
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 1

Abstract—For high-speed quantum key distribution systems, error

reconciliation is often the bottleneck affecting system performance. By
exchanging common information through a public channel, the
identical key can be generated on both communicating sides. However,
the necessity to eliminate disclosed bits for security reasons lowers the
final key rate. To improve this key rate, the amount of disclosed bits
should be minimized. In addition, decreasing the time spent on error
reconciliation also improves the key rate. In this paper we introduce a
practical method for expeditious error reconciliation implemented in a
Field Programmable Gate Array for a discrete variable quantum key
distribution system, and illustrate the superiority of this method to
other similar algorithms running on a PC. Experimental results
demonstrate the rapidity of the proposed protocol.

Index Terms—Quantum Key Distribution, Error Reconciliation,
Field Programmable Gate Array

I. INTRODUCTION
t has been more than 20 years since the introduction of
quantum cryptography, which can be considered as the first

practical achievement in quantum communication.
Articles[1]-[3] give an overview of quantum key
distribution(QKD). The goal of QKD is to create an absolutely
secure key string between Alice and Bob (two sides of QKD
system) and thus the key can be used in communication in
one-time-pad manner. QKD generally contains the following
three steps: (1) raw key sifting-Alice and Bob compare their
basis of measurements and only the qubits having the same basis
are retained. (2) error reconciliation-Alice and Bob correct
errors in the sifted key by exchanging public information. This
step can contain several passes. (3) privacy amplification-By
applying universal hash functions[4] that map a long bit string to
a shorter one, the information gained by the eavesdropper (Eve)
can be made arbitrarily small. A typical structure of a QKD

Manuscript received March 13, 2012; revised July 13, 2012; accepted
September 28, 2012. This work was supported by Chinese of Academy of
Science, the National Fundamental Research Program of China under Grant
2006CB921900, the National High Technology Research and Development
Program (863 Program) of China under Grant 2009AA01A349, the Fundamental
Research Funds for the Central Universities, National Natural Science Funds of
China under Grant No: 11178020, 11175170 and the CAS Special Grant for
Postgraduate Research, Innovation and Practice.

The authors are with the State Key Laboratory of Particle Detection and
Electronics and Department of Modern Physics, University of Science and
Technology of China, Hefei, Anhui 230026, China
(e-mail:wangjian@ustc.edu.cn)

system is shown as Fig.1.

Random
Number

Generator

Control
Module

High-Speed
Laser Driver

Optical
Module

Optical
Module

Random
Number

Generator

Control
Module

Single-
Photon

Detector

Beam Path
Adjustment

Beam Path
Adjustment

Alice Bob

 Sifting Sifting

Authentication Authentication

Error Correction Error Correction

Privacy Amplification Privacy Amplification

Cryptographical Communication
Applications(phone, video, et al)

Cryptographical Communication
Applications(phone, video, et al)

Classical Channel

Quantum Channel

 Fig.1 Typical structure of a QKD system

The second step in QKD, error reconciliation, is the focus
of this work. Aside from any interference by Eve, errors
inevitably exist due to imperfect equipment. These errors must
be eliminated by exchanging information through a public
channel. The first error reconciliation protocol was BBBSS[3].
Later on, other protocols like Cascade[5]-[7], AYHI[8],
Winnow[9], the low-density parity-check(LDPC)
protocol[10],[11] were used. The Cascade protocol was widely
used in early QKD systems, because of its high efficiency for
leaked information compared with the Shannon entropy limit.
However, the Cascade protocol requires many interactions
between the two sides resulting in degradation in speed. The
Winnow protocol speeds the error correction process by
adopting the Hamming code. The Hamming code corrects an
error when only one error is in the code block within a single
interaction, thus decreasing the total interaction frequency. The
LDPC protocol is a one-way reconciliation method since only a
single occurrence of information transfer is required for the
entire key string. However, this protocol requires a LDPC
decoder with high computational complexity. Recent work
concerning LDPC developed some useful techniques[12] to
facilitate its utility in QKD systems and an important work[13]
gave the results of the implementations of LDPC code on
high-end Graphic Processing Units(GPUs) to improve its
reconciliation speed.

Up until now most error reconciliation has been completed
using software on a PC. The rapidly growing demand for a high
final key rate gives rise to a bottleneck in the entire QKD system.

A real-time design based on FPGA for
Expeditious Error Reconciliation in QKD system

Ke Cui, Jian Wang, IEEE Member, Hong-fei Zhang, Chun-li Luo, Ge Jin, Teng-yun Chen

I

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 2

Thus an expeditious error reconciliation protocol is needed. To
achieve this, Field Programmable Gate Array (FPGA) is adopted
in practical QKD systems, along with an error reconciliation
protocol designed for the FPGA compatible device. The strength
of FPGA is its parallel computing ability, large integrated RAM
and easy bit-wise operation. Accordingly, the error
reconciliation method we created considers these FPGA
attributes. The proposed method is applied only to discrete
variable QKD systems.

II. DESCRIPTION OF THE RECONCILIATION AND ITS
IMPLEMENTATION

2.1. Introduction to Cascade and Winnow

Before explaining Cascade[5], we first describe the error
correction technique used in Cascade which is called BINARY.
Consider two parties, say, Alice and Bob for simplicity, having
strings A and B of length N, respectively. B is a little different
with A where the discrepancy is estimated by the error rate p.
BINARY works as follows. When Alice’s and Bob’s strings A
and B have odd number of errors, Alice sends Bob the parity of
the first half of her string. A comparison between this parity and
the parity of the first half of Bob’s is done to determine whether
an odd number of errors exist in the first half, or in the second
half, of Bob’s string. This process is repeatedly applied to the
half determined by the comparison until one bit is left, the
erroneous bit. Finally, this error can be corrected.

Cascade proceeds in several passes. The number of passes
is determined by Alice and Bob before execution depending on
the parameter p. Let A=A1,…,AN and B=B1,…,BN (with Ai,Bi
∈{0,1}) be Alice’s and Bob’s strings, respectively. In pass m,
Alice and Bob choose km and divide their strings into blocks of
km bits. The bits whose position is in Km

v={q∣(v-1)km<q≤vkm}
form block v in pass m. Alice sends the parities of all her blocks
to Bob. Using BINARY, Bob corrects an error in each block
whose parity differs from that of Alice’s corresponding block.
At each pass i>1, Alice and Bob choose ki and a random function
fi:[1..N]→[1..  N/ki ]. The bits whose position in
Ki

j={q∣fi(q)=j} form block j in pass i. Alice sends Bob the
parity of the block Ki

j, aj=
i

j

q
q K

A
∈
∑ for each 1≤j≤  N/ki  . Bob

computes his bj’s in the same way and compares them with the
aj’s. For each bj≠aj, Alice and Bob execute BINARY on the
block defined by Ki

j. Bob will find q∈Ki
j such that Bq≠Aq and

correct it. All the blocks Ku
v for 1≤u<i such that q∈Ku

v will then
have an odd number of errors. Let K be the set of these blocks.
Alice and Bob can now choose the smallest block in K and use
BINARY to find another error. Let w be the position of this error
in strings A and B. After correcting Bw, Bob can determine set B
formed by the blocks containing Bw from each pass from 1 to
pass i. He can also determine the set J of blocks with an odd
number of errors by computing J=(B∪K)\(B∩K). If J≠Ø then
Bob finds another pair of errors in the same way. This process is

repeated until there are no more blocks with an odd number of
errors, at which point pass i ends.

For security considerations, the information exchanged
between the two sides should usually be eliminated after each
pass of the reconciliation process. The information is composed
of 1 bit for each parity check and log2(ki) bits for each execution
of BINARY. However, the innovative aspect of Cascade is that
it does not drop any bits during the entire reconciliation process.
This technique improves the computational speed. A possible
emergence of an error in a given pass can indicate errors in
previous passes where the corresponding blocks contain the
same error bit. Hence one error bit could reveal others. Although
it has a high efficiency, Cascade is limited by its requirement for
a large number of interactions. This causes great communication
burden to QKD systems, especially in a public network
environment.

Another widely used protocol is Winnow[9] in which Alice
and Bob divide their key string into blocks according to an
initial length typically determined by the parameter p. One side
compares their parities and if they differ, a Hamming code is
used to correct errors. Hamming code can fix a discrepancy in
the block pair that contains only one error bit. Unlike BINARY,
Winnow has the benefit of costing only one interaction which
results in fewer communication exchanges and a faster process.
This is particularly beneficial in situations where the classic
channel has a high latency.

2.2. An error reconciliation based on FPGA

The Winnow protocol introduces the idea of correcting
errors using Hamming code, a linear block code, to decrease
interaction times. Building on this idea, we develop a
reconciliation protocol well-suited to be implemented on an
FPGA. The proposed protocol is as follows:
1. Initial length of block n0 is determined by the bit error rate p

between Alice and Bob, so the error rate must be evaluated
first. In the reference introducing Cascade[5], the authors find
optimum length n0 is {73, 14, 7, 5} with the corresponding
error rate p of {0.01, 0.05, 0.10, 0.15}. The observation of the
relationship between the two parameters implies that n0*p is
located between 0.7 and 0.8. Since the protocol is especially
designed to work on an FPGA, the length being a power of 2
can simplify the entire error correction process. So we let n0
be the largest value satisfying both n0*p<=0.8 and a power of
2, but it is set to never less than 8. For example, if the error rate
p is {0.01, 0.05, 0.10, 0.15}, n0 is set as {64, 16, 8, 8}.

2. During the ith iteration, the full key string is divided into
blocks of length ni. Alice compares the parity of each block
after receiving that of the corresponding block from Bob. If
the parities for all blocks are identical or ni reaches  N/2  ,
where N is the length of the key string, then it goes to step 5;
otherwise to step 3.

3. For the blocks having different parity, a Hamming code is
used to correct errors. Only blocks that contain one error can
be corrected. For those holding more than one error, new
errors may be introduced.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 3

4. Double the length of block, that is ni=ni-1*2, permute the
whole key string and revisit step 2.

5. Compare the 64-bit long cyclic redundancy check(CRC) code
of the key strings of Alice and Bob. If they are equal, the key
string is retained after eliminating the leaked information
which is exchanged during the reconciliation. If they are not
equal the key string is abandoned.

The permutation process in step 4, which requires a large
amount of pseudo random numbers, heavily influences the
performance of the protocol. A linear feedback shift register
(LFSR) is widely used in FPGA design because of its simplicity
and efficiency. An LFSR is a shift register whose input bit is a
linear function of its previous state. The input bit is driven by the
exclusive-or (XOR) of certain bits of the shift register. Because
pseudo random numbers (PRNs) generated by the LFSR have a
long cycle period, all the bits in a key string can be visited if the
initial value of the LFSR, referred to as the seed, has a width
equal to that of the length of the key string. However, just how to
use these PRNs to develop an efficient permutation method is a
difficult problem. A simple permutation scheme is designed as
follows. Let（a0,...aN-1）and（b0,...bN-1）be two number sequences
independently generated by two LFSRs using two different
seeds. Let ai or bi be the position of two bits in the key string that
are to be exchanged as i runs from 0 to N-1. The effectiveness of
this permutation method will be shown in Section 3.2.1

2.3. Composition of a reconciliation module in the FPGA
design

The FPGA design, following the description of the protocol,
consists of four main modules: the interface module, the parity
comparison module, the Hamming code module, and the
permutation module. Fig. 2 shows the relationship among these
modules.

Interface module

Parity
comparison

module

Hamming
code

module

Permutation
module

Control signal

FIFO FIFO

FPGA Logic Module

Incoming data Outgoing data

Data

Fig.2 FPGA design of the reconciliation

1. Interface module
Interface module is designed to receive and send

information exchanged during the whole reconciliation process.
Each side requires only two First In First Outs(FIFOs): one for
incoming data and one for outgoing data. This type of data

exchange method conserves memory resources. Note that the
parity comparison module, the Hamming code module and the
permutation module are not organized in a pipeline fashion,
because after each pass during the reconciliation, a permutation
must be done prior to the next pass. A data bus and control
module was developed to coordinate the use of the FIFOs among
different modules. All modules connect to the data bus, while at
any given time, and as determined by the control module, only
one module serves as the data source.

Fig.3 illustrates the structure of the interface module. When
the FIFOs are not full, each side is either performing parity
comparison or Hamming error coding. Neither side is idle except
for the case of excessive latency in the local net. When this
occurs one side is prompted into a wait state.

Data busFIFO FIFO

Control
module

Bus request Bus request

Command data

Parity
comparison

module

Hamming code
module

communication datacommunication data

Data from the
other side

Data to the
other side

Fig.3 Composition of the interface module

2. Parity comparison module
Parity comparison module is responsible for calculating

and comparing the parities of both sides. It also records the
numbers of blocks which have different parities, and transfers
the results to the Hamming code module. In the implementation
of the hardware, parity computation is easily achieved using the
single data operator ‘^’ as provided by the hardware description
language Verilog. For example, if the parity of a vector
x=(x1,…,xn) is desired, it can be expressed as
parity(x)=^(x1,…,xn) in Verilog and computed in just one clock
cycle. To achieve the same result using PC software however,
requires n clock cycles since PC instructions lack a similar
operator and the computation must be done in serial fashion.

Read data Compute
parity

Format
result

Send
result

...
Read data

Case A:when (m1+m2)>m3+m4, the
computational time is n+(m1+m2)*(N-1)

m1 m2

m3 m4

Read data

...Format
result Send result

n

……

……

n+(m1+m2)*(N-1)

m1 m2

m3 m4

n

n+(m3+m4)*(N-1)

Case B:when (m1+m2)>m3+m4, the
computational time is n+(m3+m4)*(N-1)

Compute
parity Read data Compute

parity

Format
result

Send
result

Format
result

Send
result

Compute
parity Read data Compute

parity
Format
result Send result Format

result Send result

Read data Compute
parity……

……

Fig.4 Pipeline method used in the parity comparison module

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 4

Another important advantage of FPGA is the ability to employ

the widely used pipeline method. There are four steps to finish
the parity comparison which separately require m1,m2,m3,m4
clock cycles as depicted in Fig.4. The pipeline method can be
applied in either case A or case B depending on the specific
distribution of the clock cycles required by each step. The
number of the clock cycles on PCs is typically n*N, where
n=m1+m2+m3+m4 which is usually called the latency and N is the
length of the key string. As shown in Fig.4, if the pipeline
method is used in the FPGA, approximately a fraction of
(m3+m4)/n in case A, and (m1+m2)/n in case B, of the total clock
cycles can be saved. The pipeline method is also used similarly
in both the Hamming code module and the permutation module.

3. Hamming code module

Hamming code is based on a matrix whose size is r*(2r-1)
and r is the number of rows in the matrix. Fig.5 is an example
of 3*7 hamming matrix where r=3. Its element can be
denoted as hi, j=j/2(i-1) mod 2, where i is the row number and
j is the column number. Since these elements can easily be
obtained by the left-shift operation, the matrix need not be
stored in the FPGA, but can instead be generated in real time
whenever needed. This conserves memory resources.
Another advantage for the FPGA is that the binary
multiplication can be achieved with the XOR operation and
thus only requires one clock cycle. For example, (a*b mod
2)=^[(a1,…an) & (b1,…,bn)]. For software running on a PC,
this calculation would require n instruction cycles due to the
lack of the single data operator “^” similarly as in the parity
comparison module.

Fig. 5 Hamming matrix when r=3

4. Permutation module
Permutation module requires good pseudo random

numbers with a long cycle period. Two sequences of
LFSR-based pseudo random numbers are adopted in the
permutation module as introduced in section 2.2 above.

We refer to the combination of the four main modules
described above as a reconciliation module. Each
reconciliation module handles a length of 64Kbits of the key
string. Several reconciliation modules may be combined on a
single FPGA by considering the resources of the specific
FPGA. In our test in Section 3, eight independent
reconciliation modules are arranged in the FPGA resulting in
the ability to handle 512Kbits of the key string.

III. EXPERIMENT SYSTEM AND RESULTS

3.1 A real-time QKD system
The reconciliation protocol is implemented on an FPGA

using Verilog and is integrated in an actual QKD setup in order

to test its performance. The QKD setup is constructed based on
decoy encoding BB84[14]-[16] in order to ensure security and
also to obtain a longer transmission distance. The qubit
transmission rate is 20MHz. According to our experiment
environment, the average photon number is set to
0.6:0.2:0[17],[18] which represents signal state, decoy state and
vacuum state respectively, and the corresponding frequency ratio
is 6:1:1. The QKD system used in the test is depicted in Fig.6.
There are three main steps: key sifting, error reconciliation, and
privacy amplification. The classic communication channel is
composed of USB connection between the FPGA and the PC,
and an internet connection between PCs of Alice and Bob. This
channel can satisfy the QKD systems with a photon emitting rate
of 100MHz.

Fig.6 A Real-time QKD system

3.2 Results

3.2.1 Efficiency of the proposed permutation
Due to the parity check, most blocks hold an even number

of errors after one pass. Errors from the same block must be
separated into different blocks before the next pass so that they
can be detected and corrected. Let ni be the length of the block
during the ith pass and and be two bits residing in

the same block, where p and q are two position subscripts of the
key string. Permutation function is denoted by g. The key string
is divided into blocks where j is the sequence number of

the blocks, 0≤j≤ N/ni . We define a position function
 P()=k if ∈ .

If two bits share the same block sequence number in two
continuous passes, that is

P()=P() and P()=P()

with
=g() and =g(),

where m and n are the two corresponding position subscripts
of the key string after permutation, we say the two bits are
neighboring bits. A distance function d(;) can be

defined as d(;)=0 if and are

neighboring bits, d(;)=1 if they are not.

Let B be the set of bits who share the same block sequence
number with . B has elements represented by

. We define a function revealing the degree of the

separation of a bit with the subscript p from other bits in the
same block, Dp as

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 5

Dp=
-1 -1-1

, , -1-1
(A ;B)/(-1)

i ii
p n q n in

d n∑ .

One would hope that Dp=1, indicating that there are no
neighboring bit pairs and the reconciliation process would
accelerate. In the worst case Dp=0, implying the permutation
cannot separate an erroneous bit from other erroneous bits in the
same block, and the erroneous bit would remain undetected in
the subsequent pass.

To gain a global perspective, we define

Dtot=
-1

=0
/

N

p
p

D N∑ ,

where N is the length of the key string. Similar to Dp, Dtot
indicates the degree of the separation on average, and one desires
Dtot to be near 1, the larger the better. In our test, the seed of the
first LFSR was set to 5, whereas the seed of the second LFSR
varied from 1 to N=64K. We measured Dtot for the varying seeds
of the second LFSR using ni=16. From Fig.7, one can find Dtot
preserves high value greater than 0.99 at most points of the seed
except for several ones. When we changed the seed of the first
LFSR to another fixed value and repeated the above test, we got
the similar results. In a specific permutation method, the seed of
the first LFSR can be set to a constant, while the seed of the
second LFSR has a wide selection range. One needs only to skip
the several points where Dtot deteriorates severely.

Fig.7 Dtot with different value of the seed of the second LFSR

Fig.8 shows Dtot as a function of ni where we set the seed of

the first LFSR to 5 and the seed of the second LFSR to 78. Dtot
deteriorates for increasing ni and decreases sharply for ni≥8192.
When ni≥16384, Dtot≤0.75 indicating the specialized
permutation method is not effective for use in the reconciliation
process. As such, one would desire that in most cases the
reconciliation would be completed before ni reaches 16384. In
fact, the reconciliation usually succeeds prior to ni=8192.

128 256 512 1024 2048 4096 8192 16384 32768 65536
0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 o

f d
ist

an
ce

 D
to

t

Length of the block ni

Fig.8 How Dtot deteriorates when ni increases

For the purpose of comparison, we consider another simple

permutation method which uses only one LFSR but with a much
less efficient Dtot. The method acts as follows. Let (c0,…,cN-1) be
the number sequences generated by an LFSR, and the LFSR
seed width be equal to that of the length of the key string.
Through the sequence number q from 0 to  (N-1)/2  , we
exchange the position of every pair of bits represented by c2q and
c2q+1. This method also guarantees every bit of the key string can
be visited and permuted. However, Dtot turns out to be 0.76 using
ni=16, indicating this is not a good permutation method.

3.2.2 Efficiency and process time of the proposed
reconciliation

There are two important parameters in evaluating the
performance of the proposed reconciliation protocol: the total
leaked information I(A;B) and total process time t. I(A;B) is the
total bits transmitted between the two sides on the channel
which may be exposed to an eavesdropper. Here A stands for
Alice and B stands for Bob which are the two communication
sides during the reconciliation process.

We first consider the leaked information I(A;B). The
theoretic lower limit of the amount of leaked information, also
called the Shannon entropy, is

() (log() (1) log(1))h p p p p p= − − − − ,
where p is error rate. In addition, the reconciliation efficiency

is defined as
(;) / (())f I A B N h p= × ,

where N is the length of the key string. A smaller f means a better
reconciliation protocol and a protocol with f=1 is considered
optimal. Fig.9 shows the efficiency as a function of error rate
where we set N to 64Kbits using a single reconciliation module.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 6

0 2 4 6 8 10
1.0

1.2

1.4

1.6

1.8

2.0

Ef
fic

ie
nc

y
fa

ct
or

 f

Error Rate
%

Fig.9 Efficiency f for different error rate p

The somewhat vibrative behavior of f may be explained by

our choice for the initial block length as discussed in Section 2.2.
In particular, for a certain range of p, n0 takes on the same value,
that is to say n0 is not a continuous parameter as a function of p.
When n0 is {64, 32, 16, 8}, p should be the following
corresponding minimal value {0.0125, 0.025, 0.05, 0.1} and this
is consistent with the local minimums in Fig.9. We conclude that
n0*p=0.8 is a satisfactory choice of the initial length.

We now consider the total process time t for the
reconciliation protocol. In this case we use eight reconciliation
modules and set N to 512Kbits. Fig. 10 shows the results where
t is measured by ignoring the latency and network transmission
time. That is, the time shown is purely that of the required
computation needed by the reconciliation modules. When
integrated in real QKD systems as was done in section 3.1, there
is typically an additional increase of around 200 ms to the
overall processing time.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Ti
m

e

Error Rate
%

ms

Fig.10 Time t for different error rate p

 For a real QKD system, the error rate is generally below

4%. According to Fig.10 then, error reconciliation can be done
in less than 50 ms. This implies we can adapt this reconciliation
method to a sifted key rate of at least 10.5Mbits/s (i.e.
512Kbits/0.05s). This has an improvement compared with other

reported reconciliation protocols[19]-[21] among which the
maximal speed is 5.5Mbits/s using Cascade running on PC[21].
In addition, for comparison the same reconciliation on a PC with
dual-core 2 Ghz processors and pure computational time of 360
ms results in a speed 1.5 Mbits/s.

Finally, we should note that hardware environment must be
taken into account when considering the performance of a
protocol. This work used the EP3C120F780C7 FPGA
manufactured by Altera. This is a rather low-end product in the
FPGA family. The operating clock is set to 100 MHz. The total
resource cost is 30182/119088(25%) for the logic element and
1093632/3981312(28%) for the RAM - both relatively low. The
advantages of the FPGA's parallelism provide for the integration
of more reconciliation modules in order to improve performance
without additional considerations. In other words, we consider
such systems highly upgradeable.

IV. CONCLUSION
We have proposed an expeditious FPGA-based error

reconciliation method implementable in practical QKD systems.
Benefits of the method include low hardware and time
requirements, and the ability to easily upgrade such systems for
further performance enhancement. This work helps solve the
common problem of error reconciliation acting as a bottleneck in
QKD systems.

REFERENCES
[1]. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden (2002),

“Quantum cryptography”, Rev.Mod. Phys., Vol. 74, pp.
145-195.

[2]. C.H. Bennett and G. Brassard, “Quantum cryptography: public
key distribution and coin tossing”, in Proceedings of IEEE
International Conference on Computers,Systems and Signal
Processing, 1984, pp. 175-179.

[3]. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin,
“Experimental quantum cryptography”, Journal of Cryptology,
vol. 5, no. 1, pp. 3–28, 1992

[4]. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer,
“Generalized privacy amplification”, Information Theory, IEEE
Transactions on, vol. 41, no. 6, pp. 1915 –1923, 1995

[5]. G. Brassard and L. Salvail, “Secret-Key Reconciliation by Public
Discussion”, in Advances in Cryptology — EUROCRYPT ’93,
vol. 765, T. Helleseth, Ed. Springer Berlin / Heidelberg, 1994, pp.
410–423.

[6]. T. Sugimoto and K. Yamazaki, “A Study on Secret Key
Reconciliation Protocol”, IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. E83-A, no. 10, pp. 1987–1991, Oct 2000.

[7]. S. Liu, H. C. A. Van Tilborg, and M. Van Dijk, “A Practical
Protocol for Advantage Distillation and Information
Reconciliation”, Designs, Codes and Cryptography, vol. 30, no.
1, pp. 39–62, 2003.

[8]. A. Yamamura and H. Ishizuka, “Error Detection and
Authentication in Quantum Key Distribution”, in Information
Security and Privacy, vol. 2119, V. Varadharajan and Y. Mu, Eds.
Springer Berlin / Heidelberg, 2001, pp. 260–273.

[9]. W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel, C.
H. Donahue, and C. G. Peterson, “Fast, efficient error

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

T-IFS-02433-2012.R2 7

reconciliation for quantum cryptography”, Phys. Rev. A, vol. 67,
no. 5, p. 052303, 2003.

[10]. D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros,
“Efficient reconciliation protocol for discrete-variable quantum
key distribution”, in Information Theory, 2009. ISIT 2009. IEEE
International Symposium on, 2009, pp. 1879 –1883.

[11]. D. Elkouss, J. Martinez, D. Lancho, and V. Martin, “Rate
compatible protocol for information reconciliation: An
application to QKD”, in Information Theory Workshop (ITW),
2010 IEEE, 2010, pp. 1 –5

[12]. J. Martinez, D. Elkouss, V. Martin, “Blind reconciliation”,
arXiv:1205.5729[quant-ph], 2012

[13]. P. Jouguet, S. Kunz-Jacques, “High performance error
correction for quantum key distribution using Polar codes”,
arXiv:1204.5882[quant-ph],2012

[14]. W.-Y. Hwang, “Quantum Key Distribution with High Loss:
Toward Global Secure Communication”, Phys. Rev. Lett., vol. 91,
no. 5, p. 057901, 2003.

[15]. H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key
Distribution”, Phys. Rev. Lett., vol. 94, no. 23, p. 230504, 2005.

[16]. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for
quantum key distribution”, Phys. Rev. A, vol. 72, no. 1, p. 012326,
2005.

[17]. T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J.
Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan,
“Field test of a practical secure communication network with
decoy-state quantum cryptography”, Optics Express, vol. 17, no.
8, p. 6540, Apr 2009.

[18]. T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y.
Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao,
K. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan
all-pass and inter-city quantum communication network”, Optics
Express, vol. 18, no. 26, p. 27217, Dec 2010.

[19]. X. F. Mo, I. Lucio-Martinez, P. Chan, C. Healey, S. Hosier, and
W. Tittel, “Time-cost analysis of a quantum key distribution
system clocked at 100 MHz”, Optics Express, vol. 19, no. 18, p.
17729, Aug 2011.

[20]. A. Nakassis, J. C. Bienfang, and C. J. Williams, “Expeditious
reconciliation for practical quantum key distribution”,
Proceedings of SPIE, vol. 5436, no. 1, pp. 28–35, Aug 2004.

[21]. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M.
Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino,
Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T.
Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T.
Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H.
Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L.
Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler,
L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O.
Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of
quantum key distribution in the Tokyo QKD Network”, Optics
Express, vol. 19, no. 11, p. 10387, May 2011

Jian Wang received Ph.D degree from
University of Science and Technology of
China(USTC) in 2003.

He is an associate professor in the Depart
of Modern Physics at University and State
Key Laboratory of Particle Detection and
Electronics at USTC, P.R.China. His research
interests include quantum key distribution
systems, physical electronics, real-time
processing technology.

Ke Cui is a Ph.D student in the State Key
Laboratory of Particle Detection and
Electronics and Department of Modern
Physics at University of Science and
Technology of China (USTC). He received
B.E. degree from USTC in 2008. His research
interests include quantum key distribution
systems, physical electronics, real-time
processing technology.

Hong-fei Zhang is a Ph.D student in the State
Key Laboratory of Particle Detection and
Electronics and Department of Modern
Physics at University of Science and
Technology of China (USTC). He received
B.E. degree from USTC in 2009. His research
interests include quantum key distribution
systems, physical electronics, real-time
processing technology.

Chun-li Luo is a M.D student in the State Key
Laboratory of Particle Detection and
Electronics and Department of Modern
Physics at University of Science and
Technology of China (USTC). He received
B.E. degree from USTC in 2010. His research
interests include quantum key distribution
systems, physical electronics, real-time
processing technology.

Teng-yun Chen received Ph.D degree from
University of Science and Technology of
China(USTC) in 2006

He is an associate professor at University of
of Science and Technology of China, P.R.
China. His research interest is quantum key
distribution systems

Ge Jin received Ph.D degree from University of
Science and Technology of China(USTC) in
1989.

He is a professor in the Depart of Modern
Physics at University and State Key Laboratory
of Particle Detection and Electronics at USTC,
P.R.China. His research interests include
quantum key distribution systems, physical
electronics, real-time processing technology.

