Loading [a11y]/accessibility-menu.js
Robustness of Offline Signature Verification Based on Gray Level Features | IEEE Journals & Magazine | IEEE Xplore

Robustness of Offline Signature Verification Based on Gray Level Features


Abstract:

Several papers have recently appeared in the literature which propose pseudo-dynamic features for automatic static handwritten signature verification based on the use of ...Show More

Abstract:

Several papers have recently appeared in the literature which propose pseudo-dynamic features for automatic static handwritten signature verification based on the use of gray level values from signature stroke pixels. Good results have been obtained using rotation invariant uniform local binary patterns LBP8,1riu2 plus LBP16,2riu2 and statistical measures from gray level co-occurrence matrices (GLCM) with MCYT and GPDS offline signature corpuses. In these studies the corpuses contain signatures written on a uniform white “nondistorting” background, however the gray level distribution of signature strokes changes when it is written on a complex background, such as a check or an invoice. The aim of this paper is to measure gray level features robustness when it is distorted by a complex background and also to propose more stable features. A set of different checks and invoices with varying background complexity is blended with the MCYT and GPDS signatures. The blending model is based on multiplication. The signature models are trained with genuine signatures on white background and tested with other genuine and forgeries mixed with different backgrounds. Results show that a basic version of local binary patterns (LBP) or local derivative and directional patterns are more robust than rotation invariant uniform LBP or GLCM features to the gray level distortion when using a support vector machine with histogram oriented kernels as a classifier.
Page(s): 966 - 977
Date of Publication: 07 March 2012

ISSN Information:


References

References is not available for this document.