Loading [a11y]/accessibility-menu.js
Activity-Based Person Identification Using Fuzzy Representation and Discriminant Learning | IEEE Journals & Magazine | IEEE Xplore

Activity-Based Person Identification Using Fuzzy Representation and Discriminant Learning


Abstract:

In this paper, a novel view invariant person identification method based on human activity information is proposed. Unlike most methods proposed in the literature, in whi...Show More

Abstract:

In this paper, a novel view invariant person identification method based on human activity information is proposed. Unlike most methods proposed in the literature, in which “walk” (i.e., gait) is assumed to be the only activity exploited for person identification, we incorporate several activities in order to identify a person. A multicamera setup is used to capture the human body from different viewing angles. Fuzzy vector quantization and linear discriminant analysis are exploited in order to provide a discriminant activity representation. Person identification, activity recognition, and viewing angle specification results are obtained for all the available cameras independently. By properly combining these results, a view-invariant activity-independent person identification method is obtained. The proposed approach has been tested in challenging problem setups, simulating real application situations. Experimental results are very promising.
Published in: IEEE Transactions on Information Forensics and Security ( Volume: 7, Issue: 2, April 2012)
Page(s): 530 - 542
Date of Publication: 14 November 2011

ISSN Information:


References

References is not available for this document.