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Abstract

With the rapid development of digital imaging and commutiaratechnologies, image set based
face recognition (ISFR) is becoming increasingly import@ne key issue of ISFR is how to effectively
and efficiently represent the query face image set by usiagytilery face image sets. The set-to-set
distance based methods ignore the relationship betwedagrygakts, while representing the query set
images individually over the gallery sets ignores the datien between query set images. In this paper,
we propose a novel image set based collaborative repréisengad classification method for ISFR. By
modeling the query set as a convex or regularized hull, weesgmt this hull collaboratively over all the
gallery sets. With the resolved representation coeffisiethie distance between the query set and each
gallery set can then be calculated for classification. Tleppsed model naturally and effectively extends

the image based collaborative representation to an imadeased one, and our extensive experiments
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on benchmark ISFR databases show the superiority of theopeasbmethod to state-of-the-art ISFR

methods under different set sizes in terms of both recagnitate and efficiency.
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I. INTRODUCTION

Image set based classification has been increasingly eetwlimyface recognition [1], 2],
[3], [4], [B], [6], [7], [8], [9] and object categorization1l0], [11] in recent years. Due to the
rapid development of digital imaging and communicatiorhteques, now image sets can be
easily collected from multi-view images using multiple eas [10], long term observations
[6], personal albums and news pictures![12], etc. Meanwiniage set based face recognition
(ISFR) has shown superior performance to single image bia®edrecognition since the many
sample images in the gallery set can convey more withirsclasiations of the subject[[7].
One special case of ISFR is video based face recognitiorchaollects face image sets from
consecutive video sequenceés [1],1[13],/[14]. Similar to Wark in [5], [7], in this paper we
focus on the general case of ISFR without considering theteah relationship of samples in
each set.

The key issues in image set based classification include bownodel a set and consequently
how to compute the distance/similarity between query arltbryasets. Researchers have pro-
posed parametric and non-parametric approaches for inetgaadeling. Parametric modeling
methods model each set as a parametric distribution, andKulleack-Leibler divergence to
measure the similarity between the distributions [2], [6he disadvantage of parametric set
modeling lies in the difficulty of parameter estimation, aibdnay fail when the estimated
parametric model does not fit well the real gallery and quetg EL0], [4], [7].

Many non-parametric set modeling methods have also begroged, including subspace [10],
[1], [15], manifold [16], [17], [4], [11], [18], affine hullB], [7], convex hull [5], and covariance
matrix based ones$ [18], [19], [20]. The method|in][10] emglognonical correlation to measure
the similarity between two sets. A projection matrix is leadt by maximizing the canonical
correlations of within-class sets while minimizing the cartal correlations of between-class
sets. The methods in [21] use manifold to model an image sktlafine a manifold-to-manifold
distance (MMD) for set matching. MMD models each image set ast of local subspaces and
the distance between two image sets is defined as a weightedgavof pairwise subspace to
subspace distance. As MMD is a non-discriminative measdemifold Discriminant Analysis
(MDA) is proposed to learn an embedding space by maximizirgifald margin [11]. The
performance of subspace and manifold based methods magd#gegruch when the set has a



small sample size but big data variations [7],/[18]. In affinél and convex hull based methods
[5], [7], the between-set distance is defined as the distheteeen the two closest points of
the two sets. When convex hull is used, the set to set distaneguivalent to the nearest point
problem in SVM [22]. In [23], a method called sparse appraded nearest points (SANP) is
proposed to measure the dissimilarity between two image $etreduce the model complexity
of SANP, a reduced model, which is called regularized négremts (RNP), is proposed by
modeling each image set as a regularized hull [24]. Howelierclosest points based methods
[5], [7], [25], [24] rely highly on the location of each inddual sample in the set, and the
model fitting can be heavily deteriorated by outliers![18].[18], an image set is represented
by a covariance matrix and a Riemannian kernel function f;eeé to measure the similarity
between two image sets by a mapping from the Riemannian otdnd a Euclidean space. With
the kernel function between two image sets, traditionartisinant learning methods, e.g., linear
discriminative analysid [26], partial least squares [X&;nel machines, can be used for image
set classification [19]) [20]. The disadvantages of covem@éamatrix based methods include the
computational complexity of eigen-decomposition of syrtmogositive-definite (SPD) matrices
and the curse of dimensionality with limited number of traghsets.

No matter how the set is modeled, in almost all the previousksv¢l0], [1], [16], [17], [4],
[11], [18], [5], [7], [24], the query set is compared to eadtitee gallery sets separately, and then
classified to the class closest to it. Such a classificatiberse does not consider the correlation
between gallery sets, like the nearest neighbor or neavdsipace classifier in single image
based face recognition. In recent years, the sparse repaéisa based classification (SRC) [28]
has shown interesting results in image based face recognBRC represents a query face as
a sparse linear combination of samples from all classes,ctassifies it to the class which
has the minimal representation residual to it. Though SR@hasizes much on the role of
l;-norm sparsity of representation coefficients, it has bdewa in [29] that the collaborative
representation mechanism (i.e., using samples from akekato collaboratively represent the
guery image) is more important to the success of SRC. Thelkedocollaborative representation
based classification (CRC) with-regularization leads to similar results to SRC but with muc
lower computational cost [29]. I [30], feature weights ereoduced to the representation model
to penalize pixels with large error so that the model is roliasoutliers. Moreover, a kernel

sparse representation model is proposed for face recognty mapping features to a high



dimensional Reproducing Kernel Hilbert Space (RKHS), WHiarther improves the recognition
accuracy([31],[[32]. Similarly, a robust kernel represéntamodel is proposed with iteratively
reweighted algorithms [33].

One may apply SRC/CRC to ISFR by representing each imageeofjulery set over all the
gallery sets, and then using the average or minimal reptasem residual of the query set images
for classification. However, such a scheme does not expieitorrelation and distinctiveness of
sample images in the query set. If the average represamtasidual is used for classification,
the discrimination of representation residuals by diffiéidasses will be reduced; if the minimal
representation residual is used, the classification cdersiubm the outlier images in the query
set. In addition, there are redundancies in an image set.rdthendancies will lead to great
storage burden and computational complexity, and detggdhe recognition performance.
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Fig. 1. Image set based collaborative representation assification (ISCRC).

In this paper, we propose a novel image set based collaberafresentation and classification
(ISCRC) approach for ISFR, as illustrated in Hig§. 1. The gwsat, denoted by (each column
of Y is an image in the set) is modeled as a il with the sum of coefficients i being 1.
Let X,k =1,2,..., K, be a gallery set. We then propose a collaborative reprasamtzased set
(i.e.,Y)tosets (i.,e. X = [ Xy, ..., X, ..., Xk]) distance (CRSSD for short); that is, we represent
the hullY a over the gallery setX as X b, whereb is a coefficient vector. Consequently, we can
classify the query seY by checking which gallery set has the minimal represematasidual
to the hullY a. To get a stable solution to CRSSD, regularizations can lpps®d ona andb.
In the proposed ISCRC, the gallery s&Xs can be compressed to a smaller size to remove the



redundancy so that the time complexity of ISCRC can be mudbaed without sacrificing the
recognition rate. Our experiments on three benchmark IS&Rbases show that the proposed
ISCRC is superior to state-of-the-art methods in terms ¢ lbecognition rate and efficiency.

This paper is organized as follows. Sectloh Il discussesetaidthe proposed CRSSD and
ISCRC methods. Sectidnllll presents the regularized hdeddSCRC, followed by the convex
hull based ISCRC in Sectidn_JV. Section V conducts experismiemd Section_VI gives our
conclusions. The main abbreviations used in the developoferur method are summarized in
Table[l.

TABLE |
THE MAIN ABBREVIATIONS USED IN THIS PAPER

ISFR image set based face recognition
SRC sparse representation based classification
CRC collaborative representation based classification
collaborative representation based
CRSSD )
set to sets distance
image set based collaborative
ISCRC _ o
representation and classification
RH-ISCRC regularized hull based ISCRC
KCH-ISCRC kernelized convex hull based ISCRC

[I. COLLABORATIVE REPRESENTATION BASED SET TO SETS DISTANCE

We first introduce the hull based set to set distand¢e in |1+l #nen propose the collaborative
representation based set to sets distance (CRSSD) ih i @RSSD, the image set based
collaborative representation and classification (ISCR&j)eme can be naturally proposed. In

[-Cland[I-D, the convex hull and regularized hull based GRSare respectively presented.

A. Hull based set to set distance

In image set based classification, compared to the paramatdeling of image set, non-
parametric modeling does not impose assumptions on thedistiédbution and inherits many

favorable properties [10], [7]. [18]. One simple non-paednt set modeling approach is the hull



based modeling [5]/ 7], which models a set as the linear ¢oation of its samples. Given a
sample se¥ = {yi, ..., Yi, ..., Yn}, ¥s € R%, the hull of setY is defined asH (Y) = {3 a;v;}.
Usually, > a; = 1 is required and the coefficients are required to be bounded:

HY)={Yay|Xa=10<a; <7} (1)

If =1, H(Y) is a convex hull[[34]. Ifr < 1, H(Y) is a reduced convex hull [22]. For the
convenience of expression, in the following the developmencall both the cases convex hull.
By modeling a set as a convex hull, the distance betweel'set{y, ..., y;, ..., y,, } and set

Z ={z,...,2j,...,zn, } Can be defined as follows:

mingp, | @iy — ¥ b;z5
st.>a;,=10<a; <7 (2)
Ybi=1,0<b; <7

When the two sets have no intersection, the set to set destangq. [2) becomes the distance
between the nearest points in the two convex hulls (CHISD, & illustrated in Figl12. It is
not difficult to see that such a distance is equivalent to ietadce computed by SVM [22]. If
the discriminative function of SVM i = wx + b, thenw = " a,y;, — > b;z; and the margin
is 2/||lw||. If we consider each image set as one class, then maximizargimbetween the
two classes is equivalent to finding the set to set distanse FBowever, such a distance relies

highly on the location of each individual sample and can besisige to outliers([18].

Fig. 2. Convex hull based set to set distance.

B. Collaborative representation based set to sets distamokclassification

In image set based face recognition (ISFR), we have a quéry daut multiple gallery sets

X, k=1,2,..., K. One fact in face recognition is that the face images frorfedsht people



still have much similarity. If we compute the distance besw® and eachX, by using methods
such as hull based set to set distance (refér_idl II-A), theetadion between different gallery
sets will not be utilized. As we discussed in the Introduttsection, inspired by the SRC [28]
and CRC[[29] methods in image based face recognition, hergrogose a novel ISFR method,
namely image set based collaborative representation asgdifitation (ISCRC).

The key component of ISCRC is the collaborative represiemdiased set to sets distance
(CRSSD) defined as follows. LeX = [ X1, ..., X, ..., Xk] be the concatenation of all gallery
sets. We model each & and X as a hull, i.e..Ya and X b, wherea and b are coefficient

vectors, and then we define the CRSSD betweerYsand setsX as:
ming |Ya — Xb|* sit.Ya; =1 (3)

whereg; is thei coefficeint ina and we let>) a; = 1 to avoid the trivial solutiora = b = 0.

In Eq. (3), the hullY a of the query setY is collaboratively represented over the gallery
sets; however, the coefficients i will make the samples irY” be treated differently in the
representation and the subsequent classification process.

Suppose that the coefficient vectaisand b are obtained by solving EqL](3), then we can
write b asb = [by;...;b;; ...; by, whereb, is is the sub-vector of coefficients associated with
gallery setX,. Similar to the classification in SRC and CRC, we use the sgration residual
of hull Ya by each setX, to determine the class label &f. The classifier in the proposed
ISCRC is:

Identity(Y') = argminyg {ry} 4)

wherer;, = HY& — X.by

Clearly, the solutions tm and b in Eq. (3) determine the CRSSD and hence the result of

2
.

ISCRC. In order to get stable solutions, we could imposeomasle regularizations om andb.
In the following sectionsTI-C and 1I-D, we discuss the cantell based CRSSD and regularized
hull based CRSSD, respectively.



C. Convex hull based CRSSD

One important instantiation of CRSSD is the convex hull da€&SSD. In this case, both
the hullsY a and X b are required to be convex hulls, and then the distance indddgcomes
ming |Ya — Xb|°
st.ya;=1,>b;=1,
0<a; <T1,1=1,...,n4,
0<b;<7,5=1,....,m

(5)

whereq; andb; are thei'® and;*" coefficients ina andb, respectivelyn, andn; are the number

of samples in seY” and setsX, respectively, and < 1.
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Fig. 3. Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is shawifrig. [3. Different from the
CHISD method in([5], which models each gallery set as a corudk here we model all the
gallery sets as one big convex hull. Similar to the closesttpsearching in SVM, convex hull
based CRSSD aims to find the closest points in the queryy'sahd the whole gallery seX
in a large margin manner. With convex hull based CRSSD, theesponding ISCRC method
can be viewed as a large margin based classifier in some dé¢osetheless, the classification
rules in SVM and ISCRC are very different.

D. [,-norm regularized hull based CRSSD

The convex hull modeling of a set can be affected much by erulamples in the set [18].

To make CRSSD more stable, thenorm regularized hull can be used to modeland X. For



the query sely’, we should keep the constraifta; = 1 to avoid the trivial solution, and the

l,-norm regularized hull oy” is defined as
H(Y) ={X ayilllal,, <o} st.Xa; =1 (6)
For the gallery sefX,, its regularized hull is defined as:
H(X) = {3 bi:|||b]|,, <} (7)
Finally, the regularized hull based CRSSD betw&érand X is defined as:

ming ||Ya — Xbl[;
stllall, <oy, |bll, <&, a;=1

(8)

[1l. REGULARIZED HULL BASED ISCRC

In Sectionl, we introduced CRSSD, and presented two ingmbrinstantiations of it, i.e.,
convex hull based CRSSD and regularized hull based CRSSIh #&ither one of them, the
ISCRC (refer to Eq.[{4)) can be implemented to perform ISARtHis section, we discuss
the minimization of regularized hull based CRSSD model, tnredcorresponding classification
scheme is called regularized hull based ISCRC, denoted bySRIRC. The minimization of
convex hull based CRSSD and the corresponding classificattheme will be discussed in
Section1V.

A. Main model
We can re-write the regularized hull based CRSSD model in @y.as its Lagrangian
formulation:
mings Y@ — Xb|; + Aillal, + Ao[lb]l,,
st.>a; =1

(9)

where)\; and ), are positive constants to balance the representatioruadsashd the regularizer.

In ISFR, each gallery seX; often has tens to hundreds of sample images so that the whole
set X can be very big, making the computational cost to solve BEfvé®y high. Considering
the fact that the images in each s€t have high redundancy, we can compré§sinto a much

more compact set, denoted W@y,, via dictionary learning methods such as KSVD]|[36] and
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metaface learnind [37]. LeD = [Dy, ..., Dy, ..., Dg]. We can then replac&X by D in Eq. (9)
to compute the regularized hull based CRSSD:

|Ya—Dg|2+ }

(&,B) = argming g
Mllall,, + Xl Bl,

(10)
st.> a; =1

where 3 = [By;...; Bx; ...; Bk] and By is the sub-vector of coefficients associated wiih.

Based on our experimental results, compress¥yginto D, significantly improve the speed

with almost the same ISFR rate.

Either [;-norm or I;-norm can be used to regularize and 3, while [;-regularization will
lead to sparser solutions but with more computational dake in /;-SVM [38] and SRCI[28],
sparsity can enhance the classification rate if the featanr@sot informative enough. Note that
if the query sefY” has only one sample, then= [1] and the proposed model in E§. {10) will
be reduced to the SRC (fdr-regularization) or CRC (fol,-regularization) scheme. Next, we
present the optimization df-norm andi;-norm regularized hull based ISCRC in Section IlI-B
and Section II-C, respectively.

B. l,-norm regularized hull based ISCRC

When l,-norm is used to regularize and 3, the problem in Eq.[(10) has a closed-form

solution. The Lagrangian function of Ed. {10) becomes

L(a, B8, %) = |Ya — D|l; + M llall; + A2 185 + As(ea — 1)

2

a MO a a (11)
= [y - D] +[a” g7 | + Xs([e 0] —1)
) 0 \I 3 B
wheree is a row vector whose elements are 1.
a )\1I 0 T
Let z = ,A=]Y —-D], B= andd = [e 0] . Then Eq.[(1ll) becomes:
B8 0 M1
L(z,\3) = 2T AT Az + 2" Bz + \3(d"z — 1) (12)
There are
oL
— =d’z-1= 1
W z 0 (13)
Ol AT Az 4 Bzt rd =0 (14)

9z
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According to Eq.[(IB) and Eq._(IL4), we get the closed form tsmhuto Eq. [(11):

=}

2= [ A] = zy/d" 2z (15)
B

wherez, = (ATA + B)~'d.

After @ and 3 are got, the distance between query ¥eand a gallery seX, is calculated as
rE = HY& — DkBkHZ and then the class label &f is determined by EqlL{4). For RH-ISCRC-
l,, the main time consumption is to solve the inverse of matdX' A + B). Hence, the time
complexity of RH-ISCRCx is O((n, + ng)*), wheren, is the number of sample images ¥

andng is the number of atoms .

C. [;-norm regularized hull based ISCRC

When [;-norm regularization is used, we use the alternating mation method, which is
very efficient to solve multiple variable optimization pteims [39]. For Eq.[(10), we have the
following augmented Lagrangian function:

L(a,B8,\) = [Ya— DB|; + Mllal, + 2181, (16)
+<MNea—1>+1|ea—1|;
where) is the Lagrange multipliex;, -) is the inner product, and > 0 is the penalty parameter.

Then a and 8 are optimized alternatively with the other one fixed. Moredfically, the

iterations of minimizinga go as follows:
a™Y = argming L(a, B, A1)
= argmin, f(a) + 7 Hea — 1+ )\(t)/VHZ (17)

- 2
= arg min, HYa — :I:H2 + Mlall;

where f(a) = [Ya DO + Mllall,, ¥ = [Y:(1/2)%], @ = [DBY; (v/2)2(1 ~
A9 /).
The problem in Eq.[(17) can be easily solved by some repratent,-minimization ap-
proaches[[40] such as LARS [41].
After a1V is updated 3+ can be obtained by solving anothefregularized optimization
problem:
B = argmingL(a*Y, B, \)

= argming [Ya** — DB, + 228, o)
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Oncea®) and 3¢*1) are got,\ is updated as follows:
AGED = 2O 4 (ea(t“) — 1) (19)

The algorithm of RH-ISCRGC; for ISFR is summarized in Tablel Il and it converges. The
problem in Eq. [(1b) is convex, and the subproblems in Eg. éd Eq. [(1IB) are convex and
can be solved using the LARS algorithm. It had been shown 2}, [fbr the general convex
problem, the alternating minimization approach would @ge to the correct solution. One
curve of the objective function value of RH-ISCRCversus the iteration number is shown in
Fig.[4, where the Honda/US&[database [13] is used. The query ¥etind each gallery seX;,
has 200 frames, and we compress eachX§etnto a dictionaryD,, with 20 atoms by using the
metaface learning method [37]. Since there are 20 galldsy 8& setD = [Dy, ..., Dy, ..., Dy|
has 20x 20=400 atoms. From the figure we can see that RH-ISCR€&nverges after about

five iterations.

0.04

0.03

0.02

0.01r

objective function value

2 4 6 8 10 12 14 16 18 20
iteration number

Fig. 4. Convergence of RH-ISCREG-

Since the complexity of sparse coding(§m?*n®), wherem is the feature dimensiom is
the atom number and > 1.2 [43], we can get that the time complexity of RH-ISCRCis
O(Im?(n.® + ng®)), wheren, is the number of samples ¥, ng is the number of atoms D

and! is the iteration number.

D. Examples and discussions

Let's use an example to better illustrate the classificapimtess of RH-ISCRC. We use the
Honda/USCD database [13]. The experiment setting is theesasnFig.[ 4. By Eq.[(10), the

http://vision.ucsd.edu/ leekc/HondaUCSDVideoDatabdsedaUCSD.html
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TABLE I
ALGORITHM OF RH-ISCRCFORISFR

Input: query setY’; gallery setsX = [X1,..., Xk, ..., Xk], A1 and \q.
Output: the label of query seY.
Initialize A, A(? and 0 « t.
CompressXy to Dy, k = 1,2, ..., K using metaface learning [B7].
While t < maz_num do
Step 1: Updatex by Eq. [17);
Step 2: Update3 by Eq. [18);
Step 3: Update\ by Eqg. [19);
Step 4it ¢t + 1.
End while
Computer = ||Ya — DkBkHz k=1,2,..K.
Identity(Y)=arg ming {7« }.

computed coefficients im and 3 are plotted in Figl 5 (byi;-regularization) and Fid.16 (by
lo-regularization), respectively. The highlighted coe#iutis in the figures are associated with set
X0, which has the same class label¥s Clearly, these coefficients are much more significant
than the coefficients associated with the other classesnwhake, from Fig.[5 and Fig.16 we
can see that -regularized hull based CRSSD leads to spatsand 3, implying that only few

samples are dominantly involved in representation andsitieation.

guery set gallery sets

0.3 0.6 —r
9 I
c
15 0.2
(&)
= 0.1
]
(@) 0
(&)

-0.1 .

0 100 200 0 100 200 300 400

Fig. 5. The coefficient vectora (of Y) and 3 (of D) by I;-regularized hull based CRSSD.

In Fig. [4, we show the reconstructed faces ¥y with /;-regularized hull based CRSSD.
The distances betwee¥a and eacthBk, i.e., r, are also given. We see thaf, is 0.03,

which is the minimal one among all the gallery sets, meanag ISCRC will make the correct
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guery set gallery sets
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Fig. 6. The coefficient vectora (of Y) and 3 (of D) by l»-regularized hull based CRSSD.
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Fig. 7. Reconstructed facééa, DB, D.B3: (we normalized eactD,3; for better visualization). The number over each
D,. 3 is the residuak;, = ||Y¢‘1 - DkﬁkHz

recognition. Here the relationships between ISCRC and foldrfiased methods can be revealed.
MMD assumes that an image set can be modeled as a set of ldrsgdasies so that the image
set distance is defined as the weighted average distancedretany two local subspaces [4].
The distance between two local subspaces is related to tlsgeclexemplar and principle angel.
Correspondingly, ISCRC seeks for a local subspaé)(in the query image set and a local
subspacep/3) in all the gallery sets, as shown in Fig. 5 . In classificatitve distance between
the query set and the template set of #i& class is the distance between the local subspace
(Y a) and the local subspad®, 3.

IV. KERNELIZED CONVEX HULL BASED ISCRC

We then focus on how to compute the convex hull based CRSSDyin(# and use it for

ISCRC. Since there can be many sample images in gallery Xetsan be a fat matrix (note
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that usually we use a low dimensional feature vector to mreeach face image). Even we
compressX into a more compact sdp, the system can still be under-determined. In Section 3
we imposed thé,-norm regularization o andb to make the solution stable. When the convex
hull is used, however, the constraint may not be strong emaagyet a stable solution of Eq.
@®). In addition, if the underlying relationship betweere thuery set and gallery sets is highly
nonlinear, it is difficult to approximate the hull of querytses a linear combination of gallery
sets.

One simple solution to solving both the above two problentkeskernel trick; that is, we can
map the data into a higher dimensional space where the ssilgae be approximately linearly
separable. The mapped gallery data matrix in the high-dsneal space will be generally over-
determined. In such a case, the convex hull constraint wiltoong enough for a stable solution.

The kernelized convex hull based CRSSD model is:

ming s [6(Y)a — [6(D)), 6(Ds), . o(Dic)] B
st.ya;=1,>0=1,
0<a;<T1,0=1,...,n4,
0<B;<7,5=1,..,n5

(20)

The above minimization can be easily solved by the standaadrmtic optimization (QR [44])
method. The solution exhibits global and quadratic corecg, as proved ir_[44]. Different
kernel functions can be used, e.g., linear kernel and Gaussrnel. We call the corresponding
method kernelized convex hull based ISCRC, denoted by KBERC. The classification rule
is the same as RH-ISCRC with, = Hgb(Y)d - ¢(Dk)BkH 2. As convex hull based CRSSD is
to solve a convex QP problem, the time complexity of KCH-ISICR O((ngs +n,)?), which is
similar to SVM. The algorithm of KCH-ISCRC is given in Tal)lg| [To reduce the computational
cost, the kernel matrix (D, D) can be computed and stored. When a queryYsetomes, we
only need to calculaté(Y,Y) andk(Y, D).

Like in Fig.[8 and Fig[B, in Figll8 we show the coefficient vesta and 3 solved by Eq.
(20). The Gaussian kernel is used and the experimentahgéstithe same as that in Figs. 5 and
(the only difference is that each compressed galleryI3ehas 50 atoms). We can see that
the coefficients associated with gallery 48t, are larger than the other gallery sets, resulting

in a smaller representation residual and hence the comeognition.
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TABLE Il
ALGORITHM OF KCH-ISCRCFORISFR

Input: query setY’; gallery setsX = [X1,..., Xk, ..., Xk]|, .
Output: the label of query seY.

CompressX to Dy, k = 1,2, ..., K by meaface learning [24];
Solve the QP problem in EJ_({R0);

Computery, = ||¢(Y)a — ¢(Dx)B|| 5, k = 1,2,..K;
Identity(Y)=arg ming {7 }.

query set gallery sets

06 Ol T T I I T
(7))
d—
c 04 0.05}
Q0
2 02 0
[ —
S 0 -0.05} 1
o ’ 11

-0.2 -0.1 ‘ — :

0 100 200 0 200 400 600 800 1000

Fig. 8. The coefficient vectora (of Y) and 3 (of D) by kernelized convex hull based CRSSD.

V. EXPERIMENTAL ANALYSIS

We used the Honda/UCSD [13], CMU Mobo [45], and Youtube Cedliels [46] datasets to

test the performance of the proposed method. The compamstimods fall into four categories:

C1l. Subspace and manifold based methods: Mutual Subspattedl@VISM) [1], Discrimi-
nant Canonical Correlations (D@):[m], Manifold-Manifold Distance (MME) [4], and
Manifold Discriminant Analysis (MDA) [11].

C2. Affine/convex hull based methods: Affine Hull based Im&g Distance (AHISH) [5],
Convex Hull based Image Set Distance (CI—HMS], Sparse Approximated Nearest Points

2http://www.iis.ee.ic.ac.uk/ tkkim/code.htm
3http://www.jdl.ac.cn/user/rpwang/research.htm
*http://www.jdl.ac.cn/user/rpwang/research.htm
Shttp://www2.0gu.edu.tr/ mlcv/softwareimageset.html

Shttp://www2.0gu.edu.tr/ mlcv/softwareimageset.html
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(SANFH) [7], and Regularized Nearest Points (RNP)![24].

C3. Representation based methods: Sparse Representasiet Glassifier (SRC) [28], Collabo-
rative Representation based Classifier (CRC) [29]. Weddsteise the average and minimal
representation residual of query set for classificationfandd that average residual works
better. Hence in this paper, the average residual is use®E/GRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [31], KCRC (Kernel GRE3], AHISD [5], and
CHISD [5]. For KSRC and KCRC, the average residual is usedlassification.

For the proposed methods, RH-ISCRC is compared with thosekamel methods and KCH-

ISCRC is compared with those kernel methods.

A. Parameter setting

For competing methods, the important parameters were @l tuned according to the
recommendations in the original literature for fair compan. For DCC [[10], if there is only
one set per class, then the training set is divided into twe siace at least two sets per class
are needed in DCC. For MMD, the number of local models is d&iving the work in [4]. For
MDA, there are three parameters, i.e., the number of localetso the number of between-class
NN local models and the subspace dimension. The three pteesrare configured according
to the work in [11]. For SANP, we adopted the same parametefg]aFor SRC, CRC, KSRC
and KCRC,\ that balances the residual and regularization is tuned ffofi, 0.001, 0.0001].

For AHISD and CHISD,C is set as 100. For all kernel methods, Gaussian keti(el, () =
exp(— ||z — y||3 /26%)) is used, and is set as 5. The experiments of 50 frames, 100 frames and
200 frames per set are conducted on the three databases.ritithber of samples in the set is
less than the given number, then all the samples in the seisa

For the proposed RH-ISCRC, we sgt= 0.001, A, = 0.001, A = 2.5/n, (n, is the number
of samples in the query set),= A\/2. The number of atoms in the compressed Bgtis set
as 20 on Honda/UCSD and 10 on CMU MoBo and YouTube. For KCHRSCr = 1 and
the number of atoms in each,, is set as 50 for all datasets. The sensitivity of the proposed

methods to parameters will be discussed in Sedcfion V-F.

"https://sites.google.com/sitelyiqunhu/cresearchy'san
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B. Honda/UCSD

The Honda/UCSD dataset consists of 59 video sequencewvingd0 different subjects [13].
The Viola-Jones face detectar [47] is used to detect thesfaceeach frame and resize the
detected faces to 220 images. Some examples of Honda/UCSD dataset are showgureF
[9. Histogram equalization is utilized to reduce the illuation variations. Our experiment setting
is the same as [13][7]: 20 sequences are set aside for tgaamd the remaining 39 sequences

for testing. The intensity is used as the feature.

Fig. 9. Some examples of Honda/UCSD dataset

The experimental results are listed in Table 1V. We can satftr those non-kernel methods,
the proposed RH-ISCRC outperforms much all the other methéol the kernel based method,
the proposed KCH-ISCRC performs the best except for the wdmw® 100 frames per set are
used. We can also see that on this dataset, RH-ISGR®d RH-ISCRC-, achieve the same
recognition rate, which implies that on this dataset #iaorm regularization is strong enough
to yield a good solution to the regularized hull based CRSSEq. [10).

C. CMU MoBo

The CMU MobH (Motion of Body) dataset [45] was originally established fmiman pose

identification and it contains 96 sequences from 24 subjéctsr video sequences are collected

8http://www.ri.cmu.edu/publicatiorview.html?pubid=3904
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TABLE IV

RECOGNITION RATES ONHONDA/UCSD %)

Non-kernel 50 100 200 Year
MSM [1] 7436 79.49 89.74 1998
DCC [1q] 76.92 84.62 94.87 2007
MMD [4] 69.23 87.18 94.87 2008
MDA [L1] 82.05 9487 97.44 2009
SRC [28] 84.62 9231 9231 2009
AHISD [5] 82.05 84.62 89.74 2010
CHISD [5] 82.05 8462 9231 2010
SANP [7] 84.62 9231 94.87 2011
CRC [29] 84.62 9487 9487 2011
RNP [24] 87.18 94.87 100.0 2011
RH-ISCRC{;  89.74 9744 100.0
RH-ISCRC{, 89.74 9744 100.0
Kernel 50 100 200 Year
AHISD [5] 84.62 8462 82.05 2010
CHISD [5] 84.62 87.18 89.74 2010
KSRC [31] 87.18 9744 97.44 2009
KCRC [33] 82.05 9487 9487 2012
KCH-ISCRC 89.74 94.87 100.0

per subject, each of which corresponds to a walking patfggain, the Viola-Jones face detector
[47] is used to detect the faces and the detected face imageesized to 40< 40. The LBP
feature is used, which is the same as the work in [5] and [7].

One video sequence per subject is selected for trainingevithd rest are used for testing. Ten-
fold cross validation experiments are conducted and theageerecognition results are shown
in Table[M. We can clearly see that the proposed methods datpethe other methods under
different frames per set. On this dataset and the Honda/U@&&set, the proposed non-kernel
RH-ISCRC and the kernel based KCH-ISCRC have similar ISEBsra
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TABLE V

RECOGNITION RATES ONCMU MoBo(%)

Non-kernel 50 100 200 Year
MSM [1] 84.3+ 2.6 86.6:2.2 89.9-2.4 1998
DCC [10] 82.1 2.7 85.5:2.8 91.6t2.5 2007
MMD [4] 86.2 £2.9 94.6:1.9 96.4:0.7 2008
MDA [L1] 86.2 £2.9 93.2t2.8 95.8:2.3 2009
SRC [28] 91.0+2.1 91.8:2.7 96.5:2.5 2009
AHISD [5] 91.6+2.8 94.1%#2.0 91.9:2.6 2010
CHISD [5] 91.2+3.1 93.8:2.5 96.6t1.3 2010
SANP [7] 91.9+2.7 94.2£2.1 97.3:1.3 2011
CRC [29] 89.6+1.8 92.4£3.7 96.4:2.8 2011
RNP [24] 919425 94.°#1.2 97.4:1.5 2013
RH-ISCRC#; 935+28 96.54+1.9 98.7+1.7
RH-ISCRC{, 93.5+28 96.4+19 98.4+17
Kernel 50 100 200 Year
AHISD [5] 88.9+1.7 92.4:2.8 93.5t4.2 2010
CHISD [5] 91.5-2.0 93.4:4.0 97.4:t1.9 2010
KSRC [31] 91.6+2.8 94.1#2.0 96.82.0 2010
KCRC [33] 91.2+3.1 93.4:2.9 96.6:2.6 2012
KCH-ISCRC 94.2 £2.1 96.4+2.3 98.4+19

D. YouTube Celebrities

The YouTube Celebriti@és a large scale video dataset collected for face tracking@cogni-
tion, consisting of 1,910 video sequences of 47 celebfiiteea YouTube[[46]. As the videos were
captured in unconstrained environments, the recognissk becomes much more challenging
due to the larger variations in pose, illumination and egpi@ns. Some examples of YouTube
Celebrities dataset are shown in Figlré 10. The face in gachefis also detected by the Viola-
Jones face detector and resized to ax330 gray-scale image. The intensity value is used as
feature. The experiment setting is the same_as|([7], [L1], [L8ree video sequences per subject

are selected for training and six for testing. Five-foldssr@alidation experiments are conducted.

The experimental results are shown in Table VI. It can be shahamong the non-kernel

°http://seqam.rutgers.edu/site/index.php?option=amnten& view=articleizid =64&Itemid=80
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Fig. 10. Some examples of YouTube Celebrities dataset

methods, the proposed RH-ISCRCachieves the highest recognition rate, while among the ker-
nel based methods, the proposed KCH-ISCRC performs the $i@se this Youtube Celebrities
dataset was established under uncontrolled environmgerte tare significant variations among
the query and gallery sets, and therefore theegularization is very helpful to improve the
stability and discrimination of the solution to Ef. [10). Asconsequence, RH-ISCRC{eads

to much better results than RH-ISCRCeon this dataset. On the other hand, the kernel based
KCH-ISCRC leads to better results than RH-ISCRC in this expent. Besides, the number
of frames per set also affect the performance of ISCRC. Whaenber of frames is small, the

improvement by ISCRC is more significant.

E. Time comparison

Then let's compare the efficiency of competing methods. Tlatldlh codes of all competing
methods are obtained from the original authors, and we remton an Intel(R) Core(TM)
i7-2600K (3.4GHz) PC. The average running time per set on CM&aBo (200 frames per
set) is listed in Tablé_VIl. We can see that the proposed RERG; is the fastest among
all competing methods except for RNP, while RH-ISCRGxylso has a fast speed. Among all
the kernel based methods, the proposed KCH-ISCRC is mudtér fdgan others. Overall, the
proposed RH-ISCRC and KCH-ISCRC methods have not only gl accuracy but also high

efficiency than the competing methods.
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TABLE VI

RECOGNITION RATES ONYOUTUBE (V1 %)

Non-kernel 50 100 200 Year
MSM [1] 54.8+8.7 57.4t7.7 56.46.9 1998
DCC [10] 57.6t8.0 62.46.8 65.47.0 2007
MMD [4] 57.8+6.6 62.8:6.2 64.7-6.3 2008
SRC [28] 61.5-6.9 64.4:6.8 66.0:6.7 2009
MDA [L1] 58.5+6.2 63.3t6.1 65.4:6.6 2009
AHISD [5] 57.5+7.9 59.47.2 57.6t5.5 2010
CHISD [5] 58.0t8.2 62.8:8.1 64.8t7.1 2010
SANP [7] 57.8:7.2 63.1H8.0 65.6:7.9 2011
CRC [29] 56.5-7.4 59.5:6.6 61.4t6.4 2011
RNP [24] 59.94+7.3 63.3:t8.1 64.4-7.8 2013
RH-ISCRC{; 62.3+6.2 65.6+6.7 66.7+6.4
RH-ISCRC{, 57.4£7.2 60.46.5 61.4:-6.4
Kernel 50 100 200 Year
AHISD [5] 57.2+7.5 59.6:7.4 61.8:7.3 2010
CHISD [5] 57.9:8.3 62.6£8.1 64.9£7.2 2010
KSRC [31] 61.4:7.0 65.9:6.9 67.8:6.4 2010
KCRC [33] 57.5t7.9 60.6:6.8 62.A47.7 2012
KCH-ISCRC 64.5+7.6 67.4+80 69.7+7.4

F. Parameter sensitivity analysis

To verify if the proposed methods are sensitive to pararagterthis section we present the
recognition accuracies with different parameter values.FH-ISCRC, there are two parameters,
A1 and )\, in Eg. (16), which need to be set. For KCH-ISCRC, there is amg parameter in
Eqg. (3). We show the recognition accuracies versus the paesson the CMU MoBo dataset
in Fig.[11, Fig[12 and Fid. 13, respectively, for RH-ISCRCRH-ISCRC#, and KCH-ISCRC.
The different colors correspond to different accuracissstaown in the color bai; and )\, are
selected from{0.0005,0.001,0.01,0.05}. In Fig.[11 and Fig[12, the top sub-figure is for 50
frames per set, the middle is for 100 frames per set and therbatorresponds to 200 frames
per set. From Figl_11, we can see that the accuracy of RH-ISGRECvery stable when\,
varies from 0.0005 to 0.05 anal, varies from 0.0005 to 0.01. Whek, is increased to 0.05,
the recognition performance would degrade. Eigd. 12 shoat RH-ISCRCE, is insensitive to
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TABLE VII

AVERAGE RUNNING TIME PER SET ONCMU MO0BO (s)

Non-kernel  Time Kernel Time
MSM [1] 0.338 AHISD[5] 18.546
DCC [10] 0.349 CHISD[[5] 18.166
MMD [4] 10.223 KSRC[31] 35.508
SRC[28] 5.301 KCRC[33] 6.543
MDA [LI] 7.031 KCH-ISCRC 2.03
AHISD [5] 31.365
CHISD [5] 18.029
SANP [7] 11.124
CRC [29] 0.684
RNP [24] 0.113
RH-ISCRC#; 0.788
RH-ISCRC{, 0.280

the values of\; and \,. For example, in the experiments of 100 and 200 frames pertthset
accuracy variation is within 0% for different \; and \,. Considering the performance of both
RH-ISCRC{; and RH-ISCRC-, A; and )\, can both be set as 0.001. With this parameter setting,
the accuracy is very stale in different experiments. For KISBRC, its recognition accuracies
with different values ofr are shown in Figl_137 is set as{1,2,5,10,50,100}. One can see

that KCH-ISCRC is insensitive ta. Hence, we simplely set as 1.
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Fig. 11. Recognition performance of RH-ISCRCon CMU MoBo with differentA; and \.. Different colors represent
different accuracy. Top: 50 frames per set; middle: 100 &mper set; bottom: 200 frames per set.
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Fig. 13. Recognition performance of KCH-ISCRC on CMU MoBahifferent .

VI. CONCLUSION

We proposed a novel image set based collaborative repetgenand classification (ISCRC)
scheme for image set based face recognition (ISFR). They metrwas modeled as a convex
or regularized hull, and a collaborative representatiopetiaset to sets distance (CRSSD) was
defined by representing the hull of query set over all theegalbets. The CRSSD considers the
correlation and distinction of sample images within thergset and the relationship between the
gallery sets. With CRSSD, the representation residual efnthil of query set by each gallery
set can be computed and used for classification. Experinmntthe three benchmark ISFR
databases showed that the proposed ISCRC is superior ¢ecdttte-art ISFR methods in terms

of both recognition rates and efficiency.
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