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On Ergodic Secrecy Capacity of Multiple Input
Wiretap Channel with Statistical CSIT

Shih-Chun Lin and Pin-Hsun Lin

Abstract—We consider the secure transmission in ergodic legitimate and eavesdropper channels but not the realimati

fast-Rayleigh fading multiple-input single-output single-antenna-

eavesdropper (MISOSE) wiretap channels. We assume that the

statistics of both the legitimate and eavesdropper channglis
the only available channel state information at the transmiter

(CSIT). By introducing a new secrecy capacity upper bound,

of them. Under this scenario, we derive the secrecy capacity
of the fast-fading, multiple-input single-output singlatenna-
eavesdropper (MISOSE) wiretap channels, where the trans-
mitter has multiple antennas while the legitimate recearm

we prove that the secrecy capacity is achieved by Gaussianeavesdropper each have single antenna. Both the coeficient

input without prefixing. To attain this, we form another MISO SE
channel for upper-bounding, and tighten the bound by finding
the worst correlations between the legitimate and eavesdpper
channel coefficients. The resulting upper bound is tighter ian
the others in the literature which are based on modifying the
correlation between the noises at the legitimate receiver ral
eavesdropper. Next, we fully characterize the ergodic seecy
capacity by showing that the optimal channel input covariarce
matrix is a scaled identity matrix, with the transmit power
allocated uniformly among the antennas. The key to solve shca
complicated stochastic optimization problem is by exploing the
completely monotone property of the ergodic secrecy capagi
to use the stochastic ordering theory. Finally, our simulaibn
results show that for the considered channel setting, the seecy
capacity is bounded in both the high signal-to-noise ratio ad
large number of transmit antenna regimes.

I. INTRODUCTION

the legitimate and eavesdropper channels are Rayleighl.fade
We first propose a new secrecy capacity upper bound to
show that the transmission schemelih [6] is secrecy-capacit
achieving, which is based onl[1] with Gaussian input but
without prefixing. Then we find the optimal channel input
covariance matrix analytically to fully characterize thrgadic
secrecy capacity, while such a optimization problem is exlv
numerically in [6] without guaranteeing the optimality. &h
key is to exploit the completely monotone property of the
ergodic secrecy capacity, then invoking the stochastierimg
theory [8].

To obtain a tighter secrecy capacity upper bound than that
reported in[[7], we introduce another MISOSE channel with
a relaxed secrecy constraint for upper-bounding, whileirfigd
the worst correlations between the coefficients of theilegite

The secrecy capacity of a wiretap channel is the maximugad eavesdropper channels to tighten the bound.lIn [7], the
achievable secrecy rate between the transmitter and a legipper bound is obtained by directly applying the concepts
mate receiver, and a perfect secrecy constraint is impasedrom [3] [4] where the correlation is only introduced betwee
make no information be attainable by an eavesdroppel [1] [2he noises at the legitimate receiver and eavesdropperhend t
In the wireless environments, the time-varying charasteri secrecy constraint is left unchanged. Note that the secrecy
of fading channels can also be exploited to enhance tbgpacity lower bound i [7] is indeed not achievable. In orde
secrecy capacity [3]. Further enhancements are attairigbleto achieve such a bound, the variable-rate codinglin [3] must
employing multiple antennas at each node, e.g.[In [4] [S}e invoked, where the full CSIT of the legitimate channel
However, these secrecy capacity reslilis [S]-[5] rely ofigoér must be used to vary the transmission rate in every channel

knowledge of the legitimate receiver's channel state imfar

fading state. This can not be done with only statistical CSIT

tion at the transmitter (CSIT). Because of the limited feedd of the legitimate channel as in our setting. In addition to

bandwidth and the delay caused by channel estimation,tie CSIT assumptions, the secrecy capacity resulf of [3] is
may be hard to track the channel coefficients if they vamuilded on the ergodic slow fading channel assumption where
rapidly. Thus for fast-fading channels, it is more pradtica coding among lots of slow fading channel blocks (each block
consider the case with only partial CSIT of the legitimatgith lots of coded symbols) is used. This assumption may be
channel. However, in this case, only some lower and uppgfirealistic owing to the long latency. For fast fading chelan
bounds of the secrecy capacity are knowh [6] [7], and th&ith full CSIT of legitimate channel and statistical CSIT of
secrecy capacity is unknown. Although the general secregye eavesdropper channel, only some achievability reaudts
capacity formula is reported il l[1], the optimal auxiliarjknown [9]. In contrast to our results, inl[9], the prefixing in
random variable for prefixing in this formula ill unknown [ may be useful to increase the secrecy rate. More detailed

In this letter, we consider one important scenario of partigomparisons between our results and thoséin[[7][[5] [3] can
CSIT, i.e., the transmitter only knows the statistics offbibte pe found in Remarks 1 and 2.
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upcoming [[#)). The received signalsandz at the legitimate Theoren{R. Before that, we present the following Thedrém 1
receiver and eavesdropper (each with single antenna) fnem which shows that the scheme in [6], which uses Gaussian
transmitter equipped with multiple-antenna, can be regriesl  without prefixing in [1], is capacity achieving. By introdng
respectively afl new bounding techniques, we obtain tighter secrecy capacit
H upper bound than that i ][7] to attain the secrecy cpapcity.

y=h"x+ny, @ For such a upper bound, we form a better degraded MISOSE

z=g"x+n, (2) channel of [ILJ(R) with a less stringent perfect secrecy con-
Etraint than[(4) (in the upcomingl(6)), and tighten the upper
ound by carefully introducing correlations to the chasiel

andg (in the upcoming[(8)).

wherex is aN; x 1 complex vector representing the transmitte
vector signal; is the number of transmit antennas, while
andn; are independent and identically distributed (i.i.d.) girc
larly symmetric additive white Gaussian noise with zero mea

and uni_t variance at the legitimate receiver and eaves@mppRry .o -om 1 For the MISOSE fast Rayleigh fading wiretap
respectively. In[{1) and12p andg are bothN. x 1 complex channel (@)(2) with the statistical CSIT oh and g, using

vectors, and representing the channels from the trangriotte - <coinx without prefixing is the optimal transmission

the legitimate receiver and eavesdropper, respectively. o :
. ' strategy. And the non-zero secrecy capaciys®btained only
In this work, the channels are assumed to be fast Raylel\gi]\ench > 4, which is

fading. That is,h ~ CN(0,01) andg ~ CN(0,a3l), respec-
tively, while h, g, n, and n, are independent. The channel Cs=max(En [log(1+h"zh)]-Egllog(1+g"%g)]), (5)
coefficients change in every symbol time. We assume that 2
the legitimate receiver knows the instantaneous chanatg stwhere Zx is the covariance matrix of the Gaussian channel
information ofh perfectly, while the eavesdropper knows thosi@put x and subject to@), while h ~ CN(0,0%l) and g ~
of h and g perfectly. As for the CSIT, only the distributionsCN(0,a3l).
of h andg are known at the transmitter, while the realizations
of h andg are unknown. Thus the transmitter is subjected to  Proof: From [6], we know that the right-hand-side (RHS)
a power constraint as of (B) is achievable and serves as a secrecy capacity lower-
Tr(Sy) <P 3) bound. Now we present our new secrecy capacity upper bound
- which matches the RHS dfl(5). The key for establishing such
whereZy is the covariance matrix of in (@) and [(2). an upper-bound is first forming a better MISOSE channel than
The perfect secrecy and secrecy capacity are defined as @W2) in terms of higher secrecy capacity, and applying the
lows. Consider 2NR N)-code with an encoder that maps theesults in [1]. First, we consider a better scenario wheee th
messagev e Wh = {1,2,...,2NR} into a lengthN codeword; eavesdropper does not know the realizationshpfand (@)
and a decoder at the legitimate receiver that maps the ezteibecomes
sequencg" (the collections of over the code lengtN) from , . ,
the legitimate channe[(1) to an estimated message¥y. HWwZ",g")/N > R—¢,and PtW#w) <¢' ©6)
We then have the following definitions. As in [10], equivalently, we can respectively treat the aiitp

Definition 1 (Secrecy Capacity [3]) Perfect  secrecy s of the legitimate channel gy, h) while that of the eav_esdrop—
achievable with rate R if, for anyg > 0, there exists a Per channel as (@). From [11], the secrecy capacity under

sequence of2NR N)-codes and an integer dNsuch that for constraint [(B) is only related to the marginal distribution
any N> No ’ p(y,h|x) and p(zg|x). Then for any joint conditional PDF

NN / i / Py v.zgix Such thatp(y',h'|x) = p(y,h|x), the secrecy capacity
H(w|Z",hY,g")/N > R—¢/,and PtW#w) <€, (4) under constrain{{6) is the same. Now we introduce our same
marginal legitimate channel(y’,h'|x) for (@), which is formed

h is th t &, and gV th I- . X .
where w IS € secrel messag anag" are e Co é)y replacmgh iny with h/ _ (Uh/cg)g as

lections of zh, and g over code length N, respectively. Th
secrecy capacityCs is the supremum of all achievable secrecy y = (h’)Hx +ny= ((oh/og)g)Hx+ ny. (7
rates.
Ill. SECRECY CAPACITY OF THEMISOSEFAST
RAYLEIGH FADING WIRETAP CHANNEL

Sincex is independent dfi andg due to our CSIT assumption,
both h" and h have the same conditional distributions condi-
tion on x (which equal toCN(QoﬁI)). Then we know that

In this section, we fully characterize the secrecy capaciB/(}/ h'[x)=p(y,h|x). From [T), we will focus on the MISOSE
of the MISOSE fast Rayleigh fading channel in the upcoming,- el 'in the following ’

* In this letter,||a]| is the vector norm of vectoa. The trace and complex (. _H
conjugate transpose of matrix is denoted by TiA) and AM, respectively. y'=g"x+(0g/on)ny, z=g"x+n: (8)

The diagonal matrix is denoted by diag(.). The zero-meanptexnGaussian .

random vector with covariance matrixis denoted a€N(0,X). For random We now use the_' secrecy capacity of the MISOSE Ch_a_nnel
variables (vectorsh andB, p(A) is the probability distribution function (PDF) (8), under constrain{16), to upper-bound that of the oagin

of A, I(A;B) denotes the mutual information between them witileA|B) channel[(1L](R). Again, we can treat a¢,9) and(zg) as the

denotes the conditional differential entropy. We udse> B — C to represent o
that A,B, andC form a Markov chain. All the logarithm operations are ofc'umUt of the Iegltlmate channel and that of the eaveSd"Oppe

base 2 such that the unit of rates is in bit. channel in[(B), respectively. As inl[9], we apply this factoin



the secrecy capacity formula ofl [1], By using the eigenvalue decompositinp= UDU", whereU
is unitary andD is diagonal, finding the optima;; of (14) is

/! .
G= Qgi))d Uiy'9)-1Uizg) ©) equivalent to solving
= Qg}ai(' (U;y'lg) —1(U;2g), (10) rLr}aD>(Eg[Iog (0%/0f +g"UDU"g)]-Eglog(1+g"UDU g)))
< max (x:y'|z,9). 11) = mDax(lEg[Iog (03/0n+0"Dg)| — Eqllog(1+g"Dg)]),

whereU in (@) is an auxiliary random variable for prefixing, (15)
which forms the Markov chaitd — x — (y”,z,g); the equality where the equality comes from the fact that the distribution
(10) follows from [10] by the independence bf andg due of g~ CN(O, O'Sl) is unchanged by the rotation of unital

to our CSIT assumptions; and the inequalifyl(11) is fréin [Shnd we can sefy, = D (U = ) without loss of optimality.

Whenaog < o, the equivalent channéll(8) is degraded, and In the following, we show that subjecting to (D) < P, the
y’ — z giveng. From [12], apply the Markov chain propertyoptimal D for (I5) is
to (1) o

o ) First of all, from [6, Section V], the optima for (I5) satisfies
From [4], we know that Gaussiaxiis optimal for the upper Tr(D) = P. For anyD = [dy,dy, -+ ,dy,] WhereS di = P and

bound in [I2), and the upper-bound [n}(12) matches the RHES. 0,Vi, we want to prove that fob* defined in [16)
of (B) whenoy < on. Note that wherog < o, the RHS of [(b)

is positive. In contrast, wheoy > oy, the upper bound i (11) I [log (a+g"Dg)] — Eq[log (1+9™Dg)]
Iti zero s;nce from[{8)x — z— Y’ giveng. And it concludss <Fyq[log (a+ gHD*g)} — Ty [|og(1+gH D*g)], (17)

e proof. _

Remark 1 When the transmitter additionally knows theVhere we denoteyg/af by a, which belongs 00, 1). Here
realizations ofh, e. g. [3], the legitimate channdll(7) is not ave introduce some results from the stochastic orderingrtheo
same marginal channel dfl(L). In this case, gixeh may not 18] t0 proceed. _ _
be Gaussian bub’ = (0,/04)g is Gaussian, ang(y’,h'|x) Definition 2 [8] p.234_1] A function §(x) : [0,00) — R is
from (7) may not equal tg(y,h|x) from (@), In our case, the complgtely monotone if for all x 0 and n=0,1,2,---, its
CSIT assumption makes independent oh and g, then the derivativey™ exists and(—1)"¢(" (x) > 0.
legitimate channel if{7) has the same marginal as th4flin (Definition 3 [B] (5.A.1)] Let B and B be two nonnegative
Then we can get rid of the unrealistic ergodiow fading random variables such thate %] > E[e~5%, for all s> 0.
assumptions i ]3] and find the secrecy capacitfast fading Then B is said to be smaller than&n the Laplace transform
channel. Note that the upper-bound [ [7] is obtained byrder, denoted as B<,t Bo.
directly applying the derivations in][3] to fast fading clmeh, Lemma 1 [B] Th. 5.A.4] Let B and B, be two nonnegative
and is looser than the upper-bouid](11) which is based mndom variables. If B< 1 B, then E[f(B;)] < E[f(B))],
the channel[{8) and is tightened by the “worst” correlatiowhere the first derivative of a differentiable function f on
betweenh andg (h = g). [0,) is completely monotone, provided that the expectations

exist.

Now we show that the optimalZ, of (@) is
diag{P/Nr,...,P/Nt}, and fully characterize the secrecy,
capacity as follows. f

To prove [I¥), we letB; = g"Dg, B, = ¢g"'D*g, and
(x) = log(a+ x) —log(1+x) to invoke Lemmd1L. It can be
easily verified thatp(x), the first derivative off (x), satisfies
Definition[d. More specifically, th@th derivative ofyy meets
Theorem 2 For the MISOSE fast Rayleigh fading wiretap N _n
channel@M)(@) with the statistical CSIT oh and g, under Y™ (x) _{ (apoh® (14X
power constraint P, the non-zero secrecy capacity i€ (a+><>“+1+ (19
obtained only whemy, > 0g, which is whenx > 0, sincea € [0,1). Now from LemmdL and Defini-
I|h||2 g2 tion [3, we know that to provd (17) is equivalent to proving
Cs=1IEn {'09<1+ PN—>] —Eyq {'09<1+ PN—)} . (13) E[esB] > Ele5%] or log(E[e S&]/E[e SB]) > 0,Vs > 0.
T T From [13, p.40], we know that

=1 >0, if nis even,

<0, ifnisodd, @&

whereh ~ CN(0,0?1), g~CN(0,031), and N is the number Fle &)y M Nr
of transmit antennas. Iog( € ): log(1+2d;s) — § log(1+2dks). (19)
Ele ] k; ( kS) k; ( )
Proof: Subjecting toIIB),aftgr;ub.stitutir’rgvaN(.O,crﬁl). To show that the above is nonnegative, we resort to the
and g ~ CN(0,agl) into the optimization problem ir{15), it majorization theory. Note thaf\", log(1+ 2djs) is a Schur-
becomes concave function[[14] in(dy,...,dn;), Vs> 0, and by the

02/02 +gHs,g definition of majorization[[14]
ma><Eg % ~Eqllog(1+d'%0)]]. 14) .
b a§/op, (dl,---,dNT)Z(P/NT,P/NT,---,P/NT)<(d1,d2,---dNT),

log
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Fig. 2. Comparison of the ergodic secrecy capacities uniffereht numbers
of transmit antennably.

whereb < a means thab is majorized bya. Thus from [14],
we know that the RHS of(19) is nonnegatiws > 0. Then
(I2) is valid, andD* is the optimalD for (I5). Note thatD*

is also the optimaky of (B) according to the discussion under
(@I3). Substitutingd* in (18) as the optimaky into the target [12]

function of [3), we have[(13).
Remark 2 In [6, Sec. VII], the optimaky for (I3) is found

by an iterative algorithm without guaranteeing the optitgal [14)
The contribution of Theorerh] 2 is analytically finding the
optimal 24, which equals toD* in (18), by exploiting the

unit variances. In Figldl we compare the secrecy capacities
with Nr = 2 under differentog/on. The secrecy capacity
increases with decreasirmy/on. The capacity converges to
2log(on/0g) when the SNR is high, which meefs113) with
large P. In Fig.[2, we compare the secrecy capacities with
different numbers of transmit antennblg. We can also find
that the capacity converges whé¥t is large enough. This
results can be easily seen by letting — o in (I3), and
applying the central limit theorem dfh||?/Nr and||g||?/Nr,
respectively.

V. CONCLUSION

In this paper, we derived the secrecy capacity of the
MISOSE ergodic fast Rayliegh fading wiretap channel, where
only the statistical CSIT of the legitimate and eavesdroppe
channels is known. By introducing a new secrecy capacity
upper bound, we first showed that Gaussian input without
prefixing is secrecy capacity achieving. Then we analytical
found the optimal channel input covariance matrix, andyfull
characterized the secrecy capacity.
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