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Deaf Cooperation for Secrecy With Multiple
Antennas at the Helper

Raef Bassily, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—In this paper, we investigate the roles of cooperative
jamming (CJ) and noise forwarding (NF) in improving the achiev-
able secrecy rates of a Gaussian wiretap channel (GWT) when the
helper node is equipped with multiple antennas. We decompose
the channel from the helper to the eavesdropper into two orthog-
onal components: one is aligned in the direction of the channel be-
tween the helper and the legitimate receiver (direct component)
and the other is in the orthogonal direction to the channel between
the helper and the legitimate receiver (orthogonal component). We
then propose a strategy in which the helper uses the orthogonal
component to transmit pure Gaussian noise as in the CJ strategy
while he uses the direct component for either CJ or NF depending
on the given channel conditions. We explicitly derive the optimal
power control policy for this strategy and give the achievable se-
crecy rates when the direct component is used to performCJ orNF.
We hence derive the channel conditions where CJ is better than NF
over the direct component and vice-versa. Finally, we consider the
reversely degraded multiple antenna relay-eavesdropper channel.
We show that a simple strategy in which the relay jams with full
power along the orthogonal component and transmits nothing in
the direct component achieves a secrecy rate that approaches the
secrecy capacity of this channel as the relay’s average power goes
to infinity. Moreover, we show that this result holds almost surely
even if the relay-eavesdropper’s channel state information is un-
available.

Index Terms—Channel decomposition, cooperative jamming, in-
formation theoretic secrecy, multiple antennas, noise forwarding,
relay-eavesdropper channel, reversely degraded channel, secrecy
rates.

I. INTRODUCTION

T HE notion of introducing artificial noise in a GWT
channel by a helpful interferer to confuse the eaves-

dropper and improve over the secrecy capacity of the original
wiretap channel was introduced in [1]–[4]. In [2]–[4], this
notion was called cooperative jamming (CJ). The term refers to
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the cooperation strategy in which a helping interferer transmits
white Gaussian noise when it can hurt the eavesdropper more
than it can hurt the legitimate receiver and hence improve the
achievable secrecy rate. In [5], the idea of helping interferer
was applied to the GWT channel in a scheme tantamount to the
CJ scheme for the two-user multiple access wiretap channel
where one of the users performs cooperative jamming. In [6],
the destination carried out jamming over the feedback channel
to confuse the eavesdropper.
In the context of relay networks with secrecy constraints,

the role of cooperative jamming when the relay node has a
single antenna was further investigated in several works, e.g.,
[7]–[10], and [11]. Cooperative jamming strategies in multiple
antenna relay networks were investigated in [12], [13], and [14].
In [12], a cooperative jamming strategy is proposed when the
relay is equipped with multiple antennas. Under the constraint
that the jamming signals must lie in the subspace orthogonal
to the channel vector between the relay and the destination,
the antenna weights and transmit power of the source and the
relay that maximize the achievable secrecy rate subject to a
total transmit power constraint were derived in a closed form.
In [13], cooperative jamming strategies were proposed for a
half-duplex two-hop multiple antenna relay system where the
eavesdropper’s channel state information was unknown. In [14],
a cooperative jamming strategy is proposed for two-hop relay
networks where the eavesdropper can wiretap the transmission
in both hops. In the model in [14], the source, the destination,
and the eavesdropper have multiple antennas, whereas the relay
has a single antenna. Under similar constraint to the one in
[12], closed-form solutions were derived for jamming beam-
formers that maximize the achievable secrecy rate, and the op-
timal power allocation was obtained using numerical methods.
In all the references above, the role of a helping node was re-

stricted to cooperative jamming, decode-and-forward, and am-
plify-and-forward. However, a helping node can also play other
roles to improve secrecy. In general, in the relay-eavesdropper
channel, the relay, which is assumed to be a trusted entity, can
help improve secrecy either by listening to the source or by
acting as a deaf helper. The role of a relay node to provide and
improve secrecy in a wiretap channel was first studied in [15]. In
particular, [15] introduced another passive (deaf) mode of coop-
eration, called noise forwarding (NF), in which the relay node
sends a dummy (context-free) codeword drawn at random from
a codebook that is known to both the legitimate receiver and
the eavesdropper to introduce helpful interference that would
hurt the eavesdropper more than the legitimate receiver. This
deaf cooperation strategy was applied without power control to
the Gaussian single-relay single-eavesdropper channel in [16].
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The idea of such strategy is to create a virtual multiple access
wiretap channel where only one user (the source) is active, i.e.,
sending relevant information, while the other user (the relay) is
acting as an interferer that sends a signal drawn from a given
codebook. In this way, the destination can perform successive
decoding and cancel out the relay signal and achieve higher se-
crecy rate for the intended message.
In [17], the roles of both CJ and NF strategies in single an-

tenna relay networks were investigated. Reference [17] derives
the conditions under which a deaf helper performing either CJ
or NF strategy would give rise to a larger achievable secrecy
rate than the secrecy capacity of the original GWT channel. In
particular, it was shown in [17], that depending on the relative
location of a helping node with respect to the destination and the
eavesdropper, a helping node may either be a useful jammer or a
useful noise forwarder but not both at the same time. In addition,
the same reference gives the optimal power allocation policy for
each of the two strategies under the assumption that the source,
the deaf helper, the legitimate receiver, and the eavesdropper
have perfect knowledge of all the relevant channel gains.
In this paper, we extend the model in [17] and consider the

case where the deaf helper is equipped with multiple antennas.
Interestingly, this extension leads to a new set of results that
were not available in the single antenna case. In particular, we
show that having multiple antennas allows us to decompose the
relay-eavesdropper channel into two orthogonal components,
one in the direction of the relay-destination channel (direct com-
ponent) and the other in the orthogonal direction to the relay-
destination channel (orthogonal component). Accordingly, we
obtain the optimal deaf cooperation strategy (CJ or NF) along
each channel component. It is intuitive that the orthogonal com-
ponent should be used for cooperative jamming. However, it is
not clear what strategy should be used along the direct compo-
nent. It is not also clear how the relay should distribute its power
on these two components.
In this paper, we fully answer these two questions. We give,

in terms of the model fixed parameters, the necessary condi-
tions for each of the CJ and the NF strategy to be useful when
employed along the direct component, i.e., to improve over the
optimal secrecy rate achievable when the transmission from the
relay is constrained only to the orthogonal component. In par-
ticular, our results show that along the direct component of the
channel either CJ is useful or NF is useful but not both. More-
over, there are some cases (which are described in this paper) in
which neither CJ nor NF is useful along the direct component.
We fully characterize in the closed-form the optimal power al-
location policy at the source and the relay for each of the two
strategies and hence show how the relay should optimally dis-
tribute its power on the two channel components.
Next, we turn our attention to a certain class of the multiple

antenna relay-eavesdropper channels, namely, the reversely de-
graded channel. We show that the strategy in which the relay
jams with full power along the orthogonal component of the
channel and transmits nothing in the direct component is op-
timal when the relay’s average power goes to infinity. In fact,
we even prove a stronger result. The secrecy rate achieved by
this strategy approaches the capacity of the reversely degraded
multiple antenna relay channel as the relay’s average power

increases, and hence this strategy achieves the optimal secure
degrees of freedom (DoF) of the reversely degraded multiple
antenna relay-eavesdropper channel. Interestingly, this strategy
is clearly suboptimal in general for a bounded relay’s power.
Moreover, we show that this result is valid with probability 1
even when the relay-eavesdropper’s channel state information
is unavailable.
Finally, we present numerical examples to illustrate the gains

in the achievable secrecy rates by our CJ and NF strategies when
the relay is equipped with multiple antennas. Our simulation
results clearly show that the rate achievable by our strategies
are, in general, significantly larger than those achieved when no
splitting of power between CJ and NF is allowed.

II. SYSTEM MODEL

We consider the following communication scenario. A
single-antenna source, , sends a confidential message to a
single-antenna destination, , over an AWGN channel in the
presence of an informed eavesdropper, , that also has a single
antenna. The communication also occurs in the presence of a
helper node, , that is equipped with antennas, . The
helper node is assumed to be a deaf relay, i.e., it can only help
improving the secrecy capacity of the GWT by transmitting
interfering signals that are independent of the source message.
By proper scaling of the channel inputs and accordingly modi-
fying the power constraints at the source and the helper nodes,
without loss of generality, one can express the output symbols
and of the GWT channel, with a multiantenna deaf helper,

at the destination and the eavesdropper, respectively, as

(1)

(2)

where is the vector of the channel coefficients be-
tween the helper and the destination , are
the channel coefficient scalar and the channel coefficient vector
from the source and the helper to the eavesdropper, respec-
tively, and are standard Gaussian random variables that
denote the noise at the destination and the eavesdropper, respec-
tively, are the channel input scalar and the
channel input vector at the source and the helper , respec-
tively. The channel inputs are subjected to the following average
power constraints:

(3)

We may write as the direct sum where
, i.e., we decompose into two orthogonal compo-

nents: (in the direction of the legitimate channel ) and
(orthogonal to ). Hence, one can write in (1)–(2) as

the sum of two orthogonal components: (in the direction of
) and (in the direction of ). That is,

where

(4)

(5)
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where and . Thus, we can write
(1)–(2) as

(6)

(7)

Clearly, and , in (4) and (5), are the scaled projections
of in the direction of and , respectively. Note that
and can be arbitrarily correlated. However, in order to ob-
tain closed-form expressions for the power control policy of the
strategies proposed below, we will take both and to be
independent. We call the direct component of the helper’s
signal since it is in the same direction as the channel component
from the helper to the destination while we call the or-

thogonal component of the helper’s signal since it is orthogonal
to the channel component . We define

and . We also define and

. Hence, from (4)–(5), we have

and . Hence, it is easy to see that the second con-
straint in (3) is equivalent to

(8)

Now, we consider the possible signalling and across
the two orthogonal directions using either one of the two sig-
nalling strategies CJ or NF in every direction. Clearly, if the
CJ strategy is used for , the eavesdropper is the only one
who is possibly harmed by the resulting noise, not the destina-
tion. Hence, we assume that the helper will use the orthogonal
component for CJ, i.e., in (5) is a Gaussian random
variable with zero mean and variance . Hence, we distin-
guish between two possible strategies depending on whether the
helper uses the direct component for CJ or NF. In both
strategies, the channel input at the source is a symbol of
the codeword that represents the encoded confidential message.
Such codeword is drawn from an i.i.d. Gaussian codebook, i.e.,
is a Gaussian random variable with zero mean and variance
where . Also, in both strategies, the direct compo-

nent of the channel input at the helper is given by (4) where
is a Gaussian random variable with zero mean and variance
. The difference between the two strategies comes from the

origin of . In the CJ strategy, is Gaussian random vari-
able that plays the role of background noise at both the desti-
nation and the eavesdropper except for the fact that it is gener-
ated artificially. On the other hand, in the NF strategy, is
a symbol of a dummy (context-free) codeword drawn from an
i.i.d. Gaussian codebook that is assumed to be available at both
the destination and the eavesdropper.
If is used for CJ, the achievable secrecy rate [4], [5],

denoted as , is given by

(9)

On the other hand, if is used for NF, the achievable secrecy
rate [15], denoted as , is given by

(10)

where, in (9)–(10), and satisfy the first constraint
in (3) and constraint (8). For the sake of comparison, when there
is no relay involved, the secrecy capacity of the original GWT
channel [18] is given by

(11)

where .

III. MAXIMIZING THE SECRECY RATES ACHIEVABLE
BY DEAF COOPERATION

A. The CJ Strategy

We consider the following optimization problem:

(12)

(13)

where is given by (9). Note that

. Thus, from the second constraint
in (13), it is no loss of optimality to set

(14)

in (12). Hence, the optimization problem given by (12)–(13)
reduces to

(15)

(16)

where

(17)

Again, for the sake of comparison, let denote the optimal se-
crecy rate achievable when no transmission is carried out along
the direct component of the channel, i.e., when the transmission
is constrained only to the orthogonal component of the channel.
Hence, is given by

(18)
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Note that the optimization problem (15)–(16) may look sim-
ilar to the one considered in [17] for the single-antenna case.
However, a notable difference is that could be positive or neg-
ative depending on the relative values of and . In partic-
ular, if and only if , i.e., the magnitude of the
direct component is greater than that of the orthogonal compo-
nent.
Let be the maximizer of (15) subject to (16).

Note that, once is derived, the optimal value of , de-
noted as , can be easily found from (14) where is set to

. The optimal covariance matrices and are given

by and . In the next theorem, we fully de-

rive the optimal power control policy for maxi-
mizing .
Theorem 1: The optimal policy is given as fol-

lows:
1) If , then: , if . , if .

.
2) If , then we have four possibilities depending on the
relative values of and :
a) If , then and .
b) If , then and

.

c) If , then: and , if

. and ,

if .

d) If , then and .
where

(19)
Proof: First, observe that is given by

(20)

It is easy to see that if , then .

Hence, and case 1 follows. On the other hand, case 2
of this theorem is exactly the same as the case of single antenna
relay given by Theorem 2 in [17].
Theorem 1 tells us that CJ along the direct component can be

useful only when the magnitude of the direct component of is
larger than that of the orthogonal component, i.e., when .
Otherwise, the optimal power allocation strategy at the multiple
antenna deaf helper would be to jam only along the orthogonal
component and transmit nothing along the direct component.

B. The NF Strategy

Here, we consider the following optimization problem

(21)

(22)

where is given by (10). For fixed power
values , we define

(23)

(24)

Hence,

(25)

It is easy to see that and and thus

. Hence, from the second constraint in
(22), it is no loss of optimality to set
in (21). Hence, the optimization problem given by (21)–(22) re-
duces to

(26)

(27)

where

(28)

(29)

where are as defined in (17) above, and

(30)

As mentioned earlier, can take a positive or negative value
depending on the relative values of the magnitudes of the direct
and orthogonal components of the helper-eavesdropper channel.
Moreover, we note that the factor in given by
(29) appears only when the helper has multiple antennas.
Let be the maximizer of (26) subject to (27).

As discussed above, once is derived, the optimal value of
, denoted as , can be easily found from (14) where

is set to . The optimal covariance matrices and

are given by and , respectively. Before we

give the optimal power control policy , we first
give the following useful lemmas.
Lemma 1: A necessary condition for the NF strategy to be

useful along the direct component of the channel is to have
and .
Proof: First, to show that is necessary, suppose that

, one can easily verify that for all
which implies that achievable rate is upper bounded by

which is indeed the secrecy rate achiev-
able when the transmission at the relay is constrained to the
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orthogonal component of the channel. On the other hand, sup-
pose that . Now, if , then we clearly have

for all

. If , then for all

. Thus, we have for all
.

Lemma 2: Let
and . If the conditions
of Lemma 1 hold, i.e., if

(31)

then, for any fixed where

(32)

we have if and only if

(33)

Consequently, if conditions (31)–(32) hold, then

(34)

Proof: Define as the numerator of

. Note that the sign of is the
same as the sign of for all . It is
easy to verify that is given by

(35)

Fix and let denote the two roots of

. Since , then if
and only if . However, it is not hard to
see that for any . Thus, for any ,

we have if and only if
where where is given in (33). Thus,
it remains to show that (and hence
is not empty) whenever where is given in
(32). We note that if and only if . Since
is quadratic in , it is not hard to see that whenever
lies between the two roots of . However, one of the roots is
negative and the other is positive due to the fact that .
Indeed, the positive root is . Hence, and consequently

whenever .
In the next theorem, we fully derive the optimal power policy

for maximizing . A proof of this theorem is
given in Appendix A.
Theorem 2: Let be the value of such that

, i.e.,

(36)

Let be as defined in (33). The optimal policy
is given as follows:
1) If , then: , if . , if .

.
2) If : We have the following four possibilities de-
pending on the values of , and :
a) If , then: , if . ,
if . .

b) If , then: .

, if .

, if .
c) If , then:

i) If , then: .

, if

. , if .

ii) If ,

,

then: ,

if

.

, if

, where

are the optimal values ,
respectively, of case 2(c-i) above,
whereas .

, where

(37)

iii) If ,

then: .

, if

. , if .
iv) If , then

and .
d) If , then:

i) If , then .

ii) If ,

,

then and

,

where is given by (37).
iii) If , then

.
iv) If , then

and .
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C. CJ Versus NF

In the next corollary, we use the results of the above two the-
orems to compare the two strategies. In particular, we show in
terms of the parameters of the deaf cooperation model when
it is better to use CJ than NF for transmission along the direct
component and vice versa. We also give the conditions for
which both CJ and NF along the direct component are useless.
Corollary 1: Let , and be as defined in (17) and (30),

respectively. For the CJ along the direct channel component to
be useful, it is necessary to have . Whereas, for
the NF along the direct channel component to be useful, it is
necessary to have . In other words,

(38)

(39)

Hence, if

(40)

neither CJ nor NF along the direct component is useful, i.e.,
. Moreover, if, in addition to (40), ,

then and , i.e., the optimal
power strategy at the relay in this case is to jam with full power
along the orthogonal component and transmit nothing along the
direct component. Whereas, if, in addition to (40), , then

, i.e., no transmission occurs at all
and hence the achievable secrecy rate is zero in this case.

IV. REVERSELY DEGRADED RELAY-EAVESDROPPER CHANNEL
WITH A MULTIANTENNA RELAY

In this section, we consider a similar model to the one de-
scribed in Section II except for two differences. First, we assume
that the relay receives a vector which is a noisy version of the
source transmission and hence the relay can use this observation
in one way or another to help increase the achievable secrecy
rate. Second, we assume that, given the relay’s channel input
, the relay’s observation is a degraded version of the destina-

tion’s observation. In particular, we consider the system where
the destination’s and the eavesdropper’s observations are given
by (6) and (7), respectively. The relay’s observation, ,
is given by

(41)

where is the vector of equivalent channel coefficients
from the destination’s observation to the relay’s observation
, is the matrix of channel coefficients from the

relay’s input to the relay’s output , and is
AWGN vector of zero mean and identity covariance matrix and
is independent of . Accordingly, we have the
following Markov chain . We further as-
sume that in (7) , i.e., given the source’s input , nei-
ther the destination’s observation nor the eavesdropper’s ob-
servation is a degraded version of one another.

In the following theorem, we show that for the channel de-
scribed in this section, using only the CJ strategy over the or-
thogonal component (no signaling over the direct compo-
nent ) yields a secrecy rate that approaches the secrecy ca-
pacity of this channel as . In other words, we show that
for high SNR over the relay-destination and the relay-eaves-
dropper channel, the secrecy rate achieved by CJ over the or-
thogonal component of the relay-eavesdropper channel (and no
signaling over the direct component) approaches the secrecy ca-
pacity of the channel described above, and as a consequence,
this strategy achieves the optimal secure DoF of such channel.
Theorem 3: Let be the secrecy capacity of the re-

versely degraded relay-eavesdropper channel given by (6), (7),
and (41) for a given value of the relay’s average power con-
straint . Suppose that . Let be of (18)
written as a function of , i.e., denote the secrecy rate
achievable by using the total source’s power for information
transmission and using the total relay’s power for CJ along
the orthogonal component of the relay-eavesdropper channel
(i.e., setting , and in any one
of the two strategies described in Section III). Then, for every

, there is a sufficiently large value such that

(42)

In particular,

(43)

where is the capacity of the Gaussian
channel between the source and the destination when there is
no eavesdropper in the system.
In Theorem 3, one should note that is indeed an upper

bound on the secrecy capacity of the reversely degraded relay-
eavesdropper channel. This is due to the fact that the relay in
this case cannot increase the reliable information rate from the
source to the destination and hence the capacity of the relay
channel with no secrecy constraints is indeed . Therefore,

is an upper bound on the secrecy capacity of the reversely
degraded relay-eavesdropper channel. It is easy to see that

(44)
Hence, (43) follows. This indeed proves (42).
We can even make a stronger statement than the one Theorem

3. In fact, if the relay-eavesdropper channel is unknown at
all the nodes (except possibly the eavesdropper itself), we let the
relay choose at random a signaling direction for jamming in the
subspace orthogonal to , i.e., chooses a unit vector at
random and chooses the covariance matrix of as .
In this case, conditioned on some choice of , the achievable
secrecy rate by this strategy, as a function in , is given by

(45)
It is clear that with probability 1. Hence,

almost surely as . Thus, even if
the relay-eavesdropper’s channel is unknown, the result of
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Fig. 1. Optimal achievable secrecy rates by our CJ and NF strategies,
and , the optimal achievable secrecy rate with no transmission along the
direct channel component, , and the secrecy capacity of the original Gaussian
wiretap channel, , as functions where, as in Section II, is defined

as .

Theorem 3 would still hold with probability 1. This stronger
result is stated formally in the following theorem.
Theorem 4: If the relay-eavesdropper’s channel information
is unavailable (except possibly at the eavesdropper), then

using a simple randomized version of the relay’s strategy given
in Theorem 3, the achievable secrecy rate converges to

as with probability 1 where is the capacity
of the Gaussian channel between the source and the destina-
tion when there is no eavesdropper in the system. Hence, with
probability 1, approaches the secrecy capacity of the re-
versely degraded relay-eavesdropper channel with multiple an-
tennas at the relay as the total average relay’s power becomes
sufficiently large.

V. NUMERICAL RESULTS

First, consider the system described in Section II. We com-
pare the optimal secrecy rates and achievable by
our CJ and NF strategies proposed in Section III with the op-
timal secrecy rate achievable by the strategy that uses only
the orthogonal component of the channel for CJ. We also com-
pare these rates to the secrecy capacity of the original
Gaussian wiretap channel with no relay. In Fig. 1, we set

and . We plot
and versus , , where,

as in Section II, is defined as . It is clear from Fig. 1
that the necessary conditions given in Corollary 1 for

and are satisfied here. Note that the neces-
sary condition in Corollary 1 for is equivalent to

, i.e., (or equivalently,
). Note also that the necessary condition in Corol-

lary 1 for is equivalent to ,
i.e., (or equivalently, ). It
is clear that, in general, our CJ and NF strategy yields greater
secrecy rates than and .
Next, we consider the case where the relay is constrained

to using only one of the two modes (CJ or NF) over all the
channel components, i.e., the relay cannot split its power
between CJ and NF. We denote the optimal secrecy rate (with

Fig. 2. Optimal achievable secrecy rate by our NF strategy, , the optimal
achievable secrecy rate by the single-mode CJ strategy, , the optimal
achievable secrecy rate by the single-mode NF strategy, , and the
secrecy capacity of the original Gaussian wiretap channel, , as functions

.

power control) achievable in this case by either or
depending on the single mode of deaf coopera-

tion that the relay is using. It is clear that
where is the optimal secrecy rate achieved by our CJ
strategy since in this strategy the relay jams over the two
orthogonal components of the channel and hence it is indeed
a single-mode strategy. However, in our NF strategy the relay
uses the orthogonal component for CJ whereas it uses the
direct component for NF. Therefore, intuitively, we must have

in general. To illustrate this, in Fig. 2, we
plot and versus ,

. The values of and are fixed
and chosen as in the previous example.
Finally, we consider a reversely degraded relay-eavesdropper

channel with multiple antennas at the relay as the one described
in Section IV. In Fig. 3, we illustrate the result of Theorem 3.
We fix . We plot the achievable secrecy rate
of Theorem 3 as a function of for three different values

of the channel gain , namely, and 1.5. In
this example, the capacity of the Gaussian channel between the
source and the destination without secrecy constraints is

bits/channel use. It is clear from Fig. 3
that converges to as increases and the rate of
convergence increases as decreases.

VI. CONCLUSIONS

In this paper, we extended the idea of deaf cooperation to
the multiantenna deaf helper model. We showed that the mul-
tiple spatial dimensions available in this model can be exploited
in the deaf cooperation paradigm by possibly decomposing the
relay-eavesdropper channel into two components, a direct com-
ponent in the direction of the relay-destination channel and an
orthogonal component that is orthogonal to the relay-destina-
tion channel. We proposed two strategies for deaf cooperation
in this model. In one strategy, the direct component is used by
the relay to perform NF whereas in the other strategy, it is used
for CJ. In both strategies, the orthogonal component is used
for CJ. Under the assumption of independent signaling along
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Fig. 3. Achievable secrecy rate of Theorem 3 as a function of , ,
the capacity of the Gaussian channel between the source and the destination
without secrecy constraints, , and the secrecy capacity of the original
Gaussian wiretap channel, .

each component, we derived the optimal power allocation for
each strategy. We also found the necessary conditions for each
strategy to be useful, i.e., to achieve secrecy rate higher than the
secrecy capacity of the original Gaussian wiretap channel and
showed that both strategies cannot be useful at the same time.
Finally, we considered the reversely degraded relay channel and
showed that by using a simple CJ strategy, we can approach the
secrecy capacity of this reversely degraded channel as we in-
crease the relay’s power.

APPENDIX
PROOF OF THEOREM 2

For cases 1 and 2(a), the proof of these cases follows easily
from Lemma 1. Before we prove the rest of the cases, one can
easily see that the conditions below hold for the rest of the cases,
i.e., whenever and .

(46)

(47)

(48)

(49)

(50)

Also, from Lemma 1, we have

(51)

Now, we consider case 2(b). From (46) and (48), both
and are increasing in . Hence, . We have
one of the following two cases depending on whether .
First, if , then it follows from (51) that, ,
as a function of , attains its unconstrained maximum at

. On the other hand, from (46), ,
as a function of , is increasing in for all
and hence the curves of and
may intersect at some positive (note that they already
intersect at ). It is easy to see that such point is
indeed given by (36). Note also that

whenever , i.e.,
whenever . Hence, the uncon-

strained maximizer of as a function of

is . Since both and

are increasing in for all

, it follows that the constrained maxi-

mizer is given by .

If , then from (51), (and consequently
) is upper bounded by which

is the optimal secrecy rate achieved when there is no transmis-
sion along the direct channel component. Hence, .
Next, we consider case 2(c). From (46), is

increasing in for all . In case 2(c-i), from (49),
is also increasing in for all and for

all . Hence, in this case . The rest
of case 2(c-i) follows using the same argument of case 2(b).
We analyze the rest of the subcases of (c) as follows.

Since in these subcases , we solve the
optimization problem in two steps. First, we find the
local maximizer of for

. Then, we find the local maxi-

mizer of for

. Finally, we set
if and set

otherwise.
Clearly, can be easily obtained in the same

way the maximizer in case 2(c-i) was obtained. In particular,
and

if whereas if . We consider now
the case where

(52)

From (46) and (49), it follows that, for all satisfying (52),
is increasing in whereas is

decreasing in . Let be the value of such that
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. It is easy to see that
is given by

(53)

It follows from (53) that in order to have
for some , we must have

(54)

Now, consider the maximizer of

(55)

subject to conditions (52) and (54), i.e., subject to

(56)

It is not hard to check that has one
unconstrained maximum at where
is given by (37). Hence, if the interval in (56) is not
empty, then the constrained maximizer of (55) subject
to (56) is given by . Hence,

. Consequently, from

(53), .
If the interval in (56) is empty, then we have either one of two

cases. That is or .

First, if , then for all

and all . Hence, the choice of

is irrelevant in this case and the maximizer of
is given by . Second, if
, then for all
and all . Hence,

for all and all .
Thus, it follows from (46) and (47) that the maximizer of
is given by .
Finally, we consider case 2(d). To prove the statement in case

2(d-i), we note that

(57)
Hence, if , then we necessarily have

for all and all .
Thus, in this case, . For the rest of the

subcases of 2(d), the proof follows the same steps of the proof
of cases 2(c-ii), 2(c-iii), and 2(c-iv) above.
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