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Abstract—We design and analyze a method to extract secret
keys from the randomness inherent to wireless channels. We
study a channel model for multipath wireless channel and exploit
the channel diversity in generating secret key bits. We compare
the key extraction methods based both on entire channel state
information (CSI) and on single channel parameter such as the
received signal strength indicators (RSSI). Due to the reduction
in the degree-of-freedom when going from CSI to RSSI, the rate
of key extraction based on CSI is far higher than that based on
RSSI. This suggests that exploiting channel diversity and making
CSI information available to higher layers would greatly benefit
the secret key generation. We propose a key generation system
based on low-density parity-check (LDPC) codes and describe
the design and performance of two systems: one based on binary
LDPC codes and the other (useful at higher signal-to-noise ratios)
based on four-ary LDPC codes.

Index Terms—Common randomness, secret key generation,
channel diversity, LDPC codes, Slepian-Wolf decoder

I. INTRODUCTION

In this paper we study the generation of secret keys based
on the inherent randomness of wireless multipath channels.
This study falls into the broad area of physical layer security
(see [1] for an overview of the area). In this setting the
objective is for a pair of users, generically referred to as Alice
and Bob, to extract a secret key from a naturally occurring
source of randomness observed by two users. The central idea
is that through a public (i.e., not secret) discussion, Alice and
Bob can de-noise their correlated observations to generate,
with high probability, a commonly known string, which can
serve as the key. Of course, any eavesdropper (typically named
Eve) would use both her knowledge of the public message
and any observation she has to guess the key. A source of
naturally occurring randomness that would be well suited to
the key generation application would be characterized by three
properties. It would be easily and widely accessible, it would
have a high level of randomness, and it would be difficult for
Eve to observe. The randomness inherent to wireless multipath
fading channels, such as the random amplitudes and phases of
the channel response coefficients, satisfies all three properties.
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The ubiquity of personal wireless devices makes a multipath
fading channel an easily accessible, and hence very relevant,
source of randomness. The fact that it has a high level of
randomness and is difficult to eavesdrop is due to the physics
of electromagnetic wave propagation. In a rich multipath
environment wireless channels have high spatial and temporal
variation. For instance, whenever either Alice or Bob moves,
or whenever other scattering objects move between them, the
channel between them changes. In terms of key extraction
this means that there is a continual influx of new randomness
from which to extract new and independent key bits. For the
same reason, an eavesdropper that is listening on transmission
between Alice and Bob and that is even a few wavelengths
away from either will observe a nearly independent channel.
In terms of key extraction, this makes it difficult to eavesdrop
on the source of randomness (the channel coefficients).

Modern wireless communication protocols typically use
diversity signaling techniques such as orthogonal frequency-
division multiplexing (OFDM) or Multiple Input Multiple
Output (MIMO) antennas. These techniques exploit frequency,
time and spatial diversity of the underlying wireless channel
and improve the communication performance. By exploiting
channel diversity in a similar manner in secret key generation
one can harvest more randomness. Thus in this paper, we
study an OFDM system as an example from the perspective
of secret key generation. We characterize the suitableness of
such channels for key generation, both under the assumption
of the availability of full channel state information (CSI) and
the assumption of the availability of only received signal
strength indicators (RSSI). The latter is what is available to
the higher layers of existing wireless transceivers. We show
that by exploiting the channel diversity in the CSI, one can
significantly increase the rate at which the secret key bits can
be generated relative to when channel diversity is not exploited
(such as RSSI based method). Thus making CSI available
to the higher layers (where security is managed) in future
transceiver designs would greatly facilitate the adoption of the
approach we propose. We also show that when extracting keys
from CSI, one can, without loss of rate, extracts key bits sep-
arately from the real and the imaginary parts of each channel
coefficient. The same is not true for amplitude and phase as
there is correlation between the amplitudes and phases across
two participating users. We also detail an algorithm of the
de-noising needed in key extracted. Our algorithm is based
on low-density parity-check (LDPC) codes. We describe two
designs. One based on binary and one based on non-binary
(quaternary) LDPC codes. Higher-alphabet codes are required
to extract the full randomness of the channel at higher signal-
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to-noise ratios (SNR).
There are many works in both theoretical analysis and

practical implementation of physical layer security. Theoretical
analysis in wire-tap channel date back to four decades ago
[2], [3] More recently, Bloch et al. propose the seminal
practical opportunistic one-way secret key agreement protocol
for Gaussian wiretap channel in [4]. The works done by
Maurer [5] and Ahlswede and Csiszár [6] show that correlated
randomness can be used to generate secret keys. Their works
lay down the analytical foundations for secret key generation
in wireless communication. Sayeed and Perrig [7] recognize
the possibility of extracting secret keys from multipath ran-
domness in wireless communication. Fundamental limits to
key generation for multipath randomness are studied in [8]–
[13]. In [8], [9] the minimum energy-per-key-bit is charac-
terized for rich fading channels and is extended in [14] to
sparse multipath channels. Eavesdropper with the ability to
tamper the transmission has been studied by Maurer and Wolf
[15]–[17]. More recently, Chou et al. study the secret key
capacity of the sender-excited secret key agreement in [18].
Non-coherent secret key generation in which neither the sender
nor the receiver have access to the channel state information
has been studied in [19].

There are also many works on realizing physical layer
security by designing practical secret key generating systems.
These works are based on the earliest work by Hershey et al.
[20] and Hassan et al. [21]. Ye et al. [22], [23] present an
over-the-air implementation on 802.11 platforms, prototyping
a systematic design using a scalar fading channel coefficient.
Jana et al. present yet another over-the-air implementation
using the received signal strength indicators [24]. Channel
randomness is also exploited for device pairing [25] and
authentication [26]–[28]. Secret key generation system over
MIMO has been considered in [29] and the references therein.

There are many related design related issues. Typical secret
key generation process consists of three phases: randomness
exploration, reconciliation and privacy amplification [23]. In
randomness exploration, quantization is used to convert con-
tinuous observations to discretized information bits. A good
quantizer should not only maximize the mutual information
between Alice and Bob’s bit sequences, but also reveal limited
information to the eavesdropper. An algorithm is proposed
in [30], [31] to find such a quantizer. Ye et al. [23] propose an
over-quantization technique to extract more bits per indepen-
dent channel training. When the channel is over-static (long
coherence time), filtering techniques, such as Discrete Cosine
Transform in [32] and windowed moving average low pass
filtering in [23], are used to remove the redundancy in the
extracted key bits. Reconciliation process is typically done
using various coding techniques, such as LDPC codes [4]
and list-encoding [25]. For a detailed survey on reconciling
two binary random variables, see [33]. Finally, universal hash
functions are widely used [17], [34] for privacy amplification.

In this paper, we show that the channel randomness can be
further exploited through the channel diversity offered by the
wireless front-end. We note that in many related works, such as
[22]–[25], secret key bits are extracted from a single parameter
observed in wireless channel. This fundamentally limits the

rate at which the secret key bits that can be extracted. For
instance, in [22] only one bit can be extracted per independent
channel realization although they over-quantize it to increase
the number of bits in their later work [23]. Similarly, in
[25] only one bit can be extracted per coherence time. We
thus argue that by exploiting the channel diversity in wireless
multipath fading channel, one can significantly improve the
secret key capacity.

A. System overview

To lend concreteness to the ensuing discussion we describe
the operation of the key extraction algorithm discussed later
in the paper. To generate their correlated observations Alice
and Bob each transmits known channel sounding (training)
signals to each other. This two-way training is done in two
consecutive time slots. As long as the channel is static over
these two time slots (the key assumption of our model [7],
[24]) then, due to the reciprocity of electromagnetic wave
propagation, Alice and Bob both obtain (noisy) observations
of the same multipath fading channel coefficients. Eve is
assumed to listen to both transmissions, but due to the fast
spatial decorrelation of multipath channels, we assume for the
remainder of the paper that her observations are independent
and thus useless for estimating the realized channel law. Alice
then quantizes her observations into some finite alphabet. (If
Alice did not quantize her observations there would be no
way Bob could recover the exact same coefficients with high
probability.) Alice then sends to Bob a public message. In our
algorithm the public message is the syndrome of some length-
N error correcting code where N is the length of Alice’s
vector of quantized channel coefficients. Bob combines the
public message with his observations in his attempt to recover
Alice’s quantized observations. We describe two possibilities
for Bob. First, that he quantizes his own observations before
his recovery attempt (“hard” decoding) and, second, that he
bases his recovery attempt on his un-quantized observations
(strictly better “soft” decoding).

We do not consider authentication in our proposed secret
key generation system [26]–[28]. Therefore, our system does
not address active attacks such as man-in-the-middle attacks.
One could always first authenticate the validity of Alice and
Bob by using public key cryptography before invoking our
secret key generation system.

B. Notation and outline

Unless otherwise specified, we use upper case letters, e.g.,
X to denote random variables and bold uppercase, e.g.,
X to denote random vectors; x and x are their respective
realizations. If X is a complex random variable, we use R(X)
and I(X) to denote, respectively, the real and imaginary parts
of X . We use X ∼ CN (m,σ2) to denote a complex Gaussian
random variable X with mean m, variance σ2, and with real
and imaginary parts independent and identically distributed.

The rest of the paper is organized as follows. In Sec. II we
provide background material on the OFDM channel model.
In Sec. III we define secret key capacity and introduce the
measurement model. In Sec. IV we evaluate the secret key
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capacity for various channels of interest, and draw a number
of useful lessons for designs. In Sec. V we describe our designs
and algorithms. In Sec. VI we provide numerical results for
typical 802.11a parameter settings and secret key capacity.
We conclude in Sec. VII. Some proofs are deferred to the
Appendix.

II. CHANNEL DIVERSITY: AN OFDM EXAMPLE

In this section, we introduce diversity signaling technique
used in OFDM system. We then characterize the channel
coefficients which represent the channel diversity and from
which we extract our secret keys. The OFDM model we use
follows closely that introduced in [35].

A. OFDM signaling

Let T denote the signaling duration and W denote the two-
sided bandwidth of a wireless link with M = TW . An OFDM
system transmits M orthogonal signals. The transmitted signal
s(t) can be represented as

s(t) =

M−1∑
n=0

snφn(t), 0 ≤ t ≤ T, (1)

where the sn are the information-bearing signal coefficients
and the φn(t) are the orthogonal modulating waveforms or
“tones”. In OFDM the Fourier basis is used, i.e.,

φn(t) =

{ 1√
T
ej2πn∆ft if 0 ≤ t ≤ T

0 else
(2)

where ∆f = 1
T . The received signal r(t) is r(t) = h(t)∗s(t)+

w(t) where h(t) is the communication channel, assumed to be
time-invariant during the two-way training, w(t) is the receiver
noise, and ∗ denotes continuous-time convolution. We model
w(t) as a complex zero-mean white Gaussian noise process
with autocorrelation function E[w(t1)w∗(t2)] = σ2

W δ(t1− t2)
where δ(·) is the Dirac delta.

We discretize the observation r(t) by projecting it onto the
orthogonal basis functions φn(t) to produce

rn =

∫ ∞
−∞

r(t)φ∗n(t)dt = Hnsn + wn, (3)

where
Hn =

∫ ∞
−∞

√
Th(t)φ∗n(t)dt

is the frequency domain channel coefficient at the nth tone
and the

wn =

∫ ∞
−∞

w(t)φ∗n(t)dt

are independent zero-mean complex Gaussian random vari-
ables of variance σ2

W .
Wireless multipath channels h(t) are well modeled in [35]

as having an echo-type impulse response. In particular, let

h(t) =

Np∑
k=1

βkδ(t− τk) (4)

where Np is the total number of propagation paths, and
τk ∈ [0, τmax], τmax and βk are the delay, the delay spread

and the complex channel gain associated with the kth path.
Since τk is typically much longer than the speed of light
divided by the carrier, each βk is well modeled as having
uniform random phase. Also, since the scaterring objects are
distinct, βk are well modeled as independent random variables.
We incorporate an exponential power-delay profile where the
variance of βk decays with τk.

The frequency domain channel coefficients Hn, 0 ≤ n ≤
M − 1 are

Hn =

Np∑
k=1

βke
−j2π nT τk (5)

≈ 1√
M

M−1∑
l=0

h`e
−j2π n`M , (6)

where in (6) we approximate Hn by quantizing the τk into M
delay bins and aggregating the effect of the βk terms into the
h`. Each bin is of length τbin = 1/W and

h` =
√
M

Np∑
k=1

βksinc

[
W

(
`

W
− τk

)]
(7)

≈
√
M

∑
k: `−0.5

W <τk≤ `+0.5
W

βk. (8)

The variable h` is the sampled or time domain channel
coefficient associated with the `th resolvable delay bin. If there
are many βk associated with each bin, as is the case for rich
multipath, the h` are well approximated as zero-mean complex
Gaussian random variables; a further approximation justified
by the central limit theorem.

In OFDM channel, τmax ≤ T , thus only the first few delay
bins have physical paths contributing to them, similarly only
the first few h` will be significant. Say the first L ≤ M
sampled channel coefficients are significant, then we further
simplify our approximation of Hn as

Hn ≈
1√
M

L−1∑
`=0

h`e
−j2π n`M . (9)

where we have neglected the effect of the tails of the sinc
waveforms in (7).

The h` is well modeled as having uniform phase (as
remarked following (4)) and having a complex Gaussian distri-
bution (as remarked following (8)). Since the paths aggregated
into distinct h` are typically reflections from distinct scatters,
the L non-zero h` are also often well modeled as being
statistically independent. However, the h` are not identically
distributed; the variance is roughly inversely proportional to
τk as the result of the exponential power-delay profile on βk.
On the other hand, Hn exhibits Gaussian characteristic under
rich multipath with variance σ2

H . Following from (5), we have

σ2
H = E

[
|Hn|2

]
=

Np∑
k=1

E
[
|βk|2

]
,

which does not depend on n. Hence, while the Hn are not
independent, they have the same marginal distribution.

We note that if there are only a few transmission paths, the
assumption that channel coefficients are Gaussian distributed
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no longer holds. However, we are using Gaussian model as
an example to illustrate the importance of exploiting channel
diversity, which is actually not limited to Gaussian case.

B. Signal-to-noise ratio

As mentioned above, when multipath is rich, i.e., Np is
large, the Hn can be well modeled as CN (0, σ2

H). We define
the per-tone SNR as

SNRf =
E[H2

n]

E[w2
n]

=
σ2
H

σ2
W

. (10)

Also as discussed above, h` is well modeled as CN (0, σ2
h(`)).

We can thus define the time-domain SNR as

SNRτ (`) =
σ2
h(`)

σ2
W

. (11)

It can be shown that we have the relation
L−1∑
`=0

SNRτ (`) ≈M · SNRf . (12)

If the sampled channel coefficients have equal variance, the
relationship simplifies to

SNRτ ≈
M

L
SNRf . (13)

III. SECRET KEY SYSTEMS: DEFINITIONS AND
MEASUREMENT MODEL

In this section we introduce the measurement model, secret
key generation system, and study the secret key capacity.

A. System model

Secret key generation system has been studied by many
authors. In particular, the authors in [5], [6] study the funda-
mental limits on the achievable secret key rates. We state their
results for reference in the context of our application.

Definition 1. A length-N secret key generation system over
alphabets XA,XB ,K,S is a triplet of functions (f , gA, gB):

f : XNA → KNR, (14)
gA : XNA → Sm, (15)

gB : XNB × Sm → XNA . (16)

We interpret this definition in the context of the system
operation described in Sec. I-A. The function f maps Alice’s
source of randomness into the secret key. The function gA
defines the public message Alice sends to Bob. The function
gB is Bob’s decoding function that maps his observation and
the public message into his estimate of Alice’s observation. If
Bob’s estimate is correct applying f(·) to it will recover the
key.

Given a source of randomness pXNA ,XNB (xNA , x
N
B ), where

xNA ∈ XNA and xNB ∈ XNB , the secret key capacity is the
supremum of achievable secret key rates. An achievable secret
key rate is defined as follows.

Definition 2. A secret key rate R is achievable if for any ε > 0
and N sufficiently large, we have:

NR log |K| −H(f(XN
A )) ≤ ε, (17)

Pr
[
f(XN

A ) 6= f(gB(XN
B , gA(XN

A )))
]
< ε, (18)

1

N
I(f(XN

A ); gA(XN
A )) ≤ ε. (19)

The first inequality implies that the secret key is nearly
uniformly distributed. The second inequality upper bounds the
probability of error in key recovery. The final inequality is the
secrecy guarantee, i.e., that the public message tells you little
about the key.

The above definitions are often stated for a setting in which
an attacker (Eve) has access to a correlated measurement
of the source as well as the public message. We do not
include this possibility in the definitions as stated herein due
to the source of randomness we study. We will characterize
secret key capacity for an OFDM system where the correlated
observations XN

A and XN
B are functions of the underlying

channel law (the Hn or the h` of Sec. II). In a rich scattering
environment the channel law between two users changes
utterly if either moves more than a few wavelengths (a few
centimeters for an OFDM system). Therefore an eavesdropper
would have to be positioned extremely close to either Alice
or Bob to get useful channel observations. This is one of the
inherent strengths of this source of randomness – it is difficult
to eavesdrop. And for this reason we ignore the possibility of
eavesdropping throughout the rest of the paper. (In contrast,
the public message is easy to intercept, and so we must assume
Eve has knowledge of that message.)

In [6] the following theorem is shown

Theorem 1. For a discrete memoryless source
pXNA ,XNB (xNA , x

N
B ) the secret key capacity is

C = lim
N→∞

1

N
I(XN

A ;XN
B ), (20)

assuming the limit exists.

B. Measurement model

The sources of randomness we work with in the paper are
noisy measurements of the channel coefficients. Alice and Bob
each sends an identical and known sounding signal s(t) to the
other. For simplicity we assume each signal coefficient sn = 1.
(Equal-power sounding is known not always to be the best
choice, see [8].) We assume that the channel remains static
during this two-way training. The period in which a wireless
channel is roughly static is termed the coherence period. Thus,
this two-way training is assumed to occur within a single
coherence period.

Under this channel assumption we model Alice and Bob’s
measurements as

HA,n = Hn + wA,n

HB,n = Hn + wB,n, (21)

respectively, where wA,n, wB,n ∼ CN (0, σ2
W ) are indepen-

dent sources of noise. We notice that the phase offset caused
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by the local oscillators may add extra noise to the measurement
[25], [26], [36]. We defer the discussion of phase offset to the
end of this section.

The frequency domain correlation coefficient between Alice
and Bob’s observation at nth tone can be shown to be :

ρf =
SNRf

1 + SNRf
. (22)

Note that the correlation ρf between HA,n and HB,n is equal
to the correlation between R(HA,n) and R(HB,n) and is also
equal to that between I(HA,n) and I(HB,n). We can also
consider the time domain observation as:

hA,` = R(hA,`) + jI(hA,`) = h` + nA,`

hB,` = R(hB,`) + jI(hB,`) = h` + nB,`, (23)

where h` ∼ CN (0, σ2
h(`)) is the sampled channel coefficient

and nB,`, nA,` ∼ CN (0, σ2
W ) are the noises. Similar to the

correlation in frequency domain, the correlation coefficient in
`th sampled channel coefficient is given as:

ρτ (`) =
SNRτ (`)

1 + SNRτ (`)
. (24)

Note again that the correlation coefficient ρτ (`) between
hA,` and hB,` is equal to the correlation coefficient between
R(hA,`) and R(hB,`) or equivalently equal to that between
I(hA,`) and I(hB,`).

To get to the long block-lengths possibly required to ap-
proach secret key capacity, we repeat this two-way channel
sounding across multiple channel coherence periods. The
channel is assumed to be independently and identically dis-
tributed across coherence periods. Say that within each period
Alice and Bob generate channel observations hA,` and hB,`,
respectively, for ` = 1, 2, . . . , L. Further, say they do this
for n coherence periods yielding measurements hA,`[i] and
hB,`[i] for i = 1, 2, . . . , n. They stack their observations into
the length-N real vectors, where N = 2nM as follows:

XN
A =



R(hA,1[1])
I(hA,1[1])

...
R(hA,L[1])
I(hA,L[1])
R(hA,1[2])

...
I(hA,L[n])

0
...
0



, XN
B =



R(hB,1[1])
I(hB,1[1])

...
R(hB,L[1])
I(hB,L[1])
R(hB,1[2])

...
I(hB,L[n])

0
...
0



, (25)

where the padding is with 2nM − 2nL = 2n(M − L) zeros.
These are the degrees of freedom lost due to the fact that the
last M − L coefficients in each block are zero, cf. (9). Were
the approximation that the last M − L coefficients in each
block were zero to be exact, then due to the i.i.d. assumption
across coherence blocks, the limit in (20) would exist and
would evaluate to

C = lim
N→∞

1

N
I(XN

A ;XN
B ) =

1

2M
I(hLA;hLB) (26)

where hLA and hLB are, respectively, the length-L complex
vectors of observations made by Alice and Bob. While the
definitions provided in Sec. III-A are for finite alphabets,
the extension to continuous alphabets follows from standard
limiting arguments.

C. Phase Offset

We have thus far implicitly assumed the perfect synchro-
nization between Alice and Bob. In practice, however, Alice
and Bob measured channel parameters may be effected by the
phase offset caused by the local oscillators of both transmitters.
Since phase synchronization is not perfect, there is a phase off-
set during each channel sounding. Furthermore, the frequency
generated by local oscillators continuously fluctuates (or drifts)
around its center frequency, causing a time dependent phase
drift. There are many existing techniques developed to mitigate
the effect of such phase offset (see [36], [26] and the references
therein).

Since the signal duration is very small in a channel training,
we assume that during each channel sounding phase offset
caused by oscillator frequency drift is negligible, i.e., the
phase offset is time invariant. However we do not assume it
is negligible across channel trainings, i.e., between coherence
intervals. Denote the phase offset caused by Alice and Bob’s
local oscillators as θA and θB respectively. The offsets can be
incorporated into Alice’s and Bob’s measurements as hLAe

jθA

and hLBe
jθB cf. (8). Since phase offset is differential, without

the loss of generality, we can incorporate the error into Bob’s
measurement and write hLA and hLBe

jθ with θ = θB − θA.
Then the unnormalized secret key capacity in (26) becomes
I(hLA;hLBe

jθ).
We show that by exploiting the channel diversity, one can

mitigate the effect on the secret key capacity caused by phase
offset. First, note that

I(hLBe
jθ;hLA, e

jθ) = I(hLBe
jθ;hLA) + I(hLBe

jθ; ejθ|hLA)

= I(hLBe
jθ; ejθ) + I(hLBe

jθ;hLA|ejθ).

Then we can write:

I(hLBe
jθ;hLA) =I(hLBe

jθ;hLA|ejθ) + I(hLBe
jθ; ejθ)

− I(hLBe
jθ; ejθ|hLA)

=I(hLB ;hLA)+I(hLBe
jθ; ejθ)− I(hLBe

jθ; ejθ|hLA)

(a)

≥ I(hLB ;hLA)− I(hLBe
jθ; ejθ|hLA).

=I(hLB ;hLA)− I(ejθ;hLA, h
L
Be

jθ). (27)

Inequality (a) is equality (I(hLBe
jθ; ejθ) = 0) if hLB is

circularly symmetric complex Gaussian vector since hLB and
hLBe

jθ have the same distribution. The last equality follows
because ejθ is independent of hLA. The second term on the right
hand side of (27), I(ejθ;hLA, h

L
Be

jθ), is the secret key capacity
loss caused by the phase offset and it is the decrease in
uncertainty about the unknown offset ejθ given the knowledge
of hLA and hLBe

jθ as measured in bits. Note that because hLB
and hLBe

jθ have the same distribution nothing can be learned
about θ by observing hLBe

jθ only. However in combining
with the knowledge of hLA one can better estimate θ because
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∠hLBe
jθ = ∠hLB + θ and ∠hLB , ∠hLA are dependent random

variables. Thus we get L independent looks at θ with additive
noise (since hLA and hLB each has L independent entries). Note
that because of the additive noise, it is impossible to estimate
θ with infinite precision.

Since θ is a scalar the loss term does not scale linearly in
L. By the Cramér-Rao bound we know that variance of the
estimate of θ can drop at most as 1

L which means for general
distribution the loss should scale as logL. In other words, as L
becomes larger while one can potentially get better estimate of
θ from channel observations, the loss is scaling more slowly
than the gain from the first term on the right hand side of
(27), which scales linearly in L. This supports our claim that
channel diversity should be exploited, both as a way to boost
secret key capacity and to mitigate the phase offset.

Later in Sec. V we will show how the LDPC design can be
adapted to perform the estimation of phase offset.

IV. SECRET KEY CAPACITY CALCULATIONS

We are now in position to evaluate the secret key capacity
for various channels of interest. In Sec. IV-A we first do
this for the general OFDM model of time-domain channel
coefficients. Then, to ease analysis, we focus on an idealized
model wherein all sampled channel coefficients have the same
variance. This simplification allows us to draw a number of
general lessons on secret key generation for OFDM channels.
In Sec. IV-B we quantify the (quite large) reduction in secret
key rate when only received signal strength indicator (RSSI)
information is available, as opposed to full CSI. In Sec. IV-C
we discuss generating keys separately from the amplitude and
phase of the CSI, as opposed to the real and imaginary parts.

A. Secret key capacity based on CSI

We now evaluate (26) in terms of the SNR of the channel.
Due to the fact that hLA and hLB are jointly complex Gaussian
and i.i.d. in time, we have

C ≈ − 1

2M

L−1∑
`=0

log

[
1−

(
SNRτ (`)

1 + SNRτ (`)

)2]
, (28)

where the approximation follows from the fact that the last
M − L sampled coefficients are approximately zero. If the
sampled coefficients have equal variance, the capacity simpli-
fies to

C ≈ − L

2M
log

[
1−

(
SNRτ

1 + SNRτ

)2]
. (29)

Note that the correlation coefficient in time relates to that
in frequency as:

ρτ ≈
M · SNRf

L+M · SNRf
=

Mρf
L+ (M − L)ρf

. (30)

In the remainder of this section we focus on an idealized
model wherein all sampled channel coefficients have the same
variance. We let hA,`, hB,` ∼ CN (0, σ2) where σ2 = σ2

h +
σ2
W . Note that R(hA,`), R(hB,`) have correlation coefficient
ρτ defined in (30) and I(hA,j), I(hA,j) also have the same
correlation coefficient ρτ . The secret key capacity between
Alice and Bob now reduces to (29).

B. Secret key generation based on measurements of RSSI

In this section we compare the secret key capacity given
sampled channel coefficients (29) to the secret key capacity
if only receiver signal strength indicator (RSSI) values are
available. Since RSSI summarizes the true vector of channel
state information, there will clearly be a reduction in secret
key capacity if only RSSI values are made available. In
fact the reduction is dramatic. From a technological point
of view, most off-the-shelf wireless transceivers make only
RSSI values available to the upper layers, not the channel
state information. This section demonstrates that making full
CSI available would greatly help the ability to generate secret
keys.

To calculate the secret key capacity based on RSSI values,
let RA and RB denote the RSSI values received by Alice and
Bob. In an OFDM system, the RSSI takes the form [37]:

RA =

L−1∑
`=0

|hA,`|2 =

L−1∑
`=0

[
|R(hA,`)|2+|I(hA,`)|2

]
=

2L−1∑
`=0

X2
A,`,

where

XA,` =

{
|R(hA,`)|2 if 0 ≤ ` ≤ L− 1
|I(hA,`−L)|2 if L ≤ ` ≤ 2L− 1

The quantities RB and XB,` are defined similarly. Further,
XA,` and XB,` are N (0, σ

2

2 ) Gaussian random variables with
ρτ = E[XA,`XB,`] for all `.

Both RA and RB are non-standard chi-square distributed
random variables with 2L degree of freedom. The joint
probability density function of a pair of chi-square random
variables is given in Theorem 2.1 in [38] and we use it to
numerically calculate the mutual information between RA and
RB , denoting the secret key capacity calculated as:

CR =
1

2M
I(RA;RB). (31)

When L is large, RA and RB can be well approxi-
mated as Gaussian random variables N (2L, 4L) due to the
central limit theorem. The mean and variance for RA and
RB can be calculated as E[RA] =

∑2L−1
`=0 E[X2

A,`] and
var(RA) =

∑2L−1
`=0 var(X2

A,`) using the identities E[X2
A,`] =

1, E[X4
A,`] = 3, and E[(X2

A,`−E[X2
A,`])

2] = 2, which follow
from the variance normization. The correlation coefficient
between RA and RB is

ρR =
E[(RA − 2L)(RB − 2L)]

4L

=
E[(X2

A,` − 1)(X2
B,` − 1)]

2
, (32)

where the joint moment generating function of XA,` and XB,`

is:

M(s1, s2) = E[es1XA,`+s2XB,` ] = e[ 12 (s21+2ρτs1s2+s22)]. (33)

We calculate the joint moment E[X2
A,`X

2
B,`] by taking second

order partial derivatives of M(s1, s2) respect to s1 and s2 and
evaluate the result at s1 = 0, s2 = 0. Equation (32) can be
reduced to:

ρR = ρ2
τ , (34)
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Fig. 1. Secret key capacity when L = 2, 5, and 10. M = 10

and the secret key capacity based on RSSI under Gaussian
approximation is then:

CR =
1

4M
log

(
1

1− ρ4
τ

)
. (35)

Observe from (35) that the secret key capacity does not
depend on L. In other words, at a given SNRτ , while the
capacity between coefficients increases linearly with L as
shown in equation (29), the capacity between RSSI stays the
same. This is because there is only one single RSSI value
regardless the number of observations. In Fig. 1, we compare
the capacity obtained from channel coefficients and from RSSI
for L = 2, 5 and 10 with M = 10. The secret key capacity
between the channel coefficients is calculated using (29) and
that between RSSI is calculated both using numerical (31) and
Gaussian approximation (35). We first note that the secret key
capacity obtained from the channel coefficients increases with
L, whereas that based on RSSI stays constant. We also note
that the Gaussian approximation is quite accurate, even when
L is rather small.

C. Representing complex channel coefficients by their real-
and-imaginary parts or by their magnitude-and-phase

Recall that the secret key capacity (26) is the mutual in-
formation between the sampled channel coefficients observed
by Alice and Bob. In this section we show this capacity
is at least as large as the sum of the mutual informations
between the magnitudes of the channel coefficients and that
between the phases of the channel coefficients. This is because
while marginally the channel coefficients observed by Alice
and Bob are circularly symmetric (and thus their magnitude
and phase are independent), the correlation between Alice
and Bob’s channel coefficients means there is dependence
between Alice’s phase and Bob’s magnitude and vice-versa.
Thus, the secret key should not be generated by treating
phase and magnitude separately. On the other hand, the real
parts of Alice and Bob’s coefficients are independent of the
imaginary parts. Thus, without loss of capacity the key can
be generated treating the real and imaginary parts of each pair
of observations as separate pieces of independent randomness.
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Fig. 2. Comparison of the secret key capacity to the sum of the mutual
information between the magnitude of the observations and that between the
phases.

This is the reason behind our choice of definition of XN
A and

XN
B in (25).
This idea is encapsulated in the following theorem. For

simplicity (and because the sampled channel coefficients are
independent) we focus on a single pair of observations, hA
and hB .

Theorem 2. If hA, and hB ∼ CN (0, σ2) are jointly complex
Gaussian random variables, we have:

I(hA;hB) = I(R(hA);R(hB)) + I(I(hA); I(hB))

≥ I(|hA|; |hB |) + I(ΦhA ; ΦhB ).

Proof: See Appendix A.
In Figure 2 we illustrate this result for a range of SNR.

We plot the capacity I(hA;hB), I(|hA|; |hB |)+I(ΦhA ; ΦhB ),
as well as the two terms of the latter, I(ΦhA ; ΦhB ) and
I(|hA|; |hB |). The gap to capacity is evident at all SNR. It
is also worthwhile to note that most of the information is in
the phase information, I(|hA|; |hB |) is much smaller. This is
another illustration of the lesson of Sec. IV-B as the magnitude
information is the RSSI of this example. We reiterate that the
reason for the gap to capacity is that the pairs (|hA|, |hB |)
is not statistically independent of (ΦhA ,ΦhB ) due to the
correlation between real and imaginary parts of hA and hB .

V. DESIGN AND ALGORITHMS

In this section we describe a key reconciliation system
based on low-density parity-check (LDPC) codes. The basic
idea behind our design is the following. Alice and Bob have
correlated observation XN

A and XN
B , cf. (25), and shared

knowledge of a LDPC code. First, Alice makes a quantized
version XN

A,Q of her observation XN
A . Generally XN

A,Q will
not be a codeword of the LDPC code, but it will always be
an element of some coset of the code. She determines this
coset by calculating the syndrome of her observation, which
she sends to Bob. Thus, the syndrome is the public message
in (15). By itself the syndrome reveals little information about
the source since there are so many sequences in the coset. This
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is why this construction satisfies the secrecy condition of (19).
However, with knowledge of the coset and of his observation
XN
B , Bob can “de-noise” XN

B to recover XN
A,Q by decoding

the LDPC code with respect to the known coset in which
XN
A,Q lies while treating XN

B as a noisy observation of XN
A,Q.

All cosets inherit the distance properties of the LDPC code,
which gives the needed robustness to the random differences
between XN

A and XN
B . It should be noted that this is a well-

understood method for tackling these problems, see, e.g., [39].
Our contribution is really the prototyping of this system for
the random source of interest (wireless channels) and some
design for non-binary quantization.

In Sec. V-A we provide some background on LDPC codes
and how they fit into the key generation framework of Def. 1.
In Sec. V-B we describe the algorithm implemented for non-
binary (four-level) quantization.

A. Background, setup, and secrecy analysis

A length-N rate-R LDPC code over GF (q) is characterized
by its m×N parity check matrix P with elements drawn from
GF (q) where R = (1 −m/N) log2(q) bits per channel use.
The parity check matrix of a LDPC code is low-density in
the sense that the number of non-zero elements of each row
is upper bounded by some constant, regardless of the block-
length N . Thus, most elements of P are zero. A regular LDPC
code has a constant row-weight (number of non-zero elements)
and a constant column-weight. An irregular LDPC code has
a set of row and column weights, where the fraction of each
is specified by a degree distribution polynomial.

In producing XN
A,Q Alice has a choice of quantization.

In our design she performs scalar quantization, quantizing
each element of XN

A independently. Further, we study two
quantization alphabets: the first where each of the N elements
of XN

A,Q is binary, the second where each is quaternary. Bob
may choose also to quantize his observations prior to decoding,
but there will be a loss in information (and thus performance)
if he does so. If Bob also quantizes his observations, he is said
to perform “hard” decoding, while if he does not he is said to
perform “soft” decoding.

Alice creates her public message by multiplying her ob-
servation XN

A,Q with P to produce the length-m syndrome
Sm, Sm = PXN

A,Q, where m = N [1 − R/ log2(q)]. Within
each coset there are 2N log2(q)(1−m/N) = 2NR sequences. As
long as NR < I(XN

A;Q;XN
B ) then recovery of XN

A,Q (de-
coding) will be reliable. It can be shown that, H(XN

A,Q|Sm),
the uncertainty in XN

A,Q given the knowledge of the public
message Sm is at least NR. This means that the uncertainty
in XN

A,Q given knowledge of the public message Sm is
exactly the same as the size of the coset. Thus, if the key
extraction function f(·) first quantizes XN

A to get XN
A,Q and

then sets the key to be equal to the index that identifies
XN
A,Q within the coset of the LDPC code in which it lies, the

mutual information of this index with Sm will be arbitrarily
small, satisfying the secrecy condition (19). Finally, since
R < (1/N)I(XN

A,Q;XN
B ) for successful recovery, we get the

upper bound on the achievable secrecy rate approaches (20)
as the quantization gets increasingly fine.

B. Design based on non-binary LDPC codes

In Sec. VI-B we present simulation results for two key
generation systems based upon LDPC codes. In the first Alice
uses binary quantization to produce XN

A,Q and in the second
she uses four-level quantization. In this section we describe
the design only for the four-level (non-binary) quantization as
the one for binary quantization is based upon standard LDPC
decoding techniques.

To simplify notation, in this section we use xi to represent
the ith element of Alice’s quantized observation XN

A,Q and
yi to represent the ith element of Bob’s (not necessarily
quantized) observation XN

B . As our discussion is for four-
level design, xi ∈ {0, 1, 2, 3}. Similarly si is the ith element
of Sm, also in {0, 1, 2, 3} as are all elements of P. To simplify
the design, rather than working with a code with elements in
GF (4) we split each xN into bit planes, representing each xi
by a pair of binary symbols xi,M and xi,L, each taking the
respective value in {0, 1} that satisfies

xi = xi,L + 2xi,M . (36)

We can now apply a pair of length-N binary LDPC code,
one to each bit plane, or a length-2N binary LDPC code to
the concatenation of the bit planes. We implemented both
and, while the latter generally has the higher performance
(though not by too much), the former allows more flexibility
(e.g., in reconstructing only the most significant bit plane or
sequential reconstruction) and is slightly simpler to implement.
We choose to present our results on the former, using Cα,
Pα, and smαα to represent, respectively, the code, the parity
check matrix, and the syndrome associated with xNα – the
sequence of concatenated xi,α where α ∈ {L,M}. We note
that CM and CL need not be the same rate so mM 6= mL in
general. However, in all our simulations we choose PM = PL,
where equality is element-wise, so CM = CL. Recall that the
syndrome is calculated as smαα = Pαx

N
α .

To visualize the two binary LDPC codes and to see how to
relate them to the observation yi we depict the constraints
involved in the key generation process in Fig. 3 using a
factor graph [40]. The factor nodes Fi constrain the triplet
of variables (xi, xi,L, xi,M ) to satisfy the relationship of (36).
In particular,

Fi(xi, xi,M , xi,L) =

{
1, if xi = xi,L + 2xi,M
0, else

We attempt to recover XN
A,Q, based on knowledge of yN and

SmMM and SmLL , by using the sum-product algorithm. In this
algorithm messages that approximate conditional probability
distributions are iteratively passed along the edges of the factor
graph. We use the parallel message passing schedule, have all
factor nodes send messages to all variable nodes, and then
vice-versa; continuing until either the messages converge or
some maximum number of iterations is reached. For more de-
tails of these standard aspects of the implementation see [40].
In the remainder of this section we indicate the form of the
message updates required for the non-binary case.

We use the following symbols to represent the messages
passed. The message sent from node xi to node Fi and
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Fig. 3. Factor graph of 4-ary LDPC codes. Nodes xi,M and xi,L connect
to the check nodes of different binary LDPC code. They are connected by
local function Fi which regulates them according to the value of xi.

from node Fi to xi are, respectively, denoted µxi→Fi(xi) and
µFi→xi(xi). We use N (p) to denote the neighbors of a given
node p. The summary operator

∑
∼{p} means summation over

all variables except p and the notation N (p)\{q} means the
set of neighbors of p except q. We now detail the form the
general sum-product update rules specialized for our problem.

The message passed from variable node xi to Fi are
calculated as

µxi→Fi(xi) =
∏

t∈N (xi)\{Fi}

µt→xi(xi)

= µyi→xi(xi).

As there is no marginalization at variable node xi, the
message passed to Fi is the same as the incoming message
from yi,

µyi→xi(xi) = Gi(xi),

where the local function Gi(xi) is the channel evidence

Gi(xi) = pXi|Yi(xi|yi).

The messages passed from factor node Fi to each of the two
binary variable nodes xi,α where α ∈ {M,L} is calculated as

µFi→xi,α(xi,α)

=
1

Z

∑
∼{xi,α}

(
Fi(xi, xi,M , xi,L)

∏
t∈N (Fi)\{xi,α}

µt→Fi(t)

)
,

where Z is a normalization factor,

Z =
∑
xi,α

∑
∼{xi,α}

(
Fi(xi, xi,M , xi,L)

∏
t∈N (Fi)\{xi,α}

µt→Fi(t)

)
.

For example:

µFi→xi,M (1)

=
1

Z

(
µxi→Fi(2)µxi,L→Fi(0) + µxi→Fi(3)µxi,L→Fi(1)

)
,

µFi→xi,M (0)

=
1

Z

(
µxi→Fi(1)µxi,L→Fi(1) + µxi→Fi(0)µxi,L→Fi(0)

)
,

where Z is given by

Z = µxi→Fi(2)µxi,L→Fi(0) + µxi→Fi(3)µxi,L→Fi(1)

+ µxi→Fi(1)µxi,L→Fi(1) + µxi→Fi(0)µxi,L→Fi(0).

The log-likelihood for xi,M is log

(
µFi→xi,M (0)

µFi→xi,M (1)

)
which

serves as the channel evidence for the binary code CM .
Similarly, variable node xi,L calculates the channel evidence
for CL. Based on these messages, the messages passed in the
LDPC codes are standard messages where the smαα make sure
that the decoding is performed with respect to the correct
cosets. This aspect is the same as when LDPC codes are
used in Slepian-Wolf distributed source coding problems, e.g.,
see [41]. The messages passed from the LDPC codes back to
the Fi are µxi,M→Fi(xi,M ) and µxi,L→Fi(xi,L).

Finally, the message passed from Fi to variable node xi is
calculated as

µFi→xi(xi)

=
1

Z

∑
∼{xi}

(
Fi(xi, xi,M , xi,L)

∏
t∈N (Fi)\{xi}

µt→Fi(t)

)

=
1

Z

∑
∼{xi}

(
Fi(xi, xi,M , xi,L)µxi,M→Fi(xi,M )µxi,L→Fi(xi,L)

)
,

where Z is the corresponding normalization factor. For exam-
ple:

µFi→xi(2) =
1

Z

(
µxi,M→Fi(1)µxi,L→Fi(0)

)
,

where Z is

Z = µxi,M→Fi(0)µxi,L→Fi(0) + µxi,M→Fi(1)µxi,L→Fi(0)

+ µxi,M→Fi(0)µxi,L→Fi(1) + µxi,M→Fi(1)µxi,L→Fi(1).

Eventually, the messages either converge or the maximum
iteration count is reached. In our simulations we set this
maximum to 50 iterations. When the messages converge the
marginals are computed as the following up to a scaling factor.

Pr[xi = a] ∝ µyi→xi(a)µFi→xi(a),

where a ∈ {0, 1, 2, 3}. The algorithm sets its estimates
symbol-by-symbol as x̂i = arg maxa Pr[xi = a].

We now present the initialization of our algorithm. GF (4)
variable nodes xi are initialized as:

µyi→xi(xi) = Gi(xi),
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whereas GF (2) variable nodes xi,M are initialized as:

µFi→xi,M (xi,M )

=
1

Z

∑
∼{xi,M}

(
Fi(xi, xi,M , xi,L)

∏
t∈N (Fi)\{xi,M}

µt→Fi(t)

)
.

At this step the values xi,L can all be set to have equal
probability as this is the best estimate xi,L can be set to
initially. In other words, the foregoing equation reduces to:

µFi→xi,M (xi,M )

=
1

Z

∑
∼{xi,M}

(
Fi(xi, xi,M , xi,L)µxi→Fi(xi)

1

2

)
.

Therefore, the message initializing xi,M is µFi→xi,M (1) =

1
Z

(
1
2µxi→Fi(2) + 1

2µxi→Fi(3)

)
. Its corresponding log-

likelihood is log

(
µFi→xi,M (0)

µFi→xi,M (1)

)
which serves as the initial

channel evidence in GF (2) for CM . The message initializing
xi,L can be similarly derived which serves as the initial
channel evidence in GF (2) for CL.

C. Phase Offset Estimation

As discussed in Sec. III-C, the phase offset during two-
way channel training will degrade the quality of the channel
measurement. Therefore, one needs to implement phase offset
suppression techniques such as phase estimation [26], [36],
[42]. In this section, we present a novel approach that in-
corporates the estimation of phase offset into the design of
reconciliation process.

For the ease of presentation, we assume the phase offset is
constant across multiple channel trainings. Our idea can easily
be extended to the situation where phase offset is time varying.
We propose a joint phase offset estimation and reconciliation
process, formulated as:

(x̂N , θ̂′) = arg max
{xN ,θ′ | PxN=sm,θ′∈[0,2π]}

pXN |Y N (xNejθ
′
|yNejθ).

(37)

Incorporating the task of phase offset estimation as in (37) into
the reconciliation process puts an extra burden on the codes. To
support phase offset estimation, the code rate should be lower.
This reduces the cardinality of the coset that specified by the
syndrome as is illustrated in Fig. 4. The lower code rate means
a lower secrecy rate, reduced by the loss in (27). Fig. 4 depicts
the coupling between this lowered rate and the joint decoding
problem in (37). If the code rate is lower (a larger syndrome
is used as the public message), then for a given optimal θ′

parameter in (37) there will be fewer coset elements xN such
that PxN = sm that yields a high probability (right oval in
Fig. 4). If the original code rate is used, then there will be
many high probability coset elements (left oval in Fig. 4) and
the decoding will be erroneous with high probability.

While the above discussion indicates a generic approach,
we now show how to integrate this search into our message
passing algorithm. We propose a joint phase offset estimation
and reconciliation procedure by concatenating an extra vari-
able node θ to all the check nodes Gi, i = 1, 2, . . . , N , where θ

Fig. 4. Cosets of different LDPC code rates are shown as ovals. The one on
the left corresponds to higher code rate. It contains many candidate codewords
thus (37) may have non-unique solutions. The oval on the right is sparser,
corresponding to a lower code rate. Thus it is possible to have a unique
solution to (37). Phase rotation θ′ in (37) is represented as the dashed line.

denotes the random phase offset between Alice and Bob. We
assume the θ is discretized such that it can only take some
finite values. Then by passing message to and from variable
node θ, one could obtain the estimate of θ. The algorithm
works as follows.

The message passed from θ to Gi is

µθ→Gi(θ) =
∏

t∈N (θ)\Gi

µt→θ(θ). (38)

The message passed from Gi to xi is

µGi→xi(xi) =
1

Z

∑
θ

(
pXiθ|Yi(xi, θ|yi)µθ→Gi(θ)

)
, (39)

where Z is some normalization factor. The message passed
from xi to Gi is

µxi→Gi(xi) = µFi→xi(xi). (40)

Finally, the message passed back to θ is

µGi→θ(θ) =
1

Z

∑
xi

(
pXi,θ|Yi(xi, θ|yi)µxi→Gi(xi)

)
, (41)

where Z is some constant. To initialize the algorithm, one
can choose the uniform distribution over all the values the θ
variable can take.

Our design extends to the cases where phase offset varies
across multiple channel trainings. One can concatenate mul-
tiple θ variables, each connecting to all the check nodes
Gi that belong to the same channel training. The actual
implementation of this algorithm is left as a future work.

VI. SIMULATION RESULTS

In this section we provide simulation results and discussion
for our proposed secret key generation system.

A. OFDM simulation results

We first show the simulation result of an IEEE 802.11a
channel. We simulate the frequency and sampled channel co-
efficients and their correlation matrices. Then we numerically
compute the empirical secret key capacity between Alice and
Bob based on our simulated time domain channel coefficients
under different channel environment.

In Table. I we list some channel parameters for a typical
rich multipath OFDM 802.11a environment [43]. Secret key
capacity simulated at a particular SNRf is also listed for
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TABLE I
CHANNEL PARAMETERS AND SECRET KEY CAPACITY

No. of Tones (M ) 52

Total Bandwidth 20 MHz
Total Data Bandwidth (W ) 16.25 MHz

Signal Duration (T ) 3.2 µs
Carrier Frequency Spacing (∆f ) 312.5 kHz

Center Carrier Frequency (F ) 5.18 GHz
Coherence Time 100 ms

Max Delay Spread (τmax) 800 ns
Typical Indoor Delay Spread 40 ns - 1 µs

Typical Outdoor Delay Spread 1 µs - 200 µs
Secret Key Capacity (C) at 20 dB 1040 bits/sec

a quick reference. When coherence time is small, the secret
key capacity becomes large as new randomness is supplied
at higher rate. However, the relationship between secret key
capacity and the degree of freedom L ≈ dτmaxW e is more
complicated and depends on the operating SNRf . While the
scaling is roughly linear in delay spread and bandwidth there
are second order effects that makes the relationship more
complicated. This is illustrated in Sec. VI-A2.

1) Channel coefficients simulation: We consider Np = 300
transmission paths and assume the 52 tones all have the same
SNRf , cf. (10). For simplicity, we choose the maximum
delay spread τmax to be 800 ns so that the degree of freedom
(DoF) L ≈ dτmaxW e = 13. We reduce the redundancy
in the M = 52 frequency domain channel coefficients by
transforming them into 13 independent sampled channel co-
efficients. Over each coherence time, we let τk be drawn
uniformly from 0 to τmax and βk are independent Gaussian
random variables whose variances are related to the drawn
τk through the exponential power-delay profile. We generate
106 independent realizations of such channel and construct the
contour plots of empirical correlation matrices of frequency
domain channel coefficients and sampled channel coefficients
as shown in Fig. 5.

2) Secret key capacity simulation: Secret key capacity
can be computed from the first L nonzero sampled channel
coefficients using (28). We plot in Fig. 6 the secret key
capacity calculated from sampled channel coefficients. Note
that the secret key capacity calculated using sampled channel
coefficients is an approximation. As we see from Fig. 6, the
total number of bits we can obtain per coherence time is as
large as 1 × 52 × 2 = 104 bits at 20 dB. It is 1040 bits per
second when coherence time is 100 ms.

Simulation in Fig. 6 suggest that there is no single optimal
OFDM channel which has the best secret key capacity under
any SNRf : under low SNRf , one would like the channel
to possess fewer degree of freedom; under high SNRf , one
would like the channel to have more degree of freedom. This
is analogous to [14] where the authors observe that there is
a trade-off between the power per degree of freedom and the
number of degree of freedom. The intuition is also related to
[44] where it is shown that peaky signal is capacity achieving
input to an AWGN fading channel.

One can also compute secret key capacity from frequency
domain channel coefficients. Due to page limit constraint we
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Fig. 5. OFDM channel coefficients simulation. Note that 13 sampled channel
coefficients are decorrelated from 52 frequency domain channel coefficients.
Note that sampled channel coefficients do not have the same variance.
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Fig. 6. Secret key capacity of sampled channel coefficients

omit the results.

B. LDPC Performance

In this subsection we simulate the performance of our error
correcting code. We allow Alice and Bob to perform multiple
channel trainings. There are two ways we simulate the error
correction process to reconcile Alice and Bob’s measured
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Fig. 7. LDPC performance

channel coefficients. If Bob quantizes his channel coefficients,
we term the reconciliation a hard decoding process. On the
other hand, if Bob keeps his unquantized coefficients such
that Y = R, we term it a soft decoding process. In soft
decoding, the decoder has access to Bob’s full unquantized
channel coefficients which improves decoding performance.

We let Alice and Bob perform n = 30 independent channel
trainings yielding a block length of N = 30× 52× 2 = 3120.
One benefit of using a large block length is that LDPC code
performs better under longer block lengths. We generate 400
independent realizations of such 30 trainings and aggregate the
secret key bit error from the channel trainings of each. For each
LDPC code rate, we plot its corresponding SNR which yields
approximately 10−3 secret key bit error rate. The number of
realization is sufficient as 400 × 3120 is on the order of 106

which suffices to assess system performance at bit error rates
of 10−3.

We simulate the performance of our error correcting code
using the sampled channel coefficients we simulated in Sec-
tion VI-A1 with L = 13. We connect our LDPC simulation
with the secret key capacity in Section VI-A2 by putting them
in the same plot. We plot the capacity when L = 13 and the
performance of the binary and non-binary (4-ary) LDPC code
in Fig. 7. The irregular LDPC codes are constructed using
density evolution technique [45]. We first note that our decod-
ing performance is improved by using soft decoding and it is
further improved by using irregular LDPC codes. Non-binary
LDPC further improves the performance and approaches the
capacity at high SNRf region. LDPC codes with rate below
0.25 are not simulated as low code rate means less secrecy.

VII. CONCLUSION AND FUTURE WORK

We study channel randomness and propose a practical
system that generates secret keys from observing the channel
randomness. We investigate the secret key capacity shared by
two end users and find that secret key generation based on
CSI is superior to the key generation based on RSSI. This
is because the CSI-based method has the larger secret key
capacity. We suggest that modern receiver circuitry should
make CSI accessible to upper layer applications. We prove that

it is always preferable to use the real and imaginary parts of the
sampled channel coefficients, as opposed to using magnitude
and phase separately. Our simulation show that it is feasible to
base key generation on sampled channel coefficients. Finally,
we implement the key generation system based both on regular
and irregular LDPC codes.
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APPENDIX

A. Proof of Theorem 2

We first show the following lemma.

Lemma 1. Let X , Y and Z be random variables. If Z is
independent either of X or of Y or both, then

I(X;Y |Z) ≥ I(X;Y ),

where equality holds if and only if Z is independent of
(X,Y ).

Proof: Suppose Z is independent of X . Follow the
definition of mutual information, we have the following,

I(X;Y |Z) = H(X)−H(X|Y,Z)

≥ H(X)−H(X|Y )

= I(X;Y ),

where H(·) denotes the differential entropy. Equality holds if
Z is independent of (X,Y ).

We now prove the theorem.
Proof: We first prove the inequality in the theorem

I(hA;hB)

= I(|hA|, ejφA ;hB)

(a)
= I(|hA|;hB) + I(ejφA ;hB | |hA|)
(b)

≥ I(|hA|;hB) + I(ejφA ;hB)

= I(|hA|; |hB |, ejφB ) + I(ejφA ; |hB |, ejφB )

(c)
= I(|hA|; |hB |) + I(|hA|; ejφB | |hB |)

+ I(ejφA ; |hB |) + I(ejφA ; ejφB | |hB |)
(d)

≥ I(|hA|; |hB |) + I(|hA|; ejφB )

+ I(ejφA ; |hB |) + I(ejφA ; ejφB )

= I(|hA|; |hB |) + I(|hA|;φB) + I(φA; |hB |) + I(φA;φB)

(e)

≥ I(|hA|; |hB |) + I(φA;φB),

where (a) and (c) follow from the chain rule of mutual
information, (b) follows because |hA| is independent of φA
(cf. Lemma 1), (d) follows because |hB | is independent of φB
and (e) follows because mutual information is non-negative.
This proves the inequality in the theorem.

The first equality in the theorem is proved by showing
that the density function of (hA, hB) can be factored into
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the product of density functions of (R(hA),R(hB)) and
(I(hA), I(hB)).
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