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On Ergodic Secrecy Capacity of Multiple Input
Wiretap Channel with Statistical CSIT

Shih-Chun Lin and Pin-Hsun Lin

Abstract—We consider the secure transmission in ergodic
fast-Rayleigh fading multiple-input single-output single-antenna-
eavesdropper (MISOSE) wiretap channels. We assume that the
statistics of both the legitimate and eavesdropper channels is
the only available channel state information at the transmitter
(CSIT). By introducing a new secrecy capacity upper bound,
we prove that the secrecy capacity is achieved by Gaussian
input without prefixing. To attain this, we form another MISO SE
channel for upper-bounding, and tighten the bound by finding
the worst correlations between the legitimate and eavesdropper
channel coefficients. The resulting upper bound is tighter than
the others in the literature which are based on modifying the
correlation between the noises at the legitimate receiver and
eavesdropper. Next, we fully characterize the ergodic secrecy
capacity by showing that the optimal channel input covariance
matrix is a scaled identity matrix, with the transmit power
allocated uniformly among the antennas. The key to solve such a
complicated stochastic optimization problem is by exploiting the
completely monotone property of the ergodic secrecy capacity
to use the stochastic ordering theory. Finally, our simulation
results show that for the considered channel setting, the secrecy
capacity is bounded in both the high signal-to-noise ratio and
large number of transmit antenna regimes.

I. I NTRODUCTION

The secrecy capacity of a wiretap channel is the maximum
achievable secrecy rate between the transmitter and a legiti-
mate receiver, and a perfect secrecy constraint is imposed to
make no information be attainable by an eavesdropper [1] [2].
In the wireless environments, the time-varying characteristic
of fading channels can also be exploited to enhance the
secrecy capacity [3]. Further enhancements are attainableby
employing multiple antennas at each node, e.g., in [4] [5].
However, these secrecy capacity results [3]–[5] rely on perfect
knowledge of the legitimate receiver’s channel state informa-
tion at the transmitter (CSIT). Because of the limited feedback
bandwidth and the delay caused by channel estimation, it
may be hard to track the channel coefficients if they vary
rapidly. Thus for fast-fading channels, it is more practical to
consider the case with only partial CSIT of the legitimate
channel. However, in this case, only some lower and upper
bounds of the secrecy capacity are known [6] [7], and the
secrecy capacity is unknown. Although the general secrecy
capacity formula is reported in [1], the optimal auxiliary
random variable for prefixing in this formula isstill unknown.

In this letter, we consider one important scenario of partial
CSIT, i.e., the transmitter only knows the statistics of both the
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legitimate and eavesdropper channels but not the realizations
of them. Under this scenario, we derive the secrecy capacity
of the fast-fading, multiple-input single-output single-antenna-
eavesdropper (MISOSE) wiretap channels, where the trans-
mitter has multiple antennas while the legitimate receiverand
eavesdropper each have single antenna. Both the coefficients of
the legitimate and eavesdropper channels are Rayleigh faded.
We first propose a new secrecy capacity upper bound to
show that the transmission scheme in [6] is secrecy-capacity
achieving, which is based on [1] with Gaussian input but
without prefixing. Then we find the optimal channel input
covariance matrix analytically to fully characterize the ergodic
secrecy capacity, while such a optimization problem is solved
numerically in [6] without guaranteeing the optimality. The
key is to exploit the completely monotone property of the
ergodic secrecy capacity, then invoking the stochastic ordering
theory [8].

To obtain a tighter secrecy capacity upper bound than that
reported in [7], we introduce another MISOSE channel with
a relaxed secrecy constraint for upper-bounding, while finding
the worst correlations between the coefficients of the legitimate
and eavesdropper channels to tighten the bound. In [7], the
upper bound is obtained by directly applying the concepts
from [3] [4] where the correlation is only introduced between
the noises at the legitimate receiver and eavesdropper and the
secrecy constraint is left unchanged. Note that the secrecy
capacity lower bound in [7] is indeed not achievable. In order
to achieve such a bound, the variable-rate coding in [3] must
be invoked, where the full CSIT of the legitimate channel
must be used to vary the transmission rate in every channel
fading state. This can not be done with only statistical CSIT
of the legitimate channel as in our setting. In addition to
the CSIT assumptions, the secrecy capacity result of [3] is
builded on the ergodic slow fading channel assumption where
coding among lots of slow fading channel blocks (each block
with lots of coded symbols) is used. This assumption may be
unrealistic owing to the long latency. For fast fading channels
with full CSIT of legitimate channel and statistical CSIT of
the eavesdropper channel, only some achievability resultsare
known [9]. In contrast to our results, in [9], the prefixing in
[1] may be useful to increase the secrecy rate. More detailed
comparisons between our results and those in [7] [6] [3] can
be found in Remarks 1 and 2.

II. SYSTEM MODEL

In the considered MISOSE wiretap channel, we study the
problem of reliably communicating a secret messagew from
the transmitter to the legitimate receiver subject to a con-
straint on the information attainable by the eavesdropper (in
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upcoming (4)). The received signalsy andz at the legitimate
receiver and eavesdropper (each with single antenna) from the
transmitter equipped with multiple-antenna, can be represented
respectively as∗

y= hHx+ny, (1)

z= gHx+nz, (2)

wherex is aNt ×1 complex vector representing the transmitted
vector signal,Nt is the number of transmit antennas, whileny

andnz are independent and identically distributed (i.i.d.) circu-
larly symmetric additive white Gaussian noise with zero mean
and unit variance at the legitimate receiver and eavesdropper,
respectively. In (1) and (2),h andg are bothNt ×1 complex
vectors, and representing the channels from the transmitter to
the legitimate receiver and eavesdropper, respectively.

In this work, the channels are assumed to be fast Rayleigh
fading. That is,h ∼ CN(0,σ2

hI) and g ∼ CN(0,σ2
gI), respec-

tively, while h, g, ny and nz are independent. The channel
coefficients change in every symbol time. We assume that
the legitimate receiver knows the instantaneous channel state
information ofh perfectly, while the eavesdropper knows those
of h and g perfectly. As for the CSIT, only the distributions
of h andg are known at the transmitter, while the realizations
of h andg are unknown. Thus the transmitter is subjected to
a power constraint as

Tr(Σx)≤ P, (3)

whereΣx is the covariance matrix ofx in (1) and (2).
The perfect secrecy and secrecy capacity are defined as fol-

lows. Consider a(2NR,N)-code with an encoder that maps the
messagew∈ WN = {1,2, . . . ,2NR} into a length-N codeword;
and a decoder at the legitimate receiver that maps the received
sequenceyN (the collections ofy over the code lengthN) from
the legitimate channel (1) to an estimated message ˆw∈ WN.
We then have the following definitions.

Definition 1 (Secrecy Capacity [3]) Perfect secrecy is
achievable with rate R if, for anyε′ > 0, there exists a
sequence of(2NR,N)-codes and an integer N0 such that for
any N> N0

H(w|zN,hN,gN)/N > R− ε′,and Pr(ŵ 6= w)≤ ε′, (4)

where w is the secret message, zN,hN, and gN are the col-
lections of z,h, and g over code length N, respectively. The
secrecy capacityCs is the supremum of all achievable secrecy
rates.

III. SECRECY CAPACITY OF THEMISOSEFAST

RAYLEIGH FADING WIRETAP CHANNEL

In this section, we fully characterize the secrecy capacity
of the MISOSE fast Rayleigh fading channel in the upcoming

∗ In this letter,‖a‖ is the vector norm of vectora. The trace and complex
conjugate transpose of matrixA is denoted by Tr(A) and AH, respectively.
The diagonal matrix is denoted by diag(.). The zero-mean complex Gaussian
random vector with covariance matrixΣ is denoted asCN(0,Σ). For random
variables (vectors)A andB, p(A) is the probability distribution function (PDF)
of A, I(A;B) denotes the mutual information between them whileH(A|B)
denotes the conditional differential entropy. We useA→ B→C to represent
that A,B, andC form a Markov chain. All the logarithm operations are of
base 2 such that the unit of rates is in bit.

Theorem 2. Before that, we present the following Theorem 1
which shows that the scheme in [6], which uses Gaussianx
without prefixing in [1], is capacity achieving. By introducing
new bounding techniques, we obtain tighter secrecy capacity
upper bound than that in [7] to attain the secrecy cpapcity.
For such a upper bound, we form a better degraded MISOSE
channel of (1)(2) with a less stringent perfect secrecy con-
straint than (4) (in the upcoming (6)), and tighten the upper
bound by carefully introducing correlations to the channels h
andg (in the upcoming (8)).

Theorem 1 For the MISOSE fast Rayleigh fading wiretap
channel (1)(2) with the statistical CSIT ofh and g, using
Gaussain x without prefixing is the optimal transmission
strategy. And the non-zero secrecy capacity Cs is obtained only
whenσh > σg, which is

Cs =max
Σx

(

Eh
[

log
(

1+hHΣxh
)]

−Eg
[

log
(

1+gHΣxg
)])

, (5)

where Σx is the covariance matrix of the Gaussian channel
input x and subject to(3), while h ∼ CN(0,σ2

hI) and g ∼
CN(0,σ2

gI).

Proof: From [6], we know that the right-hand-side (RHS)
of (5) is achievable and serves as a secrecy capacity lower-
bound. Now we present our new secrecy capacity upper bound
which matches the RHS of (5). The key for establishing such
an upper-bound is first forming a better MISOSE channel than
(1)(2) in terms of higher secrecy capacity, and applying the
results in [1]. First, we consider a better scenario where the
eavesdropper does not know the realizations ofh, and (4)
becomes

H(w|zN,gN)/N > R− ε′,and Pr(ŵ 6= w)≤ ε′. (6)

As in [10], equivalently, we can respectively treat the output
of the legitimate channel as(y,h) while that of the eavesdrop-
per channel as (z,g). From [11], the secrecy capacity under
constraint (6) is only related to the marginal distributions
p(y,h|x) and p(z,g|x). Then for any joint conditional PDF
py′,h′,z,g|x such thatp(y′,h′|x) = p(y,h|x), the secrecy capacity
under constraint (6) is the same. Now we introduce our same
marginal legitimate channelp(y′,h′|x) for (1), which is formed
by replacingh in y with h′ = (σh/σg)g as

y′ = (h′)Hx+ny = ((σh/σg)g)Hx+ny. (7)

Sincex is independent ofh andg due to our CSIT assumption,
both h′ and h have the same conditional distributions condi-
tion on x (which equal toCN(0,σ2

hI)). Then we know that
p(y′,h′|x)=p(y,h|x). From (7), we will focus on the MISOSE
channel in the following,

y′′ = gHx+(σg/σh)ny, z= gHx+nz. (8)

We now use the secrecy capacity of the MISOSE channel
(8), under constraint (6), to upper-bound that of the original
channel (1)(2). Again, we can treat as(y′′,g) and(z,g) as the
output of the legitimate channel and that of the eavesdropper
channel in (8), respectively. As in [9], we apply this fact into
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the secrecy capacity formula of [1],

Cs ≤ max
p(U,x)

I(U ;y′′,g)− I(U ;z,g) (9)

= max
p(U,x)

I(U ;y′′|g)− I(U ;z|g), (10)

≤ max
px

I(x;y′′|z,g). (11)

whereU in (9) is an auxiliary random variable for prefixing,
which forms the Markov chainU → x→ (y′′,z,g); the equality
(10) follows from [10] by the independence ofU and g due
to our CSIT assumptions; and the inequality (11) is from [5].
Whenσg <σh, the equivalent channel (8) is degraded, andx→
y′′ → z given g. From [12], apply the Markov chain property
to (11)

Cs ≤ max
px

I(x;y′′|g)− I(x;z|g). (12)

From [4], we know that Gaussianx is optimal for the upper
bound in (12), and the upper-bound in (12) matches the RHS
of (5) whenσg < σh. Note that whenσg < σh, the RHS of (5)
is positive. In contrast, whenσg ≥ σh, the upper bound in (11)
is zero since from (8),x → z→ y′′ given g. And it concludes
the proof.

Remark 1: When the transmitter additionally knows the
realizations ofh, e. g. [3], the legitimate channel (7) is not a
same marginal channel of (1). In this case, givenx, h may not
be Gaussian buth′ = (σh/σg)g is Gaussian, andp(y′,h′|x)
from (7) may not equal top(y,h|x) from (1), In our case, the
CSIT assumption makesx independent ofh and g, then the
legitimate channel in (7) has the same marginal as that in (1).
Then we can get rid of the unrealistic ergodicslow fading
assumptions in [3] and find the secrecy capacity infast fading
channel. Note that the upper-bound in [7] is obtained by
directly applying the derivations in [3] to fast fading channel,
and is looser than the upper-bound (11) which is based on
the channel (8) and is tightened by the “worst” correlation
betweenh andg (h = g).

Now we show that the optimal Σx of (5) is
diag{P/NT , . . . ,P/NT}, and fully characterize the secrecy
capacity as follows.

Theorem 2 For the MISOSE fast Rayleigh fading wiretap
channel (1)(2) with the statistical CSIT ofh and g, under
power constraint P, the non-zero secrecy capacity Cs is
obtained only whenσh > σg, which is

Cs = Eh

[

log

(

1+P
||h||2

NT

)]

−Eg

[

log

(

1+P
||g||2

NT

)]

, (13)

whereh ∼CN(0,σ2
hI), g∼CN(0,σ2

gI), and NT is the number
of transmit antennas.

Proof: Subjecting to (3), after substitutingh∼CN(0,σ2
hI)

and g ∼ CN(0,σ2
gI) into the optimization problem in (5), it

becomes

max
Σx

(

Eg

[

log
σ2

g/σ2
h +gHΣxg

σ2
g/σ2

h

]

−Eg
[

log(1+gHΣxg)
]

)

. (14)

By using the eigenvalue decompositionΣx = UDUH , whereU
is unitary andD is diagonal, finding the optimalΣ∗

x of (14) is
equivalent to solving

max
U,D

(

Eg
[

log
(

σ2
g/σ2

h +gHUDUHg
)]

−Eg
[

log(1+gHUDUHg)
])

,

=max
D

(

Eg
[

log
(

σ2
g/σ2

h +gHDg
)]

−Eg
[

log(1+gHDg)
])

,

(15)

where the equality comes from the fact that the distribution
of g∼CN(0,σ2

gI) is unchanged by the rotation of unitaryU,
and we can setΣx = D (U = I ) without loss of optimality.

In the following, we show that subjecting to Tr(D)≤ P, the
optimal D for (15) is

D∗ = diag{P/NT ,P/NT , · · · ,P/NT}. (16)

First of all, from [6, Section V], the optimalD for (15) satisfies
Tr(D) = P. For anyD = [d1,d2, · · · ,dNT ] where∑di = P and
di ≥ 0,∀i, we want to prove that forD∗ defined in (16)

Eg
[

log
(

a+gHDg
)]

−Eg
[

log
(

1+gHDg
)]

≤Eg
[

log
(

a+gHD∗g
)]

−Eg
[

log
(

1+gHD∗g
)]

, (17)

where we denoteσ2
g/σ2

h by a, which belongs to[0,1). Here
we introduce some results from the stochastic ordering theory
[8] to proceed.
Definition 2 [8, p.234] A function ψ(x) : [0,∞) → R is
completely monotone if for all x> 0 and n= 0,1,2, · · · , its
derivativeψ(n) exists and(−1)nψ(n)(x)≥ 0.

Definition 3 [8, (5.A.1)] Let B1 and B2 be two nonnegative
random variables such thatE[e−sB1]≥E[e−sB2], for all s> 0.
Then B1 is said to be smaller than B2 in the Laplace transform
order, denoted as B1 ≤LT B2.
Lemma 1 [8, Th. 5.A.4] Let B1 and B2 be two nonnegative
random variables. If B1 ≤LT B2 then E[ f (B1)] ≤ E[ f (B2)],
where the first derivative of a differentiable function f on
[0,∞) is completely monotone, provided that the expectations
exist.

To prove (17), we letB1 = gHDg, B2 = gHD∗g, and
f (x) = log(a+ x)− log(1+ x) to invoke Lemma 1. It can be
easily verified thatψ(x), the first derivative off (x), satisfies
Definition 2. More specifically, thenth derivative ofψ meets

ψ(n)(x) =

{

n!
(a+x)n+1 −

n!
(1+x)n+1 > 0, if n is even,

−n!
(a+x)n+1 +

n!
(1+x)n+1 < 0, if n is odd,

(18)

whenx> 0, sincea∈ [0,1). Now from Lemma 1 and Defini-
tion 3, we know that to prove (17) is equivalent to proving
E[e−sB1] ≥ E[e−sB2] or log(E[e−sB1]/E[e−sB2]) ≥ 0, ∀s > 0.
From [13, p.40], we know that

log

(

E[e−sB1]

E[e−sB2]

)

=
NT

∑
k=1

log(1+2d∗
ks)−

NT

∑
k=1

log(1+2dks). (19)

To show that the above is nonnegative, we resort to the
majorization theory. Note that∑NT

k=1 log(1+2ďks) is a Schur-
concave function [14] in(ď1, . . . , ďNT ), ∀s > 0, and by the
definition of majorization [14]

(d∗
1, · · · ,d

∗
NT
) = (P/NT , P/NT , · · · , P/NT)≺ (d1, d2, · · ·dNT ),
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whereb ≺ a means thatb is majorized bya. Thus from [14],
we know that the RHS of (19) is nonnegative,∀s> 0. Then
(17) is valid, andD∗ is the optimalD for (15). Note thatD∗

is also the optimalΣx of (5) according to the discussion under
(15). SubstitutingD∗ in (16) as the optimalΣx into the target
function of (5), we have (13).

Remark 2: In [6, Sec. VII], the optimalΣx for (13) is found
by an iterative algorithm without guaranteeing the optimality.
The contribution of Theorem 2 is analytically finding the
optimal Σx, which equals toD∗ in (16), by exploiting the
completely monotone property of the ergodic secrecy capacity
and invoking Lemma 1. Finally, as discussed in Section I,
the secrecy rate lower-bound in [7] is not achievable, thus
the conclusion in [7] that uniform power allocation among
transmit antennas as (16) isnot secrecy capacity achieving is
wrong.

IV. SIMULATION RESULTS

In this section we compare the secrecy capacities under
different channel conditions. The transmit signal-to-noise ratio
(SNR) is defined asP in dB scale sinceny andny both have

unit variances. In Fig. 1 we compare the secrecy capacities
with NT = 2 under differentσg/σh. The secrecy capacity
increases with decreasingσg/σh. The capacity converges to
2 log(σh/σg) when the SNR is high, which meets (13) with
large P. In Fig. 2, we compare the secrecy capacities with
different numbers of transmit antennasNT . We can also find
that the capacity converges whenNT is large enough. This
results can be easily seen by lettingNT → ∞ in (13), and
applying the central limit theorem on||h||2/NT and||g||2/NT ,
respectively.

V. CONCLUSION

In this paper, we derived the secrecy capacity of the
MISOSE ergodic fast Rayliegh fading wiretap channel, where
only the statistical CSIT of the legitimate and eavesdropper
channels is known. By introducing a new secrecy capacity
upper bound, we first showed that Gaussian input without
prefixing is secrecy capacity achieving. Then we analytically
found the optimal channel input covariance matrix, and fully
characterized the secrecy capacity.
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