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Local Ordinal Contrast Pattern Histograms for
Spatiotemporal, Lip-based Speaker Authentication
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Abstract—Lip region deformation during speech contains bio-
metric information and is termed visual speech. This biometric
information can be interpreted as being genetic or behavioural
depending on whether static or dynamic features are extracted.
In this paper, we use a texture descriptor called Local Ordinal
Contrast Pattern (LOCP) with a dynamic texture representation
called Three Orthogonal Planes (TOP) to represent both the
appearance and dynamics features observed in visual speech.
This feature representation, when used in standard speaker
verification engines, is shown to improve the performance of
the lip-biometric trait compared to the state-of-the-art. The best
baseline state-of-the-art performance was Half Total Error Rate
(HTER) of 13.35% for the XM2VTS database. We obtained
HTER of less than 1%. The resilience of the LOCP texture
descriptor to random image noise is also investigated. Finally, the
effect of the amount of video information on speaker verification
performance suggests that with the proposed approach, speaker
identity can be verified with a much shorter biometric trait record
than the length normally required for voice-based biometrics. In
summary, the performance obtained is remarkable and suggests
that there is enough discriminative information in the mouth-
region to enable its use as a primary biometric trait.

Index Terms—biometrics, lip, spatiotemporal, speaker verifi-
cation, texture descriptor, ordinal contrast, dynamic texture

I. INTRODUCTION

NUMEROUS measurements and signals have been inves-
tigated for use in biometric recognition systems. Among

the most popular measurements are fingerprint, face and
voice. The latter two arise naturally in the process of human
speech production. The video of a talking face contains lip
deformation during speech and can be termed visual speech.
The McGurk effect [1] demonstrates the fact that visual speech
contains different information to the audio speech signal.
Both these sources of information are used during human
speech perception. This effect may be experienced when a
video of one phoneme’s production is dubbed with a sound-
recording of a different phoneme being spoken. Often, the
perceived phoneme is a third, intermediate phoneme. The
McGurk effect was used to improve the accuracy of speech
recognition systems by using visual speech to reinforce the
quality of input auditory information especially in noisy and
crowded scenarios [2], [3]. Visual speech was subsequently
used to perform speaker recognition [4]–[6]. In this paper, we
investigate the usefulness of a novel representation of this lip
deformation in visual speech as a biometric.

The lip is a twin biometric containing both genetic and
behavioural information. This information is contained within
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individual mouth-region appearance as well as lip dynamics
during speech. The individual mouth-region appearance is
influenced by DNA and thus encapsulates genetic biometric
information. Lip dynamics results from muscular movement
and mandibular deformation and therefore also contains ge-
netic information. Similarly, the mouth-region appearance is,
to some extent, affected by behavioural factors such as the
presence of facial hair or lipstick. Behavioural factors linked
to language, emotional condition and socio-economic back-
ground also affect lip dynamics. The resulting measurement
is akin to the idea of “mouth-signature”.

Besides being a twin biometric, there are a variety of other
factors that make lip features a compelling biometric for indus-
trial deployment. The advent of increasingly cheaper cameras
facilitates the non-intrusive capture of visual speech signals,
making it easier than ever before to obtain lip-region features.
The use of these features also naturally increases system
robustness to attempts at faking “liveness”. Lip biometrics
can be described as being passive since they do not require
active user participation. These factors together suggest that
such a biometric has potential for industrial deployment and
user acceptance. The challenges of using the lip as a biometric
lie in the areas of uniqueness and circumvention. The research
question is therefore: how do we extract features from the lip
region in order to maintain a sufficient inter-person to intra-
person variation ratio for accurate verification?

In [7], we proposed a novel method of texture representation
called Local Ordinal Contrast Patterns (LOCP) based on the
concept of ordinal contrast. This texture representation was
combined with a configuration called Three Orthogonal Planes
(TOP). The combination of LOCP and TOP enabled the
quantisation of spatiotemporal appearance observed within
visual speech. This feature representation was demonstrated
to have excellent performance in speaker verification.

In this paper, we make three contributions. First, the LOCP
operator presented in [7] is extended to include pattern history.
This minimises transitional binary decisions to ensure that the
texture pattern does not inset any false texture related to edges
when there are none in the real image. Second, the robustness
of the LOCP texture descriptor is evaluated with respect to
image noise intensity. The purpose of this investigation is
to ensure that the proposed texture descriptor is suitable for
charactering the texture properties of the lip region. Finally,
the effect of the amount of video information on speaker
verification performance is also investigated to ensure that it
is usable in real-world situations.

The remainder of this paper is structured as follows. A
review of the state-of-the art in lip-based speaker verification is



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, SEPTEMBER 2011 2

presented in Section II. A summary of the current performance
characteristics of the field is presented in Table I. A discussion
of the approaches and their merits and failings leads to the
motivation behind the development of the novel feature de-
scriptor. The detailed treatment of the computation of LOCP-
TOP features is presented in Section III. An overview of the
visual speaker verification systems used to evaluate this novel
descriptor is provided in Section IV. The paper concludes
with an experimental evaluation in Section V and concluding
remarks in Section VI.

II. RELEVANT WORK

The use of the lip region as a means of human identification
was first proposed through the concept of “lip-prints” in the
field of forensic anthropology by investigators such as Fischer
and Locard [8]. Lip prints contained information about the
individual grooves and eccentricities of the lip surface. The
application of lip prints specifically as a biometric trait was
first introduced in [9]. Relevant work can be segregated based
on whether the approach uses static or dynamic information
from the lip-region. This also enables the incorporation of a
hybrid class of methods which attempt to capture both types
of information.
Static Methods use shape, geometric or appearance features
extracted from the lip-region. Additionally, most of these
methods either operate on static images or on a visual speech
video per-frame [4], [5], [10]–[13].
Dynamic Methods use features related to the changes ob-
served in the mouth-region during speech production. Within
these systems, there are two categories. Most deployed bio-
metric systems are based on scenarios with cooperative users
speaking fixed string passwords from a small vocabulary.
These generally employ what is known as text-dependent(TD)
systems [14]. Such constraints are quite reasonable and can
greatly improve the system accuracy. However, there are
cases when such constraints can be impossible to enforce. In
situations requiring greater flexibility, systems are required that
are able to operate without explicit speaker cooperation and
independent of the spoken utterance. This mode of operation
is referred to as text-independent(TI) speaker recognition [7],
[15]–[17].
Hybrid Methods use a combination of static and dynamic
information [6], [18]–[22].

A. Summary of Relevant Work

TABLE I
PERFORMANCE OF LIP BIOMETRIC SYSTEMS FOR SPEAKER VERIFICATION

SHOWING SYSTEMS USING ONLY LIP-FEATURES

SYSTEM LIP FEATURE DB CLIENTS PERF.(%)

FARAJ [15], [16] DYNAMIC TI XM2VTS 295 EER 22
SANCHEZ [14] DYNAMIC TD XM2VTS 295 HTER 13.35

AUCKENTHALER [6] STATIC DAVID 7 % ERROR 2.2
CETINGUL [19] STATIC (INTENSITY) MVGL-AVD 50 EER 5.6
CETINGUL [19] DYNAMIC TD MVGL-AVD 50 EER 5.2
CETINGUL [18] STATIC(TEXTURE) MVGL-AVD 50 EER 1.7

GOMEZ [11] STATIC(GEOMETRIC) CUSTOM 50 EER 0.015
JOURLIN [5] STATIC(SHAPE) M2VTS 37 HTER 15.4
SAMAD [17] DYNAMIC TI AMP CMU 10 HTER 0.0
WARK [22] DYNAMIC TI TULIPS1 12 EER 0.0

TABLE II
PERFORMANCE OF MULTI-MODAL BIOMETRIC SYSTEMS FOR SPEAKER

VERIFICATION THAT USE LIP FEATURES AS A FUSED MODALITY

SYSTEM FEATURE FUSION DB CLIENTS PERF.(%)

BROUN [12] STATIC(GEOMETRIC) + AUDIO XM2VTS 261 HTER 6.3
FARAJ [15], [16] DYNAMIC TI + AUDIO XM2VTS 295 EER 2

SANCHEZ [23] DYNAMIC TD + FACE XM2VTS 295 HTER 2.62
SANCHEZ [23] DYNAMIC TD + AUDIO XM2VTS 295 HTER 0.70
SANCHEZ [23] DYNAMIC TD + FACE + AUDIO XM2VTS 295 HTER 0.66
SANCHEZ [23] DYNAMIC TD + 2FACE + 2AUDIO XM2VTS 295 HTER 0.15
ABDULLA [21] HYBRID(SHAPE AND INTENSITY) CUSTOM 35 EER 18.0
CETINGUL [19] HYBRID(TEXTURE AND MOTION) MVGL-AVD 50 EER 3.6
CETINGUL [18] STATIC(TEXTURE)+DYNAMIC+AUDIO MVGL-AVD 50 EER 0.4

JOURLIN [5] STATIC(SHAPE) + AUDIO M2VTS 37 HTER 1.65

Table I provides an overview of the performance of various
lip-biometric systems that perform speaker verification using
only lip features. Table II provides an overview of the perfor-
mance of various lip-biometric systems that perform speaker
verification using lip features fused with other biometric traits
such as audio and face. The performance figures are for the
respective metric used to evaluate the verification performance.
For a more thorough description of the various metrics related
to speaker verification, the reader is referred to [24].

In order for various visual speaker verification systems to
be compared, a variety of factors need to be considered.
Commonly, lip-based features are evaluated in terms of the
performance improvement they provide through feature-level
fusion with more established biometric traits such as audio and
face. For the testing of speaker verification systems, there exist
only a few databases such as [25] with established verification
protocols that enable a fair comparison of systems. However,
because most of these databases are not free, a number of
publications in the area of lip-based biometric systems use
custom-built datasets and evaluation protocols.

The disadvantage of using custom-built datasets for this task
is that, in addition to reducing the comparability of the sys-
tems, often the classification task is made easier. This can be
seen from Tables I and II where some methods achieve perfect
performance (e.g. [17], [22]) on databases with few subjects.
This is because success in speaker verification depends on
a the ratio of feature dimensions to the number of clients
being sufficiently high so as to capture inter-person variation
whilst at the same time minimising intra-person variation. In
real-world scenarios, this ratio is heavily skewed towards the
number of clients and consequently, creates an unfavourable
environment for successful classification.

As shown in Table I, the most commonly used database and
protocol are XM2VTS [25] (used by 3 authors) and Lausanne
Protocols [26] respectively. The best performance obtained
using lip features only on this database is by [14](HTER of
13.35%). Multi-modal fusion with two face detectors and two
audio systems [23] yields HTER of 0.15%. In our experiments,
we use the XM2VTS database to ensure the comparability of
our results.

The next sections describe the proposed texture and dynamic
texture representations. These together enable the spatiotem-
poral information within visual speech to be quantised for use
in visual speaker verification experiments.
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III. ORDINAL CONTRAST PATTERNS

Ordinal contrast patterns represent image texture by con-
veying information about the relative differences in the local
neighbourhood of a pixel. In computer vision, the absolute
information contained within a pixel including intensity, colour
and texture can vary dramatically with illumination. However,
the mutual ordinal relationships between neighbours at the
pixel level or region level continue to reflect the intrinsic nature
of the object and provide a degree of response stability in
the presence of such changes. Research has shown that it is
these mutual ordinal relationships rather than precise image
properties that are used by the primary visual cortex [27].

Ordinal contrast encodings are a computationally efficient
representation of such neighbourhood relationships and have
consequently become popular in information representation.
An ordinal contrast encoding is used to measure the contrast
polarity of values between a pixel pair (or average intensities
between a region pair) as either brighter than or darker than
some reference. This polarity is then turned into a binary
decision. The code is efficient to compute and the information
entropy of the measure is maximised because the code has
nearly equal probability of being 0 or 1 for arbitrary patterns.
The authors in [28] explain that the ordinal measure is in-
variant to any monotonic transformation of the gray scale. As
long as the order of pixel values stays the same, the output
of any ordinal contrast measurement does not change. This
makes them an attractive feature descriptor where the gray
scale is subject to changes due to, for instance, varying illumi-
nation conditions. Additionally, their computational efficiency
presents an advantage in time-critical applications.

Local Binary Pattern (LBP) [29] is an example of an
ordinal measure. It offers a powerful texture descriptor show-
ing excellent results in terms of representation accuracy and
computational complexity in many empirical studies. The LBP
operator encodes the ordinal contrast pairs between a local
neighbour value and the centre pixel value as a binary result.
The pattern is obtained by concatenating these binary results
into a bit string. The pattern value in the resulting LBP
image consists of the above bit string. Given its advantages
as a texture descriptor, we use LBP as a benchmark texture
descriptor for visual speech.

The application of any texture descriptor to represent the
lip surface for use in biometrics requires the consideration
of two factors. Firstly, biometric applications involve visual
speech signals that are particularly affected by varying illu-
mination [30], [31]. As a result of this variation, amplifier
noise from the imaging system may affect the signal quality
of observed visual speech. Amplifier noise can be modelled
as being additive, Gaussian, independent and identically dis-
tributed. The primary effect of such noise is to degrade the
quality of texture description particularly in uniform or near-
uniform intensity regions e.g. the cheeks and skin area around
the lip. Random noise could result in a situation where the
reference value, i.e. the centre pixel of an LBP, changes by a
single unit, thereby altering all 8 neighbourhood ordinal con-
trast measurements. This results in LBP misrepresenting local
structure. Various methods have been proposed to enhance the

robustness of the LBP operator to such an effect. [31] have
proposed Local Ternary Patterns (LTP), which extend LBP by
increasing the feature dimensionality depending on the sign
of the centre bit. However, LTP is sensitive to monotonic
transformation. The authors in [30] proposed Improved LBP
which performs ordinal contrast measurement with respect to
the average of the pixel neighbourhood instead of the centre
pixel to reduce the effect of a single noisy reference.

The second consideration in using a texture descriptor to
parametrise the lip as a biometric is the lip surface itself.
The first published use of lip texture in the field of person
identification can be found in [9]. They used lip prints as
a means of identification. According to the authors in [9], lip
prints are “the normal lines and fissures in the form of wrinkles
and grooves present in the zone of transition of the human lip,
between the inner labial mucosa and the outer skin”. These
wrinkles and grooves manifest themselves in an image as lines
with varying orientations. Consequently, a desirable property
for a lip texture descriptor is sensitivity to line orientation
variation across the lip surface.

A. Local Ordinal Contrast Patterns

In [7], we propose a novel texture descriptor called Local
Ordinal Contrast Pattern (LOCP) which attempts to fulfil
both requirements. LOCP does this by diversifying the source
of reference values. Instead of computing the contrast with
respect to a fixed reference, LOCP uses pairwise ordinal
contrast measurement of pixels from a circular neighbourhood
starting at the centre pixel. In terms of information represen-
tation, LBP suggests that the ordinal relationship between a
single reference pixel and its neighbourhood contains texture
information. LOCP on the contrary, suggests a new paradigm
where texture is represented by pairwise ordinal relationships
of the entire neighbourhood. LOCP thus improves on LBP
since a change in the value of a single pixel affects at most 2
ordinal contrast encodings.
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Fig. 1. LOCP Feature Computation: Compute pairwise ordinal contrast
measure along the direction of the overlaid green arrow. r is the radius of the
operator.

Additionally, linearly interpolating the pixel values allows
the choice of any radius, r and any number of pixels in the
circular neighbourhood, p, to form LOCP. Varying r therefore
enables the modelling of arbitrarily large scale structures.
During the operation of LOCP, we choose p pixel pairs for
ordinal contrast encoding defined in Equation 1. The pixel
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indices are shown in Figure 1. At any location x in the LOCP
image I, the pattern is calculated as:

Ip,r[x] =
p−1∑
i=0

s(gi+1 − gi) 2i

where s(vi) =


1 vi > 0

0 vi < 0

0 vi = 0 and i = 0

s(vi−1) vi = 0 and i > 0,

(1)

and gi is the intensity value of the ith pixel at a distance
r away from the current location x and 0 ≤ i < p. The
pattern is obtained by concatenating the binary numbers from
the encoding into a p-bit code.

The above LOCP operator also includes some notion of pat-
tern history to deal with instances where the pair of pixels have
the same value. In this case, the operator uses the immediately
previous encoding as the current ordinal contrast measurement.
This spatial history enables the transitional binary decisions to
be minimised in case of no ordinal contrast measurement and
is an extension to the operator initially presented in [7]1. The
effect of incorporating this spatial history is to ensure that the
texture pattern does not insert any false texture related edges
when there are none in the real image. Note that from hereon,
the operator originally presented in [7] will be referred to as
LOCPo.

Figure 2 illustrates the line orientation sensitivity of LOCP
by comparing the ordinal contrast encoding of a gradual shift
in orientation of diagonal line in a pixel neighbourhood with
LBP. Unlike LBP, LOCP still manages to conserve the local
neighbourhood pixel structure for every intermediate change
of orientation. This suggests that it may be more appropriate
for use as a lip-texture descriptor.

It is also illustrative to observe the distribution of patterns
from all possible permutations of a given pixel neighbour-
hood. Consider a 3 × 3 pixel neighbourhood containing gray
level information at each pixel. Such a pixel neighbourhood
results from setting p = 8 and r = 1 for instance. There
are 29 = 512 possible permutations of binary relationships
within this neighbourhood. LOCP and LBP differ in how they
distribute the 2p = 28 = 256 possible pixel labels (p-bit
codes) amongst these permutations. This distribution is shown
by Figure 3 which demonstrates that the proposed LOCP
encoding naturally lends itself to a more uniform distribution
of ordinal contrast patterns. Unlike LOCP, LBP groups half
of the 512 patterns into a single bin. Given this distribution
of ordinal contrast encodings, the key question is whether
LOCP encodes sufficient discriminative information about an
individual’s lip texture to be useful as a primary biometric
trait.

The LOCP texture descriptor represents local, pairwise
neighbourhood derivatives. The use of LOCP enables the en-
capsulation of compact, local structure within this descriptor.
Additionally, LOCP has the same computational complexity
as LBP since the number of ordinal contrast comparisons
per pixel is unchanged. While LOCP is useful as a texture
descriptor, its application to the parametrisation of spatiotem-

(a) Positive edge neighbourhood

(b) Negative edge neighbourhood

Fig. 2. LBP Vs LOCP Feature Descriptor, showing insensitivity of LBP to
line orientations in both a positive and negative edge neighbourhood. Notice
how the LBP does not encode intermediate orientations.
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Fig. 3. LBP Vs LOCP Feature Descriptor, showing pattern distribution in a
3× 3 pixel neighbourhood

poral information requires it to be combined with a method
of dynamic texture representation.

B. Three Orthogonal Planes

Recently, the use of local binary patterns on three orthogonal
planes (LBP-TOP) [32] has been proposed to extend the
LBP to a spatiotemporal representation for dynamic texture
analysis. LBP-TOP extracts the LBP in three orthonormal
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planes within a spatiotemporal volume. Motivated by [32], we
extended [7] our new operator for dynamic texture analysis
by extracting the LOCP in three orthogonal planes (i.e. XY,
XT and YT) within a volume. Figure 4 demonstrates the lip
images from three planes.

XY

XT

YT

Fig. 4. Extraction of images using TOP. (a) XY Image (b) YT Image (c)
XT Image

XY
YT

XT

X

Y

T

(1) (2) (3)

Fig. 5. LOCP-TOP Feature Description:(a) Represents feature parametrisa-
tion along TOP planes using LOCP operators (b) Represents the histogram
of the LOCP features from each TOP plane (c) Represents the concatenation
of these histograms for use in dynamic texture analysis

In each plane, for each speaker video (with the mouth
region detected), the LOCP image, Ip,r,β , is extracted and
the corresponding plane-pattern histogram, hβp,r ∈ R2p is
computed using the function hβ(i), i ∈ [0, 2p) where β ∈
{XY,XT, Y T} represents a plane:

hβp,r(i) =
∑

(x′,y′)∈Mβ

Bool(Ip,r,β(x′, y′) = i) (2)

where i ∈ [0, 2p) is the value of the LOCP, Mβ is the region
in the plane for which we are computing the histogram and
the function Bool() represents a boolean operator:

Bool(γ) =

{
1 when γ is true
0 otherwise.

(3)

Then the histogram of each plane is concatenated into
one single histogram, bα shown in Figure 5 to provide the
dynamic texture information. Here, α represents a member
from the set of possible TOP configuration combinations:
α ∈ {XY,XT, Y T,XY XT,XY Y T,XTY T,XY XTY T}.
Consequently, for a concatenation of all features i.e. α =
XYXTY T , we would obtain the histogram shown by Equa-
tion 4.

bXYXTY T = [hXYp,r ,h
XT
p,r ,h

Y T
p,r ] (4)

An important consideration in the application of the TOP
configuration is the parameter value of p and r for the LOCP
feature descriptor along each place. These values relate to the
sampling rate in the XY, XT or YT planes. Since the sampling
rates in each plane are used to capture sufficient dynamic
evolution, the input parameter values for p and r need to be
tailored to each plane.

IV. VISUAL SPEAKER VERIFICATION

For this system, the method in [23] was first used to generate
estimates of tracked outer lip contours for all videos. The
estimated lip contours were then used to localise the mouth-
region in each frame. These extracted regions were, in turn,
parameterised using LOCP-TOP. Each extracted region can be
visualised as a cuboid containing spatiotemporal information.
This cuboid is first subdivided into overlapping sub-cuboids.
For each sub-cuboid, we use LOCP-TOP to extract histograms
hβ,jp,r where j represents the sub-cuboid index. These are then
further concatenated to form bα,j . These combined histograms
conceptually represent the intra-modal feature-level fusion of
extracted LOCPs in the different planes. The concatenated
histograms are then input into one of two classification engines
as described below. Each classifier use the nearest neighbour
principle with a different distance metric.

Chi-squared Histogram Distance (X2): In order to mea-
sure the similarity between two input LOCP-TOP histograms
resulting from a probe and an enrolled gallery video, we
use a similarity measure Simχ2(G, I) based on Chi-squared
distance between the histograms (with bin index i) of two
input videos G and I .

Simχ2(G, I) = −
∑
j

∑
i

(bα,jG (i)− bα,jI (i))2

bα,jG (i) + bα,jI (i)
(5)

Normalised Correlation (NC): In order to extract the
discriminative features we project the sub-cuboid histograms,
bα,j , into LDA space as: dα,j = (W α,j

lda )
T bα,j . After projec-

tion, we perform normalized cross-correlation across all sub-
cuboids using two videos G and I as specified in Equation 6.

SimNC(G, I) =
∑
j

(dα,jG )Tdα,jI
‖dα,jG ‖‖d

α,j
I ‖

(6)

V. EVALUATION AND DISCUSSION

A. Experimental Setup

The experimental evaluation uses the XM2VTS
database [25] as mentioned in Section II. The XM2VTS
database, is a large multi-modal database intended for
training and testing multi-modal verification systems. It
contains synchronised video and speech data along with
image sequences that allow multiple views of the face. The
database consists of digital videos of 295 subjects divided into
training, development and test sets. For these experiments,
we followed the Configuration 1 (C1) and Configuration 2
(C2) of the Lausanne protocol [26] that accompanies this
database for speaker verification. This leads to the following
test statistics:
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Fig. 6. Texture histogram similarity variation with increasing noise intensity. σi denotes the noise intensity and Simχ2 denotes Chi-squared histogram
similarity.

• Client training examples: 3 per client in Configuration I,
4 per client in Configuration II

• Development samples (clients): 600 in Configuration I
and 400 in Configuration II

• Development samples (impostors): 40000 (25× 4× 2×
200)

• Test client accesses: 400(200× 2)
• Test impostor accesses: 1120000 (70× 4× 2× 200)
The mouth-region localisation for the XM2VTS database

was set to be 61 × 51 pixels. LOCP feature parameters p
and r were set to 8 and 3 respectively [32]. Additionally,
they were set to be the same for all planar configurations.
Each spatiotemporal video cuboid was subdivided into 5 sub-
cuboids along the XY direction and 3 sub-cuboids along the
T axis. Each of these sub-cuboids overlapped each other by
70%. The reason for this overlap was to enhance the robustness
on misalignment in spatial and temporal domains.

Three sets of experiments were performed to evaluate:
1) The performance of LOCP vs LBP as a texture de-

scriptor by measuring resilience to camera noise (Sec-
tion V-B)

2) The effect of visual speech video length on verification
performance (Section V-C)

3) The performance of the LOCP-TOP lip features in
a speaker verification experiment on the XM2VTS
database using the Lausanne protocol (Section V-D)

The experiments in Sections V-B and V-C aim to provide a
comparative evaluation of the optimum results for each of the
proposed feature parameterisations. Equal Error Rate (EER)
can be obtained after a full authentication experiment has

been performed and represents the performance at which the
number of False Accepts is equal to the number of False
Rejects. The results of Sections V-B and V-C are therefore
reported using EER.

Section V-D presents a comparative evaluation of the pro-
posed feature parameterisation within a verification experi-
ment. In order to facilitate a fair comparison with the state-of-
the-art systems reported in Table I, we follow the Lausanne
protocol and report the Half Total Error Rate (HTER). Addi-
tionally, [25] also reports that EER does not capture a real
authentication scenario and might not predict the expected
system performance well, given an unseen test set. To ac-
commodate this shortcoming, the HTER is reported using the
similarity threshold value corresponding to the EER obtained
on the evaluation set. In addition to comparing against the
state-of-the-art, the results of Section V-D are used to compare
the LBP texture descriptor and the LOCP descriptors proposed
in this paper and originally proposed in [7]. To validate the
contribution of the various texture descriptors , we perform the
McNemar’s test as described on pages 12–15 in [33]. McNe-
mar’s test computes M(S1, S2) where M is the McNemar’s
test statistic (incidentally, distributed as Chi-squared with one
degree of freedom) and S1 and S2 are the two systems in being
compared. As suggested in [33], if M > 3.841, this indicates
a level of significance 0.05 and we accept that systems S1 and
S2 have significantly different HTER.

B. Evaluation of the robustness of LOCP to intensity noise

Resilience to illumination variation is an important consid-
eration when choosing a texture descriptor to parameterise the
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(a) NC (b) X2

Fig. 7. LOCP Vs LBP Feature Descriptor, showing degradation in EER(%) of the test set when increasing Gaussian noise, σi

lip region. The effect of illumination variation is that uniform
or near uniform regions in an image may be affected by
noise from the digital imaging systems. This noise can be
modelled as an additive, Gaussian, independent and identically
distributed (i.i.d.) random process.

This experiment was designed to compare the performance
of the LOCP to LBP in a simulated environment where the
variance of the Gaussian i.i.d. process, σi was systematically
increased: σi = {0.02, 0.04, 0.06, 0.08, 0.1} to model the ef-
fect of worsening illumination conditions. In order to compare
the performance, a still lip image verification experiment was
designed using only the first frame of each visual speech
video in the XM2VTS database. In other words, only the
first XY image from the visual speech signal was used to
compute texture features for speaker authentication. This data
was chosen because accurate lip localisation information was
available. The NC and X2 classifiers were used to compare
the performance degradation of the texture descriptors. The
original images were used to form the training and evaluation
sets required by the Lausanne protocol. The degradation
measurement used the test set EER and was computed as:

EERnoisy,σw
− EERclean

EERclean
.

Two configurations of the texture descriptors were used in this
experiment:
• LBP / LOCP with full image (denoted by Single-scale 1

in the X-labels in Figure 6)
• LBP / LOCP with 3 Y sub-cuboid images overlapping

each other by 70% (denoted by Single-scale 3 in the X-
labels in Figure 6). The sub-cuboid partitioning along the
Y axis enables greater image resolution.

The values of the test-set EER (%) obtained with the
original, clean images are shown in Table III.

The bar charts in Figure 7(a) and 7(b) show the degradation
in EER(%) of the test set when increasing Gaussian noise, σi.
The LBP and LOCP bars are placed beside each other for easy
comparison. In these figures, a higher value of degradation
indicates worse resilience to increasing image noise. Figure 6
shows the variation of histogram similarity (Chi-squared his-
togram distance) with respect to increasing Gaussian noise

using both the LBP and LOCP feature descriptors. Figure 7
illustrates the variation in accuracy of the systems (EER(%) on
the test set). In this figure, a lower accuracy line is indicative
of a better performing texture descriptor.

The results of this experiment demonstrate that in terms
of texture representation in the original histogram space,
measured using the X2 classifier, LOCP performs worse than
LBP since both the degradation as well as system accuracy
is worse. Consequently, this suggests that it is less robust to
image noise than LBP. However, its performance in LDA space
demonstrates that it is a more discriminative texture descriptor
despite its poorer resilience to image noise variation. This
is a seemingly contradictory phenomenon; we would expect
discriminative performance to be proportional to intensity
noise robustness. It is illustrative to consider the example
histogram representations presented in Figure 6 to explain the
above contradiction.

Ordinal contrast measures represent texture by attribut-
ing labels to observed image micro-structure. For a 3×3
pixel neighbourhood, we expect to encounter 512 different
ordered combinations of binary micro-structure. LBP and
LOCP are different in how they distribute the 256 available
labels amongst the total number of observable micro-structure
patterns. This is illustrated by Figure 6. As can be seen in
Figure 6, LOCP distributes the labels more evenly than LBP.
This is because the effect of any pixel change in the image
is absorbed by the entire pixel neighbourhood in LOCP. It
can also be seen that an increase in intensity noise causes a
disproportionate increase in the bin counts of a select number
of labels in the LBP histogram. This effect is reduced in the
LOCP histogram.

TABLE III
TEXTURE DESCRIPTOR PERFORMANCE (EERclean(%)) IN RECOGNITION

EXPERIMENT

Protocol System LBP,1 LBP,3 LOCP,1 LOCP,3
C1 NC 7.82 2.01 6.78 2.25
C2 NC 7.26 1.99 7.02 1.26
C1 X2 8.33 4.02 8.03 4.02
C2 X2 9.08 4.75 9.21 3.46
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(a) NC (b) X2

Fig. 8. Test-set EER(%) variation against increasing frame length flen

The X2 classifier measures histogram distance by comput-
ing per-label (bin) differences. Since LOCP makes more even
use of the available bin-space, there are more discrepancies
between histograms resulting in a poorer degradation com-
pared to LBP. However, this same effect proves useful when
the NC classifier is employed. NC operates in a dimension-
reduced LDA space. Dimensionality reduction methods select
a subset of the bins from the histogram. Since LOCP provides
a more uniform distribution of labels in the histogram, the
effect of any major stimulus to the image content (in this
case due to image noise) is tempered by the histogram since
all bins contribute in absorbing that stimulus. This results
in better discriminative performance in lower dimensional
space. Consequently, LOCP can be considered a more effective
ordinal descriptor.

C. Evaluation of the effect of the volume of video information
on speaker verification accuracy

In this experiment, we quantify the effect of reducing
the amount of video information on the accuracy of the
proposed lip biometric systems. This analysis is particularly
relevant from the point of view of the commercial application
potential of the lip modality. The XM2VTS data was used
for this experiment. The highest, lowest and average frame
lengths of the XM2VTS videos were 673, 167 and 319 frames
respectively. Given a frame-rate of 25 frames-per-second,
the lowest frame length represented just over 6 seconds of
video. This experiment was run by cropping the amount of
video information supplied to the lip-based speaker verification
systems in steps of 25 frames starting from the first frame
of video. Note that both the gallery and probe videos were
cropped to the same length per experiment. The performance
improvement was then measured by increasing the amount of
video information by 25 frames up to 150 frames i.e. 6 seconds
of video. The results of the system accuracy measurements
(test set EER (%)) are shown in Figure 8. For both LBP and
LOCP texture descriptors, the following systems were used:
• S11, TOP : single-scale texture descriptor with no sub-

cuboid partitioning using TOP
• S53, TOP : single-scale texture descriptor with 5×Y and

3 × T sub-cuboid partitioning (with 70% overlap) using

TOP
The results demonstrate that increasing the amount of video

information improves system accuracy as expected. They also
demonstrate that LOCP outperforms LBP in terms of resilience
to shorter talking face records. Additionally, increasing video
resolution by sub-cuboid partitioning improves performance.
The NC system reaches a steady state more quickly implying
that it extracts discriminative information quicker. This also
suggests that the discriminative information contained in the
lip biometric can be extracted with only a few samples of
visual speech. With about 3 seconds of video information in
this case, HTER values of around 1% were obtained with the
NC system. This finding corroborates the claim that the lip
biometric can be used as a primary biometric trait not only
in terms of performance but also in terms of the amount of
information required for accurate verification.

D. Evaluation of the LOCP-TOP descriptor for speaker au-
thentication

Tables IV and V show the HTER of the test-set and
the EER of the evaluation-set of the various LOCP-TOP
histograms with the chi-squared and LDA verification systems
respectively. The best performances (highlighted in bold) with
LOCP-TOP were obtained using XYYT histograms with the
chi-squared system for C1 and the XYXTYT histograms with
the LDA system for C2. Note that in each experiment the best
performance was chosen based on the figures of the lowest
EER in the evaluation test. The comparative results using LBP-
TOP and LOCPo-TOP2are also shown.

Tables VI and VII show the results of computing Mc-
Nemar’s test. These tables are colour-coded to facilitate
comprehension. Each cell in the table displays the result
of M(S1,S2), where S1 and S2 are the two systems be-
ing compared. If the result of the McNemar’s test is not
significant, i.e. M(S1,S2) ≤ 3.841, then the corresponding
text is in black. If the HTER of S2 is lower than that of
S1 and M(S1,S2) > 3.841, then the text colour is in bold
blue. This indicates that S2 is statistically significantly more

2Note that LOCPo refers to the LOCP implementation originally proposed
in [7].
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TABLE IV
FEATURE PERFORMANCE OF THE CHI-SQUARED SYSTEM ON XM2VTS

SHOWING EER (EVAL) AND HTER (TEST)

Configuration 1 Configuration 2
TOP Input LBP LOCPo LOCP LBP LOCPo LOCP

Eval Test Eval Test Eval Test Eval Test Eval Test Eval Test
XY 5.30 4.09 3.70 3.70 4.19 3.75 5.45 4.56 4.25 4.27 5.49 4.14
XT 16.83 17.44 18.33 19.85 16.85 18.25 17.94 18.61 19.73 19.75 17.78 18.86
YT 8.31 8.98 9.05 10.41 9.07 10.63 10.19 9.29 11.55 10.73 11.59 10.76

XYXT 3.68 3.61 3.46 3.75 3.28 3.77 4.80 4.25 4.72 4.38 4.48 4.35
XYYT 2.97 3.02 2.71 2.79 2.74 3.02 4.01 3.47 2.98 3.31 4.17 3.68
XTYT 9.77 10.47 11.70 13.14 10.09 11.35 10.66 9.85 13.17 13.62 12.19 12.00

XYXTYT 3.18 3.52 3.17 3.90 2.99 3.86 4.46 3.61 4.26 4.43 4.27 3.97

TABLE V
FEATURE PERFORMANCE OF THE NORMALISED CORRELATION SYSTEM ON

XM2VTS SHOWING EER (EVAL) AND HTER (TEST)

Configuration 1 Configuration 2
TOP Input LBP LOCPo LOCP LBP LOCPo LOCP

Eval Test Eval Test Eval Test Eval Test Eval Test Eval Test
XY 2.50 1.84 1.16 1.04 1.16 0.94 2.49 2.08 1.28 1.29 1.50 1.24
XT 7.32 10.10 7.97 8.59 7.36 9.10 8.68 10.76 9.06 10.19 8.58 9.89
YT 3.36 4.67 2.80 5.03 2.84 4.64 4.00 5.38 4.13 5.38 4.21 4.90

XYXT 1.50 1.26 0.50 0.84 0.54 0.83 2.13 1.91 1.29 1.22 1.46 0.87
XYYT 1.14 1.90 0.51 0.82 0.53 0.36 1.51 1.70 0.98 0.99 0.77 0.49
XTYT 2.67 3.82 2.01 3.56 1.96 3.51 3.01 3.57 2.52 4.22 2.75 4.11

XYXTYT 0.87 1.29 0.33 0.65 0.25 0.36 1.50 1.67 0.76 0.95 0.99 0.49

TABLE VI
MCNEMAR’S TEST ON APPEARANCE FEATURE PERFORMANCE USING THE CHI-SQUARED SYSTEMS ON XM2VTS TEST SET

Configuration 1 Configuration 2
TOP Input M (LBP , LOCPo) M (LBP , LOCP) M (LOCPo , LOCP) M (LBP , LOCPo) M (LBP , LOCP) M (LOCPo , LOCP)

XY 244.58 113.40 49.61 141.68 36.56 503.92
XT 80.33 3.09 83.05 224.14 13.00 208.60
YT 309.35 208.70 41.92 542.49 767.47 0.00

XYXT 19.74 18.51 0.34 0.39 0.42 2.56
XYYT 2.2 0.00 3.29 232.66 11.60 500.33
XTYT 679.55 24.37 661.94 993.61 537.22 209.29

XYXTYT 0.44 3.24 8.63 1.75 0.06 1.84

TABLE VII
MCNEMAR’S TEST ON APPEARANCE FEATURE PERFORMANCE USING THE NORMALISED CORRELATION (WITH LDA) SYSTEMS ON XM2VTS TEST SET

Configuration 1 Configuration 2
TOP Input M (LBP , LOCPo) M (LBP , LOCP) M (LOCPo , LOCP) M (LBP , LOCPo) M (LBP , LOCP) M (LOCPo , LOCP)

XY 404.7 685.62 46.05 374.76 553.1 11.12
XT 43.17 0.00 60.95 77.18 49.96 145.11
YT 19.95 39.00 1.15 150.52 222.32 91.64

XYXT 428.6 462.84 0.47 117.38 323.79 61.64
XYYT 32.24 193.14 69.02 4.09 561.57 635.15
XTYT 31.64 216.19 109.12 2.19 19.37 44.63

XYXTYT 140.87 286.56 44.41 210.67 462.46 53.4

accurate than S1. If the HTER of S1 is lower than that of S2

and M(S1,S2) > 3.841, then the text colour is in red. This
indicates that S1 is statistically significantly more accurate
than S2. Please note that the HTER can be found in Tables IV
and V.

The first notable observation is that the performance of the
speaker verification engine using NC is significantly better
(2 times better in the worst case) than using X2. This is
unsurprising, since LDA performs subspace projection of the
histograms into a discriminative space. Chi-squared distance
is applied to the LOCP-TOP histograms directly in an unsu-
pervised manner.

It is also interesting to compare the performance of the
various TOP planes. XY outperforms XT and YT, indicating
that spatial appearance is a more discriminative feature than
temporal mouth-region variation. Another interpretation of this
result is that the genetic aspect of the lip biometric is a stronger
trait than the behavioural aspect. YT outperforms XT in all
systems. YT represents mouth opening during speech while
XT represents mouth widening. The fact that YT outperforms
XT indicates that mouth opening is a more discriminative
feature than mouth-widening. The results also show that the
feature-level fusion of spatial and temporal information con-
tained in the XYXTYT feature consistently leads to the best

performance when used with template matching. This ties in
well with the intuition behind the use of lip as a biometric i.e.
it being a twin biometric containing both genetic (in this case
characterised by the spatial appearance) as well as behavioural
(characterised by XT and YT) information.

The results also enable the comparison between LOCP,
LOCPo and LBP which belong to the same family of ordinal
contrast measures. The results of Table VI demonstrate that the
average performance in the X2 system, over TOP inputs, of
LBP is slightly better than both LOCP and LOCPo. However,
no conclusive comparison can be drawn between LOCP and
LOCPo. Additionally, no conclusive performance improve-
ment can be drawn by considering only the best performing
TOP plane in the X2 system i.e. XYYT as well as the per-
formance of the XYXTYT plane. The results of using the NC
system in Table VII demonstrate that both LOCP and LOCPo
perform statistically significantly more accurately than LBP
over most TOP inputs in both configurations. Additionally, of
the 14 feature parameterisations used to compare LOCP and
LOCPo, LOCP is statistically significantly more accurate over
8 planes as compared to 4 for LOCPo. Thus we suggest that
in LDA space, the enhancement of LOCPo with spatial history
results in a performance improvement.

A final point to note is that this experiment investigates how
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our system compares with the state-of-the-art benchmarks. The
best baseline performance obtained using lip features only
on this database was by [14](HTER of 13.35%) as shown
in Table I. Multi-modal fusion with two face detectors and
two audio systems [23] yielded HTER of 0.15% as shown in
Table II. Our experiments result in HTER of 0.36% using C1
and 0.99& using C2. In both these cases, an improvement
of two orders of magnitude can be observed compared to
the performance of state of the art systems using lip-features
alone. Furthermore, the performance is almost comparable to
that obtained using multi-modal fusion. The obtained results
strongly challenge the commonly held perception of the lip
being a soft biometric. They also suggest that the proposed
feature representation method i.e. LOCP-TOP is well suited to
extracting discriminative genetic and behavioural information
from visual speech.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel ordinal contrast measure called
LOCP. This has been used in a TOP configuration to represent
video of the mouth region of a talking face as input into
a speaker verification system in the form of LOCP his-
togram. The verification was accomplished using chi-squared
histogram distance or LDA classifiers. The resulting biometric
systems have been used to evaluate the discriminatory content
of the mouth-region biometrics on the XM2VTS database
using the standard Lausanne protocols. The application of this
novel feature representation has been demonstrated compre-
hensively to outperform previous feature descriptors encoun-
tered in the state-of-the-art review presented in the paper. The
findings confirm that there is sufficient discriminative informa-
tion within the spatiotemporal evolution of the mouth-region
appearance during speech production for use as a primary
biometric trait. This can be especially useful in circumstances
where auditory information may not be available for fusion.
The proposed LOCP histograms are also computationally
simpler compared to the more exotic feature parametrisations
encountered in the literature.

Several interesting research directions arise as possible
avenues for future research as part of this work. The pre-
sented LOCP feature descriptor is a novel ordinal contrast
encoding. Consequently, the utility of its application purely
as a texture descriptor warrants investigation. The combina-
tion of LOCP-TOP is a method for spatiotemporal feature
quantisation that could also be used in other application areas
such as talking face generation, automatic speech recognition
and tele-presence rendering to name a few. Feature fusion
with alternative lip-based features would also be of interest
especially if they result in increased robustness to degraded
video capture conditions. Since image based information can
encode more information about identity than simply the vocal-
tract based models used in audio-based speaker recognition, it
is a very real possibility for lip-based biometric systems to be a
complementary modality to audio. Additionally, it is of interest
to investigate the performance gains that the combination of
lip, speech and face would bring in increasing the robustness
of a video-based speaker authentication.
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