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Abstract

With the rapid development of digital imaging and communication technologies, image set based

face recognition (ISFR) is becoming increasingly important. One key issue of ISFR is how to effectively

and efficiently represent the query face image set by using the gallery face image sets. The set-to-set

distance based methods ignore the relationship between gallery sets, while representing the query set

images individually over the gallery sets ignores the correlation between query set images. In this paper,

we propose a novel image set based collaborative representation and classification method for ISFR. By

modeling the query set as a convex or regularized hull, we represent this hull collaboratively over all the

gallery sets. With the resolved representation coefficients, the distance between the query set and each

gallery set can then be calculated for classification. The proposed model naturally and effectively extends

the image based collaborative representation to an image set based one, and our extensive experiments

on benchmark ISFR databases show the superiority of the proposed method to state-of-the-art ISFR

methods under different set sizes in terms of both recognition rate and efficiency.
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I. INTRODUCTION

Image set based classification has been increasingly employed in face recognition [1], [2],

[3], [4], [5], [6], [7], [8], [9] and object categorization [10], [11] in recent years. Due to the

rapid development of digital imaging and communication techniques, now image sets can be

easily collected from multi-view images using multiple cameras [10], long term observations

[6], personal albums and news pictures [12], etc. Meanwhile, image set based face recognition

(ISFR) has shown superior performance to single image basedface recognition since the many

sample images in the gallery set can convey more within-class variations of the subject [7].

One special case of ISFR is video based face recognition, which collects face image sets from

consecutive video sequences [1], [13], [14]. Similar to thework in [5], [7], in this paper we

focus on the general case of ISFR without considering the temporal relationship of samples in

each set.

The key issues in image set based classification include how to model a set and consequently

how to compute the distance/similarity between query and gallery sets. Researchers have pro-

posed parametric and non-parametric approaches for image set modeling. Parametric modeling

methods model each set as a parametric distribution, and useKullback-Leibler divergence to

measure the similarity between the distributions [2], [6].The disadvantage of parametric set

modeling lies in the difficulty of parameter estimation, andit may fail when the estimated

parametric model does not fit well the real gallery and query sets [10], [4], [7].

Many non-parametric set modeling methods have also been proposed, including subspace [10],

[1], [15], manifold [16], [17], [4], [11], [18], affine hull [5], [7], convex hull [5], and covariance

matrix based ones [18], [19], [20]. The method in [10] employs canonical correlation to measure

the similarity between two sets. A projection matrix is learned by maximizing the canonical

correlations of within-class sets while minimizing the canonical correlations of between-class

sets. The methods in [21] use manifold to model an image set and define a manifold-to-manifold

distance (MMD) for set matching. MMD models each image set asa set of local subspaces and

the distance between two image sets is defined as a weighted average of pairwise subspace to

subspace distance. As MMD is a non-discriminative measure,Manifold Discriminant Analysis

(MDA) is proposed to learn an embedding space by maximizing manifold margin [11]. The

performance of subspace and manifold based methods may degrade much when the set has a
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small sample size but big data variations [7], [18]. In affinehull and convex hull based methods

[5], [7], the between-set distance is defined as the distancebetween the two closest points of

the two sets. When convex hull is used, the set to set distanceis equivalent to the nearest point

problem in SVM [22]. In [23], a method called sparse approximated nearest points (SANP) is

proposed to measure the dissimilarity between two image sets. To reduce the model complexity

of SANP, a reduced model, which is called regularized nearest points (RNP), is proposed by

modeling each image set as a regularized hull [24]. However,the closest points based methods

[5], [7], [25], [24] rely highly on the location of each individual sample in the set, and the

model fitting can be heavily deteriorated by outliers [18]. In [18], an image set is represented

by a covariance matrix and a Riemannian kernel function is defined to measure the similarity

between two image sets by a mapping from the Riemannian manifold to a Euclidean space. With

the kernel function between two image sets, traditional discriminant learning methods, e.g., linear

discriminative analysis [26], partial least squares [27],kernel machines, can be used for image

set classification [19], [20]. The disadvantages of covariance matrix based methods include the

computational complexity of eigen-decomposition of symmetric positive-definite (SPD) matrices

and the curse of dimensionality with limited number of training sets.

No matter how the set is modeled, in almost all the previous works [10], [1], [16], [17], [4],

[11], [18], [5], [7], [24], the query set is compared to each of the gallery sets separately, and then

classified to the class closest to it. Such a classification scheme does not consider the correlation

between gallery sets, like the nearest neighbor or nearest subspace classifier in single image

based face recognition. In recent years, the sparse representation based classification (SRC) [28]

has shown interesting results in image based face recognition. SRC represents a query face as

a sparse linear combination of samples from all classes, andclassifies it to the class which

has the minimal representation residual to it. Though SRC emphasizes much on the role of

l1-norm sparsity of representation coefficients, it has been shown in [29] that the collaborative

representation mechanism (i.e., using samples from all classes to collaboratively represent the

query image) is more important to the success of SRC. The so-called collaborative representation

based classification (CRC) withl2-regularization leads to similar results to SRC but with much

lower computational cost [29]. In [30], feature weights areintroduced to the representation model

to penalize pixels with large error so that the model is robust to outliers. Moreover, a kernel

sparse representation model is proposed for face recognition by mapping features to a high
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dimensional Reproducing Kernel Hilbert Space (RKHS), which further improves the recognition

accuracy [31], [32]. Similarly, a robust kernel representation model is proposed with iteratively

reweighted algorithms [33].

One may apply SRC/CRC to ISFR by representing each image of the query set over all the

gallery sets, and then using the average or minimal representation residual of the query set images

for classification. However, such a scheme does not exploit the correlation and distinctiveness of

sample images in the query set. If the average representation residual is used for classification,

the discrimination of representation residuals by different classes will be reduced; if the minimal

representation residual is used, the classification can suffer from the outlier images in the query

set. In addition, there are redundancies in an image set. Theredundancies will lead to great

storage burden and computational complexity, and deteriorate the recognition performance.
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Fig. 1. Image set based collaborative representation and classification (ISCRC).

In this paper, we propose a novel image set based collaborative representation and classification

(ISCRC) approach for ISFR, as illustrated in Fig. 1. The query set, denoted byY (each column

of Y is an image in the set) is modeled as a hullY a with the sum of coefficients ina being 1.

Let Xk, k = 1, 2, ..., K, be a gallery set. We then propose a collaborative representation based set

(i.e.,Y ) to sets (i.e.,X = [X1, ...,Xk, ...,XK ]) distance (CRSSD for short); that is, we represent

the hullY a over the gallery setsX asXb, whereb is a coefficient vector. Consequently, we can

classify the query setY by checking which gallery set has the minimal representation residual

to the hullY a. To get a stable solution to CRSSD, regularizations can be imposed ona andb.

In the proposed ISCRC, the gallery setsXk can be compressed to a smaller size to remove the
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redundancy so that the time complexity of ISCRC can be much reduced without sacrificing the

recognition rate. Our experiments on three benchmark ISFR databases show that the proposed

ISCRC is superior to state-of-the-art methods in terms of both recognition rate and efficiency.

This paper is organized as follows. Section II discusses in detail the proposed CRSSD and

ISCRC methods. Section III presents the regularized hull based ISCRC, followed by the convex

hull based ISCRC in Section IV. Section V conducts experiments and Section VI gives our

conclusions. The main abbreviations used in the development of our method are summarized in

Table I.

TABLE I

THE MAIN ABBREVIATIONS USED IN THIS PAPER

ISFR image set based face recognition

SRC sparse representation based classification

CRC collaborative representation based classification

CRSSD
collaborative representation based

set to sets distance

ISCRC
image set based collaborative

representation and classification

RH-ISCRC regularized hull based ISCRC

KCH-ISCRC kernelized convex hull based ISCRC

II. COLLABORATIVE REPRESENTATION BASED SET TO SETS DISTANCE

We first introduce the hull based set to set distance in II-A, and then propose the collaborative

representation based set to sets distance (CRSSD) in II-B. With CRSSD, the image set based

collaborative representation and classification (ISCRC) scheme can be naturally proposed. In

II-C and II-D, the convex hull and regularized hull based CRSSD are respectively presented.

A. Hull based set to set distance

In image set based classification, compared to the parametric modeling of image set, non-

parametric modeling does not impose assumptions on the datadistribution and inherits many

favorable properties [10], [7], [18]. One simple non-parametric set modeling approach is the hull
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based modeling [5], [7], which models a set as the linear combination of its samples. Given a

sample setY = {y1, ...,yi, ...,yn}, yi ∈ ℜd, the hull of setY is defined as:H(Y ) = {
∑

aiyi}.

Usually,
∑

ai = 1 is required and the coefficientsai are required to be bounded:

H(Y ) = {
∑

aiyi |
∑

ai = 1, 0 ≤ ai ≤ τ} (1)

If τ = 1, H(Y ) is a convex hull [34]. Ifτ < 1, H(Y ) is a reduced convex hull [22]. For the

convenience of expression, in the following the development we call both the cases convex hull.

By modeling a set as a convex hull, the distance between setY = {y1, ...,yi, ...,yn1} and set

Z = {z1, ..., zj, ..., zn2} can be defined as follows:

mina,b ‖
∑

aiyi −
∑

bjzj‖
2
2

s.t.
∑

ai = 1, 0 ≤ ai ≤ τ
∑

bj = 1, 0 ≤ bj ≤ τ

(2)

When the two sets have no intersection, the set to set distance in Eq. (2) becomes the distance

between the nearest points in the two convex hulls (CHISD [5]), as illustrated in Fig. 2. It is

not difficult to see that such a distance is equivalent to the distance computed by SVM [22]. If

the discriminative function of SVM isf = wx+ b, thenw =
∑

aiyi −
∑

bjzj and the margin

is 2/‖w‖. If we consider each image set as one class, then maximizing margin between the

two classes is equivalent to finding the set to set distance [35]. However, such a distance relies

highly on the location of each individual sample and can be sensitive to outliers [18].

Y Z

Fig. 2. Convex hull based set to set distance.

B. Collaborative representation based set to sets distanceand classification

In image set based face recognition (ISFR), we have a query set Y but multiple gallery sets

Xk, k = 1, 2, ..., K. One fact in face recognition is that the face images from different people
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still have much similarity. If we compute the distance betweenY and eachXk by using methods

such as hull based set to set distance (refer to II-A), the correlation between different gallery

sets will not be utilized. As we discussed in the Introduction section, inspired by the SRC [28]

and CRC [29] methods in image based face recognition, here wepropose a novel ISFR method,

namely image set based collaborative representation and classification (ISCRC).

The key component of ISCRC is the collaborative representation based set to sets distance

(CRSSD) defined as follows. LetX = [X1, ...,Xk, ...,XK ] be the concatenation of all gallery

sets. We model each ofY andX as a hull, i.e.,Y a andXb, wherea and b are coefficient

vectors, and then we define the CRSSD between setY and setsX as:

mina,b ‖Y a−Xb‖2 s.t.
∑

ai = 1 (3)

whereai is the ith coefficeint ina and we let
∑

ai = 1 to avoid the trivial solutiona = b = 0.

In Eq. (3), the hullY a of the query setY is collaboratively represented over the gallery

sets; however, the coefficients ina will make the samples inY be treated differently in the

representation and the subsequent classification process.

Suppose that the coefficient vectorsâ and b̂ are obtained by solving Eq. (3), then we can

write b̂ as b̂ = [b̂1; ...; b̂k; ...; b̂K ], where b̂k is is the sub-vector of coefficients associated with

gallery setXk. Similar to the classification in SRC and CRC, we use the representation residual

of hull Y â by each setXk to determine the class label ofY . The classifier in the proposed

ISCRC is:

Identity(Y ) = argmink {rk} (4)

whererk =
∥

∥

∥Y â−Xkb̂k

∥

∥

∥

2

2
.

Clearly, the solutions toa and b in Eq. (3) determine the CRSSD and hence the result of

ISCRC. In order to get stable solutions, we could impose reasonable regularizations ona andb.

In the following sections II-C and II-D, we discuss the convex hull based CRSSD and regularized

hull based CRSSD, respectively.



8

C. Convex hull based CRSSD

One important instantiation of CRSSD is the convex hull based CRSSD. In this case, both

the hullsY a andXb are required to be convex hulls, and then the distance in Eq. (3) becomes

mina,b ‖Y a−Xb‖2

s.t.
∑

ai = 1,
∑

bj = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,

0 ≤ bj ≤ τ, j = 1, ..., nb

(5)

whereai andbj are theith andjth coefficients ina andb, respectively,na andnb are the number

of samples in setY and setsX, respectively, andτ ≤ 1.

Y 1 2[ , ,..., ]
K

=X X X X

Fig. 3. Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is shownin Fig. 3. Different from the

CHISD method in [5], which models each gallery set as a convexhull, here we model all the

gallery sets as one big convex hull. Similar to the closest points searching in SVM, convex hull

based CRSSD aims to find the closest points in the query setY and the whole gallery setX

in a large margin manner. With convex hull based CRSSD, the corresponding ISCRC method

can be viewed as a large margin based classifier in some sense.Nonetheless, the classification

rules in SVM and ISCRC are very different.

D. lp-norm regularized hull based CRSSD

The convex hull modeling of a set can be affected much by outlier samples in the set [18].

To make CRSSD more stable, thelp-norm regularized hull can be used to modelY andX. For



9

the query setY , we should keep the constraint
∑

ai = 1 to avoid the trivial solution, and the

lp-norm regularized hull ofY is defined as

H(Y ) = {
∑

aiyi |‖a‖lp < δ} s.t.
∑

ai = 1 (6)

For the gallery setX, its regularized hull is defined as:

H(X) = {
∑

bixi |‖b‖lp < δ} (7)

Finally, the regularized hull based CRSSD betweenY andX is defined as:

mina,b ‖Y a−Xb‖22

s.t.‖a‖lp < δ1, ‖b‖lp < δ2,
∑

ai = 1
(8)

III. REGULARIZED HULL BASED ISCRC

In Section II, we introduced CRSSD, and presented two important instantiations of it, i.e.,

convex hull based CRSSD and regularized hull based CRSSD. With either one of them, the

ISCRC (refer to Eq. (4)) can be implemented to perform ISFR. In this section, we discuss

the minimization of regularized hull based CRSSD model, andthe corresponding classification

scheme is called regularized hull based ISCRC, denoted by RH-ISCRC. The minimization of

convex hull based CRSSD and the corresponding classification scheme will be discussed in

Section IV.

A. Main model

We can re-write the regularized hull based CRSSD model in Eq.(8) as its Lagrangian

formulation:

mina,b ‖Y a−Xb‖22 + λ1‖a‖lp + λ2‖b‖lp

s.t.
∑

ai = 1
(9)

whereλ1 andλ2 are positive constants to balance the representation residual and the regularizer.

In ISFR, each gallery setXk often has tens to hundreds of sample images so that the whole

setX can be very big, making the computational cost to solve Eq. (9) very high. Considering

the fact that the images in each setXk have high redundancy, we can compressXk into a much

more compact set, denoted byDk, via dictionary learning methods such as KSVD [36] and
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metaface learning [37]. LetD = [D1, ...,Dk, ...,DK ]. We can then replaceX by D in Eq. (9)

to compute the regularized hull based CRSSD:

(â, β̂) = argmina,β











‖Y a−Dβ‖22+

λ1‖a‖lp + λ2‖β‖lp











s.t.
∑

ai = 1

(10)

where β = [β1; ...;βk; ...;βK] and βk is the sub-vector of coefficients associated withDk.

Based on our experimental results, compressingXk into Dk significantly improve the speed

with almost the same ISFR rate.

Either l1-norm or l2-norm can be used to regularizea and β, while l1-regularization will

lead to sparser solutions but with more computational cost.Like in l1-SVM [38] and SRC [28],

sparsity can enhance the classification rate if the featuresare not informative enough. Note that

if the query setY has only one sample, thena = [1] and the proposed model in Eq. (10) will

be reduced to the SRC (forl1-regularization) or CRC (forl2-regularization) scheme. Next, we

present the optimization ofl2-norm andl1-norm regularized hull based ISCRC in Section III-B

and Section III-C, respectively.

B. l2-norm regularized hull based ISCRC

When l2-norm is used to regularizea and β, the problem in Eq. (10) has a closed-form

solution. The Lagrangian function of Eq. (10) becomes

L(a,β, λ3) = ‖Y a−Dβ‖22 + λ1 ‖a‖
2
2 + λ2 ‖β‖

2
2 + λ3(ea− 1)

=

∥

∥

∥

∥

∥

∥

∥

[Y −D]







a

β







∥

∥

∥

∥

∥

∥

∥

2

2

+
[

aT βT
]







λ1I 0

0 λ2I













a

β





+ λ3([e 0]







a

β





− 1)
(11)

wheree is a row vector whose elements are 1.

Let z =







a

β





, A = [Y −D], B =







λ1I 0

0 λ2I





 andd = [e 0]T . Then Eq. (11) becomes:

L(z, λ3) = zTATAz + zTBz + λ3(d
Tz − 1) (12)

There are

∂L

∂λ3
= dTz − 1 = 0 (13)

∂L

∂z
= ATAz +Bz + λ3d = 0 (14)
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According to Eq. (13) and Eq. (14), we get the closed form solution to Eq. (11):

ẑ =







â

β̂





 = z0/d
Tz0 (15)

wherez0 = (ATA+B)−1d.

After â andβ̂ are got, the distance between query setY and a gallery setXk is calculated as

rk =
∥

∥

∥Y â−Dkβ̂k

∥

∥

∥

2

2
, and then the class label ofY is determined by Eq. (4). For RH-ISCRC-

l2, the main time consumption is to solve the inverse of matrix(ATA+B). Hence, the time

complexity of RH-ISCRC-l2 is O((na + nβ)
3), wherena is the number of sample images inY

andnβ is the number of atoms inD.

C. l1-norm regularized hull based ISCRC

When l1-norm regularization is used, we use the alternating minimization method, which is

very efficient to solve multiple variable optimization problems [39]. For Eq. (10), we have the

following augmented Lagrangian function:

L(a,β, λ) = ‖Y a−Dβ‖22 + λ1‖a‖1 + λ2‖β‖1

+ < λ, ea− 1 > +γ
2
‖ea− 1‖22

(16)

whereλ is the Lagrange multiplier,〈·, ·〉 is the inner product, andγ > 0 is the penalty parameter.

Then a and β are optimized alternatively with the other one fixed. More specifically, the

iterations of minimizinga go as follows:

a(t+1) = argminaL(a,β
(t), λ(t))

= argminaf(a) +
γ
2

∥

∥

∥ea− 1 + λ(t)/γ
∥

∥

∥

2

2

= argmina

∥

∥

∥Ỹ a− x
∥

∥

∥

2

2
+ λ1‖a‖1

(17)

where f(a) =
∥

∥

∥Y a−Dβ(t)
∥

∥

∥

2

2
+ λ1‖a‖lp, Ỹ =

[

Y ; (γ/2)1/2e
]

, x = [Dβ(t); (γ/2)1/2(1 −

λ(t)/γ)].

The problem in Eq. (17) can be easily solved by some representative l1-minimization ap-

proaches [40] such as LARS [41].

After a(t+1) is updated,β(t+1) can be obtained by solving anotherl1-regularized optimization

problem:

β(t+1) = argminβL(a
(t+1),β, λt)

= argminβ

∥

∥

∥Y a(t+1) −Dβ
∥

∥

∥

2

2
+ λ2‖β‖1

(18)
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Oncea(t+1) andβ(t+1) are got,λ is updated as follows:

λ(t+1) = λ(t) + γ
(

ea(t+1) − 1
)

(19)

The algorithm of RH-ISCRC-l1 for ISFR is summarized in Table II and it converges. The

problem in Eq. (16) is convex, and the subproblems in Eq. (17)and Eq. (18) are convex and

can be solved using the LARS algorithm. It had been shown in [42], for the general convex

problem, the alternating minimization approach would converge to the correct solution. One

curve of the objective function value of RH-ISCRC-l1 versus the iteration number is shown in

Fig. 4, where the Honda/USCD1 database [13] is used. The query setY and each gallery setXk

has 200 frames, and we compress each setXk into a dictionaryDk with 20 atoms by using the

metaface learning method [37]. Since there are 20 gallery sets, the setD = [D1, ...,Dk, ...,D20]

has 20× 20=400 atoms. From the figure we can see that RH-ISCRC-l1 converges after about

five iterations.
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0

0.01
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0.03

0.04
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fu
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tio
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Fig. 4. Convergence of RH-ISCRC-l1.

Since the complexity of sparse coding isO(m2nε), wherem is the feature dimension,n is

the atom number andε ≥ 1.2 [43], we can get that the time complexity of RH-ISCRC-l1 is

O(lm2(na
ε + nβ

ε)), wherena is the number of samples inY , nβ is the number of atoms inD

and l is the iteration number.

D. Examples and discussions

Let’s use an example to better illustrate the classificationprocess of RH-ISCRC. We use the

Honda/USCD database [13]. The experiment setting is the same as Fig. 4. By Eq. (10), the

1http://vision.ucsd.edu/ leekc/HondaUCSDVideoDatabase/HondaUCSD.html
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TABLE II

ALGORITHM OF RH-ISCRCFOR ISFR

Input: query setY ; gallery setsX = [X1, ...,Xk, ...,XK ], λ1 andλ2.

Output: the label of query setY .

Initialize β(0), λ(0) and0← t.

CompressXk to Dk, k = 1, 2, ..., K using metaface learning [37].

While t < max num do

Step 1: Updatea by Eq. (17);

Step 2: Updateβ by Eq. (18);

Step 3: Updateλ by Eq. (19);

Step 4:t← t+ 1.

End while

Computerk =
∥

∥Y â−Dkβ̂k

∥

∥

2

2
, k = 1, 2, ...K.

Identity(Y )=argmink{rk}.

computed coefficients ina and β are plotted in Fig. 5 (byl1-regularization) and Fig. 6 (by

l2-regularization), respectively. The highlighted coefficients in the figures are associated with set

X10, which has the same class label asY . Clearly, these coefficients are much more significant

than the coefficients associated with the other classes. Meanwhile, from Fig. 5 and Fig. 6 we

can see thatl1-regularized hull based CRSSD leads to sparsera andβ, implying that only few

samples are dominantly involved in representation and classification.
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Fig. 5. The coefficient vectorŝa (of Y ) and β̂ (of D) by l1-regularized hull based CRSSD.

In Fig. 7, we show the reconstructed faces byY â with l1-regularized hull based CRSSD.

The distances betweenY â and eachDkβ̂k, i.e., rk, are also given. We see thatr10 is 0.03,

which is the minimal one among all the gallery sets, meaning that ISCRC will make the correct
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Fig. 6. The coefficient vectorŝa (of Y ) and β̂ (of D) by l2-regularized hull based CRSSD.
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Fig. 7. Reconstructed facesY â, Dβ̂, Dkβ̂k (we normalized eachDkβ̂k for better visualization). The number over each

Dkβ̂k is the residualrk =
∥

∥Y â−Dkβ̂k

∥

∥

2

2
.

recognition. Here the relationships between ISCRC and manifold based methods can be revealed.

MMD assumes that an image set can be modeled as a set of local subspaces so that the image

set distance is defined as the weighted average distance between any two local subspaces [4].

The distance between two local subspaces is related to the cluster exemplar and principle angel.

Correspondingly, ISCRC seeks for a local subspace (Y â) in the query image set and a local

subspace (Dβ̂) in all the gallery sets, as shown in Fig. 5 . In classification, the distance between

the query set and the template set of thekth class is the distance between the local subspace

(Y â) and the local subspaceDkβ̂k.

IV. K ERNELIZED CONVEX HULL BASED ISCRC

We then focus on how to compute the convex hull based CRSSD in Eq. (5) and use it for

ISCRC. Since there can be many sample images in gallery sets,X can be a fat matrix (note
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that usually we use a low dimensional feature vector to represent each face image). Even we

compressX into a more compact setD, the system can still be under-determined. In Section 3

we imposed thelp-norm regularization ona andb to make the solution stable. When the convex

hull is used, however, the constraint may not be strong enough to get a stable solution of Eq.

(5). In addition, if the underlying relationship between the query set and gallery sets is highly

nonlinear, it is difficult to approximate the hull of query set as a linear combination of gallery

sets.

One simple solution to solving both the above two problems isthe kernel trick; that is, we can

map the data into a higher dimensional space where the subjects can be approximately linearly

separable. The mapped gallery data matrix in the high-dimensional space will be generally over-

determined. In such a case, the convex hull constraint will be strong enough for a stable solution.

The kernelized convex hull based CRSSD model is:

mina,β ‖φ(Y )a− [φ(D1), φ(D2), ..., φ(DK)]β‖
2

s.t.
∑

ai = 1,
∑

βj = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,

0 ≤ βj ≤ τ, j = 1, ..., nβ.

(20)

The above minimization can be easily solved by the standard quadratic optimization (QP [44])

method. The solution exhibits global and quadratic convergence, as proved in [44]. Different

kernel functions can be used, e.g., linear kernel and Gaussian kernel. We call the corresponding

method kernelized convex hull based ISCRC, denoted by KCH-ISCRC. The classification rule

is the same as RH-ISCRC withrk =
∥

∥

∥φ(Y )â− φ(Dk)β̂k

∥

∥

∥

2
2. As convex hull based CRSSD is

to solve a convex QP problem, the time complexity of KCH-ISCRC is O((nβ + na)
3), which is

similar to SVM. The algorithm of KCH-ISCRC is given in Table III. To reduce the computational

cost, the kernel matrixk(D,D) can be computed and stored. When a query setY comes, we

only need to calculatek(Y ,Y ) andk(Y ,D).

Like in Fig. 5 and Fig. 6, in Fig. 8 we show the coefficient vectors â and β̂ solved by Eq.

(20). The Gaussian kernel is used and the experimental setting is the same as that in Figs. 5 and

6 (the only difference is that each compressed gallery setDk has 50 atoms). We can see that

the coefficients associated with gallery setD10 are larger than the other gallery sets, resulting

in a smaller representation residual and hence the correct recognition.
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TABLE III

ALGORITHM OF KCH-ISCRCFOR ISFR

Input: query setY ; gallery setsX = [X1, ...,Xk, ...,XK ], τ .

Output: the label of query setY .

CompressXk to Dk, k = 1, 2, ..., K by meaface learning [24];

Solve the QP problem in Eq. (20);

Computerk =
∥

∥φ(Y )â− φ(Dk)β̂k

∥

∥

2
2, k = 1, 2, ...K;

Identity(Y )=argmink{rk}.

0 100 200
−0.2

0

0.2

0.4

0.6
query set

co
ef

fic
ie

nt
s

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1
gallery sets

Fig. 8. The coefficient vectorŝa (of Y ) and β̂ (of D) by kernelized convex hull based CRSSD.

V. EXPERIMENTAL ANALYSIS

We used the Honda/UCSD [13], CMU Mobo [45], and Youtube Celebrities [46] datasets to

test the performance of the proposed method. The comparisonmethods fall into four categories:

C1. Subspace and manifold based methods: Mutual Subspace Method (MSM) [1], Discrimi-

nant Canonical Correlations (DCC2) [10], Manifold-Manifold Distance (MMD3) [4], and

Manifold Discriminant Analysis (MDA4) [11].

C2. Affine/convex hull based methods: Affine Hull based ImageSet Distance (AHISD5) [5],

Convex Hull based Image Set Distance (CHISD6) [5], Sparse Approximated Nearest Points

2http://www.iis.ee.ic.ac.uk/ tkkim/code.htm

3http://www.jdl.ac.cn/user/rpwang/research.htm

4http://www.jdl.ac.cn/user/rpwang/research.htm

5http://www2.ogu.edu.tr/ mlcv/softwareimageset.html

6http://www2.ogu.edu.tr/ mlcv/softwareimageset.html
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(SANP7) [7], and Regularized Nearest Points (RNP) [24].

C3. Representation based methods: Sparse Representation based Classifier (SRC) [28], Collabo-

rative Representation based Classifier (CRC) [29]. We tested to use the average and minimal

representation residual of query set for classification andfound that average residual works

better. Hence in this paper, the average residual is used in SRC/CRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [31], KCRC (Kernel CRC) [33], AHISD [5], and

CHISD [5]. For KSRC and KCRC, the average residual is used forclassification.

For the proposed methods, RH-ISCRC is compared with those non-kernel methods and KCH-

ISCRC is compared with those kernel methods.

A. Parameter setting

For competing methods, the important parameters were empirically tuned according to the

recommendations in the original literature for fair comparison. For DCC [10], if there is only

one set per class, then the training set is divided into two sets since at least two sets per class

are needed in DCC. For MMD, the number of local models is set following the work in [4]. For

MDA, there are three parameters, i.e., the number of local models, the number of between-class

NN local models and the subspace dimension. The three parameters are configured according

to the work in [11]. For SANP, we adopted the same parameters as [7]. For SRC, CRC, KSRC

and KCRC,λ that balances the residual and regularization is tuned from[0.01, 0.001, 0.0001].

For AHISD and CHISD,C is set as 100. For all kernel methods, Gaussian kernel (k(x, y) =

exp(−‖x− y‖22 /2δ
2)) is used, andδ is set as 5. The experiments of 50 frames, 100 frames and

200 frames per set are conducted on the three databases. If the number of samples in the set is

less than the given number, then all the samples in the set areused.

For the proposed RH-ISCRC, we setλ1 = 0.001, λ2 = 0.001, λ = 2.5/na (na is the number

of samples in the query set),γ = λ/2. The number of atoms in the compressed setDk is set

as 20 on Honda/UCSD and 10 on CMU MoBo and YouTube. For KCH-ISCRC, τ = 1 and

the number of atoms in eachDk is set as 50 for all datasets. The sensitivity of the proposed

methods to parameters will be discussed in Section V-F.

7https://sites.google.com/site/yiqunhu/cresearch/sanp
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B. Honda/UCSD

The Honda/UCSD dataset consists of 59 video sequences involving 20 different subjects [13].

The Viola-Jones face detector [47] is used to detect the faces in each frame and resize the

detected faces to 20×20 images. Some examples of Honda/UCSD dataset are shown in Figure

9. Histogram equalization is utilized to reduce the illumination variations. Our experiment setting

is the same as [13][7]: 20 sequences are set aside for training and the remaining 39 sequences

for testing. The intensity is used as the feature.

Fig. 9. Some examples of Honda/UCSD dataset

The experimental results are listed in Table IV. We can see that for those non-kernel methods,

the proposed RH-ISCRC outperforms much all the other methods. For the kernel based method,

the proposed KCH-ISCRC performs the best except for the casewhen 100 frames per set are

used. We can also see that on this dataset, RH-ISCRC-l1 and RH-ISCRC-l2 achieve the same

recognition rate, which implies that on this dataset thel2-norm regularization is strong enough

to yield a good solution to the regularized hull based CRSSD in Eq. (10).

C. CMU MoBo

The CMU Mobo8 (Motion of Body) dataset [45] was originally established for human pose

identification and it contains 96 sequences from 24 subjects. Four video sequences are collected

8http://www.ri.cmu.edu/publicationview.html?pubid=3904
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TABLE IV

RECOGNITION RATES ONHONDA/UCSD (%)

Non-kernel 50 100 200 Year

MSM [1] 74.36 79.49 89.74 1998

DCC [10] 76.92 84.62 94.87 2007

MMD [4] 69.23 87.18 94.87 2008

MDA [11] 82.05 94.87 97.44 2009

SRC [28] 84.62 92.31 92.31 2009

AHISD [5] 82.05 84.62 89.74 2010

CHISD [5] 82.05 84.62 92.31 2010

SANP [7] 84.62 92.31 94.87 2011

CRC [29] 84.62 94.87 94.87 2011

RNP [24] 87.18 94.87 100.0 2011

RH-ISCRC-l1 89.74 97.44 100.0

RH-ISCRC-l2 89.74 97.44 100.0

Kernel 50 100 200 Year

AHISD [5] 84.62 84.62 82.05 2010

CHISD [5] 84.62 87.18 89.74 2010

KSRC [31] 87.18 97.44 97.44 2009

KCRC [33] 82.05 94.87 94.87 2012

KCH-ISCRC 89.74 94.87 100.0

per subject, each of which corresponds to a walking pattern.Again, the Viola-Jones face detector

[47] is used to detect the faces and the detected face images are resized to 40× 40. The LBP

feature is used, which is the same as the work in [5] and [7].

One video sequence per subject is selected for training while the rest are used for testing. Ten-

fold cross validation experiments are conducted and the average recognition results are shown

in Table V. We can clearly see that the proposed methods outperform the other methods under

different frames per set. On this dataset and the Honda/UCSDdataset, the proposed non-kernel

RH-ISCRC and the kernel based KCH-ISCRC have similar ISFR rates.
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TABLE V

RECOGNITION RATES ONCMU MOBO(%)

Non-kernel 50 100 200 Year

MSM [1] 84.3± 2.6 86.6±2.2 89.9±2.4 1998

DCC [10] 82.1± 2.7 85.5±2.8 91.6±2.5 2007

MMD [4] 86.2 ±2.9 94.6±1.9 96.4±0.7 2008

MDA [11] 86.2 ±2.9 93.2±2.8 95.8±2.3 2009

SRC [28] 91.0±2.1 91.8±2.7 96.5±2.5 2009

AHISD [5] 91.6±2.8 94.1±2.0 91.9±2.6 2010

CHISD [5] 91.2±3.1 93.8±2.5 96.0±1.3 2010

SANP [7] 91.9±2.7 94.2±2.1 97.3±1.3 2011

CRC [29] 89.6±1.8 92.4±3.7 96.4±2.8 2011

RNP [24] 91.9±2.5 94.7±1.2 97.4±1.5 2013

RH-ISCRC-l1 93.5±2.8 96.5±1.9 98.7±1.7

RH-ISCRC-l2 93.5±2.8 96.4±1.9 98.4±1.7

Kernel 50 100 200 Year

AHISD [5] 88.9±1.7 92.4±2.8 93.5±4.2 2010

CHISD [5] 91.5±2.0 93.4±4.0 97.4±1.9 2010

KSRC [31] 91.6±2.8 94.1±2.0 96.8±2.0 2010

KCRC [33] 91.2±3.1 93.4±2.9 96.6±2.6 2012

KCH-ISCRC 94.2 ±2.1 96.4±2.3 98.4±1.9

D. YouTube Celebrities

The YouTube Celebrities9 is a large scale video dataset collected for face tracking and recogni-

tion, consisting of 1,910 video sequences of 47 celebritiesfrom YouTube [46]. As the videos were

captured in unconstrained environments, the recognition task becomes much more challenging

due to the larger variations in pose, illumination and expressions. Some examples of YouTube

Celebrities dataset are shown in Figure 10. The face in each frame is also detected by the Viola-

Jones face detector and resized to a 30× 30 gray-scale image. The intensity value is used as

feature. The experiment setting is the same as [7], [11], [18]. Three video sequences per subject

are selected for training and six for testing. Five-fold cross validation experiments are conducted.

The experimental results are shown in Table VI. It can be seenthat among the non-kernel

9http://seqam.rutgers.edu/site/index.php?option=comcontent&view=article&id =64&Itemid=80
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Fig. 10. Some examples of YouTube Celebrities dataset

methods, the proposed RH-ISCRC-l1 achieves the highest recognition rate, while among the ker-

nel based methods, the proposed KCH-ISCRC performs the best. Since this Youtube Celebrities

dataset was established under uncontrolled environment, there are significant variations among

the query and gallery sets, and therefore thel1-regularization is very helpful to improve the

stability and discrimination of the solution to Eq. (10). Asa consequence, RH-ISCRC-l1 leads

to much better results than RH-ISCRC-l2 on this dataset. On the other hand, the kernel based

KCH-ISCRC leads to better results than RH-ISCRC in this experiment. Besides, the number

of frames per set also affect the performance of ISCRC. When number of frames is small, the

improvement by ISCRC is more significant.

E. Time comparison

Then let’s compare the efficiency of competing methods. The Matlab codes of all competing

methods are obtained from the original authors, and we run them on an Intel(R) Core(TM)

i7-2600K (3.4GHz) PC. The average running time per set on CMUMoBo (200 frames per

set) is listed in Table VII. We can see that the proposed RH-ISCRC-l2 is the fastest among

all competing methods except for RNP, while RH-ISCRC-l1 also has a fast speed. Among all

the kernel based methods, the proposed KCH-ISCRC is much faster than others. Overall, the

proposed RH-ISCRC and KCH-ISCRC methods have not only high ISFR accuracy but also high

efficiency than the competing methods.
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TABLE VI

RECOGNITION RATES ONYOUTUBE (V1 %)

Non-kernel 50 100 200 Year

MSM [1] 54.8±8.7 57.4±7.7 56.7±6.9 1998

DCC [10] 57.6±8.0 62.7±6.8 65.7±7.0 2007

MMD [4] 57.8±6.6 62.8±6.2 64.7±6.3 2008

SRC [28] 61.5±6.9 64.4±6.8 66.0±6.7 2009

MDA [11] 58.5±6.2 63.3±6.1 65.4±6.6 2009

AHISD [5] 57.5±7.9 59.7±7.2 57.0±5.5 2010

CHISD [5] 58.0±8.2 62.8±8.1 64.8±7.1 2010

SANP [7] 57.8±7.2 63.1±8.0 65.6±7.9 2011

CRC [29] 56.5±7.4 59.5±6.6 61.4±6.4 2011

RNP [24] 59.9±7.3 63.3±8.1 64.4±7.8 2013

RH-ISCRC-l1 62.3±6.2 65.6±6.7 66.7±6.4

RH-ISCRC-l2 57.4±7.2 60.7±6.5 61.4±6.4

Kernel 50 100 200 Year

AHISD [5] 57.2±7.5 59.6±7.4 61.8±7.3 2010

CHISD [5] 57.9±8.3 62.6±8.1 64.9±7.2 2010

KSRC [31] 61.4±7.0 65.9±6.9 67.8±6.4 2010

KCRC [33] 57.5±7.9 60.6±6.8 62.7±7.7 2012

KCH-ISCRC 64.5±7.6 67.4±8.0 69.7±7.4

F. Parameter sensitivity analysis

To verify if the proposed methods are sensitive to parameters, in this section we present the

recognition accuracies with different parameter values. For RH-ISCRC, there are two parameters,

λ1 andλ2 in Eq. (16), which need to be set. For KCH-ISCRC, there is onlyone parameterτ in

Eq. (3). We show the recognition accuracies versus the parameters on the CMU MoBo dataset

in Fig. 11, Fig. 12 and Fig. 13, respectively, for RH-ISCRC-l1, RH-ISCRC-l2 and KCH-ISCRC.

The different colors correspond to different accuracies, as shown in the color bar.λ1 andλ2 are

selected from{0.0005, 0.001, 0.01, 0.05}. In Fig. 11 and Fig. 12, the top sub-figure is for 50

frames per set, the middle is for 100 frames per set and the bottom corresponds to 200 frames

per set. From Fig. 11, we can see that the accuracy of RH-ISCRC-l1 is very stable whenλ1

varies from 0.0005 to 0.05 andλ2 varies from 0.0005 to 0.01. Whenλ2 is increased to 0.05,

the recognition performance would degrade. Fig. 12 shows that RH-ISCRC-l2 is insensitive to
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TABLE VII

AVERAGE RUNNING TIME PER SET ONCMU MOBO (s)

Non-kernel Time Kernel Time

MSM [1] 0.338 AHISD [5] 18.546

DCC [10] 0.349 CHISD [5] 18.166

MMD [4] 10.223 KSRC [31] 35.508

SRC [28] 5.301 KCRC [33] 6.543

MDA [11] 7.031 KCH-ISCRC 2.03

AHISD [5] 31.365

CHISD [5] 18.029

SANP [7] 11.124

CRC [29] 0.684

RNP [24] 0.113

RH-ISCRC-l1 0.788

RH-ISCRC-l2 0.280

the values ofλ1 andλ2. For example, in the experiments of 100 and 200 frames per set, the

accuracy variation is within 0.5% for different λ1 andλ2. Considering the performance of both

RH-ISCRC-l1 and RH-ISCRC-l2, λ1 andλ2 can both be set as 0.001. With this parameter setting,

the accuracy is very stale in different experiments. For KCH-ISCRC, its recognition accuracies

with different values ofτ are shown in Fig. 13.τ is set as{1, 2, 5, 10, 50, 100}. One can see

that KCH-ISCRC is insensitive toτ . Hence, we simplely setτ as 1.
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Fig. 11. Recognition performance of RH-ISCRC-l1 on CMU MoBo with differentλ1 and λ2. Different colors represent

different accuracy. Top: 50 frames per set; middle: 100 frames per set; bottom: 200 frames per set.
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different accuracy. Top: 50 frames per set; middle: 100 frames per set; bottom: 200 frames per set.
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Fig. 13. Recognition performance of KCH-ISCRC on CMU MoBo with different τ .

VI. CONCLUSION

We proposed a novel image set based collaborative representation and classification (ISCRC)

scheme for image set based face recognition (ISFR). The query set was modeled as a convex

or regularized hull, and a collaborative representation based set to sets distance (CRSSD) was

defined by representing the hull of query set over all the gallery sets. The CRSSD considers the

correlation and distinction of sample images within the query set and the relationship between the

gallery sets. With CRSSD, the representation residual of the hull of query set by each gallery

set can be computed and used for classification. Experimentson the three benchmark ISFR

databases showed that the proposed ISCRC is superior to state-of-the-art ISFR methods in terms

of both recognition rates and efficiency.
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