worm). Most worms apply random scanning and
localized scanning, and Darknet can observe the traffic from
such worms.

Recent work, however, has shown that attackers can
potentially detect the locations of Darknet or network
sensors [36]. Thus, a future worm can be specially designed
to avoid scanning the address space of the Darknet. The
countermeasure against such an intelligent worm is to
apply the distributed Darknet instead of the centralized
Darknet [23]. That is, unused IP addresses in many subnets
are used to observe worm traffic, which is then reported to
a collection center for further processing. A prototype of
distributed Darknet has been designed and evaluated in
[37].

5.2.2 Scanning Rate Variation

Although there have been no observations of worms that
use scanning rate variation mechanisms (i.e., the scanning
rate of an individual infected host is time-variant) [29],
future worms may employ such schemes to invalidate
our basic assumption and thus weaken the performance
of our estimators. Changing the scanning rate, however,
introduces additional complexity to worm design and can
slow down worm spreading. Moreover, if the change of
scanning rates is relatively slow, our estimators can be
enhanced with the change-point detection [38] to detect and
track when the scanning rate has a significant change and
then apply the early observations to derive the infection
time of an infected host.
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Fig. 16. Simulation results of the sequence distances of
different estimators varying with the worm packet loss rate.
(N = 1,000, observation window size: 1,600 mins, scanning
rate: N(358, 1152), Darknet size: 220 IP addresses).

5.2.3 Measurement Errors

The measurement errors can affect the performance of
estimators. There are two types of measurement errors. The
false positive denotes that Darknet incorrectly classifies the
traffic from a benign host as worm traffic, whereas the false
negative is that Darknet incorrectly classifies worm traffic
as benign traffic or misses worm traffic due to congestion
or device malfunction.

For the false positives, most of time we can distinguish
worm traffic from other traffic. First, our estimation tech-
niques are used as a form of post-mortem analysis on
worm records logged by Darknet. As a result, we can limit
our analysis to the records logged during the outbreak
of the worm when it is most rampant. More importantly,
worm packages always contain information about infection
vectors that distinguish worm traffic from other traffic. For
example, the Witty worm uses a source port of 4,000 to
attack Internet Security Systems firewall products [16]. It is
very unlikely that a benign host uses a source port of 4,000.
By filtering the records based on infection vectors specific
to the worm under investigation, we can eliminate most of
the effects of false positives on Darknet observations.

False negatives are much harder to eliminate. A packet
towards Darknet may be lost due to congestion caused by
the worm (such as the Slammer worm [1]) or the malfunc-
tion of Darknet monitoring devices. To study the effects
of false negatives, we modify our simulator to mimic the
packet loss and evaluate the performance of our estimators
under false negatives. Here we assume that the loss rate
of the worm packets towards Darknet (denoted as rloss) is
the same for each infected host. Fig. 16 shows how the
sequence distances of different estimators vary with the
worm packet loss rate. The results are averaged over 20
independent runs. It is intuitive that when the packet loss
rate becomes larger, the performance of all estimators wors-
ens. Our proposed estimators, however, always perform
much better than NE. For example, compared with NE,
our estimators (i.e., MME and LRE) improve the inference
accuracy by 28% when rloss = 0.4. A mechanism to recover
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from worm-induced congestion has been proposed in [29],
which estimates the packet loss rates of infected hosts based
on Darknet observations and BGP atoms. This method
can be incorporated into our estimators to enhance their
robustness against worm-induced congestion.

6 RELATED WORK

Under the framework of Internet worm tomography, sev-
eral works have applied Darknet observations to infer the
characteristics of worms. For example, Chen et al. studied
how the Darknet can be used to monitor, detect, and defend
against Internet worms [17]. Moore et al. applied network
telescope observations and least squares fitting methods to
infer the number of infected hosts and scanning rates of
infected hosts [23]. Some works have researched on how
to use Darknet observations to detect the appearance of
worms [18], [22], [20], [21]. For instance, Zou et al. used a
Kalman filter to infer the infection rate of a worm and then
detect the worm [22]. Moreover, the Darknet observations
have been used to study the feature of a specific worm,
such as Code Red [15], Slammer [1], and Witty [16].

Internet worm tomography has been applied to infer
worm temporal behaviors. For example, Kumar et al. used
network telescope data and analyzed the pseudo-random
number generator to reconstruct the “who infected whom”
infection tree of the Witty worm [24]. Hamadeh et al. further
described a general framework to recover the infection
sequence for both TCP and UDP scanning worms from
network telescope data [39]. Rajab et al. applied the same
data and studied the “infection and detection times” to
infer the worm infection sequence [25]. Different from the
above works, in this work we employ advanced statistical
estimation techniques to Internet worm tomography.

7 CONCLUSIONS

In this paper, we have attempted to understand the tempo-
ral characteristics of Internet worms through both analysis
and simulation under the framework of Internet worm
tomography. Specifically, we have proposed method of
moments, maximum likelihood, and linear regression es-
timators to infer the host infection time and reconstruct the
worm infection sequence. We have shown analytically and
empirically that the mean squared error of our proposed
estimators can be almost half of that of the naive estimator
in estimating the host infection time. Moreover, we have
formulated the problem of estimating the worm infection
sequence as a detection problem and have calculated the
probability of error detection for different estimators. We
have demonstrated empirically that our estimation tech-
niques perform much better than the algorithm used in [25]
in estimating the worm infection sequence and in identi-
fying the hitlist for both random-scanning and localized-
scanning worms.

APPENDIX A
TABLE 2: ESTIMATOR PROPERTIES (µ̂)
We calculate the bias, the variance, and the MSE of different
estimators for estimating µ.

A.1 Naive Estimator

Since µ̂NE = 1, the bias of NE is

Bias(µ̂NE) = E(µ̂NE)− µ = 1− 1
p
. (A.46)

Note that µ̂NE is constant. Thus, the variance of NE is

Var(µ̂NE) = E [(µ̂NE − E(µ̂NE))
2] = 0. (A.47)

Therefore,

MSE(µ̂NE) = Bias2(µ̂NE) + Var(µ̂NE) =
(1−p)2

p2 . (A.48)

A.2 Method of Moments Estimator / Maximum Likeli-
hood Estimator

Since E(δi) = µ for i = 1, 2, · · · , n − 1 and Equations (8)
and (14) hold, the bias of µ̂MME (or µ̂MLE) is calculated as

Bias(µ̂MME) = E
(

1
n−1

n−1
∑

i=1
δi
)

− µ = 0, (A.49)

which is unbiased. Note that Var(δi) = 1−p
p2 for i =

1, 2, · · · , n − 1 and δi’s are independent. Thus, we have

Var(µ̂MME) = Var
(

1
n−1

n−1
∑

i=1
δi
)

= 1−p
p2(n−1) . (A.50)

Therefore, the MSE of µ̂MME (or µ̂MLE) is

MSE(µ̂MME) = Bias2(µ̂MME) + Var(µ̂MME) =
1−p

p2(n−1) . (A.51)

It is noted that for an unbiased estimator, the MSE is
identical to its variance.

A.3 Linear Regression Estimator

Note that µ̂LRE =
i·t−i·t

i2−(i)2
. From Equation (20) and ti = t0 +

∑i−1
j=0 δj , i = 1, 2, · · · , n, we have

i · t =
1

n

n
∑

i=1

i · ti

=
n+ 1

2
t0 +

1

n

n−1
∑

i=0

n
∑

j=i+1

j · δi

=
n+ 1

2
t0 +

n−1
∑

i=0

(n− i)(n+ i+ 1)

2n
δi (A.52)

and

i · t = i ·
1

n

n
∑

i=1

ti = i · t0 + i ·
n−1
∑

i=0

n− i

n
δi. (A.53)

Since i = n+1
2 and i2 = (n+1)(2n+1)

6 ,

i · t− i · t =
n−1
∑

i=1

i(n− i)

2n
δi (A.54)

and

i2 −
(

i
)2

=
n2 − 1

12
. (A.55)
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Note that E(δi) = µ and Var(δi) =
1−p
p2 , i = 0, 1, · · · , n− 1,

and δi’s are independent. Moreover,
∑n

i=1 i
3 =

(

n(n+1)
2

)2

and
∑n

i=1 i
4 = 1

30 (6n
5 + 15n4 + 10n3 − n). Then, we have

E(i · t− i · t) =
n−1
∑

i=1

i(n− i)

2n
µ =

n2 − 1

12
µ (A.56)

and

Var(i · t− i · t) =
n−1
∑

i=1

(

i(n− i)

2n

)2

·
1− p

p2

=
1− p

4n2p2

(

n2
n−1
∑

i=1

i2 − 2n
n−1
∑

i=1

i3 +
n−1
∑

i=1

i4
)

=
1− p

p2
·
n4 − 1

120n
. (A.57)

Therefore, the bias of µ̂LRE can be calculated as

Bias(µ̂LRE) = E
(

i·t−i·t

i2−(i)2

)

− µ = 0, (A.58)

which is unbiased. Moreover, the variance and the MSE of
µ̂LRE are

MSE(µ̂LRE) = Var(µ̂LRE)

= Var
(

i·t−i·t

i2−(i)2

)

= 6(n2+1)(1−p)
5n(n2

−1)p2 . (A.59)

APPENDIX B
TABLE 3: ESTIMATOR PROPERTIES (t̂0)
We calculate the bias, the variance, and the MSE of different
estimators for estimating t0.

B.1 Naive Estimator

Since t̂0NE = t1−µ̂NE = t0+δ0−1, E(δ0) =
1
p

, and Var(δ0) =
1−p
p2 ,

Bias(t̂0NE) = t0 + E(δ0)− 1− t0 = 1−p
p

(B.60)

Var(t̂0NE) = Var(t0 + δ0 − 1) = 1−p
p2 (B.61)

MSE(t̂0NE) = Bias2(t̂0NE) + Var(t̂0NE)

= (1−p)(2−p)
p2 . (B.62)

Note that when p ≪ 1, MSE(t̂0NE) ≈
2(1−p)

p2 .

B.2 Method of Moments Estimator / Maximum Likeli-
hood Estimator

Note that t̂0MME = t̂0MLE = t0 + δ0 − µ̂MME and E(δ0) =
E(µ̂MME) = µ. Thus,

Bias(t̂0MME) = t0 + E(δ0)− E(µ̂MME)− t0 = 0 (B.63)

MSE(t̂0MME) = Var(t̂0MME) = Var(δ0 − µ̂MME). (B.64)

Since µ̂MME =
1

n−1

∑n−1
i=1 δi that is independent of δ0,

MSE(t̂0MME) = Var(t̂0MME)

= Var(δ0) + Var(µ̂MME)

= 1−p
p2 · n

n−1 , (B.65)

based on Equation (A.50) and Var(δ0) = 1−p
p2 . Note that

when n ≫ 1, MSE(t̂0MME) ≈
1−p
p2 .

B.3 Linear Regression Estimator

Since t̂0LRE = t0 + δ0 − µ̂LRE and E(δ0) = E(µ̂LRE) = µ,

Bias(t̂0LRE) = t0 + E(δ0)− E(µ̂LRE)− t0 = 0 (B.66)

MSE(t̂0LRE) = Var(t̂0LRE) = Var(δ0 − µ̂LRE). (B.67)

Note that from Equations (A.54) and (A.55), µ̂LRE =
12

n2
−1

∑n−1
i=1

i(n−i)
2n δi that is independent of δ0. Hence,

MSE(t̂0LRE) = Var(t̂0LRE)

= Var(δ0) + Var(µ̂LRE)

= 1−p
p2 ·

5n3+6n2
−5n+6

5n(n2
−1) , (B.68)

based on Equation (A.59) and Var(δ0) = 1−p
p2 . Note that

when n ≫ 1, MSE(t̂0LRE) ≈
1−p
p2 .
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