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Abstract—We present a theoretical framework for the analysis
of privacy and security tradeoffs in secure biometric authentica-
tion systems. We use this framework to conduct a comparative
information-theoretic analysis of two biometric systems that are
based on linear error correction codes, namely fuzzy commitment
and secure sketches. We derive upper bounds for the probability
of false rejection (PFR) and false acceptance (PFA) for these
systems. We use mutual information to quantify the information
leaked about a user’s biometric identity, in the scenario where
one or multiple biometric enrollments of the user are fully
or partially compromised. We also quantify the probability of
successful attack (PSA) based on the compromised information.
Our analysis reveals that fuzzy commitment and secure sketch
systems have identical PFR, PFA, PSA and information leakage,
but secure sketch systems have lower storage requirements. We
analyze both single-factor (keyless) and two-factor (key-based)
variants of secure biometrics, and consider the most general
scenarios in which a single user may provide noisy biometric
enrollments at several access control devices, some of which
may be subsequently compromised by an attacker. Our analysis
highlights the revocability and reusability properties of key-
based systems and exposes a subtle design tradeoff between
reducing information leakage from compromised systems and
preventing successful attacks on systems whose data have not
been compromised.

Index Terms—Biometrics, Fuzzy Commitment, Secure Sketch,
Revocability, Reusability, Information Leakage, Privacy, Security

I. INTRODUCTION

Human biometric measurements such as fingerprints, iris
scans, face images and ECG signals are attractive tools for
identifying and authenticating users in access control situa-
tions. Unlike conventional identifying documents, biometrics
are difficult to forge. Unlike passwords traditionally used for
access control, they do not have to be remembered. However,
biometrics also present some new challenges that are not
encountered in traditional methods. Noise is a characteristic
feature of all biometric measurements; every measurement is
slightly different from all others. In access control systems, the
issue of noise in biometric measurements is currently tackled
through pattern recognition. Specifically, a measurement of
the biometric is taken at the time of enrollment and stored
in a database of enrolled identities. During authentication, the
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person in question provides a “test” or a “probe” biometric for
comparison with the stored enrollment biometric. If the probe
and enrollment biometric are sufficiently close according to a
similarity metric defined by the pattern recognition algorithm,
then access is allowed.

Unfortunately, the standard method described above has a
serious drawback: an adversary who compromises the device
gains access to the enrollment biometric. This is a major
security hazard; the attacker can subsequently use the en-
rollment biometric to gain repeated access to the system,
and to any other biometric-based systems in which the user
has enrolled. This is also a privacy hazard; the attacker has
gained access to the user’s identifying information and can
henceforth impersonate the user illegally. The seriousness of
this hazard is greatly increased by the fact that biometrics
are inherent properties of the human body and cannot be
revoked and then re-issued like new credit card numbers. To
mitigate growing concerns about security hazards and identity
theft, new approaches to biometrics have been studied with
a three-fold goal. First, the data stored on the access control
device should provide little or no information about the actual
biometric. Second, the stored data should not allow an attacker
to gain unauthorized access to the system or to impersonate the
identity of a legitimate user successfully. Third, if the user’s
stored data is known to have been compromised, then it should
be possible to revoke it and issue new stored data. This should
prevent the adversary from gaining access or stealing the user’s
identity in the future.

Secure biometric schemes proposed to fulfill the above
desiderata fall under one of two related categories, viz.,
fuzzy commitment [1], [2], [3], [4], [5] and secure sketch
schemes [5], [6], [7], [8], [9]. In fuzzy commitment a secret
vector is combined with the user’s enrollment biometric via a
commitment function. The output of the commitment function
is stored on the access control device. Access control is
accomplished by means of a decommitment function. The
decommitment function takes as its inputs the stored data
and the user’s probe biometric and attempts to recover the
secret vector. If recovery is successful, access is allowed. In
contrast, in secure sketch the user provides their biometric
at enrollment and a “sketch” signal is derived and stored
on the access control device. When combined with a probe
biometric from the legitimate user, the enrollment biometric
can be recovered. If the enrollment biometric is recovered
successfully, then access is allowed. We later discuss how
to verify the correctness of this recovery or of successful
decommitment in fuzzy commitment. Linear error correcting
codes (ECC) are the most widely used tool for constructing
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both fuzzy commitment schemes [2], [3], [10], [11] and secure
sketch-based schemes [8], [9].

The relationship between secure sketches and fuzzy extrac-
tors was examined in [5] where it was shown that a secure
sketch implies the existence of a fuzzy extractor. In the present
paper, we analyze explicit ECC-based constructions of fuzzy
commitment and secure sketch. We study both the security
and privacy hazards mentioned above. Regarding the former,
we derive upper bounds on the false rejection rate (FRR)
and false acceptance rate (FAR) for both types of systems.
Regarding the latter, we characterize the privacy leakage as
the mutual information between the compromised stored data
and the user’s biometric. Further, a smart adversary may be
able to increase their likelihood of gaining access to a system
above the FAR if they have access to some partial compromise
of stored data and condition their attack on that knowledge.
We term this the probability of a “successful attack” (PSA)
and quantify it in some situations. Our analysis establishes
a strong statement of equivalence: secure sketches and fuzzy
commitment schemes are equivalent in terms of the FRR, FAR,
information leakage, and PSA.

There have been many insightful studies of the information
leakage that occurs when data stored on the access control
device is compromised [12], [5], [13], [14]. An important
insight is that a useful sketch, i.e, one that correctly authenti-
cates noisy samples from a legitimate user, must leak some
information about the underlying biometric [5]. Extending
this idea, [12] considers a generalized challenge-response
setting in which a strong adversary examines sketches from
several chosen perturbations of the challenger’s biometric,
until the biometric has been guessed completely. We consider a
different scenario in which an adversary compromises a chosen
subset of the available access control devices and, knowing the
error correcting codes associated with each, attempts to attack
the user’s system. We think that this problem formulation is
more reflective of emerging networks of biometric systems.
Further, it raises many interesting challenges, e.g., we may ask
how to choose the perturbations or error correcting codes so
as to leak the least information about the user’s biometric. In
this sense, our work is related to the privacy analysis of [13],
where the authors consider a sketch indistinguishability game
and sketch irreversibility game and give conditions on the ECC
design that minimizes the adversary’s advantage. We note that,
in the analyses of [12], [5], [13], the emphasis is on infor-
mation leakage about the user’s biometric as the adversary’s
prime objective. In practice, however, the adversary may have
a second objective, namely to compromise some devices and
use the information gained to login to other devices. It may
not be necessary to discover the user’s biometric. Our analysis
reveals a subtle conflict between reducing information leakage
from compromised systems and preventing successful attacks
on systems whose data have not been compromised.

A different, but related, line of work focuses on the problem
of secret key agreement via public discussion [15], [16], [17],
[18], [19]. In this problem two parties hold correlated pieces
of information and desire to generate matching secret keys
through a public discussion. However, an eavesdropper who
taps into the public discussion should learn nothing about
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Fig. 1. Noisy measurements A1, . . . ,Au of a user’s underlying biometric
A0 are encoded at each access control device to generate authentication data,
which is stored in the device, and a secret key. Our goal is to analyze the
tradeoffs between authentication performance and information leakage from
compromised stored authentication data and secret keys.

the keys. Of interest in this line of work is the fundamental
asymptotic tradeoff between the secret key rate (security) and
biometric information leakage (privacy). Secret key agreement
by itself does not form a biometric authentication system but it
can be used to construct one. In contrast, we explicitly analyze
the fundamental non-asymptotic privacy-security tradeoff in
biometric systems that are based on linear ECCs and explicitly
relate them to ECC-design parameters.

The remainder of this paper is organized as follows: Sec-
tion II describes a general framework for analyzing secure bio-
metrics and defines the metrics by which security and privacy1

are evaluated. In Section III, we describe how to realize fuzzy
commitment and secure sketch schemes using linear ECCs.
We show the equivalence between the realizations of fuzzy
commitment and secure sketch in terms of their security and
privacy metrics. In Section IV, we expand our attention to
include multiple devices. We derive the information leakage
for attack scenarios in which an adversary compromises the
stored data and/or secret keys of multiple devices. We show
how the information leakage depends on the ECCs used at
the devices.We characterize how the selection of the ECCs
affects the probability that the adversary can use information
gained from the compromised devices to successfully attack
(i.e., gain access to) uncompromised devices, and how this
objective conflicts with the aim of minimizing information
leaked about the user’s biometric. Section V concludes the
paper.

1In this work, compromising privacy refers to leaking information about
the user’s biometric, while compromising security refers to gaining access to
the system.
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II. A GENERALIZED SECURE BIOMETRICS FRAMEWORK

Consider the scenario with several access control devices
shown in Fig. 1. A user has a biometric A0 given by
nature. He enrolls at several access control devices using noisy
measurements Ai of the underlying biometric A0. From each
measurement Ai, encoded data is extracted and stored on
the respective device to aid in authentication. Optionally, a
secret key or password is provided to the user. A legitimate
user should be able to gain access to any of the devices by
providing a probe biometric that is again a noisy measurement
of the underlying A0. Any analysis of the privacy and security
tradeoffs in secure biometrics must take into account not
only the authentication performance but also the information
leakage when the stored data and/or keys for one or more
devices are compromised.

With the above motivation, we start by presenting an
abstract model of a secure biometric system for a single
access control device in Section II-A. We then describe design
objectives in terms of the system’s performance metrics in
Section II-B.

A. Model of a Secure Biometric System
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Fig. 2. Generalized model of a secure biometric system for a single access
control device. This model encompasses both fuzzy commitment-based and
secure sketch-based realizations that are described and analyzed in Section III.
For keyless realizations, K is null. For two-factor realizations, K is a secret
key output by the randomized encoding function. Given the probe biometric
and, in two-factor realizations, a secret key, the decoder solves a hypothesis
testing problem to determine if the user is genuine or an impostor.

Figure 2 depicts a generalized model of a secure biometric
system for a single access control device. The system consists
of encoding and decoding modules that manipulate features
extracted from measurements of human biometrics. In biomet-
rics parlance the terms “biometric”, “biometric measurement”,
and “biometric feature vector”, have different meanings. A
fingerprint, iris, or a face is a biometric, the measurement of
which produces a digitized image from which features are ex-
tracted for authentication or recognition. However, for brevity
of exposition, we interchangeably use the terms “biometric”
and “biometric measurement” to denote a biometric feature
vector. We make the additional simplifying assumption that
all feature vectors and secret keys are length-n sequences
of binary numbers. The generalization to non-binary finite
alphabets is straightforward.

Biometric Measurement Model: The process of measuring
a biometric, extracting suitable feature vectors, and converting

them to length-n binary sequences is inherently prone to sens-
ing uncertainty, e.g., in the orientation, size, and illumination
of an iris or a face, as well as noise in the sensing elements.
Since we are interested in scenarios where a user can enroll
the same biometric at multiple access control devices (see
Section IV-A), we posit an underlying “ground truth” length-
n binary biometric feature vector A0 := (A0,1, . . . , A0,n)
whose components have an i.i.d. Bernoulli(0.5) distribution.2

We need to model the combined effect of a measurement
followed by the extraction of a length-n binarized feature
vector (or, for brevity, the biometric measurement). We model
this as component-wise modulo-two addition of A0 with a
length-n i.i.d. Bernoulli “noise” sequence. The noise sequence
is assumed to be independent of the ground truth and any
previous and future measurement noise sequences. In the
language of information theory, the biometric measurement is
the output of a “binary symmetric channel” (BSC), where the
channel input is A0. Thus, at enrollment, the user provides
an enrollment biometric measurement A := (A1, . . . , An)
which is the output of a BSC with crossover probability p1
and channel input A0. Similarly, at authentication, the user
provides a probe biometric measurement B := (B1, . . . , Bn),
which is the output of a BSC with crossover probability α and
channel input A0. This second probe measurement is used by
the decoding module of the access control device to verify the
user’s identity. We further assume that p1 ∈ [0, 0.5) and α ∈
[0, 0.5), i.e., it is more likely that coordinates of the biometric
measurement and probe measurement match than that they
do not. To see the statistical dependency between A and B,
observe that A0, A and B are all i.i.d Bernoulli-0.5 sequences.
This, along with the BSC channel dependency explained
above, means that A and B are, in turn, related by a BSC
with crossover probability p = p1∗α = p1(1−α)+(1−p1)α.

Enrollment: The (potentially randomized) encoding func-
tion F (·) takes the enrollment biometric A as input and
produces as outputs S ∈ S, |S| < ∞, which is stored on
the access control device. Optionally, a key vector K ∈ K,
|K| < ∞, which is returned to the user, is also produced.
Thus, (S,K) = F (A). The encoding function is governed
by the conditional distribution PS,K|A. Depending upon the
physical realization of the system, the user may be required
to carry the key K on a smart card. Such systems are called
two-factor systems because both the key and the stored data
are needed for authentication. Systems where K is null are
called keyless systems; they do not require the use of a smart
card.

Authentication: To perform biometric authentication, a
legitimate user provides the probe biometric B and the key
K. An adversary, on the other hand, provides a stolen or
artificially synthesized biometric C and a stolen or artificially
synthesized key J. The presence of the legitimate user or the
adversary is indicated by the unknown binary parameter θ. Let
(D,L) denote the (biometric, key) pair that is provided during

2Binarized feature vectors extracted from biometric measurements are,
in general, neither independent nor identically distributed. It is, however,
possible to design feature transformation algorithms that can convert them
into binary feature vectors the statistics of which are quite close to those of
i.i.d. Bernoulli(0.5) bits [9].
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the authentication step. We write

(D,L) :=

{
(B,K), if θ = 1,

(C,J), if θ = 0.

The authentication decision is computed by the decoding func-
tion as θ̂ = g(D,L,S). In keyless systems, the procedure is
similar with K, J, and L removed from the above description.

B. Performance Metrics

We now define metrics used to evaluate the performance
of the secure biometric system of Fig. 2. For example, it is
necessary to quantify how reliably the system authenticates a
genuine user and rejects an impostor, to quantify how much
information is leaked about the underlying biometric when the
stored data and/or the secret key are compromised, and so on.

1) Probability of Missed Detection: This quantity is also
called the False Rejection Rate (FRR), defined as

PFR := Pr
[
θ̂ = 0|θ = 1

]
= Pr

[
g(B,K,S) = 0

]
.

The PFR depends only on the known statistics of
(A,B,K) and the specification of the system, F (·) and
g(·). A low value of PFR indicates that the system reli-
ably authenticates a genuine user. Thus PFR quantifies
the accuracy of the biometric system.

2) Probability of False Detection: A baseline probability
of false detection, also called the False Acceptance Rate
(FAR) is the worst-case probability of false detection
across all attack vectors and keys that can be generated
without any knowledge of the ground truth or of any
measurements, keys, or stored data. It is defined as

PFA := max
pC,J

Pr
[
θ̂ = 1|θ = 0

]
= max

pC,J

Pr
[
g(C,J,S) = 1

]
,

where (C,J) is independent of (A0,A,B,K,S). A low
value of PFA indicates that the system reliably prevents
impostors from gaining access to the system by pure
chance. Thus PFA quantifies one aspect of the security
of the biometric system. Typically, a system designer
is faced with choosing an appropriate tradeoff between
PFA and PFR.

3) Privacy Leakage: We measure the information leaked
about the enrollment biometric A (respectively the
ground truth A0) in various scenarios of data exposure.
These include when either the stored data S, the secret
key K, or both are compromised. We characterize the
various scenarios using the following mutual infor-
mation quantities: I(A;S), I(A;K), and I(A;S,K)
(respectively I(A0;S), I(A0;K), and I(A0;S,K)).
These are information-theoretic measures of indepen-

dence.3

4) Probability of Successful Attack: In the event of
data exposure, the probability of false detection could
increase beyond the nominal value of PFA. In addition
to exposure of the stored data S and the secret key
K, mentioned above, we may also need to consider
scenarios where an adversary coercively gains access to
A as well. We need to capture the possibility that the
attacker’s biometric-key pair (C,J) is generated using
knowledge of the compromised data V ⊆ {A,S,K}.
We denote by PSA the probability of false detection in
such situations, defined as

PSA(V) := max
pC,J|V

Pr
[
θ̂ = 1|θ = 0

]
= max
pC,J|V

Pr
[
g(C,J,S) = 1

]
.

We refer to PSA(V) as the “Successful Attack Rate”
(SAR) to distinguish it from PFA. The SAR captures
the probability of false detection when an adversary’s
attack is aided by knowledge of V . We note, in passing,
that in any keyless or two-factor system, knowledge of
the stored data S can drastically improve the ability
of the adversary to gain access, thus compromising the
security of the system. We will characterize this effect in
Theorem 2. Ideally, in two-factor systems, if an attacker
has knowledge of only one factor — i.e., either the
enrollment biometric A or the key K, but not both —
they will not be able to use that information to improve
their ability to authenticate falsely. This motivates the
following definition. We say that a system is two-factor
secure if PSA(A) = PSA(K) = PFA.

5) Storage Requirements: Lastly, the system data storage
requirement is given by the minimum number of bits
needed to represent S. This is not more than log2 |S|
bits. The key length requirement is given by the min-
imum number of bits needed to represent K, which is
not more than log2 |K| bits.

III. SYSTEM CONSTRUCTIONS

In this section, we discuss a single access control device
in isolation, and analyze system privacy and security. We
describe two types of systems, the first is a fuzzy commitment
system and the second is a secure sketch system; for both, we
assume an implementation based on linear error correcting
codes. We detail both keyless and keyed (two-factor) variants.
The linear error correcting code construction allows us to
demonstrate a number of performance-equivalence properties
between fuzzy commitment and secure sketch systems. Con-
siderations of privacy and security for a network of access
control devices is deferred to Sec. IV.

3Mutual information between two sets of quantities is always non-negative
and is equal to zero if, and only if, the two sets are independent [20].
Furthermore, we can always write the mutual information between two
random quantities X and Y as I(X;Y) = H(X) − H(X|Y) where
H(·) and H(·|·) are, respectively, the entropy and conditional entropy of
the argument(s). Thus, mutual information characterizes the reduction in
uncertainty about one random quantity, X, when given knowledge of another,
Y.
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A. Fuzzy Commitment Systems based on ECC

A fuzzy commitment scheme binds a random vector to an
enrollment biometric A to produce a length-n stored data
vector S. This is diagrammed in Fig. 3 for the case of a two-
factor (keyed) system. The keyless variant, shown in Fig. 4,
is the special case where the smart card key K and decoding
key L are both the all-zero sequence. Note that both systems
fit within the general framework of Fig. 2.

We exclusively consider fuzzy commitment schemes
wherein the random vector corresponds to a uniformly selected
codeword of a binary [n, k] linear error correcting code. We
use G to denote the code’s k × n generator matrix and H to
denote the code’s m×n parity check matrix with m = n−k.

Enrollment: The enrollment procedure first generates two
independent i.i.d. Bernoulli(0.5) sequences, the key sequence
K := (K1, . . . ,Kn) and the auxiliary sequence, Z :=
(Z1, . . . , Zk). The auxiliary sequence Z selects a codeword
GTZ uniformly from the set of all codewords of the linear
error correction code with generator matrix G. The codeword
is then additively perturbed by the enrollment biometric A and
the result is additively masked by the randomly generated key
sequence K to produce the stored data S:

S = A⊕GTZ⊕K.

Authentication: At authentication, the system has access to
the stored data S and is presented with the pair (D,L). The
authentication procedure consists of two steps. First, syndrome
decoding is performed to produce an estimate Ŵ of the error
vector A⊕D as follows:

Ŵ = argmin
W:HW=H(D⊕L⊕S)

d(W),

where d(·) is the Hamming weight. If L = K, the masking
effect of the key is canceled out and the syndrome decoding
procedure is then operationally equivalent to the optimal
channel decoding of the codeword GTZ when corrupted by
A⊕D. Second, given Ŵ, an estimate θ̂ of θ is made as

d(Ŵ)
θ̂=1

≶
θ̂=0

τn. (1)

If θ̂ = 1 the decision is made that the biometric A and the
probe D are close enough (the estimate of this distance is the
weight of Ŵ) that access should be granted.

We make the following assumptions about system operating
parameters. Recall that if L = K the decoding process is the
same as optimal channel decoding. This implies that if the
rate of the error correcting code (specified by the choice of
H) is below the channel capacity of the binary symmetric
channel (BSC) with crossover probability τ , BSC(τ ), then the
the estimate Ŵ will equal A⊕D with high probability. Our
first assumption is thus that the rate R = k/n of the code G
satisfies

R = k/n < 1− hb(τ),

where 1−hb(τ) is the BSC(τ ) channel capacity and hb(p) :=
−p log2 p− (1− p) log2(1− p) is the binary entropy function.
Second, we require τ to be larger than p but smaller than 0.5,
i.e., 0.5 > τ > p. Recall that p is the noise parameter of the

K !"#$"%&'"(&
K 

L + 

F 

S 
!%)$"*&+,%,&

A 
-.$)//0".%&

D 

GTZ 

+ ! = 0/1 

H 

    

! 

arg min d(W)
  

! 

W :HW = H(D"L"S)+ 
g 

Fig. 3. A two-factor fuzzy commitment system stores the bitwise XOR of a
randomly generated codeword of a linear error correcting code, the enrollment
biometric, and a randomly generated secret key.
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probe channel, the BSC(p). With this relation between p and
τ we write

R = k/n < 1− hb(τ) < 1− hb(p),

or, equivalently,
m

n
> hb(τ) > hb(p).

In many practical realizations of fuzzy commitment the
threshold test (1) is replaced with a hash check. Namely, in
order to verify whether the random vector GTZ has been
recovered exactly, a cryptographic hash of GTZ (alternately
of Z) is also stored at the access control device. This stored
hash must match the hash of the D ⊕ L ⊕ S ⊕ Ŵ for
access to be granted. However, cryptographic hashes are not
information theoretically secure, they are only computationally
secure. Since our focus is on information theoretic security,
a cryptographic hash cannot be used as part of our system.
Thus, in the systems analyzed in this work, we do not
use cryptographic hashes and, instead, rely on the threshold
test (1).

B. Secure Sketch Systems based on ECC

We now introduce the second family of biometric storage
systems studied, called secure sketch systems. While, as was
the case for fuzzy commitment, there are other ways to
develop a secure sketch, we concentrate on secure sketches
implemented using linear error correcting codes. The baseline
two-factor secure sketch scheme is diagrammed in Fig. 5
and the keyless variant in Fig. 6. Following the notation of
Sec. III-A we denote by H the m× n parity check matrix of
a binary [n, k] linear error correcting code with m = n− k.

Enrollment: The enrollment procedure first generates the
key sequence K := (K1, . . . ,Km) as an independent i.i.d.
Bernoulli(0.5) sequence. The stored data S is the length-m
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syndrome HA of enrollment biometric feature vector masked
by the key,

S = HA⊕K.

Authentication: The authentication procedure performs
syndrome decoding to produce an estimate Ŵ of A⊕D as

Ŵ = argmin
W:HW=HD⊕L⊕S

d(W).

The authentication decision is made using threshold test

d(Ŵ)
θ̂=1

≶
θ̂=0

τn.

The assumptions on the values of τ and the coding rate R of
the ECC are identical to those made in Sec. III-A. In practical
implementations, cryptographic hashes are often also stored
and used to verify the correctness of the syndrome decoding
procedure. However, for the reasons already discussed in the
context of fuzzy commitment, we do not employ cryptographic
hashes in our analysis.

C. Equivalence of Fuzzy Commitment and Secure Sketch

We now develop an equivalence between the properties of
the fuzzy commitment and secure sketch schemes presented in
the previous two subsections. We show the conceptual equiv-
alence between the two architectures and derive expressions
for the performance metrics defined in Section II-B, showing
that the performance is the same.

Reviewing the decoding procedures of fuzzy commitment
and secure sketch one sees that the procedures are nearly iden-
tical. The authentication decision is determined by whether
or not Ŵ, the lowest Hamming weight sequence in a given
coset, has Hamming weight greater or less than τn. The coset
is specified by its syndrome and the only difference between
the systems is how this syndrome is computed.

In the two-factor secure sketch system, the syndrome is
specified as

q
SS

(D,L,S) = HD⊕ L⊕ S

= H(A⊕D)⊕K⊕ L (2)

In the two-factor fuzzy commitment system, the syndrome is
specified as

q
FC

(D,L,S) = H(D⊕ L⊕ S)

= H(A⊕D)⊕HGTZ⊕H(K⊕ L)

= H(A⊕D)⊕H(K⊕ L) (3)

The decision for θ̂ is a deterministic function of the syndrome,
defined identically for both systems.

In both systems, during the authentication of the legitimate
user, where D = B and L = K, the computed syndrome
is identical and equal to H(A ⊕ B). Note that this is true
of both keyed and keyless variants of the systems. Thus, the
distribution of θ̂ given θ = 1 is identical for both types of
systems and thus the FRR is identical.

In determining the FAR – the case of an attack by an
uninformed adversary – the input vectors (D,L) = (C,J) can
have an arbitrary joint distribution, but must be independent
of the pair (A,K). Regardless of the distribution of (C,J),
the syndrome in both systems is i.i.d. Bernoulli(0.5), since A
is assumed to be an independent i.i.d. Bernoulli(0.5) sequence
and H has full row rank (cf. Lemma 1 below). Since the
syndromes are equal in distribution for both systems, the
authentication decisions θ̂ are also equal in distribution for
both systems, and hence the FAR performance is the same.

Determining the SAR of these systems requires considera-
tion of scenarios when the adversary has access to A, S, and/or
K. In contrast to the scenario considered for the FAR analysis,
the availability of this additional information may allow the
adversary to alter the distribution of the decoding syndrome.
However, as we will see in Theorem 1 below, the SAR for
secure sketch and fuzzy commitment is also the same.

Before we proceed, consider the following result that will
be useful in understanding and proving some of the theorems
that follow:

Lemma 1 Let A be a length-n i.i.d. Bernoulli-(0.5) random
vector and let H and H̃ be, respectively, m×n and m̃×n full
row-rank binary matrices whose rows are linearly independent
of each other. Then, for any pair of binary vectors, s and s̃,
of lengths m and m̃ respectively, Pr[HA = s|H̃A = s̃] =
Pr[HA = s] = 2−m.

The proof of this lemma appears in Appendix A. Note
that, since the channel codes are assumed to operate at a
rate R = k/n which is below capacity they have a positive
error exponent E(R) > 0. This means that the probability of
decoding error when using these codes on a BSC-p is bounded
as

Pe ≤ 2−nE(R)+o(n).

where E(R) = minq (D(q‖p) + max{1 − hb(q) − R, 0})
and the KL divergence between two Bernoulli distributions,
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Bernoulli(q) and Bernoulli(p) is defined as

D(q‖p) := q log2
q

p
+ (1− q) log2

1− q
1− p

.

It is well known that, for sufficiently large n, there exist code
constructions that satisfy these properties [20].

Theorem 1 The FRR and FAR of both keyed and keyless
variants of fuzzy commitment and secure sketch is the same
and is bounded as

(i) PFR ≤ 2−nD(τ‖p) + 2−nE(R)+o(n),
(ii) PFA ≤ 2−n(

m
n −hb(τ)).

The SAR of the two-factor (keyed) fuzzy commitment and
secure sketch schemes for various cases of data exposure are
identical and given by
(iii) PSA(K) = PFA,
(iv) PSA(A) = PFA,
(v) PSA(S) = PSA(A,K) = PSA(A,S) = PSA(S,K) =

PSA(A,S,K) = 1.
The SAR of the keyless fuzzy commitment and secure sketch
schemes for various cases of data exposure are identical and
given by
(vi) PSA(S) = PSA(A) = PSA(A,S) = 1.

Please refer to Appendix B for the proof of the theorem.
In parts (i) and (ii) the theorem characterizes exponentially
decaying upper bounds on the FRR and FAR, and hence
also lower bounds on the exponents. In order to obtain these
exponentially decaying bounds, the operating parameters must
satisfy the previously listed assumptions, that is, 0.5 > τ > p
and m/n > hb(τ). Note that for all of our systems, knowledge
of the stored data S drastically improves the ability of the
adversary to gain access. For all of our systems, the SAR is
equal to one for an adversary enhanced with the knowledge of
S, cf. parts (v) and (vi) above. This is because, as is formalized
in the proof, an adversary with knowledge of S can gain
access by choosing (C,J) based on knowledge of S so that
the decoding coset contains a low-weight error sequence with
probability one. In fact, this limitation is not unique to ECC-
based systems as the following theorem shows.

Theorem 2 For any two-factor system,
(i) PSA(S) ≥ 1− PFR.

If for every S ∈ S, there exist D,L such that g(D,L,S) = 1,
then

(ii) PSA(S) = 1.

The proof appears in Appendix C.
Fuzzy commitment and secure sketch also have identical

privacy leakage as demonstrated by the following theorem.

Theorem 3 In the two-factor fuzzy commitment and secure
sketch systems, the privacy leakage of A from S, from K, or
from (S,K) is, respectively,

(i) I(A;K) = 0,
(ii) I(A;S) = 0,

(iii) I(A;S,K) = m = n(1−R) > 0.

In the keyless variant of fuzzy commitment and secure sketch
the privacy leakage of A from S is
(iv) I(A;S) = m = n(1−R) > 0.

The proof of this theorem is given in Appendix D. From an
authentication perspective, it is interesting that the additional
independent source of randomness Z in fuzzy commitment
based systems does not improve the privacy leakage properties
in comparison to secure sketch based systems where such
randomness is unavailable.

The fuzzy commitment and secure sketch systems are
equivalent in terms of many performance metrics but they
differ in terms of storage and key length requirements. The
fuzzy commitment system requires n bits to store the data
since H(S) = n. It also uses an n-bit key to mask the stored
data in the two-factor variant. On the other hand, secure sketch
system requires only m bits for storage since H(S) = m
due to the fact that only the syndrome of A is being stored.
Similarly, it also uses only an m-bit key to mask the stored
data in the two-factor variant.

IV. LINKAGE RESISTANCE AND REVOCABILITY
PROPERTIES

In this section we consider two desirable properties for
secure biometrics – revocability and resistance to linkage
attacks – and study them in the context of noisy enrollments
at multiple access control devices. We will only consider
two-factor systems in this section. Although the results to
be presented in this section apply equally to both secure
sketch and fuzzy commitment based systems, proofs will be
provided only for secure-sketch based systems since the two
types of systems are performance-equivalent as discussed in
Section III-C.

Revocability is the ability to tolerate partial compromises
of data. By partial compromise we mean that, in a two-factor
access control system, either the key or the stored data has
been revealed to the adversary, but not both. On the other hand,
we say that a two-factor system is fully compromised if both
the key and the stored data have been revealed to the adversary.
A secure biometric is said to be revocable if, given knowledge
of a partial compromise, the user or a system administrator can
delete certain data and establish a new enrollment based on the
same biometric without any loss in privacy or authentication
performance.

Linkage attacks can occur in situations where the same
biometric is used to enroll in multiple biometric systems, e.g.,
on several access control devices. If an adversary compromises
a subset of the devices, the compromised data can be used to
attack the remaining devices. The compromised data can both
leak information about the underlying biometric and can be
exploited to mount a successful attack, i.e., gain unauthorized
access to, one of the remaining devices.

A. Performance Measures for Multiple Biometric Systems

We now present our model for parallel enrollment across
multiple biometric systems. We assume that the biometric
in question has been enrolled in u systems. Each of the u
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System
Keyless Two-factor

Fuzzy Commitment Secure Sketch Fuzzy Commitment Secure Sketch

False Rejection Rate PFR ≤ 2−nD(τ‖p) + 2−nE(R)+o(n)

False Acceptance Rate PFA ≤ 2−n(
m
n −hb(τ))

Successful Attack Rate PSA(A) = PSA(S) = 1
PSA(A) = PSA(K) = PFA

PSA(S) = PSA(A,K) = 1

Privacy Leakage I(A;S) = m
I(A;K) = 0, I(A;S,K) = m

I(A;S) = 0

Storage Requirements H(S) = n H(S) = m H(S) = H(K) = n H(S) = H(K) = m

TABLE I
SUMMARY AND COMPARISON OF SYSTEM PERFORMANCE

biometric systems has an enrollment vector. These vectors,
Ai, i ∈ {1, . . . , u}, are related in a conditionally independent
manner to a common underlying biometric A0 according to
the measurement model in Section II. In other words,

PAi|A0
(ai|a) = (1− pi)n−dH(ai,a)p

dH(ai,a)
i

where pi ∈ [0, 0.5), all vectors are binary and dH(·, ·) is
the Hamming distance between its arguments. For conve-
nience, we define p0 = 0. Encoding and decoding functions
{Fi(·), gi(·)}ui=1 are paired and need not be identical for all
systems. At enrollment, each system i ∈ {1, . . . , u} observes
Ai, and the stored data and key for system i are generated as
(Si,Ki) = Fi(Ai). The joint distribution across the u systems
is given by

PSu,Ku,A0
(su,ku,a) = PA0

(a)

u∏
i=1

PSi,Ki|A0
(si,ki|a),

(4)
where

PSi,Ki|A0
(si,ki|a) =

∑
ai

Pr
[
Fi(ai) = (si,ki)

]
PAi|A0

(ai|a),

and Su and Ku are respectively the u-tuples of stored data
and key vectors.

Recall from the discussion of Sec. II (cf. Fig. 2) that
the legitimate user of system i will try to authenticate us-
ing (B,Ki) while an adversary will use some (C,J). The
crossover probability of system-j’s probe channel will be
denoted by αj ∈ [0, 0.5). The FRR and FAR are, respectively,
given by

PFR(i) := Pr
[
gi(B,Ki,Si) = 0

]
,

PFA(i) := max
pC,J

Pr
[
gi(C,J,Si) = 1

]
,

which are the same as the definitions for a single system in
isolation.

In contrast, the existence of multiple systems necessitates
the generalization of the definition of SAR, in order to
account for compromises across multiple biometric systems.
Expanding upon the framework of Sec. II, we define V to

be a subset of {S1,K1,S2,K2, . . . ,Su,Ku}. Equivalently
we write V = ∪ui=1Vi where Vi ⊆ {Si,Ki}, possibly the
empty set. Also, to be able to study the effect of compromised
enrollment biometrics, we define the set A to be a subset of
{A0,A1,A2, . . . ,Au}.

Given knowledge of V and A by an adversary, the SAR
against system i is

PSA(i,V,A) = max
pC,J|V,A

Pr
[
gi(C,J,Si) = 1

]
.

B. Privacy Leakage Across Multiple Systems

In this section we give a tight characterization of the
privacy leakage, i.e., the amount of information leaked about
the user’s biometric when some subset of the stored data is
compromised. In the analysis that follows, we assume that all u
biometric systems are secure sketch-based systems with parity
check matrices H1, . . . ,Hu which may have different row-
sizes but the same column-size. As we have already proved the
equivalence between secure sketch and fuzzy commitment in
Section III, the results derived for multiple secure sketch-based
systems immediately extend to multiple fuzzy commitment-
based biometric systems. In other words, statements about the
parity check matrices Hi can be appropriately modified into
similar statements about the generator matrices Gi used in
fuzzy commitment-based systems.

While deriving the privacy leakage, we also state sim-
plifications for a number of interesting special cases. In
particular we consider both the “noiseless” enrollment case
where A0 = A1 = . . . = Au and the “identical” enrollment
function case where all systems use the same ECC, i.e.,
H1 = . . . = Hu. We also write rank(H1, . . . ,Hj) to denote
the rank of [HT

1 , . . . ,H
T
j ].

Our main result connects the amount of information leakage
with an easily-characterized rank property of the parity check
matrices of the compromised systems.

Theorem 4 Given the enrollment model of (4), assume, with-
out loss of generality, an ordering of the systems such that for
some index l, 0 ≤ l ≤ u, Vi = {Si,Ki} for all i ∈ [1, l] and
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Vi ⊂ {Si,Ki} for all i > l. Then, the information about A0

leaked by V = ∪ui=1Vi is

I(A0;V) =
{

0 if l = 0
I(A0;H1A1, . . . ,HlAl) else .

Additionally:
(i) In general,

I(A0;V) ≤ rank(H1, . . . ,Hl).

(ii) For noiseless, non-identical enrollment functions,

I(A0;V) = rank(H1, . . . ,Hl).

while for the identical enrollment function case with l ≥
1, we have

I(A0;V) = rank(H1).

The proof of this theorem is given in Appendix E. Im-
portantly, this theorem tells us that information about the
underlying biometric is leaked only if there is at least one
fully compromised system (i.e., l > 0). Hence, unless both
the key and stored data of a particular system have been
compromised, that system can be revoked by erasing the un-
compromised data (e.g., the key if the stored data has been
leaked). The theorem indicates that biometric measurement
noise can only help mask the private data. To see this, consider
the case l > 0 and note that if the enrollment noise is high
enough, the information between A0 and H1A1, . . .HlAl can
be quite small, certainly smaller than when there is no enroll-
ment noise. This last statement follows from the information
processing inequality which tells us that the privacy leakage
when enrollments are noisy is upper bounded by the privacy
leakage when enrollments are noiseless.

Part (i) also tells us that the privacy leakage depends on
the rank of the matrix formed by stacking the parity check
matrices of the fully compromised systems. We term this the
“collective” rank of the set in question. The collective rank
is at most equal to the sum of the ranks of the individual
parity check matrices and will be strictly less if there is linear
dependence between the rows of the matrices. Further, as part
(ii) tells us, in the special case of noiseless enrollments we
can make an exact statement about privacy leakage in terms
of collective rank. Finally, in the special case of noiseless
enrollments and identical enrollment functions, the first fully
compromised system leaks all the information there is to be
leaked about the underlying biometric.

We can sketch a candidate design rule arising from these
results. To obtain a set of systems that minimize the privacy
leakage in the face of the compromise of some subset of the
stored data and keys, the collection of parity check matrices
should be designed to minimize the linear dependencies across
the matrices. Of course, at the same time the matrices must
individually specify good error correcting codes, else the false
rejection rate would be too high. However, such minimal
privacy leakage comes at a cost. Further, to achieve minimum
collective rank, one should simply use the same parity check
matrix for each system. However, as we discuss in the next
subsection, this choice makes the remaining uncompromised
systems more vulnerable to false authentications. Thus, if we

design the multiple systems to minimize privacy leakage, we
pay a price in terms of the security of the individual systems.

C. Authentication Attacks with Multiple Systems

In situations where some subset of systems based on the
same biometric have been compromised, an attacker may be
able to use the compromised data to enhance his ability to
authenticate falsely. The following theorem states results on
the successful attack rates for our two-factor secure biometric
systems. The theorem is proved in Appendix F.

Theorem 5 Let u noisy, non-identical enrollments be gener-
ated for a secure two-factor biometric system (fuzzy commit-
ment or secure sketch). Consider any system j ∈ {1, . . . , u}.

(i) If either Sj ∈ Vj or both Aj ∈ A and Kj ∈ Vj , then

PSA(j,V,A) = 1.

(ii) If Kj ∈ Vj and for some i 6= j, Ai ∈ A and pi ≤ pj
then

PSA(j,V,A) ≥ 1− PFR(j).

(iii) If Vj = {}, the null set, then

PSA(j,V,A) = PFA(j).

(iv) If Sj /∈ Vj , A = {}, and Vi ⊂ {Si,Ki} for each i 6= j
then

PSA(j,V,A) = PFA(j).

In part (i), an adversary who has access to the stored data
of the target system can easily find a low-weight element of
the coset corresponding to Sj , yielding access with probability
one as per Theorem 1(v).4

In part (ii), the adversary has access to the key of the
system to be attacked and at least one enrollment biometric
of some other system Ai or the ground truth biometric A0.
In these settings we show that the adversary can use this data
to imitate a probe biometric of the legitimate user and launch
an authentication attack with a high probability of success.

In contrast, in parts (iii)–(iv), the adversary cannot do better
than the nominal false acceptance rate. In part (iii), neither the
key nor the stored data of the target system are compromised,
but the Vi for i 6= j can be arbitrary. Then, because Kj

is independent of all other parts of the system, the attacker
cannot improve his probability of success over that of random
guessing. In part (iv), the key of the target system may be
compromised, but in all other systems only a strict subset
of the data is compromised (either just the stored data, just
the key, or neither) and, further, no enrollment biometrics are
compromised. In this situation the adversary is again not able
to authenticate with probability higher than the FAR.

The following theorem considers the effect of the joint
structure of the parity check matrices employed on different
access control devices on the probability of successful attack.

4Note that in this part if only Sj is leaked, but not Kj , then this is a
revocable scenario, i.e., the old Kj can be revoked and a new key assigned.
Until this is done, however, the probability of successful attack is one, as
given above. Once Kj is revoked, the probability of successful attack becomes
PFA(j).
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It establishes that if certain joint structure is present, the
adversary can leverage this structure to improve dramatically
the likelihood of being able to falsely authenticate on uncom-
promised systems. The theorem is proved in Appendix G.

Theorem 6 Given the enrollment model of (4), assume the
two-factor systems are ordered such that there is some index
l, 1 ≤ l ≤ u such that Vi = {Si,Ki} for all i ≤ l and
Vi = Ki for all i > l. Let A = {}. Now, consider any system
index j ≥ l + 1.

(i) For noiseless enrollments if rank(H1, . . . ,Hl,Hj) =
rank(H1, . . . ,Hl) then

PSA(j,V,A) = 1.

(ii) For noisy enrollments if rank(H1, . . . ,Hl,Hj) =
rank(H1, . . . ,Hl) and for all 0 ≤ i ≤ u, pi ≤ αj ,
where αj is the crossover probability of system-j’s probe
channel, then

PSA(j,V,A) ≥ 1− PFR(j).

(iii) If rank(H1, . . . ,Hl,Hj) = rank(H1, . . . ,Hl) +
rank(Hj) then (in either the noisy or noiseless case)

PSA(j,V,A) = PFA(j).

The conditions in the first two parts of Thm. 6 mean that
the row space of Hj lies within the span of the rows of
H1, . . . ,Hl. In this situation, an attacker can gain access with
high probability. In contrast, if the parity check matrix Hj

used to define the stored data in the system under attack is
linearly independent of the matrices defining the compromised
systems, then the compromised data is useless in attempts to
improve the successful attack rate beyond the nominal false
acceptance rate of the system.

To build intuition, we study the implications of Thm. 6
through a sequence of examples. In keeping with our previ-
ous development, we consider secure sketch-based biometric
systems, though the results translate to fuzzy commitment-
based access control devices as well. In each example we
consider three biometric systems, u = 3. The three enrollment
matrices H1, H2, H3, are each of size m × n and full rank
m where n = 3m. We consider an adversary that is trying to
authenticate with respect to system #3, having gained access
to all data except S3, i.e., V = {S1,K1,S2,K2,K3}. In
some of the examples, we will find it useful to refer back
to Lemma 1, which relates linear independence between the
rows of the parity check matrices to statistical independence
of the syndromes HiAi.

Example 1 (noiseless enrollments) Consider noiseless enroll-
ments, A0 = A1 = A2 = A3 and H3 = H1 ⊕H2. In this
setting, using the elements of V , the adversary can calculate
the stored data of the third system as S3 = S1 ⊕ S2 ⊕K1 ⊕
K2⊕K3. Picking C (= D) such that H3C = S3 and setting
J = L = 0 the all-zeros syndrome, the adversary can force
the decoder to the coset containing the all-zeros vector. Recall
that the decoder looks for the lowest weight vector in the set
H3D ⊕ S3 ⊕ L. The probability of success of this attack is
one.

Example 2 (identical enrollment functions) Consider the set-
ting where H1 = H2 = H3. If enrollments are noiseless then,
e.g., S3 = S1⊕K1⊕K3 and the attack of Example 1 works,
allowing the adversary to successfully access system #3 with
probability one. In fact compromising the stored data and key
of any single system will allow an attacker to access any other
system whose key is compromised with probability one. If
enrollments are noisy but p1 = p2 = p3 then S1⊕K1 specifies
a coset that contains a vector close to A0. Pick any element
of this coset as D and use K3 for L. These choices will yield
the same probability of successful attack as a legitimate probe
generated from A0, i.e., at least 1− PFR.

Example 3 (linearly independent enrollment functions) Now
consider the case when the rows of H1, the rows of H2, and
the rows of H3 are all linearly independent of one another.
Then, by Lemma 1, whether or not enrollments are noisy, the
information about the biometric leaked by the compromised
data is independent from S3. Hence, the compromised data
does not enhance the adversary’s ability to authenticate falsely.

Example 3 suggests that a cross-system design of the
codes, i.e., H1, . . . ,Hu, that minimizes the linear dependence
between parity check matrices can obviate the danger of
linkage attacks. However, it is not always possible to design
fully independent parity check matrices while maintaining
the desired full rank of each. This is due to dimensionality
restrictions. In the examples, m = n/3. Thus, if we added
another biometric system, i.e., u = 4, maintaining full linear
independence is not possible.

Example 4 (partially linearly dependent enrollment func-
tions) Theorem 6 considers the two extreme cases of lin-
ear dependence between the parity check matrix Hj of the
system under attack and those of the compromised systems,
H1, . . . ,Hl. Full linear dependence is considered in parts (i)
and (ii) of the theorem, and full linear independence in part
(iii). In this example we consider an intermediate scenario of
partial linear dependence.

In particular, let Ha, Hb, Hc, Hd be full-rank m/2 × n
matrices where all of the rows are linearly independent. Let
HT

1 = [HT
a HT

b ], HT
2 = [HT

a HT
c ], and HT

3 = [HT
a HT

d ].
Again let V = {S1,K1,S2,K2,K3}. The first half of the
vector S3⊕K3 equals HaA, which, for noiseless enrollments,
is the same as the first half of the S1⊕K1 and S2⊕K2 vectors,
both of which can be calculated from the stored information.
However, by Lemma 1 the second half of the S3⊕K3 vector
is statistically independent of all compromised data.

We now describe a natural attack on the system descried in
Example 4. First note that, in the same manner as in the earlier
examples, the attacker can set the first half of the syndrome
arbitrarily. One attack would be to pick these m/2 constraints
to eliminate as few low-weight sequences as possible. Ideally,
these constraints would be picked so that, regardless of the
remaining m/2 bits of the syndrome, each possible coset
(after all m syndrome bits are set) would contain at least
one low-weight sequence (i.e., a sequence with fewer than
τn ones). Whether such an attack is possible depends on the
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specific Ha and Hd matrices. One should note that low-weight
sequences are not uniformly distributed over the cosets of
Ha. This means that even determining whether such an attack
is possible for specific Ha and Hd matrices is likely quite
computationally challenging. These considerations illustrate
the difficulty of determining the SAR in these settings. At
a minimum, we can say that the SAR must be at least as large
as the FAR. This follows since the attacker can make the SAR
equal to the FAR simply by ignoring the compromised data
and setting all m syndrome bits at random.

D. Formulation of ECC Design Problem for Multiple Systems

In the previous two subsections, we analyzed information
leakage and authentication attacks when an adversary has com-
promised multiple enrollments based on the same underlying
biometric. Theorems 4 and 5 tell us that unless there are
fully compromised systems, no information is leaked about
the underlying biometric and there is no way to improve
the probability of successful attack beyond the nominal false
acceptance rate. Thus, in cases of only partial data compromise
two-factor designs are secure to linkage attacks and can be
revoked.

One way to view these results is from the perspective of
reusability. A set of access-control systems can be thought of
as a series of re-enrollments established after successive data
compromise. If any one element – but not both – of the stored
data Si and key Ki are lost, the user can simply destroy the
other and regenerate a fresh (Si+1,Ki+1) pair. The previous,
partially compromised, enrollments do not cause any privacy
leakage nor do they enhance the adversary’s ability to attack
the newly enrolled system.

Furthermore, from Theorem 6 we learn that, in general, the
effectiveness of linkage attacks depends on the joint structure
of the error-correcting codes deployed. Furthermore, Examples
2–4 in particular give hints as to how the collection of systems
can be jointly designed to mitigate the amount of privacy
leakage or minimize the successful attack rate when some
systems have been fully compromised. We observe from the
examples that there is a natural tradeoff between robustness
to privacy leakage and robustness to authentication attacks.
Linear dependence between parity check matrices results in
an increased probability of successful attack while linear
independence results in increased privacy leakage. We now
present a design formulation that formalizes this tradeoff.

Our objective is to design u parity-check matrices
H1, . . . ,Hu, all full-rank m× n matrices to optimize certain
properties. To define these properties we consider all

(
u
L

)
cardinality-L subsets of the parity-check matrices. Denote the
lth such subset as Sl for 1 ≤ l ≤

(
u
L

)
. The parameter L corre-

sponds to the number of biometric systems that the adversary
can potentially compromise, and the subset Sl represents one
set of systems that adversary may have compromised. For any
subset Sl, we define Sl[i] to be the index of the ith parity check
matrix in the subset. That is 1 ≤ i ≤ L and 1 ≤ Sl[i] ≤ u.
Further (with some abuse of notation) we define HSl to be
the Lm × n matrix formed by “stacking” all matrices in the

subset into a single matrix, i.e.,

HSl = [HT
Sl[1] . . .H

T
Sl[L]]

T , 1 ≤ l ≤
(
u

L

)
.

We use rl to denote the collective rank of the lth stacked matrix
defined as

rl = rank(HSl).

The collective rank is bounded by 1 ≤ rl ≤ min{lm, n}
and is the privacy leakage when the adversary has gained
access both to the key and to the stored data of the L systems
in Sl. Theorem 4 establishes that for noiseless enrollments,
the stacked rank is exactly equal to the privacy leakage, and
that for noisy enrollments, the stacked rank provides an upper
bound on the privacy leakage.

Now, for each subset Sl and system j ∈ {1, . . . , u}, define
the residual rank of matrix Hj as

tl,j = rank(HSl ,Hj)− rl.

Note that tl,j = 0 if the row-space of Hj is spanned by the
rows of HSl , which would happen automatically if j ∈ Sl.
Also, 0 ≤ tl,j ≤ m, with equality to m if all rows of Hj are
linearly independent of the rows of HSl . The residual rank
parameter provides a loose characterization of the systems’
linkage attack resistance to authentication attacks. Consider an
adversary that has compromised the keys and stored data of the
enrollments of the systems in Sl. When tl,j = m, the adversary
does not benefit from a higher probability of successful attack
for system j. On the other hand, when tl,j = 0 and the key of
system-j is compromised, the adversary will be able to falsely
authenticate at system j with probability one if the enrollments
are noiseless, and with high probability even if the enrollments
are noisy. For intermediate values of tl,j , determining the
corresponding linkage resistance against authentication attacks
is complicated as was discussed in Example 4 of Section IV-C.
Thus the parameter tl,j is a rough measure of linkage attack
resistance. However, for noiseless enrollments, tl,j provides a
lower bound on the corresponding SAR given by

PSA(j,V) ≥ 2−tl,j ,

where V are the keys and stored data for the systems in Sl.
This is because uniformly sampling from one of the 2tl,j cosets
containing the enrolled biometric is always a strategy that is
available to the attacker.

When designing a collection of systems, roughly speaking,
minimizing rl corresponds to reducing privacy leakage while
maximizing tl,j corresponds to reducing the probability of
successful attack. The system designer must not only choose
matrices with desirable error-correcting properties but also
consider the optimization of these parameters across different
values of l, j, and L. One possible approach is to use the
following pessimistic performance measures, rmax and tmin,
which are respectively defined as

rmax := max
1≤l≤(uL)

rl,

tmin := min
1≤l≤(uL)

min
j∈Sc

l

tl,j ,
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where we note that the optimizing l may not be the same for
both measures. The design of a set of parity check matrices
that yield low FRRs, while minimizing rmax and maximizing
tmin appears to be a challenging avenue for future research.

V. CONCLUSIONS

In this paper, we presented a generalized framework for
modeling secure biometric systems and characterizing their
security and privacy properties. We conducted a detailed
information-theoretic analysis of two related types of systems
based on linear error correcting codes, namely secure sketch
and fuzzy commitment. We also considered two variants of
each scheme: keyless and keyed. The second is a two-factor
scheme in which the biometric system is augmented by a
secret key held on a smart card. We showed that secure sketch
and fuzzy-commitment systems are equivalent in terms of the
false rejection rate, false acceptance rate, successful attack
rate, and privacy leakage during partial or full compromise
of biometric templates and smart-card keys. We did, however,
find a difference in their storage requirements with secure
sketch requiring less storage.

In either keyless or two-factor schemes, compromising the
stored data renders the biometric system vulnerable to attack.
If the data stored on the device is lost, an adversary can gain
access to the system with probability one. However, for a two-
factor system the user’s biometric sample remains protected
(the information-theoretic privacy of the user is maintained)
so long as the secret key is not compromised. In this scenario,
the enrollment can be revoked and a new one established. If,
however, both the stored data and the key are compromised,
the two-factor scheme is no worse than a keyless scheme.

We also analyzed the information leakage and authenti-
cation performance when a user’s biometric is enrolled at
several access control devices. We studied the repercussions
of data compromise in a subset of the systems. For two-
factor schemes, the successful attack rate is no larger than
the nominal false acceptance rate of the system so long as no
single system suffers from a theft of both the stored data and
smart card key. Furthermore, no information is leaked about
the user’s biometric in this case.

When some subset of systems is fully compromised, i.e.,
both the stored data and the secret key are compromised, we
showed that the information leaked about the user’s biometric
depends on the rank of a matrix formed by stacking the parity
check matrices of the compromised devices. The successful
attack rate in this scenario depends on the design of the parity
check matrices of the compromised devices, specifically on
the number of independent rows in these matrices. We showed
via examples that, while designing multiple biometric systems,
there exists a fundamental tradeoff between the user’s privacy,
i.e., the information leaked about the underlying biometric,
and the user’s security, i.e., the probability that the adversary
can falsely authenticate as a genuine user.

Many interesting problems remain open. Most importantly,
in our opinion, is the situation of multiple fully-compromised
systems. Providing the complete characterization of the trade-
off between privacy leakage and probability of successful

attack in this setting is elusive. Such a characterization would
provide guidelines for the design of the parity check matrices
for the constituent systems. Even with such a characterization,
the joint design of parity check matrices to achieve a point on
that optimum tradeoff curve will be a challenge.
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APPENDIX A
PROOF OF LEMMA 1

By Bayes’ Theorem

Pr[HA = s|H̃A = s̃] =
Pr[HA = s, H̃A = s̃]

Pr[H̃A = s̃]

=

Pr

[[
H

H̃

]
A =

[
s
s̃

]]
Pr[H̃A = s̃]

.

Since H̃ is full rank, all 2m̃ length-m̃ possible syndrome
vectors s̃ are reachable by different choices of A. Also, by
the theorem of Lagrange, all cosets are of equal size. Thus,
since all realizations of A are equally likely, H̃A is uniformly
distributed, i.e., Pr[H̃A = s̃] = 2−m̃. Since H and H̃
are linearly independent, the matrix [HT H̃T ] has full rank.
Therefore, by the same logic as before, the numerator is equal
to 2−(m+m̃).

APPENDIX B
PROOF OF THEOREM 1

In the paragraphs preceding the statement of Theorem 1, it
was proved that the FRR and FAR of both keyed and keyless
variants of fuzzy commitment and secure sketch are the same.
(i) The FRR is given by

PFR = Pr
[
d(Ŵ) > τn

]
,

where, since for the legitimate user D = B and L = K,

Ŵ = argmin
W:HW=H(A⊕B)

d(W).

The FRR can be bounded by

PFR = Pr
[
d(Ŵ) > τn,Ŵ = A⊕B

]
+ Pr

[
d(Ŵ) > τn,Ŵ 6= A⊕B

]
≤ Pr

[
d(A⊕B) > τn

]
+ Pr

[
Ŵ 6= A⊕B

]
.

The decoding procedure to produce Ŵ is operationally equiv-
alent to the optimal syndrome decoding of A from the noisy
version B, since

Ŵ = argmin
W:HW=H(A⊕B)

d(W)

= B⊕ argmin
A′:HA′=HA

d(A′ ⊕B).

Thus, the probability that Ŵ fails to recover A⊕B is equal to
the probability of decoding error of the code, which is bounded
by

Pr
[
Ŵ 6= A⊕B

]
≤ 2−nE(R)+o(n).

The probability that A ⊕ B fails the threshold test can be
bounded by the Chernoff-Hoeffding bound [21],

Pr
[
d(A⊕B) > τn

]
≤ 2−nD(τ‖p).

Combining these two bounds yields the bound on the FRR.
(ii) As discussed in the paragraphs preceding the statement
of Theorem 1, in both the keyed and keyless variants of both
fuzzy commitment and secure sketch systems, regardless of

the distribution of (C,J), the syndrome is i.i.d. Bernoulli(0.5).
Since H has full row rank, this implies that all syndromes, or
equivalently all cosets, are equally likely to be selected with
probability 2−m (there are 2m cosets). Since PFA is equal
to the probability of selecting a coset whose coset-leader (the
minimum Hamming weight word in the coset) has a Hamming
weight not more than τn and the number of such cosets is
not more than the total number of sequences in {0, 1}n with
Hamming weight less than τn, it follows that

PFA ≤ 2−m|{w : d(w) ≤ τn}|

= 2−m
τn∑
i=0

|{w : d(w) = i}|

= 2−m
τn∑
i=0

(
n

i

)
≤ 2−m2nhb(τ)

= 2−n(
m
n −hb(τ)),

where second inequality above is due to [22, Lemma 8, Ch.
10] since τ < 0.5.
(iii) In both of the two-factor systems, an adversary with
knowledge of only K submits attack vectors (C,J) that are
independent of A. Hence, the distribution of the syndrome is
Bernoulli(0.5), as in the FAR analysis, and thus

PSA(K) = PFA.

(iv) An adversary with knowledge of only A, submits attack
vectors (C,J) that are independent of K. Hence again the
distribution of the syndrome is still Bernoulli(0.5), and thus

PSA(A) = PFA.

(v) Recall that q
SS

(D,L,S) = HD ⊕ L ⊕ S and
q
FC

(D,L,S) = H(D ⊕ L ⊕ S). With knowledge of S,
an adversary can choose C = 0 and J = S to make
q
SS

(D,L,S) = q
FC

(D,L,S) = 0 so that Ŵ = 0 and system
authenticates the adversary. Thus,

PSA(S) = 1.

Since PSA(V1,V2) ≥ PSA(V1), we also have

PSA(S) = PSA(A,S) = PSA(K,S) = PSA(A,K,S) = 1.

In a similar manner, one can show that with knowledge of both
A and K, an adversary can set the syndrome to any desired
value and thus,

PSA(A,K) = 1.

(vi) As in the proof of part (v), in the keyless versions of the
fuzzy commitment and secure sketch systems, an adversary
with knowledge of S alone or A alone can set the syndrome
to a value that makes the decoder select a coset with a low-
weight sequence with probability one. Hence,

PSA(S) = PSA(A) = 1.

Finally, since PSA(V1,V2) ≥ PSA(V1), we also have

PSA(A,S) = 1.
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APPENDIX C
PROOF OF THEOREM 2

(i) Let Sa ⊂ S denote the subset for which there exist D,L
such that g(D,L,S) = 1. If S /∈ Sa, then θ̂ = 0. Therefore,
the FRR must be bounded by

PFR ≥ Pr
[
S /∈ Sa

]
.

Since the adversary can gain access (with probability one)
when S ∈ Sa, the SAR can be bounded as

PSA(S) ≥ Pr
[
S ∈ Sa

]
≥ 1− PFR.

(ii) If Sa = S , then the adversary can always choose C and
J such that θ̂ = g(D,L,S) = 1 in order to gain access with
probability one.

APPENDIX D
PROOF OF THEOREM 3

In the two-factor fuzzy commitment scheme, A, K, and Z
are mutually independent Bernoulli(0.5) sequences and S =
A ⊕GTZ ⊕K. In the two-factor secure sketch scheme, A
and K are mutually independent Bernoulli(0.5) sequences and
S = HA ⊕K. Thus for both two-factor schemes, A and K
are mutually independent and so are A and S. This implies
that

I(A;S) = I(A;K) = 0

for both two-factor fuzzy and two-factor secure sketch
schemes.

For the two-factor fuzzy commitment scheme,

I(A;S,K) = H(S,K)−H(S,K|A)

= H(K) +H(S|K)−H(K|A)−H(S|K,A)

= H(K) +H(A⊕GTZ)−H(K)−H(GTZ)

= n− k = m.

For the two-factor secure sketch scheme,

I(A;S,K) = H(S,K)−H(S,K|A)

= H(K) +H(S|K)−H(K|A)−H(S|A,K)

= H(K) +H(HA)−H(K)− 0

= H(HA) = m.

In the keyless fuzzy commitment scheme,

I(A;S) = H(S)−H(S|A)

= H(A⊕GTZ)−H(A⊕GTZ|A)

= H(A)−H(GTZ)

= n− k = m.

And finally, in the keyless secure sketch scheme,

I(A;S) = H(S)−H(S|A) = H(S) = m.

APPENDIX E
PROOF OF THEOREM 4

To yield the main result, we show that

I(A0;V1, . . . ,Vu)
(a)
= I(A0;V1, . . . ,Vl)
(b)
= I(A0;K1, . . . ,Kl,H1A1, . . . ,HlAl)

(c)
= I(A0;H1A1, . . . ,HlAl).

Each step is justified by the following arguments:
(a) is due to the chain rule for mutual information since

(Vl+1, . . . ,Vu) ⊥⊥ (A0,V1, . . . ,Vl).
(b) since V1, . . . ,Vl is informationally equivalent to

K1, . . . ,Kl,H1A1, . . . ,HlAl. For the secure sketch
system, the equivalence is immediate since for
i ∈ {1, . . . , l}, Vi = (Si,Ki) = (HiAi,Ki).
To show the information equivalence for
the fuzzy commitment system, note that for
i ∈ {1, . . . , l}, Vi = (Ai ⊕ GT

i Zi,Ki). Since
(HiAi,Ki) is a function of Vi, the information
processing inequality gives I(A0;V1, . . . ,Vl) ≥
I(A0;K1, . . . ,Kl,H1A1, . . . ,HlAl). But the informa-
tion processing inequality also gives I(A0;V1, . . . ,Vl) ≤
I(A0;K1, . . . ,Kl,H1A1, . . . ,HlAl) since
A0 − (K1, . . . ,Kl,H1A1, . . . ,HlAl) −
(K1, . . . ,Kl,A1 ⊕ GT

1 Z1, . . . ,Al ⊕ GT
l Zl) forms

a Markov chain. This is because Ai ⊕ GT
i Zi is a

codeword that is independently chosen from the coset
corresponding to HiAi.

(c) is due to the chain rule for mutual information since
(K1, . . . ,Kl) ⊥⊥ (A0,H1A1, . . . ,HlAl).

To prove parts (i) and (ii) of Theorem 4, we continue as

I(A0;H1A1, . . . ,HlAl)

≤ I(A0;H1A0, . . . ,HlA0)

= H(H1A0, . . . ,HlA0)−H(H1A0, . . . ,HlA0|A0)

= H(H1A0, . . . ,HlA0)

= rank(H1, . . . ,Hl).

The inequality is due to the information processing inequality
and the fact that A0−H1A0, . . . ,HjA0−H1A1, . . . ,HlAl

forms a Markov chain. This inequality holds with equality
for noiseless enrollments. The last equality follows from
Lemma 1.

APPENDIX F
PROOF OF THEOREM 5

(i) This is an immediate corollary of Theorem 1(v): Similar
to the single system case, knowledge of Sj or (Aj ,Kj) –
which is sufficient to generate Sj – allows the adversary
to authenticate with probability one.

(ii) The adversary can set the attack vectors C to Ai and J to
Kj . The authentication attack succeeds with probability
at least as large as 1− PFR(j) since, for 0 ≤ pi ≤ pj <
0.5 and 0 ≤ α < 0.5, the noise level between Aj and Ai
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can only be lower than the noise level between Aj and
a legitimate probe biometric B.

(iii) The compromised data V is independent of Sj since
it does not contain Kj , which is independent and i.i.d
Bernoulli(0.5). Hence, any attack vectors C and J would
be independent of Sj and result in a uniformly distributed
decoding syndrome qSS(Sj ,C,J) according to (2). This
results in a probability of successful attack equivalent to
the probability of false accept.

(iv) Similar to part (iii) above, the compromised data V is
independent of Aj , which is itself i.i.d Bernoulli(0.5).
Hence, any attack vectors C and J result in a uniformly
distributed decoding syndrome qSS(Sj ,C,J) and a prob-
ability of successful attack equal to the probability of
false accept.

APPENDIX G
PROOF OF THEOREM 6

(i) For i ≤ l, since both Si and Ki are compromised, the
syndrome HiAi is known to the adversary. In the case
of noiseless enrollments, HiAi = HiA0. The linearly
dependent rows of Hj allow HjA0 to be determined
as a function of the compromised data. The stored data
for system j can be recovered as Sj = Kj ⊕HjAj =
Kj⊕HjA0. By Theorem 5(i), the adversary can therefore
falsely authenticate with system j with probability one.

(ii) Since rank(H1, . . . ,Hl,Hj) = rank(H1, . . . ,Hl), each
row of Hj can be expressed as a linear combination of
the rows of {H1, . . . ,Hl}. Let Hj = Mj [H

T
1 . . .H

T
l ]
T

where Mj is an mj × (m1 + . . . + ml) matrix of
coefficients. Suppose that the attacker chooses the at-
tack vector pair (C,J), cf. Fig. 2, such that HjC =
Mj [(H1A1)

T . . . (HlAl)
T ]T (this can always be done)

and J = Kj . Then, the syndrome formed in the authenti-
cation (decoding) step of the j-th two-factor secure sketch
system would be

HjC + HjAj

= HjC+Mj [(H1Aj)
T . . . (HlAj)

T ]T

= Mj [(H1(A1 +Aj))
T . . . (Hl(Al +Aj))

T ]T .

If instead D = Bj , where Bj is a legitimate probe vector
for system-j, and L = Kj , then the syndrome formed in
the authentication (decoding) step of the j-th two-factor
secure sketch system would be

Hj(Bj+Aj)=Mj [(H1(Bj+Aj))
T ... (Hl(Bj+Aj))

T ]T

Since for all 0 ≤ i ≤ u, the enrollment channel crossover
probability pi ≤ αj , the probe channel crossover proba-
bility, each Ai is a less “noisy” version of A0 than Bj .
Thus, the probability of system-j rejecting the specified
attack vectors cannot be more than the probability that a
legitimate probe vector Bj is rejected (given by PFR(j)).
Thus the authentication attack will succeed with a prob-
ability which is at least 1− PFR(j).

(iii) When the rows of Hj are linearly independent, the syn-
drome Sj = HjAj is independent of the compromised
data due to Lemma 1. Another way of seeing this is to

consider the authentication procedure in Section III-B.
Using similar notation, the adversary seeks a Ŵ such
that

Ŵ = argmin
W:HjW=HjD⊕Sj

d(W).

where the adversary synthesizes D as a function of HiAi,
i = 1, 2, ..., l. But, since the rows of Hj are linearly
independent of the rows of H1,H2, ...,Hl, the decoding
syndrome Sj of the target system remains independent
and uniformly distributed for any choice of D made by
the adversary based on the compromised data. Hence, the
probability of successful attack is no larger than the false
acceptance rate.
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