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Abstract—The classical wiretap channel models secure commu-
nication in the presence of a nonlegitimate wiretapper who has to
be kept ignorant. Traditionally, the wiretapper is passive in the
sense that he only tries to eavesdrop the communication using his
received channel output. In this paper, more powerful active wire-
tappers are studied. In addition to eavesdropping, these wiretap-
pers are able to influence the communication conditions of all users
by controlling the corresponding channel states. Since legitimate
transmitters and receivers do not know the actual channel realiza-
tion or the wiretapper’s strategy of influencing the channel states,
they are confronted with arbitrarily varying channel (AVC) condi-
tions. The corresponding secure communication scenario is, there-
fore, given by the arbitrarily varying wiretap channel (AVWC). In
the context of AVCs, common randomness (CR) has been shown to
be an important resource for establishing reliable communication,
in particular, if the AVC is symmetrizable. But availability of CR
also affects the strategy space of an active wiretapper as he may or
may not exploit the common randomness for selecting the channel
states. Several secrecy capacity results are derived for the AVWC.
In particular, the CR-assisted secrecy capacity of the AVWC with
an active wiretapper exploiting CR is established and analyzed in
detail. Finally, it is demonstrated for active wiretappers how two
orthogonal AVWCs, each useless for transmission of secure mes-
sages, can be super-activated to a useful channel allowing for se-
cure communication at nonzero secrecy rates. To the best of our
knowledge, this is not possible for passive wiretappers and, fur-
ther, provides the first example of such super-activation, which has
been expected to appear only in the area of quantum communica-
tion. Such knowledge is particularly important as it provides valu-
able insights for the design and themedium access control of future
wireless communication systems.

Index Terms—Wiretap channel, secrecy capacity, strong se-
crecy, arbitrarily varying channel, common randomness, active
wiretapper, super-activation, embedded security, medium access
control in secure communication systems.

I. INTRODUCTION

R APID developments in communication systems make in-
formation available almost everywhere. Along with this,

the security of sensitive information from unauthorized access
becomes an important task and a common approach is the use of
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cryptographic techniques to keep information secret. Such tech-
niques have a wide variety of use and are based on the assump-
tion of insufficient computational capabilities of nonlegitimate
receivers. Due to the increase in computational power, improved
algorithms, and recent advances in number theory, these tech-
niques are becoming more and more insecure.
Wireless communication systems are inherently vulnerable

for eavesdropping due to the open nature of the wireless
medium. The physical properties of the wireless channel make
the communication easily accessible to external wiretappers
but, on the other hand, also offer possibilities to establish
security by other approaches than cryptographic techniques.
In this context, the concept of information theoretic, or phys-

ical layer, security is becoming more and more attractive, since
it solely uses the physical properties of the wireless channel in
order to establish security. Information theoretic security was
initiated by Wyner, who introduced the wiretap channel [1].
This is the simplest scenario involving security with one legit-
imate transmitter-receiver pair and one wiretapper to be kept
ignorant. Recently, there is growing interest in information the-
oretic security as it provides a promising approach to embed
secure communication in wireless networks; for instance see
[2]–[5] and references therein. Along with this, the concept of
physical layer service integration becomes more and more im-
portant [6].
All these previous studies have one thing in common: the

wiretapper is usually assumed to be passive in the sense that he
(or she) simply tries to eavesdrop upon the communication and
to infer the confidential information by only using his received
channel output. This scenario is briefly reviewed in Section II.
In contrast to that, we consider in this paper more powerful
wiretappers which are able to maliciously influence the channel
conditions of all users. Since legitimate transmitter and receiver
have no knowledge about how such an active wiretapper will
influence the channel conditions, they have to be prepared for
the worst, i.e., a channel which may vary in an unknown and
arbitrary manner from channel use to channel use.
The concept of arbitrarily varying channels (AVC) [7]–[9]

is a suitable model to capture the effects of such unknown
varying channel conditions. Accordingly, the communication
problem at hand is given by the corresponding arbitrarily
varying wiretap channel (AVWC) with active wiretapper, which
is introduced in Section III.
In the context of AVCs, it has been shown that common

randomness (CR) is an important and often necessary resource
for reliable communication over arbitrarily varying channels
[7]–[9]. The availability of common randomness allows legit-
imate users to use more sophisticated, CR-assisted strategies
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by coordinating their choice of encoder and decoder. But it
also paves the way for more powerful wiretappers. An active
wiretapper may or may not exploit the available common
randomness for controlling the channel states.
Thus, this immediately defines different classes of at-

tacks against which the communication should be protected.
Section IV deals with active wiretappers who do not exploit
available common randomness. First studies for the corre-
sponding AVWC with active wiretapper can be found in [10],
[11], where the latter use the strong secrecy criterion [12],
[13]. In this paper, the main objective is the analysis of active
wiretappers exploiting CR. This is done in Section V where the
corresponding CR-assisted secrecy capacity of the AVWC with
active wiretapper exploiting CR is analyzed in detail.
For wireless communication systems, it is important to un-

derstand how the overall performance of the system is deter-
mined. For example, the capacity of an OFDM system is given
by the sum of the capacities of all subchannels. In particular,
if two useless channels with zero capacity are used in an or-
thogonal way, the overall capacity of the system is still zero.
In Section VI we use the previously developed theory to show
that two orthogonal AVWCs, each useless for themselves in the
sense that it has zero secrecy capacity, can be used together to
super-activate the whole system to allow for secure communica-
tion at positive secrecy rates. This shows that the world view of
classical additivity of orthogonal resources does not hold any-
more (in the sense that “ ”) if secrecy requirements
are imposed. We note that such phenomena as the aforemen-
tioned super-activation only appear for active wiretappers and
are not possible for passive wiretappers. Until now, such effects
have been observed only for quantum communication systems.
To the best of our knowledge, this is the first example that the
phenomenon of super-activation is observed for classical com-
munication systems as well. Finally, the paper ends with a con-
clusion in Section VII.

Notation

Discrete random variables are denoted by capital letters and
their realizations and ranges by lower case and script letters;
and are the sets of positive integers and nonnegative real
numbers; and are the mutual information and the
binary entropy; denotes a Markov chain of random
variables , and in this order; all logarithms, exponentials,
and information quantities are taken to the base 2; is the
set of all probability distributions and is the complement
of a set; and denote the expectation and probability;

assigns the value of the right hand side (rhs) to the
left hand side (lhs).

II. CLASSICAL WIRETAP CHANNEL

First, we briefly state the key ideas and main results for the
classical wiretap channel. In this scenario, the wiretapper is as-
sumed to be passive in the sense that he simply tries to eavesdrop
upon the communication and to infer the confidential informa-
tion by using only its received channel output.
Therefore we start with some basic definitions. Let and
be finite input and output sets. Then the channels

and represent the communi-
cation links to the legitimate receiver and the wiretapper. For
input and output sequences and

of block length , the discrete memoryless channels are
given by and

. The wiretap channel with passive wiretapper
is given by the pair of channels with common input.1

The task is now to establish a reliable communication be-
tween the transmitter and the legitimate receiver and, at the same
time, to keep the confidential information secret from the pas-
sive wiretapper. This is formalized as follows.
Definition 1: An -code for the wiretap channel con-

sists of a stochastic encoder

(1)

i.e., a stochastic matrix, with a set of messages
and a decoder given by a collection

of disjoint decoding sets

Then for an -code , the average probability of
decoding error at the legitimate receiver is given by

.
To keep the message secret from the wiretapper, we further

require for some (small) with the
random variable uniformly distributed over the set of messages
and the channel output at the wire-

tapper. This criterion is known as strong secrecy [12], [13].
Definition 2: A nonnegative number is an achievable se-

crecy rate for the wiretap channel with passive wiretapper if for
all there is an and a sequence -codes
such that for all we have

and and while as
. The secrecy capacity is given by the supremum of

all achievable secrecy rates .
The discrete memoryless wiretap channel with passive wire-

tapper is well studied under several aspects and its secrecy ca-
pacity can be found for instance in [1], [12]–[14].
Theorem 1: The secrecy capacity of the wiretap channel

with passive wiretapper is

where the random variables form a Markov
chain.
Remark 1: For the wiretap channel it turns out that stochastic

encoding, cf. (1), is crucial to keep the wiretapper ignorant of the
transmitted message and, therefore, to achieve the secrecy ca-
pacity. This is in contrast to the point-to-point link without any
secrecy requirements, where deterministic encoding suffices to
achieve the capacity.

1Note that it is sufficient to consider the marginal transition probabilities
and only as the secrecy capacity depends only the marginal channels

to the legitimate receiver and the wiretapper. In particular, two wiretap chan-
nels with different joint probability distributions
and have the same secrecy capacity if they
have the same marginal probability distributions and

, cf. [2, Lemma 2.1].
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III. ARBITRARILY VARYING WIRETAP CHANNELS

A passive wiretapper does not influence the channel condi-
tions of the legitimate users and, accordingly, simply tries to
eavesdrop upon the communication. In contrast to that, we con-
sider in this paper more powerful wiretappers which are further
able to control the channel states of all users. To model such an
activewiretapper, we introduce a function , where char-
acterizes a certain strategy and denotes the set of all possible
active strategies of the wiretapper.
Since the legitimate users have no knowledge about how the

active wiretapper will choose his strategy and, thus, how he
will influence the channel conditions, they have to be prepared
for the worst, i.e., a channel which may vary in an unknown and
arbitrary manner from channel use to channel use.

A. Arbitrarily Varying Channels as a Model for Active
Wiretappers

The concept of arbitrarily varying channels [7]–[9] is a suit-
able model to capture the aforementioned effects. To model
the unknown varying channel states, we introduce a finite state
set . Then the communication links to the legitimate receiver
and the wiretapper are given by and

respectively. For given state sequence
of length , the discrete memory-

less channel to the legitimate receiver is given by

(2)

for all and . Then the arbitrarily varying
channel (AVC) to the legitimate receiver is given by the
family of channels for all state sequences , i.e.,

(3)

Further, for any probability distribution we define the
averaged channel to the legitimate receiver as

(4)

Similarly, for the channel to the wiretapper, we define for given
state sequence the discrete memoryless channel as

for all and
, and, accordingly,

and for .
Definition 3: The arbitrarily varying wiretap channel

(AVWC) with active wiretapper is given by the families of
pairs of channels with common input as

In contrast to the classical wiretap channel with passive wire-
tapper, cf. Section II, we have to take the unknown varying
channel states into account for establishing the communication.
Therefore, the probability of decoding error slightly changes as

follows. Using the wiretap code from Definition 1, the prob-
ability of decoding error at the legitimate receiver for message

and state sequence is given by

and the average probability of error for state sequence
is

We further define the maximum as

(5)

To ensure that the transmitted message is kept secret from the
wiretapper for all state sequences , we now require

(6)

where denotes the output at the
wiretapper for state sequence . The communication
over the AVWC with active wiretapper is visualized in Fig. 1.
Definition 4: A nonnegative number is an achievable se-

crecy rate for the AVWC with active wiretapper if for all
there is an and a sequence of -codes

such that for all we have
and and while

as . The secrecy capacity is
given by the supremum of all achievable secrecy rates .
Remark 2: Recall that it is completely unknown to the legit-

imate users how the state sequence is chosen by the
wiretapper. Neither it is known if is chosen according
to an underlying distribution nor the distribution itself is known.
Thus, it is required to find codes such that and

as for all simultaneously.
This means the codes have to be universal with respect to the
state sequences, which is also reflected by the maximum in (5)
and (6).

B. Impact of Common Randomness

It has been shown that common randomness (CR) is an
important resource for reliable communication over arbitrarily
varying channels. Therefore we first briefly review the impact
of available CR for the classical single-user AVC and then
discuss how it affects communication strategies for the corre-
sponding AVWC.
For the single-user AVC as given (3), it has been shown that

its capacity highly depends on the coordination between en-
coder and decoder [7]–[9]. As shown in Fig. 2, there is the deter-
ministic approach with prespecified encoder and decoder, and
further the CR-assisted approach, where encoder and decoder
are coordinated based on an access to a common random source.
The latter strategy leads to the CR-assisted capacity
of the AVC which is given by [7]



BOCHE AND SCHAEFER: CAPACITY RESULTS AND SUPER-ACTIVATION FOR WIRETAP CHANNELS 1485

Fig. 1. Arbitrarily varying wiretap channel (AVWC) with active wiretapper. The wiretapper controls the channel conditions by choosing a corresponding state
sequence based on his strategy . The actual sequence is unknown to both sender and legitimate receiver. The sender encodes a message
into the codeword and transmits it over the AVWC to the legitimate receiver, which has to decode the message for any state

sequence . At the same time, the wiretapper has to be kept ignorant of in the sense that .

where denotes the random variable associated with the
output of the averaged channel for , cf. (4).
For the deterministic capacity it has been shown that it

displays a dichotomy behavior: it either equals the CR-assisted
capacity or otherwise is zero [8]. This can be charac-
terized in detail using the concept of symmetrizability [9].
Definition 5: An AVC is called symmetrizable if there

exists a stochastic matrix such that

(7)

holds for all and .
Roughly speaking, Definition 5 means that a symmetrizable

AVC can “emulate” a valid input, which makes it impossible
for the decoder to decide on the correct codeword. With this,
the deterministic capacity can be completely characterized as
follows. If the AVC is nonsymmetrizable, we have

In addition, we have if and only if the AVC is
symmetrizable [9].

C. CR-Assisted Strategies

The previous discussion shows that common randomness is
a necessary and important resource for reliable communication
under arbitrarily varying channel conditions; in particular, if
the channel is symmetrizable. Therefore, we assume in the fol-
lowing that all parties, i.e., the legitimate users and the active
wiretapper, have access to a common randomness which we de-
note by . This assumption can be motivated by the fact that
this is realized over a public channel which is open to the wire-
tapper.
Remark 3: If the wiretapper has no access to the common

randomness, the legitimate users can immediately use this re-
source to create a secret key corresponding to the size of the
common randomness and therewith keep the confidential infor-
mation completely secret from the wiretapper.
The legitimate users can use common randomness as a re-

source to coordinate their choice of encoder and decoder. This
leads to the following definition.
Definition 6: A CR-assisted -code for the

AVWC with active wiretapper is given by a family of wiretap

codes together with a random variable taking
values in according to .
Using the CR-assisted code , the mean average proba-

bility of error at the legitimate receiver for state sequence
is then given by , i.e.,

(8)

and, accordingly, the maximum by
.

The definitions of a CR-assisted achievable secrecy rate and
the corresponding CR-assisted secrecy capacity
are defined accordingly by replacing the code by in Def-
inition 4.
Definition 7: A nonnegative number is a CR-assisted

achievable secrecy rate for the AVWC with active wire-
tapper if for all there is an and a sequence
of -codes such that for all we have

and

(9)

and while as . Here,
is the ex-

pectation over the whole ensemble of codebooks, where
is the mutual information term for the par-

ticular code , cf. (6). The CR-assisted secrecy capacity
is given by the supremum of all achievable

secrecy rates .
Common randomness allows the legitimate users to use more

sophisticated strategies, but it also has an impact on the be-
havior and on the abilities of potential wiretappers. In partic-
ular, an active wiretappermight or might not exploit the knowl-
edge about the common randomness for influencing the channel
states. These two cases are further analyzed in the following.

IV. ACTIVE WIRETAPPERS

We start with the case where the active wiretapper does not
exploit his knowledge about the common randomness. Thus, his
particular choice of does not depend on the observation
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Fig. 2. Deterministic and CR-assisted coding strategies for the classical point-to-point AVC. For the deterministic approach in (a), encoder and decoder are
prespecified and independent of the common randomness. For the CR-assisted approach in (b), encoder and decoder depend on the actual outcome of the
common random experiment . (a) Deterministic approach. (b) CR-assisted approach.

Fig. 3. All parties, i.e., legitimate users and the wiretapper, have access to a common randomness . Accordingly, they can choose their encoder and decoders
and based on the observed realization . The wiretapper does not exploit the observation for choosing his strategy and therewith the

state sequence .

. The corresponding communication scenario is visual-
ized in Fig. 3 and first studies can be found in [11] for the strong
secrecy criterion.

A. CR-Assisted Secrecy Capacity

For the CR-assisted secrecy capacity of the AVWC with
active wiretapper, there are only partial results known. For this,
we need the following definition.
Definition 8: A channel to the wiretapper is called a best

channel if there exists a channel such
that all other channels from are degraded ver-
sions of . Then it holds

where denotes the random variable associated with the
output of the averaged channel .
With this we get a CR-assisted achievable secrecy rate for the

AVWC with active wiretapper.
Proposition 1 ([11]): If there exists a best channel to the wire-

tapper, the CR-assisted secrecy capacity of the
AVWC with active wiretapper it holds that

(10)

where and denote the random variables associated with
the outputs of the corresponding averaged channels and

.

B. Secrecy Capacity

A CR-assisted strategy requires common randomness be-
tween all users, since encoder and decoders depend all on
the same observation of the common random experiment, cf.
Definition 6. If this kind of resource is not available, a strategy
with prespecified encoder and decoder is needed. For the
characterization of the corresponding secrecy capacity of the
AVWC with active wiretapper, a concept of symmetrizability
is needed, similarly as for the single-user AVC, cf. Definition
5 and [9].
For deterministic encoding, there is a one-to-one mapping be-

tween the message and the corresponding codeword
. Therefore, a symmetrizability concept on the “code-

word level” as in (7) suffices to characterize the deterministic
capacity of the classical AVC without any secrecy requirements
[8], [9]. On the other hand, in the context of information theo-
retic secrecy, it has been shown that randomized encoding is in-
dispensable, cf. also Remark 1, which precludes a deterministic
one-to-one mapping. Therefore, for the analysis of the AVWC
with active wiretapper, there is the need of a more sophisticated
definition of symmetrizability on the “message level” which
takes randomized encoding into account. This was done in [11]
in a more implicit way. Here, we present the corresponding def-
inition and analysis in detail, which will be needed to analyze
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the case when , cf. also Lemma 1 and Theorem
2. For this purpose, we define

Definition 9: An AVC is called symmetrizable under ran-
domized encoding if for all and any stochastic encoder

, there is a stochastic matrix
such that

(11)

holds for all and .
Note that due to the secrecy requirement, we need the general

concept of randomized encoding. This concept is more pow-
erful than deterministic encoding as it includes deterministic en-
coding as a special case. The important thing is that this necessi-
tates a more general concept of symmetrizability as given in (11)
which is a multiletter description for all block lengths .
This is in contrast to the single-user AVC with deterministic en-
coding for which a single-letter description of symmetrizability
is sufficient, cf. (7).
Now the crucial observation is the following. If an AVC is

symmetrizable in the sense of Definition 5, cf. (7), then it is also
symmetrizable under randomized encoding, cf. Definition 9.
Lemma 1: Let the AVC be symmetrizable in the sense of

Definition 5, i.e., there is a stochastic matrix
such that (7) holds. Then the AVC is also symmetrizable
under stochastic encoding, i.e., there exists a stochastic matrix

such that for any stochastic encoder
condition (11) holds.

Proof: Let be the stochastic encoder.
We set as shown at the bottom of the page. For any

with we have the second equation shown at the
bottom of the page, where the third equality follows from the
symmetrizability, cf. (7).
With this we immediately obtain a similar result for random-

ized encoding as in [9, Lemma 1] for deterministic encoding.
Lemma 2: If the AVC is symmetrizable under randomized

encoding, then any code with satisfies

Proof: The proof can be done as in [9, Lemma 1]. Let
be any code as in Definition 1. Let be
satisfying (11). Consider random variables with

. Then for each pair of codewords
and every , we have

(12)

where the second step follows from the symmetrizability under
randomized encoding, cf. (11). With this, we get for the proba-
bility of error
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where the second step follows from (12) and the last step from
. This immediately implies for the average

probability of error

so that

for some . Finally, with

the desired result is proved.
This shows that a symmetrizable AVC leads to a proba-

bility of decoding error at the receiver which satisfies
also under randomized encoding. The consequence is that also
under randomized encoding, there is no communication pos-
sible if the AVC is symmetrizable. Accordingly, the capacity
for randomized encoding is zero and therewith also for the se-
crecy capacity of the corresponding AVWC
with active wiretapper. Thus, in this case the active wiretapper
can choose a strategy so that the state sequence can em-
ulate a valid input which causes ambiguities at the legitimate
receiver.
On the other hand, if the AVC is nonsymmetrizable, we

have for the deterministic capacity , and so we have
for randomized encoding. Accordingly, this allows us to char-
acterize the behavior of the secrecy capacity of the
AVWC with active wiretapper in detail. To this end, we drop
the assumption of a best channel to the wiretapper for a moment.
Theorem 2 ([11]): If the CR-assisted secrecy capacity satis-

fies , then the secrecy capacity is given by

if and only if the AVC to the legitimate receiver is nonsym-
metrizable. If the AVC is symmetrizable, then
. If and , then the AVC
is symmetrizable.
Remark 4: Interestingly, the secrecy capacity is

not longer characterized by entropic quantities. Although the
mutual information terms and their differences, cf. (10), might
be positive, the secrecy capacity is still zero if the corresponding
AVC is symmetrizable.

V. ACTIVE WIRETAPPERS EXPLOITING CR

In this case, the active wiretapper is more powerful as he ex-
ploits his knowledge about the common randomness to mali-
ciously influence the channel conditions of the legitimate users.
Accordingly, the wiretapper can choose his strategy based on

the outcome of the random experiment. To emphasize this de-
pendency, we denote the set of all strategies by in the fol-
lowing. Now, the function representing his strategy
becomes

(13)

This means, for every observation , the wiretapper can
choose the state sequence which governs
the following transmission. Of course, the actual strategy

of the wiretapper is unknown to the legitimate users. The
corresponding communication scenario is depicted in Fig. 4.
Then the definitions of a CR-assisted achievable secrecy rate

and the CR-assisted secrecy capacity of the
AVWC with active wiretapper exploiting CR are defined ac-
cordingly by letting the state sequence in (8) and (9) in Defini-
tions 6 and 7 be .
With this, for function the probability of de-

coding error at the legitimate receiver becomes

(14)

and, accordingly,

(15)

The mean secrecy criterion becomes

(16)

Conditions (14) and (16) show that an active wiretapper ex-
ploiting CR has different strategies, since (14) and (16) depend
on the applied strategy . On the one hand, he can try to
maximize the information leaked to him by choosing the state
sequence such that (16) is maximized. Another strategy is to
disturb the communication of the legitimate users by choosing
the state sequence such that the probability of decoding error is
maximized. Thus, it includes jamming models where the wire-
tapper acts as a jammer. Of course, any combination in between
is also a valid strategy for the wiretapper and, thus, the legiti-
mate users have to be prepared for all possible strategies which
is reflected by the maximum in (15) and (16).

A. CR-Assisted Secrecy Capacity

In the following we will solve this problem and further char-
acterize the optimal strategy of the wiretapper. This yields a
complete characterization of the CR-assisted secrecy capacity

of the AVWC with active wiretapper ex-
ploiting CR.
Theorem 3: If , then the CR-assisted se-

crecy capacity is given by

if and only if the AVC is to the legitimate receiver
is nonsymmetrizable. If the AVC is symmetrizable,
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Fig. 4. Arbitrarily varying wiretap channel (AVWC) with active wiretapper exploiting CR. The wiretapper exploits the knowledge about the observation
to control the state sequence , which governs the transmission to the legitimate receiver and the wiretapper.

then . If and
, then the AVC is symmetrizable.

Interestingly, it turns out that the CR-assisted secrecy
capacity of the AVWC with active
wiretapper exploiting CR displays the same dichotomy be-
havior as the secrecy capacity : it either equals its
CR-assisted secrecy capacity (not exploiting
CR) or else is zero. As a consequence, the characterization
of is again nonentropic, cf. also Remark 4.
Thus, with the result given in Theorem 2 we immediately ob-
tain the following characterization of the CR-assisted secrecy
capacity.
Corollary 1: The CR-assisted secrecy capacity

of the AVWC with active wiretapper
exploiting CR is given by

Remark 5: For the dichotomy result above we assumed
. For the case , we

trivially have equality since
.

In the following we prove Theorem 3. To do so, we start
with a basic observation which yields a trivial upper bound on

. Since an active wiretapper exploiting CR is
more powerful than an active wiretapper which does not exploit
CR, we immediately obtain

(17)

For the proof it turns out to be beneficial distinguishing be-
tween and . The
corresponding proofs are carried out in the following two sub-
sections.

B. Positive CR-Assisted Secrecy Capacity

First, we study the case, where the CR-assisted secrecy
capacity is positive. We show that if ,
we actually have equality in (17), i.e.,

.

Theorem 4: If , then

Proof: To prove the desired result, we extend techniques
for the ordinary AVC; more precisely the random code reduc-
tion [8], [11] and the elimination of randomness [8]. We have to
extend and generalize these techniques in order to incorporate
the secrecy requirement on the transmitted message and to in-
clude active wiretappers which exploit CR.
1) Random Code Reduction: Let , and be

arbitrary. Now, we start with a CR-assisted -code
for the AVWC with active wiretapper (not exploiting

CR), cf. Definition 6, which is optimal in the sense that it
achieves the secrecy rate

with

and

So far we cannot say anything about the common randomness
that is needed for this code to be optimal, especially the size
can be arbitrary large. But from the random code reduction

in [11] we can conclude on the following.
Lemma 3 ([11]): Let be a CR-assisted

-code for the AVWC with active wire-
tapper consisting of a family of wiretap codes
where is chosen according to the distribution .
Then let

and (18)

Then for any and that satisfy

and
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there exist codes chosen from the CR-as-
sisted code by random selection such that

and

(19)

for all .
Lemma 3 shows that for any CR-assisted code for

the AVWC with active wiretapper, there exists another
“reduced” CR-assisted code uniformly distributed over
wiretap codes with an average probability of error and a mean
secrecy criterion which fulfill (19).
Furthermore, from Lemma 3, cf. also [11], we see that it is

sufficient to select nomore than wiretap codes to obtain
a CR-assisted code with the desired properties achieving
the same secrecy rate as the original code .
Up to now we have ensured that there is a CR-assisted code
consistingof polynomialmanywiretap codes for theAVWC
with active wiretapper (not exploiting CR) with the desired

properties. The next step is tomake this code suitable for the case
withanactivewiretapper,whichexploitsCR,aswell.
2) Elimination of Randomness: The crucial idea is to com-

bine the reduced CR-assisted code with a code suitable
for the AVWC with active wiretapper exploiting CR. Since

, there exists such a code which achieves
positive secrecy rate and, thus, such a code is suitable to indicate
which element of is actually used in the following. In more
detail, since , there exists a CR-assisted
code for the AVWC with active wiretapper exploiting
CR consisting of a family with stochastic en-
coders

and collections of disjoint decoding sets

with as with probability of error

and further

for all with as .
Now, the final code for the AVWC with active wire-

tapper exploiting CR is given by the composition of both
codes and . Thus, the final code consists of en-
coders transmitting a message from

of length , and decoding sets
, where the channel is determined by the state se-

quence .
Since as , the resources “wasted” for indi-

cating which code is actually used, vanishes so that we end up

with completing the proof.
Note that Lemma 3 ensures that the ratio vanishes by letting

be of polynomial size only (since it is of order ).
3) Discussion: Theorem 4 shows that if the CR-assisted se-

crecy capacity is positive, an active wiretapper exploiting CR is
as (in)effective as an active wiretapper who does not exploit CR.
Thus, a strategy whichmaximizes the information leakage to the
wiretapper, cf. (16), does not make sense in this case. Thus, the
optimal strategy of an active wiretapper exploiting
CR must be to destroy the communication of the legitimate
users. This means, the aim must be to choose the state sequence

in such a way that the probability of error of the
legitimate users in (14) is maximized. Then the CR-assisted se-
crecy capacity becomes zero, i.e., . Since
otherwise, we have , which
means that the legitimate users can operate at the same rate as
if the active wiretapper would not exploit CR.

C. Zero CR-Assisted Secrecy Capacity

The previous analysis shows that if
then . Thus, the strategy
of an active wiretapper exploiting CR must be to destroy the
communication of the legitimate users. Therefore, we study
now the case, where the CR-assisted secrecy capacity is zero.
If , we immediately obtain from (17) that

as well. Therefore, it remains to con-
centrate on in the following.
Next, we show that for , we have

if and only if the AVC to the legiti-
mate receiver is symmetrizable. We start with the direct part,
which establishes symmetrizability as a necessary condition
for .
Lemma 4: Let . If

then the AVC to the legitimate receiver is symmetrizable.
Proof: We prove the proposition by contradiction. There-

fore we assume the AVC to be nonsymmetrizable. Then
we know from [11] that the secrecy capacity and
the CR-assisted secrecy capacity are equal,
i.e., . This means that there
exists a wiretap code which achieves the desired rate. Such
a code can be considered as a special CR-assisted code with
cardinality . The consequence is that, basically, the
active wiretapper which exploits CR “becomes” an active
wiretapper which does not exploit CR since his knowledge
about the common randomness is useless. Thus, we end up
with which contradicts the assumption.
This establishes symmetrizability as a necessary condition for

.
The next lemma shows that if the AVC to the legiti-

mate receiver is symmetrizable, then the average probability
of decoding error (14) is strictly positive which implies

. Thus, it establishes symmetrizability
also as a sufficient condition for . For
this purpose, for strategy of the active wiretapper
exploiting CR we define
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Lemma 5: If the AVC to the legitimate receiver is sym-
metrizable, then there is a function such that for
all we have

(20)

Proof: Let be the set of
stochastic encoders. We set as shown at the bottom of the
page. Now, for every , the wiretapper is able to choose a
function , cf. also (13), to control the state sequence,
i.e., he chooses . In the following we construct a
stochastic matrix such that for any and for
any with we have

(21)

for all , and . Now, if (21) holds, the
channel is symmetrizable for all . From this
follows immediately that the decoding error at the legitimate
receiver is bounded from below, cf. (20). This can be verified
exactly as in Lemma 2, cf. also [9, Lemma 1]. The details are
omitted for brevity.
Thus, to prove the desired result, it only remains to show that

(21) is actually satisfied. Therefore, let be arbitrary and
let be a smallest subset of with the following
properties. For any with we have

and further . Thus, is the smallest
set that covers the whole set . Then, we set

From the definition follows that for all we have

This means is a stochastic matrix and we obtain for any
with and any the following

where the third equality follows from the fact the AVC is
symmetrizable. This proves (21) and therewith completes the
proof of the theorem.

D. Capacity Results

The AVWC with an active wiretapper, who is not exploiting
CR, is studied in [11]. There, several capacity results are derived
for the approach with prespecified encoder and decoder as well
as for the CR-assisted approach where encoder and decoder are
coordinated with the help of a common random source. In the
following we will show that the results derived in this paper for
the AVWC with active wiretapper exploiting CR, cf. Section V,
allow to obtain similar capacity results.
In particular, if , from the achievable

secrecy rate for the AVWC with active wiretapper, cf. Proposi-
tion 1 and Theorem 4, we immediately obtain also an achievable
secrecy rate for the AVWC with active wiretapper exploiting
CR.
Corollary 2: If and if there exists a

best channel to the wiretapper, then for of the
AVWC with active wiretapper exploiting CR it holds that

where and denote the outputs of the corresponding chan-
nels and .
Since an active wiretapper, who is exploiting CR, is

more powerful than a wiretapper who is not, we have
, cf. (17), so that every

upper bound the CR-assisted secrecy capacity of the AVWC
with active wiretapper immediately yields also an upper bound
on the CR-assisted secrecy capacity of the AVWC with active
wiretapper exploiting CR. Thus, (17) and [11, Theorem 3] yield
the following upper bound on the CR-assisted secrecy capacity.
Proposition 2: The CR-assisted secrecy capacity

of the AVWC with active wiretapper
exploiting CR is bounded from above by
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Such a worst case assumption yields a very natural upper
bound, since the CR-assisted secrecy capacity cannot exceed
the capacities of each individual channel realization. Thus, this
upper bound is dominated by the worst channel to the legiti-
mate receiver and the best channel to the wiretapper. However,
this bound is in general not tight. In addition, we obtain from
[11, Theorem 4] a multiletter upper bound on the CR-assisted
secrecy capacity.
Proposition 3: The CR-assisted secrecy capacity

of the AVWC with active wiretapper
exploiting CR is bounded from above by

where and the outputs of the channels and
.

Now, applying the achievability result given in Corollary 2
to the -fold product of the channels and

, we obtain together with the multiletter upper
bound in Proposition 3 a multiletter description of the CR-as-
sisted secrecy capacity.
Theorem 5: If and if there exists a best

channel to the wiretapper, then a multiletter description of the
CR-assisted secrecy capacity of the AVWC
with active wiretapper exploiting CR is given by

if and only if the AVC to the legitimate receiver is nonsym-
metrizable.

VI. SUPER-ACTIVATION

For wireless communication systems, such as cellular sys-
tems or sensor networks, resource allocation is an important
issue as it determines the overall performance of the network.
For example, the overall capacity of an OFDM system is given
by the sum of the capacities of all orthogonal subchannels. Fur-
thermore, a system consisting of two orthogonal AVCs, where
both are “useless,” i.e., with zero capacity, the capacity of the
whole system is zero as well. This reflects the world view of
classical additivity of basic resources in the sense that “
.”
In contrast to that, in quantum information theory, it has been

shown recently that the classical additivity of basic resources
does not hold anymore. There are examples in quantum com-
munication, where two channels which are themselves useless
allow perfect transmission if they are used together, i.e., “
,” cf. for example [15], [16]. To the best of our knowledge, such
phenomena of super-activation of channels are not possible for

passive wiretappers and, to date, it has been expected that they
only appear in the area of quantum communication.
The natural question arises if such phenomena as super-acti-

vation, which have been observed only in the area of quantum
communication until now, are also possible for classical com-
munication systems. Such knowledge is particularly important
as it has a direct impact on the design and the medium access
control of communication systems.

A. Secure Communication Over Orthogonal AVWCs

In the following, we study what happens if certain secrecy
requirements are imposed. We show that in this case, super-ac-
tivation also appear in such classical communication systems.
To do so, we consider secure communication over two orthog-
onal AVWCs with active wiretappers as depicted in Fig. 5.
For finite input sets , output sets , and state sets

, we define two AVWCs and exactly
as in Section III, cf. especially (2)–(3) and Definition 3. Now,
the parallel use of both AVWCs and results in the
combined AVWC , where the notation
indicates the orthogonal use of and . Then for given
state sequences , the discrete
memoryless channel to the legitimate
receiver is

with and
. Accordingly, the AVC is

given by

and the AVWC by

where is the discrete memoryless channel
to the wiretapper.

Next, we define two suitable AVWCs, which are themselves
useless with zero secrecy capacity, and show that they lead to
a positive secrecy capacity if they are used together. There-
fore, we make use of an example which first appeared in [7]
and which is later also discussed in [8, Example 1]. We use
this example to construct the AVC to the legitimate re-
ceiver. Therefore, let and define

with
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Fig. 5. Communication over two parallel AVWCs and , where each of them is useless for transmission of secure communication, i.e.,
.

Further, let the AVC to the wiretapper be consisting of only
one element, i.e., so that the first AVWC
is given by

From [7] we know that the AVC to the legitimate re-
ceiver is symmetrizable and, hence, we have
and . Since is symmetrizable, we
know from Theorem 2 that the secrecy capacity is zero,
i.e., . Since the AVC to the wire-
tapper consists of only one element, there obviously exists
a best channel to the wiretapper so that Proposition 1 yields

if is chosen accordingly.2

Now, let us define the second AVWC . Therefore, let
and and define

with

so that , and with

so that with the binary entropy
function. With this, we construct the second AVWC as

Since , we obtain
. Note that this provides an example for

an AVWC with a nonsymmetrizable AVC to the legitimate
receiver whose CR-assisted secrecy capacity is zero.

2For example, if we choose the useless channel

for and as the channel to the

wiretapper, we obviously have so that .

Thus, we have constructed two AVWCs and ,
whose both secrecy capacities are zero, i.e.,

. In the following we denote the systemwhich
results from the parallel use of both channels by

, cf. also Fig. 5. Note that since both AVWCs are used in
a orthogonal manner, we have for each AVWC encoders

and decoders , according to Def-
initions 1 and 6 respectively.

B. Protocol for Super-Activation

Next, we argue how both channels, which are useless for se-
cure transmission, can be used to super-activate the system to
allow for secure communication at nonzero secrecy rates. The
joint use of both AVWCs results in a joint encoder

and a joint decoder
. The corresponding communication scenario is depicted in

Fig. 6.
1) Active Wiretapper: Here we discuss the case where the

wiretapper does not exploit his access to the common random-
ness. In the following we show that we have

although .
The first observation is that , which can

easily be achieved by using only so that we obviously have
. The second crucial

observation is the following.
Lemma 6: The combined AVC

to the legitimate receiver is non-
symmetrizable.

Proof: It suffices to show that is nonsymmetrizable ac-
cording to Definition 5, since then Lemma 1 immediately im-
plies that it is also nonsymmetrizable under randomized en-
coding according to Definition 9.
In general, to show that a parallel AVC with channels

is nonsymmetriz-
able, we have to show that for all stochastic matrices

there exists
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Fig. 6. Joint use of two parallel AVWCs and , where each of them is useless for transmission of secure communication, i.e.,
.

and
such that

(22)

with does not hold, cf. also (7).
In our context, condition (22) reads as

Next we argue that for any
and a specific fixed choice of and

this condition does not hold anymore. Therefore,
we set and
so that we get

(23)

with and
. If we sum

up all on both sides, we get

since is a stochastic matrix. With we
get from (23) that

for all and . But this only holds
for the useless channel with zero capacity, i.e., .
But this contradicts the assumption of (cf. corre-
sponding construction of the channel in Section VI-A), which
proves the assertion that combined AVC is nonsymmetriz-
able.
Since is nonsymmetrizable, from Proposition 1 we then

have .
The protocol which actually achieves positive secrecy rates

for the system is given as follows. To securely transmit mes-
sage to the legitimate receiver, the sender first creates

.
To make also available at the legitimate receiver, the

sender transmits over the second AVWC . Since
the corresponding link to the legitimate user is nonsym-
metrizable, we have and there exists decoding
sets making at the legitimate receiver
available. Note that as , it is very likely
that will be also available at the wiretapper. Thus, for the
first AVWC we are in the same situation as in Section IV,
i.e., common randomness is available at the legitimate users and
the wiretapper.
For the first AVWC , the legitimate users can use the

common randomness created through the second AVWC
to use a CR-assisted strategy. The sender transmits and
the legitimate user uses decoding sets for
decoding. As , secure communication
at a positive secrecy rate is possible. This completes the pro-
tocol which achieves a secrecy rate

.
2) Active Wiretapper Exploiting CR: From Theorem 3 we

know that the CR-assisted secrecy capacity
of the AVWC with active wiretapper exploiting CR displays
the same behavior as the secrecy capacity . Thus, it is
convincing that the super-activation discussed above also holds
for active wiretappers, i.e.,
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although we have
by construction and The-

orem 3.
It is clear that the protocol for naive active wiretappers as

discussed above also works in the case of active wiretappers
exploiting CR as briefly outlined in the following. The common
randomness available at all users is useless as the wiretapper
can choose his state sequence accordingly based on this re-
source. Therefore, similarly to the previous case, the sender uses
the second AVWC to create “new” common randomness
at all users. This allows proceeding as in the previous case to
achieve positive secrecy rates. Note that due to the communi-
cation model, the wiretapper is not allowed to adapt his state
sequence on the new common randomness. Accordingly, this
shows the limitations of the used model and encourages further
investigations on more general setups as discussed below in the
conclusions.
However, the following observation is noteworthy. For both

AVWCs and the active wiretapper exploiting CR
can control the corresponding state sequences. This means, in
principle, he can choose for a function
and for a function . But for the parallel use

he is further able to use a joint strategy
so that his strategy space becomes larger.

However, the wiretapper is not able to gain from his increased
strategy space.

VII. CONCLUSION

In this paper, we studied the arbitrarily varying wiretap
channel (AVWC) with active wiretappers, who may or may
not exploit available common randomness. It was previously
shown in [11] that the secrecy capacity of the
AVWC with active wiretapper (not exploiting CR) displays
a dichotomy behavior: it either equals its CR-assisted secrecy
capacity or else is zero. The main techniques
to characterize the secrecy capacity and its behavior are the
random code reduction, elimination of randomness, and the
concept of symmetrizability.
Here, we extended and generalized these techniques in a

proper way such that imposed secrecy requirements and active
wiretappers exploiting CR are incorporated. In particular, it has
been shown that randomized encoding is crucial for achieving
secrecy in AVWCs. This necessitated a more generalized
concept of symmetrizability for randomized encoding, which is
in contrast to the classical AVC (without secrecy constraints)
where deterministic encoding suffices.
These generalized techniques allowed for proving that the

CR-assisted secrecy capacity of the AVWC
with active wiretapper exploiting CR displays the same

characteristic as the secrecy capacity : it either
equals its CR-assisted secrecy capacity or else
is zero. Interestingly, this dichotomy behavior shows that the
secrecy capacity is non longer solely characterized by entropic
quantities. In particular, this determines the optimal strategy
of an active wiretapper. If the CR-assisted secrecy capacity

is positive, it actually equals .
Thus, in this case an active wiretapper exploiting CR is as

(in)effective as an active wiretapper, who does not exploit
available CR. Thus, the only reasonable strategy for such a
wiretapper must be to symmetrize the channel to the legitimate
receiver to destroy their communication. This is completely
characterized using the generalized concept of symmetrizability
for randomized encoding.
The techniques developed in this paper are not only powerful

enough to completely characterize the CR-assisted secrecy ca-
pacity of the AVWC with active wiretapper exploiting CR, but
also allow for describing new phenomena. In particular, we gave
an example how two useless AVWCs, each with zero secrecy
capacity, can be used together such that the system is super-acti-
vated allowing for secure transmission at nonzero secrecy rates.
The super-activation in AVWCs is a consequence of the im-
posed secrecy requirement, since in contrast to that, for clas-
sical AVCs without secrecy requirement, super-activation is not
possible to the best of our knowledge. Such results are particu-
larly important as they give valuable insights for the design and
medium access control of communication systems with secrecy
requirements. Moreover, to the best of our knowledge, this pro-
vides the first example for nonquantum communication systems
where the world view of classical additivity of basic resources
does not hold anymore in the sense that “ .”
Although the secrecy capacities and

of the AVWC are completely characterized
in terms of the CR-assisted secrecy capacity
(they either equals or else are zero), a precise
characterization of is still missing. This is in
contrast to the classical AVC (without secrecy constraint),
where a single-letter characterization of the CR-assisted
capacity was successfully established by linking it to a suitable
compound channel [8]. On the other hand, for the AVWC it is
still unknown if its CR-assisted secrecy capacity
can be linked to a suitable compound wiretap channel. Only
for some special cases, certain lower bounds on
have been established in terms of suitable compound wiretap
channels [11]. In addition, in [17] the corresponding compound
wiretap channel is studied for the strong secrecy criterion
and a multiletter characterization of its secrecy capacity has
been established. A precise single-letter characterization of the
secrecy capacity has been established only for certain special
cases [17], [18]. This determines an interesting and important
direction of future work.
In this paper we studied active wiretappers which were able

to select the state sequence based their the access to the common
randomness, i.e., for . For future work,
it would be interesting to analyze what happens if the legiti-
mate users and the wiretapper do not observe the same realiza-
tion , but only correlated versions. In addition, an inter-
esting research direction would be the study of active wiretap-
pers with other abilities. For example, the wiretapper could be
able to select the state sequence based on the previous/current
received channel outputs, i.e., , with

the received output sequence. Another inter-
esting scenario would be the case in which the wiretapper and
the jammer, i.e., the one who selects the state sequence, are at
distinct locations, and in which the jammer (but not the wire-
tapper) has access to the message. This offers the possibility for
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the jammer to select the state sequence in such a way that it re-
veals more information to the wiretapper, i.e., for

.
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