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Abstract—This paper presents a new database suitable for
both 2-D and 3-D face recognition based on photometric stereo
(PS): the Photoface database. The database was collected using
a custom-made four-source PS device designed to enable data
capture with minimal interaction necessary from the subjects.
The device, which automatically detects the presence of a subject
using ultrasound, was placed at the entrance to a busy workplace
and captured 1839 sessions of face images with natural pose and
expression. This meant that the acquired data is more realistic
for everyday use than existing databases and is, therefore, an
invaluable test bed for state-of-the-art recognition algorithms.
The paper also presents experiments of various face recognition
and verification algorithms using the albedo, surface normals, and
recovered depth maps. Finally, we have conducted experiments in
order to demonstrate how different methods in the pipeline of PS
(i.e., normal field computation and depth map reconstruction) af-
fect recognition and verification performance. These experiments
help to 1) demonstrate the usefulness of PS, and our device in par-
ticular, for minimal-interaction face recognition, and 2) highlight
the optimal reconstruction and recognition algorithms for use
with natural-expression PS data. The database can be downloaded
from http://www.uwe.ac.uk/research/Photoface.

Index Terms—Face database, face recognition/verification, pho-
tometric stereo.
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I. INTRODUCTION

HERE have been a plethora of face recognition algorithms

published in the literature during the last few decades.
During this time, a great many databases of face images, and
later 3-D scans, have been collected as a means to test these
algorithms. Each algorithm has its owns strengths and limita-
tions and each database is designed to test a specific aspect of
recognition. This paper is motivated by the desire to have a face
recognition system operational where users do not need to in-
teract with the data capture device and do not need to present a
particular pose or expression. While we do not completely solve
these immensely challenging problems in this paper, our aim is
to contribute towards this endeavour by means of:

1) Construction of a novel 3-D face capture system, which
automatically detects subjects casually passing the device
and captures their facial geometry using photometric stereo
(PS)—a 3-D reconstruction method that uses multiple im-
ages with different light source directions to estimate shape
[2]. To the best of our knowledge this is one of the first re-
alistic commercial acquisition arrangements for the collec-
tion of 2-D/3-D facial samples using PS.

2) Collection of a 2-D and 3-D face database using this de-
vice, with natural expressions and poses.

3) Detailed experiments on a range of 3-D reconstruction and
recognition/verification algorithms to demonstrate the suit-
ability of our hardware to the problem of noninteractive
face recognition. The experiments also show which recon-
struction and recognition methods are best for use with nat-
ural pose/expression data from PS. This is one of the first
detailed experimental studies to demonstrate how different
methods in the pipeline of PS affect recognition/verifica-
tion performance.

II. RELATED WORK AND CONTEXT

A. Face Databases

Face recognition researchers have been collecting databases
of face images for several decades now [3, Chapter 13]. While
some databases can be regarded as superior to others, each of
them are designed to test different aspects of recognition and
have their own strengths and weaknesses. One of the largest
databases available is the FERET database [4]. This has a total
of 1199 subjects with up to 20 poses, two expressions and two
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light source directions. The FERET database was originally ac-
quired using a 35 mm camera. Others, for example the widely
used CMU PIE database [5] or the Harvard RL database [6],
concentrate specifically on varying the capture conditions such
as pose and illumination. Another popular database collected
for the purpose of face verification under well-controlled con-
ditions is the XM2VTS database [7].

The PIE database is one of the most extensively researched.
This is due to the fact that the faces are captured under highly
controlled conditions involving 13 cameras and 21 light sources.
The Yale B database [8] offers similar advantages to the PIE
databases except with an even larger number of lighting condi-
tions (64) using nine poses. However, the Yale B database in-
cludes just ten subjects. The original Yale database [9] was de-
signed to consider facial expressions, with six types being im-
aged for 15 subjects. Finally, the extended Yale B database was
published which contains 28 subjects with 9 different poses and
64 illumination conditions [10].

Even though the PIE [5], Yale [8] and extended Yale [10]
databases provide facial samples taken under different illumi-
nation directions, they contain few subjects. More recently, the
CMU Multi-PIE database [11] has been constructed with the
aim of extending the image sets to include a larger number
of subjects (337) and to capture faces taken in four different
recording sessions. This database was recorded under controlled
laboratory conditions, as with the others mentioned above.

A recently emerged trend in face recognition research has
been to incorporate three-dimensional information into the
recognition process. This has naturally lead to the collection
of databases with 3-D facial samples.! This trend is due to the
fact that changes in viewing conditions (e.g. lighting variation)
adversely affect the 2-D appearance of a face image but not
the 3-D appearance. The number of existing databases con-
taining 3-D facial samples suitable for 3-D face recognition is
constantly increasing. In the what follows we briefly present
the publicly available ones, categorizing them according to the
degree of difficulty in obtaining 3-D face samples and their
equipment cost.

1) 3-D Face Databases: One of the first publicly available
datasets containing 3-D face samples for face verification
was presented in [13], [14]. The database contains approxi-
mately 100 subjects. It was collected using the structured light
technology, a low cost technology that is widely used in our
days (for example in kinect?). However, despite the obvious
advantage of being of low cost, the commodity structured light
technologies offer smaller spatial resolution, causing many
captured models to have missing parts and holes. More recent
publicly available databases that employ more sophisticated
commercial structured light technology include the Bosphorus
[15] and the University of York 3-D [16], [17] databases. The
Bosphorus database, that can be used both for facial expression

! Another trend in face recognition is totally unconstrained face matching
(suitable for face tagging experiments) and a database for this task called “La-
belled Faces in the Wild” has been recently collected [12], but this trend is out
of the scope of the paper, since in this paper we aim at describing a database
suitable for an industrial setting.

ZKinect is a registered trademark of Microsoft Corp.

and face recognition experiments, was captured using a com-
mercial structured light based 3-D digitizer device, the Inspeck
Mega Capturor II 3-D.3 It contains (the face recognition exper-
iments version) 47 subjects with 53 face scans per subject. The
University of York 3-D face database consists of 350 subjects
with different facial expressions (happiness and anger) as well
as images with closed eyes and raised eyebrows.

One of the most widely known datasets of 3-D facial sam-
ples is the FRGC database [18] and its extension, namely ND
2006 [19]. The FRGC database is a multipartition 2-D and 3-D
database that contains a validation set consisting of 466 sub-
jects to a total of 4007 images. The ND 2006 database consists
of 888 subjects and multiple images per subject of various posed
facial expressions (happiness, disgust, sadness and surprise).
Both databases were captured using a rather expensive camera,
the Minolta Vivid 910 laser range scanner [20], that provided
3-D face samples of up to 112,000 vertices and requires the full
cooperation of the client. Another database that was collected
using the same camera is the CASIA 3-D Face database [21],
[22]. It consists of 123 subjects with 10 images per subject dis-
playing different facial expressions (smile, laughter, anger and
surprise) and closed eyes.

A laser digitizer (the Minolta VI-700 digitizer) was used for
capturing the GavabDB database [23]. It contains 61 subjects
(all Caucasian) displaying different smiles (open/closed mouth)
and random facial expressions that each subject chose. Two pub-
licly available databases that have been mainly used for 3-D/4-D
facial expression recognition but could also be used for face
recognition, are the BU3D [24] and BU4D [25] databases. Both
of the databases were captured using 3DMD acquisition setups,
combining in that way passive and active stereo. However, these
setups are of high cost and require the full collaboration of the
subject. Both of the databases consist of approximately 100 im-
ages, but unfortunately they contain only one session, some-
thing that does not meet with the requirements for face recogni-
tion. The Texas 3-D Face Recognition Database [26], [27] con-
sists of 3-D models that were captured using an MU-2 stereo
imaging system (similar to the used in BU3D) and contains
105 subjects.

The purpose of the new database described in this paper is
to capture a large number of faces in 3-D from a more indus-
trial setting. However, most existing 3-D capture devices (e.g.
[20], [28]) are both financially and computationally expensive
which can be highly inhibiting for commercial application. By
contrast, we use a four-source high-speed capture arrangement
(which now can be easily deployed with even less than GBP
2 K pounds), which permits the use of PS methods [2] to re-
cover the 3-D information with minimal computational expense.
Furthermore the device is significantly financially cheaper than
most other 3-D capture mechanisms. A photograph of our de-
vice is shown in Fig. 1 and will be explained in more detail in
Section III.

Another advantage of our capture mechanism is that PS
methods have a one-to-one relationship between the surface
normals and the resolution of the acquired image. This means

3Which costs about 11 K pounds
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Fig. 1. Image capture device. One of the light sources and an ultrasound trigger
are shown to the left. The camera is located at the back panel.

that each pixel corresponds to a facet with one normal. More-
over, methods that provide subpixel reconstructions using PS
are available [29] allowing lower resolution capturing devices
to provide detailed estimates. It should be mentioned that this
one-to-one relationship allows detailed reconstructions with
applications in other areas such as object inspection for defects,
surveillance and recognition.

So the aim here is to capture poses and expressions that are as
natural as possible. For this reason, we placed our capture device
near the entrance to a busy workplace and gave all of the volun-
teer subjects the sole instruction to “walk through the archway”.
The database therefore offers an ideal testbed for face recogni-
tion algorithms designed for real world applications where min-
imal interaction is desired. As PS can be applied to the four im-
ages (one image per light source) to calculate the 3-D structure
of the face, the database also allows for both 2-D, 3-D and hy-
brid algorithms to be evaluated. Our database consists of 1,839
capture sessions of 261 subjects.

B. Reconstruction and Recognition Methods for PS Data

In addition to describing the device and the database, we also
present experiments on the Photoface database by applying face
recognition and verification techniques on the albedo, depth and
surface normal images—all of which may be calculated from
PS. For the case of the albedo, we applied algorithms from two
of the most popular families of face recognition from intensity
images:

1) subspace methods such as Principal Component Analysis
(PCA), Nonnegative Matrix Factorization (NMF), Linear
Discriminant Analysis (LDA) [30], [31] etc. using the vec-
torized albedo images as feature vectors,

2) feature-based methods using Elastic Graph Matching
(EGM) architectures [32]-[34].

For the depth map, we applied exactly the same methods as in
the case of albedo images. Finally, for the normals we propose a
novel method based on metric-multidimensional scaling of the
L1-norm of angles.

We stress at this point that the experiments are intended to test
the various algorithms on PS data of natural pose and expres-
sion specifically. The focus therefore is neither to compare var-
ious 2-D/3-D face recognition and verification methods against
each other for general application nor to demonstrate that fu-
sion of information of 3-D and 2-D data increase the recogni-
tion performance [35], [36]. A comparative study of 3-D face
recognition/verification methods was recently published in [36],
where a large inventory of 3-D recognition methods were imple-
mented and tested on various representations of facial geometry
(i.e. depth images and normal fields). Moreover, the authors of
[36] applied various fusion strategies on the results of 3-D face
recognition methods. Another recent study on the fusion of in-
formation of intensity and depth images was presented in [35].

The aims of the experiments conducted in this paper are:

* to demonstrate how different methods in the pipeline of PS
(i.e. normal field computation and depth map reconstruc-
tion methods) affect recognition/verification performance

* to verify that a similar conclusion to [35] can be drawn
for the modalities derived from PS methods. In particular
we would like to verify that (1) similar recognition perfor-
mance can obtained using a single 2-D intensity image or
a single 3-D image (or normal field), (2) 2-D + 3-D face
recognition performs better than using either 3-D or 2-D
alone and (3) fusing results from two 2-D or 3-D images
using a similar fusion scheme as used in multimodal 2-D
+ 3-D also improves performance over using a single 2-D
image.

We applied three different PS methods in order to compute the
normal field and the albedo image and five different integration
methods that compute the height map from the normal field. To
the best of the authors’ knowledge this is the first experiment on
a real-world PS database which also explores the affect of the
use of different methods in the processing pipeline.

The rest of the paper is organized as follows. In Section III the
device for image capture and the collected database is described.
In Section IV, we describe the PS methods for the computation
of the albedo and normal field. In Section V we describe the
methods for surface reconstruction. In Section VI we describe
the methods we tested for face recognition using albedo, depth
maps and normal fields. Experimental results are described in
Section VII. Finally, conclusions are drawn in Section VIII.

I1I. HARDWARE AND DATABASE COLLECTION

A. The Device

The Photoface database was collected using the custom-made
four-source PS device shown in Fig. 1. Unlike previous con-
structions, our aim was to capture the data using hardware that
could easily be deployed in commercial settings. Individuals are
told to walk through the archway towards the camera located
on the back panel and exit through the side. This arrangement
makes the device suitable for usage at entrances to buildings,
high security areas, airports etc. The presence of an individual
is detected by an ultrasound proximity sensor placed before the
archway. This can be seen in Fig. 1 on the horizontal beam to-
wards the left-hand side of the rig.
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The hardware components used to create the system were as
follows:

e Camera: Basler 504 kc with Camera Link interface oper-
ating at 200 fps. 1 ms exposure time. Placed at a distance
of approximately 2 m from the head of the subject.

* Lens: 55 mm, f5.6 Sigma lens.

* Light sources: low cost Jessops M100 flashguns, at a dis-
tance of approximately 75 cm from the head of the subject.

* Device trigger: Baumer highly directional ultrasound prox-
imity switch. Range 70 cm.

e Hardware 10 card (for interfacing the camera, frame
grabber and light sources): NI PCI-7811 DIO with Field
Programmable Gate Array (FPGA).

* Frame grabber: NI PCle-1429.

* Interfacing code: NI LabVIEW (the reconstruction and
recognition algorithms were written in MATLAB).

The device also contains a monitor (as can be seen in Fig. 1)
that provides instructions and could be used to indicate whether
or not an individual was recognized in the case of a recognition
scenario, or whether an identity claim was accepted or rejected
in the case of a verification scenario.

The device captures one image of the face for each light
source in a total of approximately 20 ms. This rate of image cap-
ture, which we adopt for all our experiments, was regarded as
adequate to reduce the interframe motion to below a few pixels.
The only case in which the performance of the system can be ex-
pected to deteriorate significantly, is when a person runs through
the device. This required frame rate was determined through ex-
perimentation. Fig. 2 shows an example of four raw images of
an individual. The resolution of the original image captured is
1280 x 1024 px, although the images in our database are auto-
matically [37] cropped to the face itself (typically of the order
600 x 800 px).

The capture device was placed at the entrance of a busy work-
place for a period of four months. Volunteer employees casually
passed through the booth at regular intervals throughout this pe-
riod. No instructions were given, other than to ask them to walk
through the archway towards at the camera and monitor. Thus,
the volunteers typically passed through the device on their way
in and out of the building. This arrangement is of great impor-
tance for face recognition testing as:

1) It meant that the capture conditions were realistic for a
real-world example. This is in contrast with existing face
databases such as the widely used CMU-PIE database [11]
or the FRGC database [18].

2) The whole setup was noninvasive, thus being suitable for
any recognition algorithms developed for immediate com-
mercial use.

B. Statistics of the Database

The Photoface database was collected between February and
June 2008. It consists of a total of 1,839 sessions 0f261 subjects*
and a total of 7,356 images. Some individuals used the device
only once, while others walked through it more than 20 times.
The majority of people in the database are male (227 compared
to 34 female). Furthermore, the subjects are predominantly Cau-

4The database now contains 3187 sessions of 453 subjects.

casian (257 subjects). Due to the lack of supervision, most of
the captured faces in the database display an expression (for ex-
ample, more than 600 smiles and more than 200 surprises, open
mouth, scream like expression etc. were recorded).

Regarding repeat usages, 98 people walked through the
device only once. For 126 of the 163 subjects that used the
device more than once, the sessions were collected over a
period of more than a week’s interval. For the majority of
those (90 people), this interval was greater than one month.
The number of images corresponding to the number of subject
recordings by the device is depicted in Fig. 3.

IV. PHOTOMETRIC STEREO FOR SURFACE NORMAL
COMPUTATION

This section presents the various PS methods that we adopt to
estimate the surface normal at each pixel from the raw images.
We first summarize the original method [2], [38, Section 5.4],
which we later apply to three and four sources. This is followed
by a ray tracing method and an optimization method: both of
which aim to diminish complications such as shadows and high-
lights.

A. Standard Photometric Stereo

The original method for PS assumes Lambert’s Law and es-
sentially derives a matrix equation for the expected intensity
at each pixel for given light source directions, 1, and surface
albedo, p. For a single light source, Lambert’s law can be written
for a pixel at location x = [z, 4] as

I(x) = p(x)1"n(x) M
where I(x) is the measured pixel intensity and n(x) is the sur-
face normal. This is extended to NV light sources using the fol-
lowing matrix equation:

(1) B(x) - Iy(x)] T = o) I 15+ 15] " nix) - @)
where 1,,,(x) is the mth measured pixel intensity and 1,,, is the
mth light source vector. Using measured intensity values from
the images and assuming that the light source vectors are known
a priori, we can then use this equation to solve for the albedo
and the surface normal components at each pixel. Note the as-
sumption that the camera response is linear.

We have mainly concentrated on a four-source version of
the technique, although we have also compared our results to
methods using three sources. For the latter, we omitted the
upper-right source in Fig. 1 from the computation. The choice
of which source to remove was somewhat arbitrary although
we should note that the choice does have an impact on the
reconstructions as some sources cause more shadows than
others.

B. A4 Ray Tracing Method for Photometric Stereo

In many cases of PS usage, it is desirable to use all available
light sources in the reconstruction in order to maximize robust-
ness. However, where one or more sources do not illuminate the
entire surface due to a self/cast shadow, it becomes disadvanta-
geous to use all the sources. In the case of a face, this is most
likely to happen around the nose and outer edges of the cheeks,
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Fig. 2. Four images taken under the different lights (only the facial region)
(@-(d).
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Fig. 3. Number of subjects versus number of repetitions. Note that about
20 people walked through the device more than 20 times.

as shown in Fig. 2. Argyriou and Petrou recently proposed a re-
cursive algorithm for PS in the presence of self and cast shadows
and highlights [39]. The algorithm works with as few as three
light sources, but can be generalized for arbitrary V.

Initially, the problematic areas of the surface are identified
based on the fact that there exists be a linear equation expressing
the relationship between the N illumination direction vectors.
In the next step, standard PS is applied, and prior to integra-
tion, the problematic areas are removed. The self and the cast
shadows are then estimated from the reconstructed surface from
ray tracing. Using the newly available information on shadows,
PS is applied again using only the useful (i.e., those not causing
shadow or highlights) lights. If erroneous areas still exist, they
are regarded as highlights and the corresponding illumination

sources are removed from the computation. In the final step, PS
is applied using the shadow and highlight free sources.

This reconstruction method is therefore able to identify areas
where some of the lighting directions result in unreliable data,
providing the capability to adjust a reconstruction algorithm and
improve its performance accordingly. The main advantage is
that it does not rely on individual pixels to locate shadows, but
is based on the entire surface resulting in more reliable shadow
maps.

C. Mitigation of Shadow Effects

Another recently proposed method to address shadow effects
was presented by Hansen ef al. [40]. This method assumes that
no points on the face are shadowed by more than one source.
The surface normal that is adopted for each point is then taken
as a linear combination of the estimate using all four sources
and that using the best combination of three sources.

More formally, the optimal surface normal estimate ngy, is
given by:

opt (X, 6(x)) = e(x)nz(x) + (1 —e(x))n(x) ()

where ¢ is a measure of the likelihood of a pixel being in shadow
and nj is the surface normal estimated from the optimal three
light sources. The value of £ varies between 0 and 1. For the case
where ¢ = 0, the pixel in question is definitely not in shadow
and so all four sources are used. For ¢ = 1, the pixel is deep in
shadow, so only three sources are used. For intermediate values
of £, a mixture of n and n3 are used.

The vector ng is calculated using (2) with N = 3 and the
three light sources are chosen that give the brightest intensities.
The mixing factor, ¢, is determined based on the discrepancy be-
tween the measured intensity corresponding to the light source
not used to calculate ns and the expected value based on Lam-
bert’s Law and n3.

V. FROM SURFACE NORMALS TO SURFACES

In this section we review the problem of reconstructing a
surface (often called a depth map) from the recovered field
of surface normals. This suggests representing the surface as

(x, f(x))
n(X)—\/m< dz’ C’)y’l) @

Let us assume that the computed value of the unit normal at
some point x is n(x) = [a(x),b(x), c(x)]%, as calculated by
(2) for example. Then

of _ax) Of _ b(x)

or  ¢(x) % - e(x)’ )

To recover the depth map, we need to determine f(x) from
the computed values of the unit normal. Of more formally,
let us consider a rectangular grid (z.,y) of image pixels. Let
p(x,y),q(x,y) denote the given nonintegrable gradient field
over this grid. Given the gradients, the goal is to obtain a
surface f.
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During the past twenty years there was a wealth of research
concerning the recovery of depth map from normals [41]-[45].
In this work we applied the following five algorithms

* Frankot-Chellappa [41] (which is abbreviated as FC).

FC algorithm [41] enforced integrability in Brooks and
Horn’s algorithm [46] in order to recover integrable sur-
faces. Integrable surfaces are the ones that obey the fol-
lowing

2f  0f
dxdy  Oyodx’

(6)

Surface slope (depth) estimates from their iterative scheme
were expressed in terms of a linear combination of a fi-
nite set of orthogonal Fourier basis functions. More specif-
ically, this algorithm reconstructs the surface f by pro-
jecting p, ¢ onto the set of integrable Fourier basis func-
tions. Let F'(f(x,y)) = [ [ f(=, y)e 1€y drdy de-
note the Fourier transform of f(x, y). Thus, given p, g, then
f is obtained as

LGP () + &P (9)
I=r <'] e+ )

» the variation of Frankot-Chellappa method proposed in
[42] using instead of bases of the Discrete Cosine Trans-
form instead of bases of the Fouier transform (this method
is abbreviated DCTFC).

 the least-squares approach [43] (abbreviated as LS). Let
fu, [y denote the gradient field of f. The LS approach [43]
minimizes the least square error function given by

1= / / ((fo—p)? +(fy — @) dady.  (8)

(7

The Euler-Lagrange equation gives the Poisson equation:
V2f = (0p/Vz) + (0q/Vy). We can write {f,, f,} =
{p,q} + {€x: €y}, Where €, €, denote the correction gra-
dient field which is added to the given nonintegrable field
to make it integrable. Thus the Poisson solver minimizes
J(f) = [ [(€2 +¢€)dudy and that solution minimizes the
norm of the correction gradient field. It is however, well
known that a least square solution does not perform well
in the presence of outliers.

 the method proposed in [44] (abbreviated as ‘AT’). The AT
algorithm utilizes a purely algebraic approach to enforce
integrability to an estimated gradient field in the discrete
domain that has nonzero curl (curl(p,q) = (dp/dy) —
(8q/0x)). This approach corrects for the curl of the given
nonintegrable gradient field by solving a linear system.
Furthermore, this approach is noniterative and has the im-
portant property that the errors due to nonzero curl do
not propagate across the surface. The extra computation
cost for this method concerns the computation of the min-
imal set of edges to construct a connected graph. However,
the most significant computational expense corresponds
to finding the minimum spanning tree of the image graph
(for which standard algorithms are available). In [44] first
all edges in the graph corresponding to nonzero curl were
broken. The resulting graph was connected by finding the
set of links with minimum total weight by assigning curl

values as weights. Two types of edge weights were used:
one based on curl values and other based on gradient mag-
nitude and by assigning gradient magnitude as weights
gives better results compared to curl values.

* and finally the method proposed in [45] (abbreviated as
‘ME’ respectively). In [45] a generalized equation to
represent a continuum of surface reconstruction solutions
of a given nonintegrable gradient field was proposed.
The common approaches such as Poisson solver [43] and
Frankot-Chellappa [41] algorithm are special cases of
that generalized equation. According to [45], a general
solution can be obtained by minimizing the following nth
order error functional

J(f) = // E(f .9, fw”y”;pw‘iy‘iv Qpeyd, - - )d*I’dU (9)

where E is a continuous differentiable function, a, b, ¢ and
d are nonnegative integers such thata + b = k,c +d =
k — 1 for some positive integer k, fyo,0 = OF f]0x°0yb,
Pacyt = 0¥ 1ploxc0y?, qpeye = 0¥ 1q/0x°0y® and
the above equation includes terms corresponding to all
possible combinations of a, b, ¢ and d for all & where
1 < k < n. Restricting to first order derivatives (n = 1),
we will consider error functionals of the form J(f) =
[ [E(f.,p.q. fs. [y)dxdy. The Euler-Lagrange equation
gives (DE/0]) — (d/de)DEDf,) (d]dy)(OE[0,) =
0. Then, it was shown that the previous solutions such
as Poisson solver and Frankot-Chellappa algorithm [41]
can be derived from this generalized framework. Further-
more, new types of reconstructions using a progression of
spatially varying anisotropic weights along the continuum
were presented. A solution based on the general affine
transformation of the gradients using diffusion tensors near
the other end of the continuum was also proposed pro-
ducing better feature preserving reconstructions.
Some of the reconstructed surfaces from the Agrawal et al.
method are depicted in Figs. 4 and 5 in both frontal and profile
view with and without the albedo.

VI. FACE RECOGNITION USING 2-D INTENSITY IMAGES,
DEPTH MAPS AND NORMAL FIELDS

This section describes the different recognition algorithms
we applied to the various modalities available to us using the
Photoface database. Two different modalities are retrieved by
the pipeline of PS: the albedo image and the 3-D facial geom-
etry represented by the depth map of the normal field.

A. Face Recognition/Verification Using Albedo Images

Two well-established families of techniques were applied for
this paper. The first one considers facial images as vectors and
finds linear projections for dimensionality reduction and feature
extraction [30], [31]. The other one is based on elastic graph
matching [34]. We performed our experiments under two dis-
tinct paradigms: in the first, we use only one sample for training
and in the second we use two samples.

1) Subspace Methods Based on Linear Projections: This
family of methods aims to extract features using linear projec-
tions and includes PCA (Eigenfaces) [47], Nonnegative Matrix
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(@ (b)
(© (d)
Fig. 4. Reconstructed surface using the method of Agrawal [45]: frontal

view, (a) with and (b) without the computed albedo; profile view, (c) with and
(d) without the computed albedo.

(@ (b)

(© (@

Fig. 5. Reconstructed surface using the method of Agrawal [45]: frontal
view (a) with and (b) without the computed albedo; profile view, (c¢) with and
(d) without the computed albedo.

Factorization (NMF) [48], Independent Component Analysis
[49], etc. In our experiments NMF produced the best recogni-
tion and verification results. In subspace methods such as NMF,
the facial images are lexicographically scanned so that the pixel
values are reshaped into vectors. Let M be the number of sam-
ples in the image database I/ = {uy, us,...,up} where u; €
R™ is a database image. A linear transformation of the orig-
inal n-dimensional space onto a subspace with 7-dimensions
(m < n) is a matrix WT € R™*" The new feature vectors
yr € R" are given by:

v = Wi(u, — 1), (10)
where @ € R™ is the mean image of all samples. Classification
is then performed using a simple distance measure and a nearest
neighbor classifier using the normalized correlation.

For the second testing paradigm, where we have two samples
per person for training and one for testing, we have also applied
discriminant methods for recognition. In particular, we use the
well-known Linear Discriminant Analysis (LDA) method. We
have considered five different approaches:

1) Fisherfaces [30]

2) PCA plus LDA [50] where we have two different spaces
the regular and irregular,
3) an LDA method based on a slightly different criterion [51]
4) LDA method proposed in [52] which uses a regularization
on the eigenspectrum
5) NMF plus LDA [31], [53].
The interested reader may refer to [30], [31], [50]-[53] for de-
tails regarding the algorithms. In our experiments here, most of
the discriminant approaches resulted in very similar recognition
rates. For the sake of compactness therefore, we shall only de-
tail results of the NMF+LDA approach.

2) Elastic (Bunch) Graph Matching: The second family of
techniques that we applied is that of Elastic Graph Matching
(EGM) or Elastic Bunch Graph Matching (EBGM). In the first
step of the EGM algorithm, a suitable face representation based
on a sparse graph is selected. A uniformly distributed rectan-
gular graph is one of the simplest forms possible. For this case,
only a face detection algorithm is required in order to find an ini-
tial approximation of the desired rectangular facial region. An
example of such a reference graph is depicted in Fig. 6.

In the second step the facial image region is analyzed and a
set of local descriptors is extracted at each graph node (called
jets). Analysis is usually performed by building an information
pyramid using scale-space techniques. In the standard EGM, a
2-D Gabor based filter bank was used for image analysis. The
outputs of multiscale morphological dilation-erosion operations
or the morphological signal decomposition at several scales are
nonlinear alternatives of the Gabor filters for multiscale anal-
ysis. Both have been successfully used for facial image analysis
[54]. Morphological feature vectors have the advantage of ro-
bustness to plane rotations. A robust to rotation and scaling jet
based on Gabor filters was recently proposed in [55].

The third step involves matching the reference graph on the
test face image in order to find the correspondences of the ref-
erence graph nodes on the test image. This is accomplished by
minimizing a cost function that employs node jet similarities
while simultaneously preserving the node neighborhood rela-
tionships.

Due to the matching procedure, EGM algorithms are rela-
tively robust against facial image misalignment. Moreover, due
to local node deformations, EGM algorithms are also relatively
robust against the presence of facial expressions. In order to fur-
ther boost the performance of EGM, subspace methods can be
applied to extract features from the graphs, as in [32]-[34], [56].
We have applied many unsupervised and supervised dimension-
ality reductions on the graphs to increase recognition speed (e.g.
PCA, ICA, NMF) but for consistency and compactness we only
report the results based on NMF and NMF plus LDA.

B. Face Recognition Using Depth Images and Normals

We perform face recognition on the surface normal estimates
(as described in Section IV) and using depth images that were
computed by the integration of the normal field (as described in
Section V). We mainly experimented with recognition/verifica-
tion methods that process the depth maps in exactly the same
manner as the intensity images. That is, we applied dimension-
ality reduction methods based on linear projections and EGM
algorithms. For the latter we used multiscale log-Gabor filters,
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(a) (b)

Fig. 6. (a) Rectangular grid as a reference graph; (b) a rectangular reference graph using 3-D geometry information; (c) a reference graph built around the node.

which have been shown to be quite useful for processing of
depth images [57], in order to fill the jets of the graphs.

Finally, we applied a method [34] that operates on the in-
tensity images but uses the 3-D information for more reliable
matching. In particular, in [34], an EGM algorithm was pro-
posed which exploits the information of the 3-D depth maps
only in the matching process. Instead of using the simple dis-
tance on a 2-D grid, the nodes are mapped on the 3-D surface.
The method then uses geodesic distances between nodes as a
similarity measure. For this paper, the geodesic distances be-
tween the points were calculated using the depth map derived
from PS. Moreover, they are robust against isometry mappings
(or isometries) of the facial surfaces. The facial pose variations
are isometries of the facial surfaces and, to an extent, so are fa-
cial expressions (as long as the mouth remains closed). That is,
the geodesic distances before and after the development of an
expression are considered to remain (approximately) identical
[58]. An example of matching using the algorithm in [34] can
be seen in Fig. 7 where the final node positions are shown.

C. Face Recognition Using NormalFaces

The final modality for face recognition we consider in this
paper is based on the orientation of the normals. The baseline
method is straightforward to implement and is based on a novel
representation of faces: the so-called “Normalfaces”. For an
image I using the computed P and Q as P(x) = [a(x)/c(x)]
and Q(x) = [b(x)/c(x)] we compute:

Q(x)

®(x) = atanP(x)

(11)

which is an image that contains the normal orientations. Ex-
ample normal orientation images are shown in Fig. 8.

We measure the orientations in the interval
€ [=(x/2),(w/2)]. For two images ®;(x) and ®,(x)

we use the following dissimilarity measure:

1(810), @,00) = 1~ 11 > i)~ )|

(12)
This dissimilarity measure can be transformed to a kernel and
then used to extract features using embedding as described
in [59]. This kernel can be also used for extracting discrimi-
nant features using kernel Fisherfaces [60]. Classification is
performed using the normalized correlation in the new low-di-
mensional space.

(b)
Fig. 7. (a) Matched graph; (b) matched graph on the 2.5-D face.

VII. EXPERIMENTAL RESULTS

The results presented in this section are divided into recog-
nition and verification. For each case we present results for
albedo, surface normals, depth and fusion of 2-D and 3-D
data. In particular we present experiments using Single Sample
Single Modality (SSSM), Single Sample Multiple Modalities
(SSMM) and Multiple Sample Single Modality (MSSM) [35]
setups.

A. Recognition Experiments

For these experiments, we used a subset of 126 subjects taken
with more than a week’s interval. For the majority of them
(90 subjects) the interval was greater than one month. For the
experiments presented here we tested using two setups:

* In the first one (SSSM and SSMM), a very challenging
experimental procedure was followed, exploiting only one
gray-scale albedo image or surface normal map obtained
from PS, or the depth image derived from the integration of
the normal field. Similarly, one albedo image, normal map
or height map was used for testing. Most of the training and
testing images display a different facial expression. This
one-sample face recognition challenge is one of the most
difficult scenarios in the field and has various applications
[61]. Related one-sample experiments can be found in [4],
[18], [35].

* In the second setup (MSSM), two samples for training
were used and one for testing. In our database, we have
96 subjects with the required three or more samples. The
test image for each of these was the same as that used in
the one-sample experimental setup. This is in order to test
whether or not recognition using two samples of the same
modality is better than fusing information across different
modalities. (We also check results using these 96 subjects
for the one-sample setup).
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@ o)

Fig. 8. (a)n.(x) as image; (b) n,(x) as image; (c) the normalface with orientations in the interval [— (7 /2)(7/2)]; (d) the absolute normalfaces.

In order to further justify the use of Photometric stereo we
conducted the following set of experiments. We trained su-
pervised and unsupervised subspace methods (such as NMF,
PCA, LDA etc.) and Elastic Bunch Graphs using jets from
all four images with and without illumination compensation
([62]-[64]) and finally fuse the results (with weighted and
non weighted schemes). Furthermore, we trained unsupervised
subspace learning methods per light and then fuse the scores
per light. In all cases the recognition rate achieved was never
higher than the best recognition rate achieved by a single
albedo image. It is worth noting here that the application of
discriminant subspace learning techniques (i.e., LDA) resulted
in much poorer performance than using a single albedo image
(something that has been previously reported in the literature
[65]). On the other hand, in the PS architecture except for the
albedo image we have also available the facial shape informa-
tion, which, as we show, when fused (even with very simple
fusion rules) achieves much better performance than the use of
a single albedo image.> Similar conclusions are drawn for the
verification experiment. Finally, we note that in the following
the reported recognition rates are rounded to .0 or 0.5 based on
what is closer.

1) Albedo Images: Four source, three source, optimal
three source (optimal according to [40]) and ray trace-based
PS methods were employed for albedo computation. These
methods are abbreviated as 4L-PS [38], 3L-PS [38], 3L-OPT
[40] and RAY-PS [39], respectively. The recognition results
of the subspace methods are abbreviated as SUB (i.e., NMF),
while EGM methods using subspaces for boosting the per-
formance are abbreviated as EGM-SUB (the pipeline of the
methods used for recognition using albedo and depth images
can be seen in Fig. 9, along with their acronyms). Table I
shows the recognition rates for each method on this one-sample
setup. Note that the recognition rate is affected by the PS
method applied and noticeably better recognition performance
is achieved by PS methods that use all four illuminants. The
best recognition rate was equal to 78% for the SUB methods
and 82.5% for the EGM-SUB method (the improvement is
mainly due to the alignment step in the EGM algorithm).

For the case of the two-sample experiment, we used two dif-
ferent approaches:

5This does not mean that there could not be a face recognition algorithm that
could harness directly both the texture and shape information in the four dif-
ferent images. It only means that the current applied face recognition algorithms
are unable to perform such a task. This could potentially be a very interesting
topic of further research.

(d

Albedo/ Subspace linear
Depth projections
SUB-
DISCR
Albedo/ i
Peth EGM

Fig. 9. Pipeline of the methods used for evaluation in the albedo and depth im-
ages, along with their acronyms. We use the acronym SUB when using unsuper-
vised subspace methods while we use the acronym SUB-DISCR when using su-
pervised methods, and the acronyms EGM-SUB and EGM-DISCR when using
unsupervised/supervised subspace learning methods to EGM features.

» Firstly, we applied the unsupervised SUB and EGM
methods for feature extraction using a decision fu-
sion strategy similar to [35]. That is, we combined the
matching scores for each person across the two samples of
2-D albedo images and ranked the subjects based on the
combined scores. Scores from each modality are linearly
normalized to the range of [0; 100] before combining (we
explored other score normalization such [66] but we have
not observed any performance increase). We explored
various confidence-weighted versions of the sum, product
and minimum rules. However the simple sum rule pro-
vided the best overall performance.6

» Secondly, we applied supervised SUB (i.e., NMF plus
LDA) and EGM methods, abbreviated to SUB-DISCR
and EGM-DISCR respectively (DISCRiminant). In this
case, the second sample is used for learning discriminant
projections and we classify using the minimum between
the two distances.

The recognition rates for these two-sample experiments for
all PS algorithms is summarized in Table II. As can be seen, the
use of more than one sample increases the recognition perfor-
mance. Moreover, the methods which use all four illuminants
achieved better recognition rates than those using only three, as
before. The best recognition rate was equal to 95%.

It is important to note that the recognition rate when using
only the 96 subjects of the second experiment in the one-sample

6Source fusion and score normalization even though they are quite interesting
research topics they are out the scope of the paper.
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TABLE 1
SUMMARY OF THE BEST (ACCORDING TO THE DIMENSIONS KEPT)
PERCENTAGE OF RECOGNITION (PR) FOR ALBEDO IMAGES FOR
THE FIRST EXPERIMENTAL SETUP (ONE-SAMPLE)
Method 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
SUB 78 74 78 72.5
EGM-SUB 82.5 79 82.5 80
TABLE II

SUMMARY OF THE BEST PR FOR ALBEDO IMAGES FOR THE SECOND
EXPERIMENTAL SETUP (TWO-SAMPLE)

Method 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
EGM-DISCR 95 91.5 95 93.5
SUB-DISCR 92.5 86.5 89.5 88.5

EGM-SUB 87.5 84 88 86.5
SUB 85 80 85.5 84.5
TABLE III

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING SUBSPACE
ALGORITHMS FOR THE FIRST EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 59.5 58.5 60 59
DCTFC 74 67 72.5 70
FC 65.5 64 67 65
LS 63.5 60 64 66.5
ME 65.5 59.5 64 67
TABLE IV

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING EGM
ALGORITHM FOR FIRST EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 70 61 67 63
DCTFC 79 72 71.5 74.5
FC 74 67 71 70
LS 73 68 70 68
ME 73.5 68.5 67.5 68

tests, the recognition rate was also about 78% and 82.5%. Note
the major improvement of over 10% between the one-sample
tests and the two-sample tests. As an extra verification of this,
we repeated the one-sample test using only the 96 subjects of
the two-sample test and obtained similar results.

2) Depth Images and Normal Orientations: As we described
in Section V we applied five different methods for surface re-
construction from the normal field. The recognition rates for
the one-sample experiment and for all reconstruction and PS
methods are summarized in Table III for SUB methods and
Table IV for EGM-SUB.

The best recognition result acquired was 74% for SUB and
79% for EGM-SUB. As can be seen, PS and reconstruction
methods greatly affect the recognition performance. More pre-
cisely, four source PS methods always achieve better recogni-
tion results, which is conducive to the albedo image tests. More-
over, the depth maps that were produced by DCTFC constantly
outperformed the PR of the depth maps produced by all other re-
construction methods. The best results for the case of albedo in
the similar experimental setting was 78% for SUB and 82.5%.
Hence, there is a difference of 4% and 3.5%, respectively. This
is attributed to the error in reconstruction.

Experiments using two samples for training and one sample
for testing are summarized in Tables V, VI, VII and VIII for
SUB, EGM-SUB, SUB-DISCR and EGM-DISCR, respec-
tively. The same methods as those used in case of albedo
were applied in these experiments for fusion and classification.

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING SUBSPACE
ALGORITHMS AND FUSION FOR THE SECOND
EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 81 80 81 80
DCTFC 86.5 84 85.5 85.5
FC 82 82 81 81
LS 80 78 81 78
ME 79 78 81 78
TABLE VI

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING EGM
ALGORITHMS AND FUSION FOR THE SECOND
EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 83 82 84.5 83
DCTFC 88 86 88 86.5
FC 84 82 83.5 83
LS 82 81.5 83.5 83
ME 82 81.5 82.5 83
TABLE VII

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING DISCRIMINANT
SUBSPACE ALGORITHMS FOR THE SECOND EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 91 86 92 87
DCTFC 94 89 94.5 90.5
FC 93 87.5 92.5 89.5
LS 89 85 88.5 85
ME 88 84 87 85.5
TABLE VIII

SUMMARY OF THE BEST PR FOR DEPTH IMAGES USING EGM
ALGORITHMS AND DISCRIMINANT SUBSPACE METHODS FOR

THE SECOND EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 93 89 93 90
DCTFC 96 92 96 93
FC 96 92 94 92
LS 93 89 92 90
ME 93 88 92 90

As can also be observed, we can verify the finding of the first
experiment where the images produced by 4 source PS methods
and DCT-based FC surface reconstruction methods constantly
outperform all other methods.

The experiments using the NormalFace approach for all
tested PS methods are summarized in Table IX for one-sample
training (1Tr.) and two-sample training (2Tr.) recognition.
In the 1Tr. setting we used the kernel framework for feature
extraction [59] using the proposed distance in (12). For the
2Tr.-Discr setting we used the same framework as in 1 Tr.
and then LDA on the produced features. For the two-sample
experiments fusion experiments, the same fusion strategy was
applied to that in the albedo experiment (2Tr.-Fuse).

A summary of the best results from all the modalities is given
in Table X. From the summary we can deduce the following

* in the one sample experiment, the use of albedo produces

better results than normal and depth

* in the two sample experiment all modalities have similar

performance

* there is no difference in performance between the depth

and normals.



ZAFEIRIOU et al.: FACE RECOGNITION AND VERIFICATION USING PHOTOMETRIC STEREO 131

TABLE IX
SUMMARY OF THE BEST RECOGNITION RATE FOR NORMALFACE AND ALL
THE TESTED METHODS FOR BOTH EXPERIMENTS

Exp. 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
1Tr. 76 72 78 73
2Tr.-Fuse 86 82 86 82
2Tr.-Discr 96 89 95 90.5
TABLE X

SUMMARY OF THE BEST PR FOR ALL THE CONDUCTED
EXPERIMENTS ACROSS DIFFERENT MODALITIES
Recognition (PR%)

One Sample Two Samples
Albedo | Depth | Normal | Albedo | Depth | Normal
82.5 79 78 95 96 95

TABLE XI
SUMMARY OF THE BEST PR FOR SINGLE SAMPLE
EXPERIMENTS
Recognition (PR%) One Sample
Albedo | Depth | Normal | Albedo + Depth
82.5 79 78 89

TABLE XII
SUMMARY OF THE BEST PR FOR FUSION ACROSS DIFFERENT
SAMPLES AND MODALITIES

Recognition (PR%)

Sample Fusion Modality Fusion

Method Albedo | Depth | Normal | Albedo + Depth
SUB 85 86 86 85
EGM-SUB 88 88 - 89

We have to note that these conclusions refer only to the applied
methods.

3) Fusion 2-D and 3-D Data: Multimodal decision fusion
was performed by combining the match scores for each person
across the modalities of 2-D albedo and depth image and
ranking the subjects based on the combined scores in a similar
manner as in the two-sample experiments above. The sum rule
provided the best performance as before. We performed fusion
only on depth images derived from DCTFC method and 4LPS
as these gave best results in the earlier experiments. Fusion
of intensity and geometry information was conducted only on
the subset of subjects that have more than 2 samples avail-
able in order to be directly comparable to the single-modality
two-sample experiments. In Table XI we summarize the best
results of the one sample experiments (i.e., SSSM and SSMM
experimental setups) in order to highlight the advantage of
fusing 2-D and 3-D information. As can be seen the fusion of
2-D and 3-D improves significantly the recognition rate.

The recognition results from multimodal fusion (in
both SSMM and MSSM setups) using SUB methods and
EGM-DISCR, which achieved the best results, is given in
Table XII.

B. Verification Experiments

Face verification systems aim to determine whether or not an
identity claim is valid. The performance of face verification sys-
tems is typically measured in terms of the False Rejection Rate
(FRR) achieved at a fixed False Acceptance Rate (FAR). There
is a trade-off between FAR and FRR. This trade-off between
the FAR and FRR can create a Receiver Operating Character-
istic (ROC), where FRR is plotted as a function of FAR. The

TABLE XIII
SUMMARY OF THE BEST EER FOR ALBEDO IMAGES FOR THE FIRST
EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
SUB 7.8 3 7.4 79
EGM-SUB 6.7 71 6.4 6.7
TABLE XIV

SUMMARY OF THE BEST EER FOR ALBEDO IMAGES FOR THE SECOND
EXPERIMENTAL SETUP

Method 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
EGM-DISCR 39 4.2 3.2 4.8
SUB-DISCR 44 4.7 38 5.2

EGM-SUB 5 6.4 43 6
SUB 5.8 73 53 6.2

performance of a verification system is often quoted by a par-
ticular operating point of the ROC curve where FAR = FRIRR.
This operating point is called Equal Error Rate (EER) and is a
useful scalar figure of merit commonly adopted to quantify ver-
ification performance. In the verification experiments, we used
the same matching score generators to those used in the recog-
nition experiments.

The verification protocol used in this paper is similar to the
one defined in the FERET verification protocol [67]. The test (or
client) set was defined by the same 126 persons as in the above
recognition experiments. The first image per subject is used for
training while the second is used for testing client claims. The
unused 135 people in the database, with one image per person,
are considered to be impostors.

In a second verification experiment, we used two images from
the 96 subjects for training while the third is used for testing
client claims. Again, the latter 135 persons were used for im-
postor claims. Furthermore, it is worth noting that, as in the
recognition experiments, the use of the four images captured
under the different lights did not achieved better performance
than using only one albedo image.

1) Face Verification Using Albedo, Depth and Normalface
Images: The EERs for albedo data calculated using the various
PS methods for the one-sample experiment are summarized in
Table XIII. The corresponding results for the two-sample exper-
iments are then summarized in Table XIV.

The EERs for various PS and surface reconstruction methods
for the one-sample experiment are summarized in Tables XV
and XVI for SUB and EGM-SUB methods, respectively. The
verification results for the two-sample experiment and for
various PS and surface reconstruction methods are depicted
in Tables XVII, XVIII, XIX and XX for SUB, EGM-SUB,
SUB-DISCR and EGM-DISCR, respectively.

The EERs for various PS methods for the one-sample experi-
ment for the case of Normalfaces are summarized in Table XX.
The corresponding verification results for the two-sample
experiments and for various PS methods are summarized in
Table XXI (for the verification experiments the difference in
EER between fusion and discriminant learning was negligible
hence for reasons of compactness we report only the discrimi-
nant learning results).

A summary of the best verification experiments across all
modalities above is shown in Table XXII.
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TABLE XV
SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING EGM
ALGORITHM FOR THE FIRST EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 12.1 13.7 12 12.4
DCTFC 8.8 11.4 9.9 10.7
FC 11 12.8 11.3 11.5
LS 10.7 12.8 10.7 11.9
ME 11.9 12.9 114 12
TABLE XVI

SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING SUBSPACE
ALGORITHMS FOR THE FIRST EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 14.1 17.3 14.1 14.7
DCTFC 10.5 13.5 11.5 12.5
FC 13 15 13.1 13.7
LS 13 15.5 13.7 14.6
ME 13.9 15.4 14.4 14.9
TABLE XVII

SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING SUBSPACE
ALGORITHMS AND FUSION FOR THE SECOND EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 7.2 9.3 7.3 7.8
DCTFC 5.7 7.8 6 6.3
FC 7.2 10.2 8.4 8.6
LS 7.1 11.3 8.4 8.7
ME 7.1 10.4 7.3 8.9

TABLE XVIIT
SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING EGM AND
FUSION FOR THE SECOND EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 7.2 9.7 8.1 8.2
DCTFC 5 6.9 5.2 5.7
FC 6.7 9.6 7.3 7.5
LS 6.9 9 6.8 7.7
ME 6.7 8.5 6.5 8
TABLE XIX

SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING
DISCRIMINANT SUBSPACE METHODS AND FUSION FOR
THE SECOND EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 5 5.9 53 5.8
DCTFC 4.2 5.2 4.5 4.7
FC 4.8 5.6 4.9 5.1
LS 4.9 5.3 4.7 5.1
ME 49 5.7 4.7 5
TABLE XX

SUMMARY OF THE BEST EER FOR DEPTH IMAGES USING EGM
AND DISCRIMINANT SUBSPACE METHODS FOR THE SECOND
EXPERIMENTAL SETUP

Method | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)
AT 4.4 5 4.6 4.6
DCTFC 3.5 4.1 3.7 3.9
FC 4.1 4.6 4.2 4.3
LS 4.1 5 4.5 4.3
ME 4.2 4.9 4.5 4.4

2) Multimodal Fusion: Multimodal decision fusion was
performed in exactly the same way as for the recognition
experiments. That is, by combining the match scores for each
person across the modalities of 2-D albedo image and depth
map and ranking the subjects based on the combined scores. In
Table XXIII we summarize the best results of the one sample

TABLE XXI
SUMMARY OF THE BEST EER FOR NORMALFACE AND ALL THE
TESTED METHODS FOR BOTH EXPERIMENTS

Exp. | 4LPS (%) | 3LPS (%) | RPS (%) | 3LPS-OPT (%)

1Tr. 9 10.4 8.9 10.1

2Tr. 3.7 4.6 3.9 4.5
TABLE XXII

SUMMARY OF THE BEST PERCENTAGE OF EER FOR ALL THE
CONDUCTED EXPERIMENTS ACROSS DIFFERENT MODALITIES

Verification (EER%)
One sample Two samples
Albedo | Depth | Normal | Albedo | Depth | Normal
7.4 10.5 9.1 32 35 3.0

TABLE XXIIT
SUMMARY OF THE BEST PERCENTAGE OF EER FOR
THE SINGLE SAMPLE EXPERIMENT

Recognition (PR%) One Sample
Albedo | Depth | Normal | Albedo + Depth
7.4 10.5 9.1 4.6

‘—Dep!h
---Normal
Albedo
~e-Depth+Depth
===Normal+Normal|
°Albedo+Albedo ‘ i
---Albedo+Depth

False Rejection

025 03 0.35

False Acceptance

Fig. 10. ROC curves for the single sample single modality, single sample mul-
tiple modalities fusion, and multiple samples single modality fusion.

experiment (i.e., SSSM and SSMM experimental setups) in
order to highlight the advantage of fusing 2-D and 3-D infor-
mation. As can be seen the fusion of 2-D and 3-D improves
significantly the verification accuracy. The corresponding ROC
curves are plotted in Fig. 10.

A summary of the best verification results for both the single
modalities and multimodal fusion (in both SSMM and MSSM
setups) is given in Table XXIV.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a new database collected in a
real-life commercial setting based on PS. We presented the first
experiments which demonstrate how different methods in the
pipeline of PS affect the recognition performance and concluded
the following:

* Four source PS methods produce facial samples (albedo,
normals) that achieve constantly better recognition and
verification performance than 3 source PS regardless of
the reconstruction methods applied.

* The reconstruction methods greatly affect the recogni-
tion and verification performance. The method which
constantly produces the best recognition/verification
performance proved to be the one proposed in [8], i.e.
DCTEFC.
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TABLE XXIV
SUMMARY OF THE BEST PERCENTAGE OF EER FOR FUSION ACROSS
DIFFERENT SAMPLES AND MODALITIES

Verification (EER %)
Sample Fusion Modality Fusion
Method Albedo | Depth | Normal | Albedo + Depth
SUB 5.2 5.7 5.2 5.2
EGM-SUB 4.3 5 - 4.6

Moreover, we have verified most of the following findings of
[35]:

* In most cases, the best recognition and verification results
using the recovered albedo, normals and reconstructed
depth maps are approximately the same (there is differ-
ence in the one sample experiment). In some cases, the
recovered albedo produces better results.

* Fusion of the 2-D (albedo) and 3-D (depth or normal) in-
formation produce significantly better results than using ei-
ther albedo or the depth image.

* Fusion of multiple albedo images and/or reconstructed sur-
faces produce significantly better results than using only
one albedo or the depth image.

* Fusion of two albedo images (Single-Modality and Mul-
tiple-Sample (SMMS)) in the same way that we fused
the results of albedo and depth map (Multiple-Modality
and Single-Sample (MMSS)) gave approximately the
same recognition and verification performance. The major
advantage of MMSS over SMMS is that SMMS requires
two recording sessions while MMSS only one.

Using the four images under different lights, with or without il-
lumination normalization, and applying the same face recogni-
tion algorithms as the ones used for the albedo, depth and nor-
mals we haven not observed better performance than using a
single albedo image. The best recognition for any of the pre-
sented algorithms under the one-sample setup was 86% and for
the two-sample was 96%. The corresponding verification ex-
periments resulted in 6.4% for the one sample experiment and
3.2% for the two sample experiment. The verification experi-
ments show that there is much space for improvement.

The database is available to the public by visiting http://

Photoface.iti.gr/ or http://www.uwe.ac.uk/research/Photoface.
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