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Image Forgery Localization via Block-Grained
Analysis of JPEG Artifacts

Tiziano Bianchi*, Member, IEEE, and Alessandro Piva, Senior Member, IEEE

Abstract—In this paper, we propose a forensic algorithm
to discriminate between original and forged regions in JPEG
images, under the hypothesis that the tampered image presents
a double JPEG compression, either aligned (A-DJPG) or non-
aligned (NA-DJPG). Unlike previous approaches, the proposed
algorithm does not need to manually select a suspect region in
order to test the presence or the absence of double compression
artifacts. Based on an improved and unified statistical model
characterizing the artifacts that appear in the presence of both
A-DJPG or NA-DJPG, the proposed algorithm automatically
computes a likelihood map indicating the probability for each
8×8 discrete cosine transform block of being doubly compressed.
The validity of the proposed approach has been assessed by
evaluating the performance of a detector based on thresholding
the likelihood map, considering different forensic scenarios. The
effectiveness of the proposed method is also confirmed by tests
carried on realistic tampered images. An interesting property of
the proposed Bayesian approach is that it can be easily extended
to work with traces left by other kinds of processing.

Index Terms—Image forensics, JPEG artifacts, double JPEG
compression, forgery localization

I. INTRODUCTION

The diffusion of tampered visual contents through the digital
world is becoming increasing and worrying, due to the large
availability of simple and effective image and video processing
tools. Because of this issue, in many fields like insurance, law
and order, journalism, and medical applications, there is an
increasing interest in tools allowing to grant the credibility of
digital images as sources of information. As a possible answer
to this request, many image forensic techniques have been
proposed to detect the presence of forgeries in digital images
through the analysis of the presence or of the perturbation of
some traces that remain in digital content, during the creation
process or any other successive processing [1].

The JPEG format is adopted in most of the digital cameras
and image processing tools; many forensic tools have thus
been studied to detect the presence of tampering in this
class of images. In general, the manipulation is detected by
analyzing proper artifacts introduced by JPEG recompression
occurring when the forged image is created; in particular,
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such artifacts can be categorized into two classes, according
to whether the second JPEG compression adopts a discrete
cosine transform (DCT) grid aligned with the one used by
the first compression or not. The first case will be referred to
as aligned double JPEG (A-DJPG) compression, whereas the
second case will be referred to as non aligned double JPEG
(NA-DJPG) compression.

Approaches belonging to the first category include [2]–[8],
whereas the presence of non aligned double JPEG compression
has been investigated in [9]–[12].

Based on the observation that the distribution of the first
digit of DCT coefficients in single JPEG compressed images
follows the generalized Benford distribution, in [3], [4] the sta-
tistical distribution of first digits in quantized DCT coefficients
is used as feature set for detecting double JPEG compression.
Their performance however does not seem adequate, and are
outperformed by later works: e.g. in [6], starting from the
observation that recompression induces periodic artifacts and
discontinuities in the image histogram, a set of features is
derived from the pixels histogram to train a support vector
machine (SVM) allowing to detect an A-DJPG compression;
in [13], the histogram of a subset of 9 DCT coefficients is also
used to train a SVM and make the same detection. These two
last approaches, however, have been tested only for secondary
quality factors set to 75 or 80.

A promising approach is the one introduced by Popescu et
al. in [2]: here, it is proposed to detect the presence of double
aligned JPEG compression by observing that consecutive
quantizations introduce periodic artifacts into the histogram
of DCT coefficients; these periodic artifacts are visible in
the Fourier domain as strong peaks in medium and high
frequencies. Their seminal work has been the basis of the work
presented in [7], where double JPEG compression is detected
by computing a tampering probability map of the image
according to a proper statistical model of DCT coefficients.
In [8], an improved version of the model proposed in [7] is
presented, leading to a significant improvement of the accuracy
of the probability map estimation and consequently of the
algorithm performance.

In [5], a different approach to detect areas which have un-
dergone a double JPEG compression is proposed. The method
works by comparing differently compressed versions of the
image with the possibly tampered one; when the same quality
factor of the tampered area is adopted, a spatial local minima,
the so-called JPEG ghosts, will appear in correspondence of
the forgery. This method works only if the tampered region
has a lower quality factor than the rest of the image.

Concerning the methods for the detection of NA-DJPG, a
well known approach is the one presented in [9]: starting from
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an idea proposed in [14] to detect blocking artifacts, a 8 × 8
blocking artifact characteristics matrix (BACM) is computed
in the pixel domain to measure the symmetrical property of the
blocking artifacts in a JPEG image; an asymmetric BACM will
reveal the presence of misaligned JPEG compressions. The
previous algorithm is modified in [10] to localize the tampered
regions, according to two possible approaches: in a block-wise
approach each 8× 8 image block is processed independently
by analyzing the statistics of a rectangular region surrounding
it, whereas in the region-wise approach the image is first
segmented into homogeneous regions and then each region is
analyzed separately. In [11] the blocking artifacts in the pixel
domain are again investigated, but in this case their periodic
property is measured by devising two proper sets of features
fed to a SVM; this method shows higher performance with
respect to [9]. In [12], the authors propose a method based on
a single feature which depends on the integer periodicity of
the DCT coefficients when the DCT is computed according
to the grid of the previous JPEG compression, and whose
experimental results are superior to the previous works.

In [15] a detection method which is able to detect either
block-aligned or misaligned recompression is proposed; in
particular the authors propose to compute a set of features
to measure the periodicity of blocking artifacts, perturbed in
presence of NA-DJPG compression, and a set of features to
measure the periodicity of DCT coefficients, perturbed when
an A-DJPG compression is applied; this set of nine periodic
features is used to train a classifier allowing to detect if an
image has undergone a double JPEG compression. Experi-
mental results show that this method outperforms the scheme
proposed in [9] for the NA-DJPG case, and the schemes
proposed in [4], [7].

Most of the above algorithms rely on the hypothesis to know
the right location of the possibly manipulated area, for example
by applying a segmentation of the image under test before the
forensic analysis as done in [10], or they are just designed to
analyse the whole image, so that the correct localization of
the forgery in a tampered image is still an open issue. To the
best of our knowledge, only the forensic algorithms presented
in [7] and [8] have been designed to localize in an automatic
way the tampered regions with a fine-grained scale of 8 × 8
image blocks; let us note that these methods work only in the
presence of aligned double JPEG compression, whereas no
similar methods exist in the case of non-aligned double JPEG
compression.

In this paper, we move a step forward in the localization of
tampering in JPEG images, by proposing a forensic algorithm
that can reveal a tampering at a local level, without any
prior information about the location of the manipulated area,
in the presence of double JPEG compression, either aligned
or non-aligned. The output of the algorithm, as the methods
proposed in [7] and [8], is a map that gives the probability,
or the likelihood, for each 8 × 8 block to be tampered.
Starting from the analysis of the probability models of DCT
coefficients carried out in [8], we propose an improved and
unified statistical model characterizing the artifacts that appear
in the presence of either A-DJPG or NA-DJPG, allowing to
derive algorithms working for any kind of recompression.

As a further contribution of this paper, the proposed forgery
localization method, following a Bayesian approach, can be
easily generalized to work with similar features derived by any
other footprints left by a tampering operation, in the spatial
domain or in another image domain.

The rest of this paper is organized as follows. In Section II,
the possible scenarios where the algorithm for the detection of
double JPEG compression can be applied are briefly reviewed.
In Section III, the statistical models used to characterize both
A-DJPG and NA-DJPG artifacts are explained. Starting from
these models, in Section IV the proposed algorithm is de-
scribed. The results of the experimental analysis carried out to
evaluate the performance of the proposed method are discussed
in Section V, whereas in Section VI, some conclusions are
drawn.

II. FORENSIC SCENARIOS

One of the most evident traces of tampering in JPEG
images is the presence of artifacts due to double compression.
Basically, such artifacts can be categorized into two classes,
according to whether the second JPEG compression uses a
DCT grid aligned with the one of the first compression or
not. However, in order to correctly interpret the presence or
the absence of these artifacts, different scenarios have to be
considered.

A first scenario is that in which an original JPEG image,
after some localized forgery, is saved again in JPEG format.
We can assume that during forgery an image processing tech-
nique which disrupts JPEG compression statistics is applied.
Examples of this kind of manipulation are a cut and paste
from either a non compressed image or a resized image,
or the insertion of computer generated content. In this case,
DCT coefficients of unmodified areas will undergo a double
JPEG compression thus exhibiting double quantization (DQ)
artifacts, while DCT coefficients of forged areas will likely
not have the same DQ artifacts.

A second scenario is that of image splicing. Here, it is
assumed that a region from a JPEG image is pasted onto a
host image that does not exhibit the same JPEG compression
statistics, and that the resulting image is JPEG recompressed.
In this case, the forged region will exhibit double compression
artifacts, whereas the non manipulated region will not present
such artifacts.

In the first scenario, the most common artifacts will be the
ones due to A-DJPG compression. This is the same scenario
considered in [7]. However, it is still possible that the original
image is randomly cropped before being recompressed in
JPEG format, thus creating NA-DJPG artifacts. Conversely,
in the second scenario, assuming a random placement of
the spliced region, there is a probability of 63/64 that the
forged region will exhibit NA-DJPG artifacts. This is the same
scenario considered in [9] [16].

It is worth noting that the above scenarios do not require
one part of the image to be singly compressed. For example,
if a portion from a JPEG image is pasted onto another JPEG
image, we could have an A-DJPG part and a NA-DJPG part,
two A-DJPG parts, or two NA-DJPG parts. Nevertheless, as
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TABLE I
NOTATION

I image
C quantized DCT coefficients
U unquantized DCT coefficients
Drc 8× 8 block DCT matrix, grid aligned to (r, c) pixel position
Q quantization according to 8× 8 quantization matrix
D dequantization according to 8× 8 quantization matrix
x generic DCT coefficient (either quantized or not)
(r, c) grid shift
Q quantization step
k DCT coefficient frequency index
(i, j) DCT block position within the image
(·)k select kth DCT coefficient from each 8× 8 block
L(i, j) likelihood map

long as different kinds of artifacts can be detected on original
and forged regions, forensic tools able to identify either A-
DJPG or NA-DJPG compression could be very useful to
discern original regions from tampered ones.

III. DOUBLE JPEG COMPRESSION MODELS

In this section, we will review the statistical models used
to characterize both A-DJPG and NA-DJPG artifacts. Then,
we will introduce some simplifications that will be useful
in defining the proposed detection algorithm, as well as
some modifications needed to take into account the effects of
rounding and truncation errors between the first compression
and the second compression. The notation used hereafter is
summarized in Table I.

A. JPEG Compression Model

The JPEG compression algorithm can be modeled by three
basic steps [17]: 8 × 8 block DCT of the image pixels,
uniform quantization of DCT coefficients with a quantization
matrix whose values depend on a quality factor QF , entropy
encoding of the quantized values. The image resulting from
decompression will be obtained by applying the inverse of
each step in reverse order: entropy decoding, dequantization,
inverse block DCT. In the following analysis, we will consider
that quantization is achieved by dividing each DCT coefficient
by a proper quantization step Q and rounding the result to the
nearest integer, whereas dequantization is achieved by simply
multiplying by Q.

Let us then assume that an original uncompressed image
I is JPEG compressed with a quality factor QF , and then
decompressed. Since entropy encoding is perfectly reversible,
the image obtained after JPEG decompression can be modeled
as follows:

I1 = D−100 D(Q(D00I)) +E1 = I+R1. (1)

In the above equation, D00 models an 8× 8 block DCT with
the grid aligned with the upper left corner of the image, Q(·)
and D(·) model quantization and dequantization processes,
respectively, and E1 is the error introduced by rounding and
truncating the output values to eight bit integers. The last
quantity R1 can be thought of as the overall approximation
error introduced by JPEG compression with respect to the

original uncompressed image. In the above chain, if round-
ing/truncation (R/T) errors are neglected, the only operation
causing a loss of information is the quantization process Q(·).

In the following, we will analyse the artifacts that appear
in presence of a double JPEG compression. These artifacts,
caused by the interaction of successive quantization and
dequantization processes, will depend on the alignment or
misalignment of the respective block DCTs.

B. A-DJPG Compression
In the case of A-DJPG compression, we consider that the

original image I has been JPEG compressed with a quality
factor QF 1, decompressed, and again compressed with a
quality factor QF 2, with the respective block DCTs perfectly
aligned.

Let us consider the quantized DCT coefficients obtained
after entropy decoding the doubly compressed image. Such
coefficients can be modeled as

C2 = Q2(D00I1) = Q2(D1(Q1(U)) +D00E1) (2)

where U = D00I are the unquantized DCT coefficients of I
and Q1, Q2 denote that different quantization matrices may
be used. In the above equation, we can recognize a first term
taking into account quantization effects and a second term
modeling R/T errors.

Since the JPEG standard uses 64 different quantization
steps, one for each of the 64 frequencies within a 8× 8 DCT,
the quantized coefficients will be distributed according to 64
different probability distributions. According to (2), each of
these distributions can be expressed as

pDQ(x;Q1, Q2) =

Q2x+Q2/2∑
v=Q2x−Q2/2

p1(v;Q1) ∗ gDQ(v) (3)

where Q1 and Q2 are the quantization steps of the first and
last compression, gDQ(v) models the distribution of the R/T
error in the DCT domain, given by the term D00E1, ∗ models
convolution, and

p1(v;Q1) =

{∑v+Q1/2
u=v−Q1/2

p0(u) v = kQ1

0 elsewhere
(4)

models the distribution of the DCT coefficients after quantiza-
tion by Q1 and dequantization, given by the term D1(Q1(U)).
In the above equation, p0(u) represents the distribution of the
unquantized coefficients.

The R/T error in the DCT domain is obtained as a linear
combination of R/T errors on the pixel values, where the latter
can be assumed i.i.d. random variables. Hence, thanks to the
central limit theorem, it can be assumed Gaussian distributed
with mean µe and variance σ2

e , i.e.

gDQ(v) =
1

σe
√
2π
e−(v−µe)

2/σ2
e . (5)

When A-DJPG is not present, the only visible effect is a
single quantization with quality factor QF 2 and the quantized
DCT coefficients can be expressed as

pNDQ(x;Q2) =

Q2x+Q2/2∑
v=Q2x−Q2/2

p0(v). (6)
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The above model holds also if the image was previously JPEG
compressed but the DCT grids were nor aligned, since this
usually destroys the effects of the primary quantization [18].

C. NA-DJPG Compression
In the case of NA-DJPG compression, we can assume that

the original image I has been JPEG compressed using a DCT
grid shifted by (r, c) 6= (0, 0), 0 ≤ r ≤ 7 and 0 ≤ c ≤ 7, with
respect to the upper left corner, so that the image obtained
after JPEG decompression can be represented as

I1 = D−1rc D1(Q1(DrcI)) +E1 (7)

where DrcI are the unquantized DCT coefficients of I and Q1,
D1 denote that a proper quantization matrix corresponding to
the quality QF 1 was used1.

We then assume that the image has been again JPEG
compressed with a quality factor QF 2, but now with the block
grid aligned with the upper left corner of the image. However,
if we consider the image after the second decompression, i.e.,
I2 = I1 + R2, and we apply a block DCT with alignment
(r, c), we have

DrcI2 = D1(Q1(DrcI)) +Drc(E1 +R2). (8)

According to the above equation, the unquantized DCT coef-
ficients obtained by applying to the doubly compressed image
I2 a block DCT with alignment (r, c) (i.e., the same alignment
of the first compression) can be expressed as the sum of
a first term depending from prior quantization (analogous
to the first term in (2)) and a second term modeling the
approximation error due to the second JPEG compression.
Hence, the distribution of DCT coefficients of a particular
frequency can be modeled as

pQ(x;Q1) = p1(x;Q1) ∗ gQ(x) (9)

where gQ(x) models the distribution of the JPEG approxima-
tion error due to the second compression in the DCT domain.
If we model the approximation error as the sum of the R/T
error plus the quantization error due to uniform quantization
with step Q2

2, by invoking the central limit theorem we can
assume that the approximation error is Gaussian distributed
with mean µe and variance σ2

e +Q2
2/12, i.e.

gQ(x) =
1√

2π(σ2
e +Q2

2/12)
e−(x−µe)

2/(σ2
e+Q

2
2/12). (10)

In the absence of NA-DJPG compression, that is the image
did not undergo a first JPEG compression with alignment
(r, c), the unquantized DCT coefficients obtained by applying
a shifted block DCT can be assumed distributed approximately
as the original unquantized coefficients, that is

pNQ(x) = p0(x) (11)

since a misalignment of the DCT grids usually destroys the
effects of quantization [18].

1With a slight abuse of notation, in (2) and (7) we use the same symbols
Q1(·) and D1(·) to denote slightly different operators, since the respective
quantization matrices are aligned to different grids.

2This is a strong approximation, since quantization error depends on the
whole quantization matrix and the shift (r, c). However, it allows us to keep
the model reasonably simple.

D. Simplified Models

Although the models in (3) and (9) are quite accurate, they
require the knowledge of the distribution of the unquantized
coefficients p0(u), which may not be available in practice.
However, it is possible to make some simplifications in order
to obtain models that are less dependent from the image
content.

In the case of A-DJPG, it was already observed in [2] that
by neglecting the effects of R/T errors the distribution of the
quantized DCT coefficients is given by

pDQ(x;Q1, Q2) =

R(x)∑
u=L(x)

p0(u). (12)

where, denoting as dxe and bxc the ceiling and floor function,
respectively, L(x) = Q1

(⌈
Q2

Q1

(
x− 1

2

)⌉
− 1

2

)
, and R(x) =

Q1

(⌊
Q2

Q1

(
x+ 1

2

)⌋
+ 1

2

)
[7].

A simplified version of the above model can be obtained
by introducing the following approximation [8]

1

R(x)− L(x)

R(x)∑
u=L(x)

p0(u)

≈ 1

Q2

Q2x+Q2/2∑
u=Q2x−Q2/2

p0(u) =
1

Q2
pNDQ(x;Q2). (13)

The above approximation holds whenever the function
nDQ(x) = (R(x) − L(x))/Q2 > 0 and the histogram of
the original DCT coefficient is locally uniform. In practice,
we found that for moderate values of Q2 this is usually true,
except for the center bin (x = 0) of the AC coefficients, which
have a Laplacian-like distribution. According to the above
approximation, we have

pDQ(x;Q1, Q2) ≈ nDQ(x) · pNDQ(x;Q2), x 6= 0. (14)

i.e., we can approximate the distribution of the quantized
DCT coefficients in the presence of A-DJPG compression by
multiplying the distribution of the single compressed DCT
coefficients by a periodic function nDQ(x).

The above model can be further modified to take into
account the effects of R/T errors. According to (3), R/T errors
will cause every bin of p0(u) to spread over the adjacent bins
proportionally to σe, where σe is the standard deviation of the
R/T error. Hence, after quantization by Q2, such a spread will
be proportional to σe/Q2. As a first approximation, this can
be modeled by convolving nDQ(x) with a Gaussian kernel
having standard deviation σe/Q2.

Besides these effects, truncation often introduces a bias
on R/T errors, which will affect the statistics of the DC
coefficients. If the bias is equal to µe, the relationship be-
tween the unquantized DC coefficient u and the doubly quan-
tized DC coefficient x becomes x =

[([
u
Q1

]
Q1 + µe

)
1
Q2

]
.

Hence, only in the case of DC coefficients, the func-
tion nDQ(x) must be conveniently modified by redefin-
ing L(x) = Q1

(⌈
Q2

Q1

(
x− µe

Q2
− 1

2

)⌉
− 1

2

)
, and R(x) =

Q1

(⌊
Q2

Q1

(
x− µe

Q2
+ 1

2

)⌋
+ 1

2

)
.
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Fig. 1. Example of A-DJPG compression model: hDQ and hNDQ denote
the histograms of quantized DCT coefficients of an A-DJPG compressed and
a singly compressed image, respectively, for a single DCT frequency. The
distributions obtained according to equations (3), (14), and (11) are in good
agreement with the data.

An analogous simplification can also be applied in the
case of NA-DJPG. Indeed, by making similar assumptions
regarding the smoothness of p0(u), we have

p1(x) ≈

{
Q1p0(x) x = kQ1

0 elsewhere
(15)

Hence, if we assume that the JPEG approximation error due
to the last compression is smaller than Q1, and thanks to (11),
we have that (9) can be simplified to

pQ(x;Q1) ≈ nQ(x) · pNQ(x), x 6= 0. (16)

where nQ(x) = nQ,0(x) ∗ gQ(x) and

nQ,0(x) ,

{
Q1 x = kQ1

0 elsewhere
(17)

Since the above approximations may not be accurate when
x = 0, in practice we choose to empirically correct the
function nQ(x) by setting n′Q(0) = nQ(0)

1−RZ , where RZ is
the percentage of DCT coefficients equal to zero. The rationale
of the above approach is that the more DCT coefficients are
equal to zero, the less informative is nQ(x) when x = 0.

As an illustrative example, in Fig. 1 the models proposed
in (3), (14), and (11) are compared with the histograms of
quantized DCT coefficients of a A-DJPG compressed and a
singly compressed image, whereas in Fig. 2 the models pro-
posed in (9), (16), and (6) are compared with the histograms
of unquantized DCT coefficients of a NA-DJPG compressed
and a singly compressed image, considering a single DCT
frequency in both cases. The figures show that there is a
good agreement between the proposed models and the real
distributions and that the distributions of singly compressed
and doubly compressed DCT coefficients can be effectively
separated.
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Fig. 2. Example of NA-DJPG compression model: hQ and hNQ denote the
histograms of unquantized DCT coefficients of a NA-DJPG compressed and
a singly compressed image, respectively, for a single DCT frequency. The
distributions obtained according to equations (9), (16), and (6) are in good
agreement with the data.

IV. DOUBLE JPEG LOCALIZATION ALGORITHM

In this section, we will describe the proposed algorithm
for localizing double JPEG artifacts. Since A-DJPG and NA-
DJPG artifacts are characterized by different statistical models
defined on different domains – quantized DCT coefficients
given by (2) for A-DJPG, unquantized DCT coefficients given
by (7) for NA-DJPG – we will actually have two similar
algorithms specialized on the respective type of double JPEG
compression. A pseudo-code summarizing the proposed algo-
rithms can be found in Algorithm 2 and Algorithm 3.

A. Likelihood Map

In the following, we will assume that for each element x of
an image, being x either a pixel value, a DCT coefficient, or
the value of any other kind of representation, we know both
the probability distributions of x conditional to the hypothesis
of being doubly compressed, i.e., p(x|H1), and the probability
distributions of x conditional to the hypothesis of being singly
compressed, i.e., p(x|H0).

When dealing with double JPEG compression traces, the
above conditional distributions are given by either (3) and
(6) or (9) and (11), according to whether we are consider-
ing A-DJPG or NA-DJPG artifacts: in the case of A-DJPG
artifacts we have p(x|H1) = pDQ(x;Q1, Q2) and p(x|H0) =
pNDQ(x;Q2), whereas in the case of NA-DJPG artifacts we
have p(x|H1) = pQ(x;Q1) and p(x|H0) = pNQ(x).

Given p(x|H1) and p(x|H0), an element x can be classified
as belonging to one of the two models according to the value
of the likelihood ratio

L(x) = p(x|H1)

p(x|H0)
. (18)

As a natural choice, one could assume the element x to be
doubly compressed if L(x) > 1, i.e., if p(x|H1) > p(x|H0). In
practice, the likelihood ratio is compared with an appropriate
threshold, defined in such a way that the detector fulfills some
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optimality condition (e.g., a given probability of false alarm). It
is worth noting that the above approach can be easily extended
to any trace of tampering, even to traces that are not left by
JPEG recompression, provided that the appropriate probability
models for both p(x|H0) and p(x|H1) are defined.

In the case of JPEG images, an element is a DCT coefficient
corresponding to a 8 × 8 block. If multiple DCT coefficients
within the same block are considered, by assuming that they
are independently distributed we can express the likelihood
ratio corresponding to the block at position (i, j) as

L(i, j) =
∏
k

L(xk(i, j)) (19)

where xk(i, j) denotes the kth DCT coefficient within the
block at position (i, j)3. Such values form a likelihood map
of the JPEG image with resolution 8 × 8 pixels, which can
be used to localize possibly forged regions within the image.
Since the areas of interest are usually connected regions with
area greater than 8 × 8 pixels, the likelihood map can be
further processed by cumulating the likelihoods on a local
window, by assuming that if neighboring blocks are doubly
compressed, the likelihood that the reference block is also
doubly compressed will increase.

1) Simplified Map: By using the simplified models de-
scribed in Section III-D, it is possible to approximate the
likelihood ratio as L(x) = n(x), where the form of n(x)
depends from the kind of artifacts considered. The likelihood
map obtained using such simplifications can be expressed as

L(i, j) ≈
∏
k

n(xk(i, j)) (20)

and depends only on compression parameters, i.e., Q1, Q2,
having removed any dependencies from p0(u). Hence, pro-
vided that the estimated primary compression parameters are
the correct ones, the simplified likelihood map will be less
dependent from the image content.

B. Estimation of Model Parameters

For the localization of forgeries, the estimation of some
parameters of the models described in Section III is required.
Among these parameters, p0(u), Q2, µe, and σe are common
to both p(x|H1) and p(x|H0), whereas Q1 is required only to
characterize the distribution of doubly quantized coefficients.
Moreover, in the case of NA-DJPG compression we should
determine the shift (r, c) between the first compression and
the last compression in order to compute the unquantized DCT
coefficients as in (8).

As to Q2, we will assume that it is available from the
JPEG image header. As to the other parameters, they can be
estimated according to the following procedures.

1) Estimation of Q1: the estimation of the quantization step
of the primary compression is crucial for the correct modeling
of doubly compressed regions. When dealing with a possibly
forged image, usually there is no prior knowledge regarding

3With a slight abuse of notation, we use the same symbol L(x) even if
for different k we have different likelihood functions. The same convention
is used in (20) and (28) when referring to n(x) and h(x), respectively.

the location of such regions. In general, the distribution of the
DCT coefficients of a tampered image can thus be modeled as
a mixture of the two hypotheses p(x|H1) and p(x|H0), i.e.,

p(x;Q1, α) = α · p(x|H0) + (1− α) · p(x|H1;Q1) (21)

where α is the mixture parameter and we have highlighted the
dependence of p(x|H1) from Q1.

Based on the above model, the maximum likelihood esti-
mate of Q1 can be obtained as

Q̂1 = argmax
Q1

∏
x

[α(Q1)p(x|H0)+(1−α(Q1))p(x|H1;Q1)]

(22)
where α(Q1) is the optimal mixture parameter for a given
Q1. For each Q1, the optimal mixture parameter can be
estimated using the expectation-maximization (EM) algorithm
[19]. Since Q1 is a discrete parameter with a limited set of
possible values, the idea is to run in parallel the EM algorithm
over a set of candidate Q1 values and then to choose the
Q1 maximizing the likelihood function according to (22). The
proposed implementation of the EM algorithm is described in
Algorithm 1. In order to estimate the complete quantization
matrix, the above maximization problem has to be separately
solved for each of the 64 DCT coefficients within a block.

Algorithm 1 Pseudocode of the EM algorithm for estimating
the quantization step of the primary compression Q1. N is the
number of DCT coefficients.

input p(x|H0), p(x|H1; Q̃m), Q̃m, m = 1, . . . ,M , α0

set α̃m = α0, m = 1, . . . ,M
set Lmax = −∞
repeat

for m = 1→M do
{Expectation step}
for all x do
β(x) = α̃mp(x|H0)

α̃mp(x|H0)+(1−α̃m)p(x|H1;Q̃m)
end for
{Maximization step}
α̃m = 1

N

∑
x β(x)

L =
∏
x(α̃mp(x|H0) + (1− α̃m)p(x|H1; Q̃m))

if L > Lmax then
Lmax = L
Q1 = Q̃m

end if
end for

until convergence
return Q1, Lmax

2) Estimation of (r, c): the shift (r, c) in the case of NA-
DJPG can be estimated using a similar technique. The idea
is to use the previously proposed EM algorithm to solve the
maximization in (22) for every possible grid shift, excepting
(r, c) = (0, 0), and then to choose the (r, c) values for which
the likelihood function is globally maximized. In order to limit
the complexity, for each grid shift we consider the DC DCT
coefficients only, following an approach similar to [20]. The
proposed technique is described in Algorithm 3.
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3) Estimation of p0(u): obtaining a reliable estimate of
the distribution of the unquantized DCT coefficients from
the corresponding quantized or doubly quantized coefficients
may be a difficult task. In [21], it is proposed to use a
parametric model based on the hypothesis that AC coefficients
are Laplacian distributed. However, previous studies show
that a simple Laplacian distribution may not be sufficiently
accurate [22]. Moreover, such a hypothesis can not be applied
to DC coefficients.

In this work, we resort to a non parametric modeling of
p0(u) based on the histogram of the observed DC coefficients.
It has already been observed [18] that the DCT coefficients
obtained by applying a slight shift to the grid used for
computing the block DCT usually do not exhibit quantization
artifacts. Hence, we propose to approximate the distribution of
the unquantized DCT coefficients using the histogram of the
DCT coefficients of the decompressed image computed after
the DCT grid is suitably shifted with respect to the upper
left corner. In the case that we are detecting the presence of
A-DJPG artifacts, we will use a shift (1, 1). In the case of
detection of NA-DJPG artifacts, we will use a shift of ±1 with
respect to the estimated shift (r, c) of the primary compression,
where the sign of the increment is chosen so as to keep the
shift values between 0 and 7 and to avoid the case (0, 0).

Given the histogram h(u) of the DCT coefficients computed
with the above procedure, the desired probability distribution
is estimated as

p0(u) =
h(u) + 1

N +Nbin
(23)

where N is the number of DCT coefficients and Nbin is the
number of bins of the histogram. The above estimate uses
Laplace’s rule of succession [23] to avoid assigning a zero
probability when h(u) = 0.

4) Estimation of µe and σe: the true values of both µe
and σe should be estimated by relying on the primary JPEG
compression, which in general is not available when observing
the tampered image. In practice, we found that they can
be well approximated by measuring the R/T error on the
tampered image. The rationale is that both µe and σe are
mainly determined by the coarse-grained statistics of the image
content, which usually are little affected by tampering.

According to equation (1), we can model the tampered
image as I2 = D−100 D(Q(D00I1)) + E2. Hence, given as
input the quantized DCT coefficients of the observed image
C2 we can think to compute the term E2 by reconstructing the
tampered image with infinite precision as D−100 D(C2), which
can be approximated by using floating point arithmetic, and
taking the difference with the image I2 which is obtained by
rounding and truncating to 8 bit precision the floating point
values. The values of µe and σe relative to the kth DCT
coefficient within a block can be estimated as

µe = E[(D00E2)k] (24)

and
σ2
e = V ar[(D00E2)k] (25)

where ()k indicates that we are taking the kth DCT coefficient
from each 8× 8 block. Usually, µe is computed only for the
DC coefficient, since for the AC coefficients we have µe = 0.

Algorithm 2 Pseudocode of the algorithm for generating the
likelihood map in the A-DJPG case.

input C2, Q2, Ncoeff ,model, α0

set L(i, j) = 1
for k = 1→ Ncoeff do

input Q̃m,m = 1 . . . ,Mk

set x = (C2)k
estimate p0(u), µe, σ2

e

for all x do
p(x|H0) = pNDQ(x;Q2)
p(x|H1; Q̃m) = pDQ(x; Q̃m, Q2),m = 1 . . . ,Mk

end for
Q1 ⇐ Algorithm 1
if model = 0 then
L(i, j) = L(i, j) · p(x(i,j)|H1;Q1)

p(x(i,j)|H0)
else
L(i, j) = L(i, j) · nDQ(x(i, j);Q1)

end if
end for
return L(i, j)

C. Method of [7]

In the case of A-DJPG artifacts, the authors of [7] propose
an alternative method for deriving the posterior probability of
a block being doubly compressed. Starting from the obser-
vation that nDQ(x) is a periodic function with period P =
Q1/ gcd(Q1, Q2), they propose to estimate the conditional
probabilities as

p(x|H0) ∝ 1/P (26)

and

p(x|H1) ∝ h(x)/
P−1∑
t=0

h(bx/P cP + t) (27)

where h(x) is the histogram of the DCT coefficients and the
period P can be estimated from h(x) (see [7] for the details).
The above estimates stem from the observation that in the
absence of DQ artifacts x will be approximately uniformly
distributed over a histogram period, whereas in the presence
of DQ artifacts x will be concentrated around some histogram
peaks. According to the above model, the likelihood map can
be approximated as

L(i, j) ≈
∏
k

Ph(xk(i, j))∑P−1
t=0 h(bxk(i, j)/P cP + t)

. (28)

V. EXPERIMENTAL RESULTS

In this section we firstly describe the experimental method-
ology we followed in order to evaluate the performance of
the proposed forgery detectors; then, experimental results for
both A-DJPG and NA-DJPG are shown, considering different
scenarios, and the use of both standard likelihood maps and
simplified maps. As to A-DJPG, results are also compared
with the method of [7].
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Algorithm 3 Pseudocode of the algorithm for generating the
likelihood map in the NA-DJPG case.

input I2, Ncoeff ,model, α0

set L(i, j) = 1
estimate µe, σ2

e

{Estimate grid shift}
set Lmax = −∞
for all (r′, c′) do

input Q̃m,m = 1 . . . ,M1

set x = (Dr′c′I2)1
estimate p0(u)
for all x do
p(x|H0) = pNQ(x)
p(x|H1; Q̃m) = pQ(x; Q̃m),m = 1 . . . ,M1

end for
L⇐ Algorithm 1
if L > Lmax then
(r, c) = (r′, c′)
Lmax = L

end if
end for
for k = 1→ Ncoeff do

input Q̃m,m = 1 . . . ,Mk

set x = (DrcI2)k
estimate p0(u), µe, σ2

e

for all x do
p(x|H0) = pNQ(x)
p(x|H1; Q̃m) = pQ(x; Q̃m),m = 1 . . . ,Mk

end for
Q1 ⇐ Algorithm 1
if model = 0 then
L(i, j) = L(i, j) · p(x(i,j)|H1;Q1)

p(x(i,j)|H0)
else
L(i, j) = L(i, j) · nQ(x(i, j);Q1)

end if
end for
return L(i, j)

A. Experimental Methodology

For the experimental validation of the proposed work, we
have built an image dataset composed by 100 non-compressed
TIFF images, having heterogeneous contents, coming from
three different digital cameras (namely Nikon D90, Canon
EOS 450D, Canon EOS 5D) and each acquired at its highest
resolution; each test has been performed by cropping a central
portion with size 1024× 10244.

Starting from this dataset, we have created manipulated
images exhibiting either A-DJPG or NA-DJPG artifacts, ac-
cording to different scenarios. As to the simulation of A-DJPG
artifacts, each original image is JPEG compressed with a given
quality factor QF1 (using the Matlab function imwrite); the
area that should not exhibit A-DJPG artifacts is replaced with
the corresponding area from the original TIFF image; finally,

4In the case of NA-DJPG, the size is increased by 7 pixels in either
dimension so that we can still have a 1024 × 1024 image after random
cropping.

the overall “manipulated” image is JPEG compressed (again
with Matlab) with another given quality factor QF2. As to the
simulation of NA-DJPG artifacts, we repeat the above steps,
except that the primary JPEG compressed image is randomly
cropped by removing a number of rows and columns between
0 and 7 before inserting the uncompressed area. In all the
datasets, QF1 and QF2 are taken from the sets [50, 55, . . . 95]
and [50, 55, . . . 100], respectively, achieving 110 possible com-
binations of (QF1, QF2) for each of the 100 tampered images.

We considered three different scenarios corresponding to
different percentages of doubly compressed blocks. In the
first scenario, double compression is present in all the image
but the central portion of size 256 × 256, corresponding to
15/16 of the image area; in the second scenario, double
compression is present only in the right half of the image,
corresponding to 1/2 of the image area; in the third scenario
double compression is present only in the central portion of
size 256 × 256, corresponding to 1/16 of the image area. In
the following, the above scenarios are referred to as 15/16
scenario, 1/2 scenario, and 1/16 scenario, respectively.

As to the parameters of the proposed algorithm, in all
experiments we used α0 = 0.95, while the possible Q1

values for each DCT frequency have been chosen in the set
{1, . . . , Q(50)}, where Q(50) denotes, for each DCT frequency,
the quantization step corresponding to QF1 = 50. Moreover,
the logarithm of likelihood maps has been processed by a 3×3
mean filter in order to cumulate neighboring likelihood values.

The selection of a proper performance metric is fundamental
for comparing the different methods. The considered algo-
rithms provide as output, for each analyzed image, a likelihood
map that represents the probability of each 8 × 8 block to
be doubly compressed (i.e. for each 1024 × 1024 image a
128 × 128 likelihood map is given). After a thresholding
step, a binary detection map is achieved, that locates which
are the blocks detected as recompressed. In our experiments,
we assume to know for each analyzed image the position of
doubly compressed areas, so that it is possible to associate
to any manipulated image a corresponding 128 × 128 binary
mask indicating the positions of doubly compressed blocks.

A comparison between the algorithm output detection map
and the known tampering mask will allow to estimate the
error rates of the forensic schemes, measured as false alarm
probability Pfa and missed detection probability Pmd. These
two probabilities can be computed by measuring the following
parameters: nEDQ: number of blocks erroneously detected
as doubly compressed; nESQ: number of blocks erroneously
detected as singly compressed; nI: number of blocks in the
image; nM: number of doubly compressed blocks. Starting
from these figures, the error probabilities are given by:

Pfa =
nEDQ

nI − nM
Pmd =

nESQ

nM

and the correct detection probability is: Pd = 1− Pmd.
For depicting the tradeoff between the correct detection

rate Pd and the false alarm rate Pfa the receiver operating
characteristic (ROC) curve is considered. Since the ROC curve
is a two dimensional plot of Pd versus Pfa as the decision
threshold of the detector is varied, we adopt the area under
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Fig. 3. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of A-DJPG compression and
15/16 scenario: (a) algorithm in [7]; (b) proposed algorithm with standard
map; (c) proposed algorithm with simplified map.

the ROC curve (AUC) in order to summarize the performance
with a unique scalar value representing the general behavior
of the detector. It is known that AUC should assume values
between 0.5 and 1 for realistic and effective, i.e. no random,
detectors.
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Fig. 4. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of A-DJPG compression
and 1/2 scenario: (a) algorithm in [7]; (b) proposed algorithm with standard
map; (c) proposed algorithm with simplified map.

B. A-DJPG

In the case of A-DJPG compression, we have compared the
AUC values obtained using the standard map in (19) and the
simplified map in (20) with those obtained using the algorithm
in [7]. In all cases, likelihood maps are obtained by cumulating
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Fig. 5. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of A-DJPG compression
and 1/16 scenario: (a) algorithm in [7]; (b) proposed algorithm with standard
map; (c) proposed algorithm with simplified map.

a different number of DCT coefficients for each block, starting
from the DC coefficient and scanning the coefficients in zig-
zag order.

The AUC values achieved for different QF2 values in the
three scenarios, averaged over all QF1 values, are shown in
Figs. 3-5. As can be seen, the AUC values achieved by the

TABLE II
AUC ACHIEVED BY THE ALGORITHM IN [7] IN THE CASE OF A-DJPG

COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 0.506 0.579 0.709 0.845 0.978 0.994
60 0.492 0.503 0.635 0.814 0.969 0.993
70 0.484 0.509 0.502 0.686 0.943 0.992
80 0.526 0.485 0.512 0.501 0.897 0.981
90 0.505 0.499 0.502 0.500 0.499 0.948

TABLE III
AUC ACHIEVED BY THE PROPOSED ALGORITHM USING THE STANDARD

MAP IN THE CASE OF A-DJPG COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 0.504 0.942 0.995 0.999 0.999 0.999
60 0.745 0.499 0.949 0.997 0.998 0.999
70 0.783 0.810 0.502 0.986 0.998 0.998
80 0.602 0.592 0.712 0.501 0.989 0.990
90 0.529 0.515 0.534 0.584 0.499 0.976

TABLE IV
AUC ACHIEVED BY THE PROPOSED ALGORITHM USING THE SIMPLIFIED

MAP IN THE CASE OF A-DJPG COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 0.509 0.948 0.995 0.998 0.999 0.998
60 0.734 0.503 0.957 0.997 0.999 0.999
70 0.784 0.828 0.496 0.988 0.999 0.999
80 0.659 0.640 0.778 0.499 0.995 0.993
90 0.540 0.530 0.549 0.621 0.505 0.987

proposed approach are higher than those obtained with the
method of [7], especially for lower QF2 and in the 1/2 and
1/16 scenarios. It is worth noting that the proposed algorithm
is able to detect traces of A-DJPG compression even in the
1/16 scenario, achieving a performance only slightly lower
than that obtained in the other two scenarios, whereas the
method of [7] is almost useless in the 1/16 scenario.

When using the proposed approach, the detection perfor-
mance tends to increase with the number of DCT coefficients
used to generate the likelihood map, even though 6 coefficients
are usually enough to obtain the best performance. Conversely,
with the algorithm in [7] we have the best performance
when using only few DCT coefficients: when more than
6 coefficients are used, the AUC values tend to decrease,
highlighting the fact that the information contained in the
higher frequencies can not be reliably exploited by the method
of [7].

In order to assess the effects of different QF1 val-
ues, the AUC values obtained for different combinations of
(QF1, QF2) in the 1/2 scenario, using the first 6 DCT coeffi-
cients to compute the likelihood map, are reported in Tables II-
IV. For ease of reading, for each combination of (QF1, QF2)
the highest AUC value among the three considered approaches
is highlighted in bold. As can be seen, the proposed approach
is always the best one, being able to achieve AUC greater
the 0.5 even when QF2 < QF1. The standard map and
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TABLE V
PERCENTAGE (%) OF ERRONEOUSLY ESTIMATED Q1 VALUES IN THE CASE

OF A-DJPG COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 100 8 7 5 2 1
60 25 100 18 8 2 1
70 32 25 100 7 2 0
80 40 46 22 100 1 0
90 99 99 98 79 98 1
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Fig. 6. Percentage of erroneously estimated Q1 values for each DCT
coefficient in the A-DJPG case. The index on the x-axis corresponds to zig-zag
ordering. Values are averaged over all (QF1, QF2) such that QF2 > QF1.

the simplified map achieve very similar results: the standard
approach seems slightly more robust when QF2 � QF1,
whereas the simplified map is usually better when QF2 is
similar to QF1.

The influence of the reliability of the estimated Q1 values
on the above results can be assessed from Table V, where
the percentage of erroneously estimated Q1 values in the 1/2
scenario is shown. As can be seen, there is a strong depen-
dence between the detection performance and the estimation
accuracy, suggesting that the main reason of detection errors is
the inaccurate estimation of the parameters of the underlying
probability models. From Fig. 6, where the above percentages
are averaged over all (QF1, QF2) such that QF2 > QF1, it
is also evident that the estimated Q1 values are more reliable
for lower DCT frequencies and in scenarios where we have a
higher percentage of doubly compressed blocks.

C. NA-DJPG

In the case of NA-DJPG compression, we compare only
the AUC values obtained using the standard map in (19)
and the simplified map in (20), since, to the best of our
knowledge, these are the first methods that permit to localize
possibly forged areas by relying on non-aligned double JPEG
compression. As with the A-DJPG case, likelihood maps are
obtained by cumulating different number of DCT coefficients
for each block.

The AUC values achieved for different QF2 values in the
three scenarios, averaged over all QF1 values, are shown in
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Fig. 7. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of NA-DJPG compression
and 15/16 scenario: (a) proposed algorithm with standard map; (b) proposed
algorithm with simplified map.

Figs. 7-9. In both 15/16 and 1/2 scenarios, when QF2 is
sufficiently high we can effectively localize traces of tamper-
ing: for QF2 > 80, the proposed algorithm detects more than
85% of the regions presenting NA-DJPG artifacts. However,
the NA-DJPG features are in general less reliable than the A-
DJPG ones. In the 1/16 scenario, the performance of forgery
localization is much lower than under the other two scenarios,
allowing to localize some traces of double compression only
when QF2 is very high (> 90).

When comparing the two approaches, the simplified map
appears more robust than the standard map for lower QF2

values. As to the effects of the cumulation of different DCT
coefficients, the best results are obtained by considering 3-
6 coefficients with the simplified map: when considering
a higher number of coefficients the AUC values decrease,
suggesting that NA-DJPG artifacts can not be reliably detected
at the higher frequencies.

In order to assess the effects of different QF1 val-
ues, the AUC values obtained for different combinations
of (QF1, QF2) in the 1/2 scenario, using the first 6 DCT
coefficients to compute the likelihood map, are reported in
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Fig. 8. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of NA-DJPG compression
and 1/2 scenario: (a) proposed algorithm with standard map; (b) proposed
algorithm with simplified map.

Tables VI-VII. For ease of reading, for each combination
of (QF1, QF2) the highest AUC value between the two
considered approaches is highlighted in bold. Also in this case,
the simplified map achieves the best performance when QF2

is similar to QF1, whereas the standard map is slightly better
when QF2 � QF1. Differently from the A-DJPG case, it is
not possible to achieve AUC values significantly greater than
0.5 when QF2 < QF1. However, it suffices QF2−QF1 ≥ 10
to achieve an AUC value close to one, which means that forged
areas can be localized with great accuracy.

The influence of the reliability of the estimated (r, c) pairs
and Q1 values on the above results can be assessed from Tables
VIII and IX, where the percentage of erroneously estimated
(r, c) pairs and Q1 values for 1/2 and 1/16 scenarios is shown,
respectively. From the above results, it is evident that detection
performance is strongly influenced by the ability to estimate
the correct grid shift. In Fig. 6, the percentages of erroneously
estimated Q1 values are averaged over all (QF1, QF2) such
that QF2 > QF1, showing that the estimated Q1 values are
more reliable for lower DCT frequencies, except in the 1/16
scenario, where the estimation is usually unreliable.
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Fig. 9. AUC achieved for different QF2, averaged over all QF1 values, using
different numbers of DCT coefficients in the case of NA-DJPG compression
and 1/16 scenario: (a) proposed algorithm with standard map; (b) proposed
algorithm with simplified map.

TABLE VI
AUC ACHIEVED BY THE PROPOSED ALGORITHM USING THE STANDARD
MODEL IN THE CASE OF NA-DJPG COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 0.533 0.706 0.910 0.992 0.998 0.999
60 0.497 0.536 0.790 0.972 0.995 0.999
70 0.499 0.498 0.547 0.899 0.989 0.998
80 0.501 0.502 0.496 0.526 0.935 0.989
90 0.498 0.498 0.495 0.494 0.493 0.954

TABLE VII
AUC ACHIEVED BY THE PROPOSED ALGORITHM USING THE SIMPLIFIED
MODEL IN THE CASE OF NA-DJPG COMPRESSION AND 1/2 SCENARIO.

QF2

50 60 70 80 90 100

QF1

50 0.542 0.729 0.924 0.989 0.996 0.998
60 0.497 0.546 0.808 0.975 0.995 0.999
70 0.493 0.497 0.557 0.920 0.993 0.999
80 0.499 0.497 0.496 0.537 0.955 0.990
90 0.499 0.497 0.495 0.496 0.500 0.972



13

TABLE VIII
PERCENTAGE (%) OF ERRONEOUSLY ESTIMATED (r, c) PAIRS AND Q1

VALUES (BETWEEN PARENTHESES) IN THE CASE OF NA-DJPG
COMPRESSION AND 1/2 SCENARIO.

QF2

QF1 50 60 70 80 90 100

50 72(41) 39(38) 15(25) 0(18) 0(14) 0(1)
60 99(95) 70(61) 28(41) 3(16) 1(10) 0(0)
70 100(94) 99(96) 59(53) 8(17) 1(7) 0(0)
80 99(100) 98(95) 99(96) 66(53) 3(4) 0(0)
90 96(100) 97(100) 95(100) 98(95) 90(53) 2(3)
100 96(100) 98(100) 99(100) 97(100) 98(100) 98(100)

TABLE IX
PERCENTAGE (%) OF ERRONEOUSLY ESTIMATED (r, c) PAIRS AND Q1

VALUES (BETWEEN PARENTHESES) IN THE CASE OF NA-DJPG
COMPRESSION AND 1/16 SCENARIO.

QF2

QF1 50 60 70 80 90 100

50 99(51) 98(79) 95(87) 93(93) 65(77) 19(24)
60 99(95) 99(69) 96(95) 95(96) 82(88) 32(35)
70 99(94) 99(96) 98(65) 96(94) 86(91) 43(46)
80 97(100) 98(95) 99(96) 95(65) 92(94) 61(62)
90 96(100) 95(100) 98(100) 99(94) 98(58) 89(64)

100 97(100) 99(100) 100(100) 96(100) 97(100) 99(100)

D. Examples

The algorithm has also been tested on a set of images repre-
senting realistic cases of forgery. In Figure 11 two examples of
tampered image are shown: the likelihood maps clearly reveal
that the pyramid on the left image exhibits NA-DJPG artifacts,
whereas the license plate on the right image is the only area
that does not exhibit A-DJPG artifacts, suggesting that both
objects are likely forgeries. The maps also show some false
alarms in image regions with either low intensity variance,
like the sky in the image on the left, or saturated values, like
the reflections on the hood of the car in the image on the
right. However, these errors can be eliminated by a proper
postprocessing on the map, before a decision is made.
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Fig. 10. Percentage of erroneously estimated Q1 values for each DCT
coefficient in the NA-DJPG case. The index on the x-axis corresponds
to zig-zag ordering. Values are averaged over all (QF1, QF2) such that
QF2 > QF1.

VI. CONCLUSIONS

In this paper, a new forensic algorithm to detect and localize
a tampered area into a digital image in the presence of a JPEG
recompression has been proposed. The method is based on the
derivation of a unified statistical model characterizing the DCT
coefficients when an aligned or a non-aligned double JPEG
(A-DJPG or NA-DJPG) compression is applied; following an
approach similar to the one proposed in [7] and in [8], the
statistical model is used for the generation of a likelihood
map that shows the probability of each 8× 8 image block of
being doubly compressed. The validity of the proposed system
has been demonstrated by computing the ROC curves and
the corresponding AUC values for the double compression
detector based on properly thresholding the likelihood map.
The effectiveness of the proposed method is also confirmed
by tests carried on realistic tampered images.

The results show that the proposed method is able to cor-
rectly identify traces of A-DJPG compression unless QF2 =
QF1 or QF2 � QF1, whereas it is able to correctly identify
traces of NA-DJPG compression whenever QF2 > QF1 and
there is a sufficient percentage of doubly compressed blocks.
In our opinion, the limitations of the proposed system are due
to the fact that it is very difficult to separate the distributions of
singly compressed and doubly compressed DCT coefficients
when QF2 < QF1. A possible way to overcome this problem
could be that of jointly estimate recompression parameters
on several DCT frequencies, however at the cost of a greater
complexity.

Morever, the proposed approach, like previous methods for
detecting double JPEG compression, is no more valid if certain
image processing operations, like resizing, are applied between
the two compressions. Future research will be devoted to
methods that can cope with simple image editing operations.
Nevertheless, we can think of particular scenarios in which the
present tool is already practical. For example, when an image
coming from a particular camera must be manipulated without
altering the camera format, as it may happen in a legal case
where images supposedly acquired by a given digital camera
are examined as evidence.

Even if our results consider only simplified scenarios in
which one part of the image is singly compressed, as discussed
in Section II our algorithm can also be applied when both parts
are doubly compressed but exhibit different kind of artifacts.
Tests conducted on a dataset of images where the left half
was A-DJPG compressed and the right half was NA-DJPG
compressed, not shown here due to lack of space, reported for
both detectors the same performance observed in the simplified
scenarios. There are also cases in which the proposed approach
is not expected to work, for example when both parts present
a double JPEG compression with the same grid shift, and that
require further investigation.

Finally, it is worth noting that the proposed forgery localiza-
tion method can be applied also to similar features representing
other traces left by common tampering operations, which will
be the topic of future work.
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(a)

(b)

(c)

Fig. 11. Application to realistic forgeries: (a) images under analysis; (b) likelihood maps obtained using the A-DJPG simplified model; (c) likelihood maps
obtained using the NA-DJPG simplified model. Red/blue areas correspond to high/low probability of being doubly compressed. On the left side, the proposed
algorithm shows that there is a high probability of the pyramid to be doubly compressed according to NA-DJPG model. On the right side, the proposed
algorithm shows that the license plate has a high probability of being singly compressed, whereas the rest of the image has a high probability of being doubly
compressed according to A-DJPG model. The quality settings are QF1 = 60, QF2 = 95 (left side), QF1 = 90, QF2 = 95 (right side).
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[6] X. Feng and G. Doërr, “JPEG recompression detection,” in Media
Forensics and Security II, ser. Proceedings of the SPIE, vol. 7541, Feb.
2010, pp. 75 410J–75 410J–12.

[7] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained
tampered JPEG image detection via DCT coefficient analysis,” Pattern
Recognition, vol. 42, no. 11, pp. 2492–2501, Nov. 2009.

[8] T. Bianchi, A. D. Rosa, and A. Piva, “Improved DCT coefficient analysis
for forgery localization in JPEG images,” in Proc. of ICASSP 2011, May
2011, pp. 2444–2447.

[9] W. Luo, Z. Qu, J. Huang, and G. Qui, “A novel method for detecting

cropped and recompressed image block,” in Proc. of ICASSP 2007,
vol. 2, 2007, pp. II–217–II–220.

[10] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut & paste
tampering by means of double-JPEG detection and image segmentation,”
in Proc. of ISCAS 2010, 2010, pp. 1687–1690.

[11] Y.-L. Chen and C.-T. Hsu, “Image tampering detection by blocking
periodicity analysis in JPEG compressed images,” in Proc. of IEEE 10th
Workshop on Multimedia Signal Processing, Oct. 2008, pp. 803–808.

[12] T.Bianchi and A.Piva, “Detection of nonaligned double JPEG compres-
sion based on integer periodicity maps,” IEEE Trans. on Information
Forensics and Security, vol. 7, no. 2, Apr. 2012.
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