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Robust Broadcasting of Common and Confidential
Messages Over Compound Channels: Strong

Secrecy and Decoding Performance
Rafael F. Schaefer, Member, IEEE, and Holger Boche, Fellow, IEEE

Abstract— The broadcast channel with confidential messages
(BCC) consists of one transmitter and two receivers, where the
transmitter sends a common message to both receivers and, at the
same time, a confidential message to one receiver which has to be
kept secret from the other one. In this paper, this communication
scenario is studied for compound channels, where it is only
known to the transmitter and receivers that the actual channel
realization is fixed and from a prespecified set of channels. The
information theoretic criterion of strong secrecy is analyzed in
detail and its impact on the decoding performance of the non-
legitimate receiver is characterized. In particular, it is shown
that regardless of the computational capabilities and the applied
decoding strategy of the non-legitimate receiver, his decoding
error always tends to one. This gives a valuable signal processing
implication of the strong secrecy criterion and identifies desirable
properties of an optimal code design. Further, an achievable
strong secrecy rate region is derived and a multiletter outer
bound is given. Both together yield a multiletter expression of
the strong secrecy capacity region of the compound BCC.

Index Terms— Broadcast channel with confidential messages,
secrecy capacity, strong secrecy, compound channel, decoding
performance, embedded security.

I. INTRODUCTION

RAPID developments in communication systems make
information available almost everywhere. Along with

this, the security of sensitive information from unauthorized
access becomes an important task. Especially wireless commu-
nication systems are inherently vulnerable, since transmitted
signals are received by intended users but are also easily
eavesdropped by non-legitimate receivers.

Nowadays, the architecture of communication systems is
usually separated into error correction and data encryption.
The error correction is typically implemented on the physical
layer turning the noisy communication channel into an ideal
“bit pipe.” Then on higher layers, the data encryption is
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realized by applying cryptographic techniques which are based
on the assumption of insufficient computational capabilities
of non-legitimate receivers. Accordingly, one is interested in
unconditional security which does not rely on such limitations.

Another approach for realizing security is the so-called
concept of information theoretic secrecy. This was initiated by
Shannon in his seminal paper [3]. He showed that a secret key
used as one-time pad allows for secure communication over a
noiseless channel. Subsequently, Wyner introduced the wiretap
channel [4], which describes the communication scenario over
a noisy channel and without any secret keys. The key insight of
this work is that information theoretic secrecy can be achieved
by exploiting the physical properties of the noisy channel. This
was later generalized by Csiszár and Körner to the broadcast
channel with confidential messages [5]. In these works, the
secrecy of confidential information was measured using the
criterion of weak secrecy. This area of research has drawn
attention in recent years as it provides a promising approach
to embed secure communication in wireless networks; for
instance see [6]–[9] and references therein. Concurrently, it has
been demonstrated that the joint implementation of different
public and secure communication tasks on the physical layer
can lead to significant gains in spectral efficiency. Thus,
it is not surprising that the efficient physical layer service
integration [10] has also been identified by operators and
national agencies as a promising task to increase the efficiency
of public communication systems [11], [12].

However, as already mentioned, the criterion of weak
secrecy is usually applied, which is heuristic in nature in
that no convincing operational meaning has been given to
it yet. This means that even if this criterion holds, it is
not clear how secure the confidential information actually
is. But recently, an operational meaning has been given to
the strong secrecy criterion introduced by Csiszár [13] and
by Maurer and Wolf [14]: it was established in [15] for the
wiretap channel that the strong secrecy criterion implies that
the average decoding error at the eavesdropper tends to one
exponentially fast for any decoder he (or she) may use. This
gives the strong secrecy criterion important signal processing
consequences and therewith paves the way for providing
secure communication with guaranteed, i.e., provable, secrecy.

Another challenge, especially for operators of wireless
communication systems, is the provision of accurate channel
state information at transmitter and receivers. Practical systems
always suffer from channel uncertainty due to the nature
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of the wireless medium and estimation/feedback inaccuracy.
In addition, it is hard to believe that non-legitimate receivers
will share their channel information with the transmitter
making eavesdropping even harder. Thus, it is reasonable
to assume that the exact channel realization is not known;
rather, it is only known that it belongs to a pre-specified set
of channels. If this channel remains fixed during the whole
transmission of a codeword, this corresponds to the concept of
compound channels [16], [17]. Accordingly, one is interested
in robust strategies that allow for secure communication over
compound channels. The compound wiretap channel is ana-
lyzed for discrete memoryless channels in [15] and [18] and
for MIMO Gaussian channels in [19] and [20]. First studies
for the MIMO Gaussian compound broadcast channel with
confidential messages can be found in [21].

In this paper we consider the discrete memoryless com-
pound broadcast channel with confidential messages (BCC).
This models the communication scenario with one transmitter
and two receivers, where the transmitter broadcasts a common
message to both receivers and, at the same time, sends a
confidential message to receiver 1 which has to be kept secret
from receiver 2. Thus, receiver 2 is both a legitimate receiver
for the common message and a non-legitimate receiver for
the confidential message. This is in contrast to the classical
wiretap channel [4], where the eavesdropper is solely a non-
legitimate receiver and does not belong to the communication
system. The corresponding system model for the compound
BCC is introduced in detail in Section II.

We start with the classical approach and measure the secrecy
of the confidential message using the information theoretic
concept of strong secrecy. As the non-legitimate receiver is
part of the communication system, he may have further side
information available to infer the confidential message; most
obvious the common message he is intended to decode. Hence,
it is reasonable to question the validity of the classical strong
secrecy criterion. Accordingly, in Section III we generalize
the information theoretic secrecy criterion by taking such side
information into account. Furthermore, we also analyze the
secrecy of the confidential message from a signal processing
point of view by characterizing the decoding performance
of the non-legitimate receiver. We show that the information
theoretic criterion of strong secrecy and the signal processing
inspired criterion of worst decoding performance are con-
nected which gives the strong secrecy criterion an impor-
tant signal processing interpretation. In addition, we identify
vanishing output variation at the non-legitimate receiver as
a desirable code property since it turns out that such codes
realize secrecy for all the discussed information theoretic and
signal processing criteria simultaneously.

The confidential message must be protected against the
non-legitimate receiver 2 requiring a code which reveals no
information to him. But simultaneously, he is also a legitimate
receiver since the common message must be successfully
transmitted to him requiring a code suitable for reliable
communication. At a first glance, these two goals seem to
be conflictive making the code design for the compound BCC
a challenging task. In Section IV an achievable secrecy rate
region is established. Thereby it is shown that codes having

the vanishing output variation property are further suitable
to simultaneously meet both conflicting intentions of secrecy
and reliability. A multi-letter outer bound is then given in
Section V, which establishes, together with the achievable rate
region, a multi-letter characterization of the secrecy capacity
region. Finally, a conclusion is given in Section VI.

Notation

Discrete random variables are denoted by capital letters
and their realizations and ranges by lower case and script
letters, respectively; X − Y − Z denotes a Markov chain of
random variables X , Y , and Z in this order; all logarithms
and information quantities are taken to the base 2; N and R+
are the sets of non-negative integers and non-negative real
numbers; Ac, |A|, and A×B are the complement, cardinality,
and Cartesian product of the sets A and B; H (·), I (·; ·), and
D(·‖·) are the traditional entropy, mutual information, and
Kullback-Leibler (information) divergence; ‖μ − ν‖ is the
total variation distance of measures μ and ν on A defined
as ‖μ − ν‖ := ∑

a∈A |μ(a) − ν(a)| or equivalently as
‖μ − ν‖ := 2 supA⊆A |μ(A) − ν(A)|, cf. for example [22,
Lemma 4.1.1]; P(·) denotes the set of all probability dis-
tributions; the product distribution PA PB is defined by the
product marginal distributions of its components PA and PB ,
i.e., PA PB(a, b) = PA(a)PB(b) for all a ∈ A, b ∈ B; E[·]
and P{·} are the expectation and probability; �A(·) denotes the
indicator function, i.e., �A(a) = 1 if a ∈ A and �A(a) = 0
otherwise; lhs := rhs means the value of the right hand side
(rhs) is assigned to the left hand side (lhs), lhs =: rhs is defined
accordingly.

II. COMPOUND BROADCAST CHANNEL WITH

CONFIDENTIAL MESSAGES

Here we introduce the system model for the compound
BCC. Thereby we start with the classical criterion of infor-
mation theoretic strong secrecy to measure the secrecy of the
confidential message. The communication problem at hand is
depicted in Fig. 1 and formalized as follows.

Let X and Y , Z be finite input and output sets and S be a
finite state set. Then for fixed channel realization s ∈ S and
input and output sequences xn ∈ X n and yn ∈ Yn , zn ∈ Zn

of length n, the discrete memoryless broadcast channel is
given by W n

s (yn, zn|xn) := ∏n
i=1 Ws(yi , zi |xi ). We denote its

marginal channels by W n
Y,s(yn|xn) and W n

Z,s(z
n|xn).

Definition 1: The discrete memoryless compound broad-
cast channel W is given by the families of pairs of channels
with common input as

W := {
(WY,s , WZ,s) : s ∈ S

}
.

Remark 1: This includes the widely adopted model of
the form W = {(WY,s, WZ,t ) : s ∈ S, t ∈ T } with
S �= T as we can always construct a new set of the
form Ŝ = S × T .

We consider a block code of arbitrary but fixed length n.
Let M0 := {1, ..., M0,n} and M1 := {1, ..., M1,n} be the sets
of common and confidential messages. In addition, we use the
abbreviation M := M0 × M1.
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Fig. 1. Compound broadcast channel with confidential messages (BCC). The transmitter encodes the message pair (M0, M1) into the codeword Xn =
E(M0, M1) and transmits it over the compound broadcast channel W to the receivers, which have to decode their intended messages (M̂0, M̂1) = ϕ1(Y n

s )

and M̂0 = ϕ2(Zn
s ) for any channel realization s ∈ S . At the same time, receiver 2 has to be kept ignorant of M1 in the sense that maxs∈S I (M1; Zn

s ) ≤ εn .

Definition 2: An (n, M0,n , M1,n)-code for the compound
BCC consists of a stochastic encoder

E : M0 × M1 → P(X n) (1)

i.e., a stochastic matrix, and decoders at receivers 1 and 2

ϕ1 : Yn → M0 × M1 (2a)

ϕ2 : Zn → M0. (2b)
The encoder is allowed to be stochastic in the sense

that it is specified by conditional probabilities E(xn|m0, m1)
with

∑
xn∈X n E(xn|m0, m1) = 1 for each m0 ∈ M0 and

m1 ∈ M1. Thus, E(xn|m0, m1) denotes the probability that
the message pair (m0, m1) ∈ M0 × M1 is encoded as the
codeword xn ∈ X n .

Remark 2: Already for the classical wiretap channel
(without additional common message) it is shown that a
stochastic encoder is needed to guarantee the secrecy of the
confidential message, see [9, Sec. 3.4]. Although the definition
of a stochastic encoder is given in a very general form, it turns
out that a much easier stochastic structure will be sufficient.
For details we refer to Section IV, where the specific structure
of the stochastic encoder is presented.

Remark 3: At some points it is beneficial to express the
decoders in terms of decoding sets. Then ϕ1 in (2a) is specified
by disjoint decoding sets {D1(m0, m1) ⊂ Yn : (m0, m1) ∈
M0 × M1} and, similarly, ϕ2 in (2b) by disjoint decoding
sets {D2(m0) ⊂ Zn : m0 ∈ M0}.

Encoder and decoders have to be designed in such a
way that they realize reliable communication and secrecy
simultaneously. Moreover, since neither the transmitter nor
the receivers know the actual channel realization, they must
be universal such that they work for all channel realizations
simultaneously. The communication task of reliable transmis-
sion of all messages to their respective receivers over the
compound broadcast channel is addressed first.

When the transmitter has sent the message pair m =
(m0, m1) ∈ M and receivers 1 and 2 have received yn ∈ Yn

and zn ∈ Zn , the decoder at receiver 1 is in error if yn /∈
D1(m0, m1). Accordingly, the decoder at receiver 2 is in
error if zn /∈ D2(m0). Then for an (n, M0,n , M1,n)-code, the
average probabilities of error at receivers 1 and 2 for channel

realization s ∈ S are then given by

ē1,n(s) := 1

|M|
∑

m∈M

∑

xn∈X n

W n
Y,s(D

c
1(m0, m1)|xn)E(xn|m)

ē2,n(s) := 1

|M|
∑

m∈M

∑

xn∈X n

W n
Z,s(D

c
2(m0)|xn)E(xn|m).

As reliable communication has to be guaranteed for all s ∈ S,
we set ēi,n = maxs∈S ēi,n(s), i = 1, 2.

To ensure the confidential message to be kept secret from
non-legitimate receiver 2 for all channel realizations s ∈ S,
we require maxs∈S I (M1; Zn

s ) ≤ εn for some (small) εn > 0
with M1 the random variable uniformly distributed over the
set M1 and Zn

s = (Zs,1, Zs,2, ..., Zs,n) the output at receiver 2
for channel realization s ∈ S. This criterion is known as strong
secrecy [13], [14] and yields the following definition.

Definition 3: A rate pair (R0, R1) ∈ R
2+ is said to be

achievable for the compound BCC W if for any τ > 0
there is an n(τ ) ∈ N and a sequence of (n, M0,n , M1,n)-codes
such that for all n ≥ n(τ ) we have 1

n log M0,n ≥ R0 − τ ,
1
n log M1,n ≥ R1 − τ , and

max
s∈S

I (M1; Zn
s ) ≤ εn := 2−nα (3)

for some α > 0 while ē1,n, ē2,n, εn → 0 as n → ∞. The
set of all achievable rate pairs is the strong secrecy capacity
region of the compound BCC W and is denoted by CS(W).

Remark 4: Note that the explicit requirement of an expo-
nentially fast decreasing εn of the form 2−nα , α > 0, in (3)
is no restriction. There will be no loss of generality since all
applied methods will actually provide an exponentially fast
decrease.

The secrecy of the confidential message is characterized
by the mutual information between the confidential message
and the channel output at the non-legitimate receiver. This
is the classical approach for measuring secrecy and was
already used in [5] for the classical BCC. However, there
were no implications on the non-legitimate receiver discussed.
In particular, it is not clear what he can or cannot do to
infer the confidential information, especially since he is part
of the communication system. Moreover, as he is supposed
to decode the common message, this message might provide
some knowledge about the confidential message. Accordingly,
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the secrecy criterion should reflect this fact. These questions
will be addressed in the following section and it will be shown
that the secrecy criterion should be generalized to include the
knowledge about the common message as well.

III. STRONG SECRECY AND DECODING PERFORMANCE

Here we want to analyze the strong secrecy criterion and the
desirable decoding performance of the non-legitimate receiver
in more detail.

A. Strong Secrecy and Vanishing Output Variation

The concept of vanishing output variation has been identi-
fied to be necessary for achieving the strong secrecy capacity
of the wiretap channel with side information at the eavesdrop-
per [23]. It suggests itself to study this concept also for the
compound BCC. For this purpose we define for each s ∈ S
the channel to the non-legitimate receiver

W
n
Z,s(z

n|m0, m1) :=
∑

xn∈X n

W n
Z,s(z

n|xn)E(xn|m0, m1) (4)

which takes the stochastic encoder E into account, cf. (1).
Definition 4: A code for the compound BCC has expo-

nentially fast vanishing output variation if there exists for
each channel realization s ∈ S and each common message
m0 ∈ M0 a measure1 ϑs,m0 on Zn such that for all m1 ∈ M1
it holds

∑

zn∈Zn

∣
∣W

n
Z,s(z

n|m0, m1) − ϑs,m0(z
n)

∣
∣ ≤ 2−nβ (5)

for some β > 0. Instead of (5) we sometimes write
‖W

n
Z,s(·|m0, m1) − ϑs,m0‖ ≤ 2−nβ interchangeably.

Intuitively, Definition 4 has the following meaning: From a
secrecy perspective, the safest option is to assume that the non-
legitimate receiver 2 is aware the common message m0 ∈ M0
(he is supposed to decode it anyway) and the actual channel
realization s ∈ S (due to potential channel estimation, etc.).
Then the property of vanishing output variation (5) ensures that
regardless of which common message m0 ∈ M0 is transmitted
and which channel realization s ∈ S controls the channel, the
output at the receiver 2 “looks” the same. In more detail, for all
potentially transmitted messages m1 ∈ M1, the channel output
at receiver 2 is, basically, given by ϑs,m0 , which is independent
of m1 ∈ M1. Thus, the non-legitimate receiver will not be able
to learn anything meaningful about the confidential message
from his channel output.

Now, the following result shows that vanishing output
variation (5) implies strong secrecy (3), which establishes an
desirable and important property of such codes.

Proposition 1: If a code for the compound BCC has the
vanishing output variation property, then the strong secrecy
criterion satisfies

max
s∈S

I (M1; Zn
s ) ≤ εn (6)

1A measure ϑ on Zn is assumed to satisfy the standard properties of non-
negativity, i.e., ϑ(A) ≥ 0 for all A ⊆ Zn , null empty set, i.e., ϑ(∅) = 0, and
countable additivity, i.e., for all collections {Ai }i∈I of pairwise disjoint sets
it holds ϑ(

⋃
i∈I Ai ) = ∑

i∈I ϑ(Ai ). We do not require ϑ(Zn) = 1, i.e., ϑ
is not necessarily a probability measure.

with εn → 0 exponentially fast as n → ∞.
Proof: Let PZn

s M0 M1 be the joint distribution and PM0 ,
PM1 , and PZn

s
be the corresponding marginal distributions

where the former are uniformly distributed over the sets
of messages M0 and M1, respectively. With this and
PZn

s M1(z
n, m1) = ∑

m0∈M0
PZn

s M0 M1(z
n, m0, m1) we observe

that we can write

PZn
s M1(z

n, m1) = 1

|M|
∑

m0∈M0

W
n
Z,s(z

n|m0, m1). (7)

If the code has the vanishing output variation property, we
then have for each s ∈ S and m0 ∈ M0 a measure ϑs,m0

which satisfies (5). Averaging over all common messages we
obtain the measure

ϑ̄s(z
n) := 1

|M0|
∑

m0∈M0

ϑs,m0(z
n)

so that

ϑ̄s,M1(z
n, m1) := 1

|M1| ϑ̄s(z
n)

= 1

|M|
∑

m0∈M0

ϑs,m0(z
n) (8)

defines a product measure on Zn ×M1. Now by the triangle
inequality we can bound the total variation distance by2

‖PZn
s M1 − PZn

s
PM1‖

≤ ‖PZn
s M1 − ϑ̄s,M1‖ + ‖ϑ̄s,M1 − PZn

s
PM1‖. (9)

Next we bound both terms individually. With (7) and (8) we
obtain for the first term

‖PZn
s M1 − ϑ̄s,M1‖
=

∑

m1∈M1

∑

zn∈Zn

∣
∣PZn

s M1(z
n, m1) − ϑ̄s,M1(z

n, m1)
∣
∣

=
∑

m1∈M1

∑

zn∈Zn

∣
∣
∣
∣

1

|M|
∑

m0∈M0

W
n
Z,s(z

n|m0, m1)

− 1

|M|
∑

m0∈M0

ϑs,m0(z
n)

∣
∣
∣
∣

≤ 1

|M|
∑

m∈M

∑

zn∈Zn

∣
∣W

n
Z,s(z

n |m0, m1) − ϑs,m0(z
n)

∣
∣

≤ 2−nβ (10)

where the last step follows from the vanishing output variation
property, cf. (5).

2Note that the total variation distance in (9) is defined on Zn ×M1. This is
in contrast to the vanishing output variation property in (5), which is defined
on Zn only.
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Similarly, with (7) and (8) we get for the second term

‖ϑ̄s,M1 − PZn
s

PM1‖
=

∑

m1∈M1

∑

zn∈Zn

∣
∣ϑ̄s,M1(z

n, m1) − PZn
s
(zn)PM1(m1)

∣
∣

=
∑

m1∈M1

∑

zn∈Zn

∣
∣
∣
∣

1

|M|
∑

i∈M0

ϑs,i (z
n) − 1

|M1| PZn
s
(zn)

∣
∣
∣
∣

=
∑

m1∈M1

∑

zn∈Zn

∣
∣
∣
∣

1

|M|
1

|M1|
∑

(i, j )∈M
ϑs,i(z

n)

− 1

|M|
1

|M1|
∑

(i, j )∈M
W

n
Z,s(z

n|i, j)

∣
∣
∣
∣

≤ 1

|M|
1

|M1|
∑

(i, j )∈M

∑

m1∈M1

∑

zn∈Zn

∣
∣ϑs,i(z

n)

− W
n
Z,s(z

n|i, j)
∣
∣

≤ 2−nβ (11)

where the third step follows from the fact that ϑs,i does not
depend on j ∈ M1 and the last step follows from (5). From
(10) and (11) follows that the total variation distance in (9) is
exponentially small; more precisely we have

‖PZn
s M1 − PZn

s
PM1‖ ≤ 2 · 2−nβ (12)

for all s ∈ S. Then the continuity of the entropy function, cf.
for example [24, Lemma 1.2.7], implies that the corresponding
mutual information term is exponentially small as well, i.e.,

I (M1; Zn
s ) = H (Zn

s ) + H (M1) − H (Zn
s , M1)

= H (PZn
s

PM1) − H (PZn
s M1)

≤ −2 · 2−nβ log(2 · 2−nβ) + 2n · 2−nβ log(|Z||M1|)
≤ 2−nβ/2 =: εn

for all s ∈ S where the last inequality holds for n large enough.
This shows (6) and completes the proof.

This result shows that vanishing output variation (5) guaran-
tees that the strong secrecy criterion (3) is satisfied. However,
for the classical wiretap channel this property further allowed
to characterize the decoding performance of the eavesdropper
[15], [23]. Moreover, a connection between the strong secrecy
criterion to the decoding performance of the eavesdropper was
established which gives strong secrecy an operational meaning.
Having this in mind, we are interested in establishing similar
results for the compound BCC, which is addressed next.

B. Decoding Performance of Non-Legitimate Receiver

The classical approach of measuring the secrecy is done
via the mutual information between the confidential message
and the channel output at the non-legitimate receiver, i.e.,
maxs∈S I (M1; Zn

s ) ≤ εn as in (3). However, it is not clear
how this reflects the capabilities of the non-legitimate receiver.
The confidential information has to be protected against non-
legitimate receivers on which no assumptions or restrictions
are imposed. In particular, there are no restrictions on the
computational capabilities or post-processing strategies, which
is in contrast to the classical cryptographic approach.

In addition, to characterize the secrecy of the confidential
message also from a signal processing point of view, we want
to analyze the decoding performance of the non-legitimate
receiver as well. To obtain guaranteed performance bounds,
one has to prepare for the worst. This is a non-legitimate
receiver who knows the actual channel realization s ∈ S, but
also the common message m0 ∈ M0. This is valid, since
receiver 2 is part of the communication system and the code
will be designed such that he will be able to decode the
common message. However, such knowledge must not provide
any information about the confidential information. In more
detail, knowing s ∈ S and m0 ∈ M0, receiver 2 is able to
create decoding sets

{
D̃s,m0(m1) ⊂ Zn : m1 ∈ M1

}
(13)

with
⋃

m1∈M1
D̃s,m0(m1)=Zn and D̃s,m0(m1)∩D̃s,m0(m̂1)=∅

for m̂1 �= m1. Thus, in contrast to the original communication
problem, cf. Definition 2 an Remark 3, we allow the decoding
sets to depend on the particular channel realization and com-
mon message. For channel realization s ∈ S this defines the
corresponding average decoding error as

ē′
2,n(s) := 1

|M0||M1|
∑

m0∈M0

∑

m1∈M1

W
n
Z,s(D̃c

s,m0
(m1)|m0, m1).

With this, we define the best decoding performance of the
non-legitimate receiver as ē′

2,n = mins∈S ē′
2,n(s).

Having in mind that the non-legitimate receiver is aware
of the common message, it is also reasonable to question the
validity of the expression maxs∈S I (M1; Zn

s ) ≤ εn , cf. (3).
Therefore we also want to analyze what happens if we replace
this by

max
s∈S

I (M1; Zn
s |M0) ≤ εn. (14)

Such a secrecy criterion with conditioning on a common part
also appears in [25] in the context of rate-distortion-based
secrecy for optical communication.

Remark 5: With M0 and M1 independent of each other, the
secrecy criterion (14) can equivalently be written as

max
s∈S

I (M1; Zn
s , M0) ≤ εn .

Such kind of formulation is common in genie-aided upper
bounds where some additional information is provided to the
receiver.

Fortunately, the following result shows that a code
with vanishing output variation (5) implies also strong
secrecy in the sense of (14) and further yields the worst
behavior of decoding performance at the non-legitimate
receiver.

Proposition 2: For any given code of Definition 2, assume
that the non-legitimate receiver knows the channel realization
s ∈ S and the common message m0 ∈ M0 and chooses
arbitrary decoding sets as in (13). If the code has vanishing
output variation according to Definition 4, cf. (5), then the
following holds:

i) The strong secrecy criterion satisfies

max
s∈S

I (M1; Zn
s |M0) ≤ εn (15)
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with εn → 0 exponentially fast as n → ∞.
ii) The average probability of decoding error at the non-

legitimate receiver satisfies

min
s∈S

ē′
2,n(s) ≥ 1 − 1

|M1| − λn (16)

with 1/|M1| → 0 and λn → 0 exponentially fast as
n → ∞.

Proof: We start with the first assertion. The proof is
similar to the one of Proposition 1 and the one given in [25].
For any s ∈ S and m0 ∈ M0 we have

‖PZn
s M1|M0=m0 − PZn

s |M0=m0 PM1|M0=m0‖
=

∑

m1∈M1

∑

zn∈Zn

∣
∣PZn

s M1|M0(z
n, m1|m0)

−PZn
s |M0(z

n|m0)PM1|M0(m1|m0)
∣
∣

= 1

|M1|
∑

m1∈M1

∑

zn∈Zn

∣
∣W

n
Z,s(z

n|m0, m1) − PZn
s |M0(z

n|m0)
∣
∣

≤ 1

|M1|
∑

m1∈M1

∑

zn∈Zn

(∣
∣W

n
Z,s(z

n|m0, m1) − ϑs,m0(z
n)

∣
∣

+ ∣
∣ϑs,m0(z

n) − PZn
s |M0(z

n |m0)
∣
∣
)

where the steps follow from the definition of total variation
distance defined on Zn × M1, the fact that M0 and M1 are
independent, and from the triangle inequality.

From (5) we know that
∑

zn∈Zn |W n
Z,s(z

n|m0, m1) −
ϑs,m0(z

n)| ≤ 2−nβ so that it remains to show that
the second difference is exponentially small as well. We
have

∑

zn∈Zn

∣
∣ϑs,m0(z

n) − PZn
s |M0(z

n|m0)
∣
∣

=
∑

zn∈Zn

∣
∣
∣
∣

1

|M1|
∑

m1∈M1

ϑs,m0(z
n)

− 1

|M1|
∑

m1∈M1

W
n
Z,s(z

n|m0, m1)

∣
∣
∣
∣

≤ 1

|M1|
∑

m1∈M1

∑

zn∈Zn

∣
∣ϑs,m0(z

n) − W
n
Z,s(z

n|m0, m1)
∣
∣

≤ 2−nβ

so that

‖PZn
s M1|M0=m0 − PZn

s |M0=m0 PM1|M0=m0‖ ≤ λn (17)

with λn = 2 · 2−nβ for all s ∈ S and m0 ∈ M0. Similarly
as in Proposition 1, the continuity of the entropy function and
I (M1; Zn

s |M0) = 1
|M0|

∑
m0∈M0

I (M1; Zn
s |M0 = m0) imply

now that

I (M1; Zn
s |M0) ≤ 2−nβ/2 =: εn

for n large enough proving the strong secrecy
criterion (15).

To prove the second assertion (16), we write the average
probability of decoding error at the non-legitimate receiver as

ē′
2,n(s)= 1

|M0||M1|
∑

m0∈M0

∑

m1∈M1

W
n
Z,s(D̃c

s,m0
(m1)|m0, m1)

= 1

|M0|
∑

m0∈M0

∑

m1∈M1

PZn
s M1|M0

(
D̃c

s,m0
(m1), m1|m0

)

= 1

|M0|
∑

m0∈M0

PZn
s M1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

)

.

(18)

From the triangle inequality and from (17) we know that for
all s ∈ S and m0 ∈ M0 we have

‖PZn
s |M0=m0 PM1|M0=m0‖

= ‖PZn
s |M0=m0 PM1|M0=m0 − PZn

s M1|M0=m0 + PZn
s M1|M0=m0‖

≤ ‖PZn
s |M0=m0 PM1|M0=m0 − PZn

s M1|M0=m0‖ + ‖PZn
s M1|M0=m0‖

≤ λn + ‖PZn
s M1|M0=m0‖

so that

‖PZn
s M1|M0=m0‖ ≥ ‖PZn

s |M0=m0 PM1|M0=m0‖ − λn

with λn → 0 as n → ∞. With this we can bound ē′
2,n(s) in

(18) from below by

ē′
2,n(s) ≥ 1

|M0|
∑

m0∈M0

(19)

× PZn
s |M0 PM1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

)
− λn

= 1

|M0|
∑

m0∈M0

∑

m1∈M1

×PZn
s |M0 PM1|M0

(
D̃c

s,m0
(m1), m1|m0

) − λn

= 1

|M0||M1|
∑

m0∈M0

×
∑

m1∈M1

PZn
s |M0(D̃c

s,m0
(m1)|m0) − λn

= 1

|M0||M1|
∑

m0∈M0

×
∑

m1∈M1

(
1 − PZn

s |M0(D̃s,m0(m1)|m0)
) − λn

= 1

|M0||M1|
∑

m0∈M0

(|M1| − 1
) − λn

= 1 − 1

|M1| − λn

for all s ∈ S. Note that in the third step we used the fact
that M0 and M1 are independent. This proves the second
assertion (16).

The proposition shows that the non-legitimate receiver has
the worst behavior of decoding performance as the decod-
ing performance is the same as if he ignores his received
signal zn ∈ Zn and simply selects a message m1 ∈ M1
uniformly at random. In this case, the probability of
success is 1/|M1| which is exactly expressed by (16).
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But since |M1| → ∞ and λn → 0 exponentially fast as
n → ∞, the decoding error of the non-legitimate receiver
in (16) approaches 1 exponentially fast meaning that he cannot
decode the confidential message.

Finally, we collect all the properties and implications
derived so far. As the vanishing output variation property guar-
antees strong secrecy in the sense of (6) and (15) we are able
to generalize and extend the criterion as done in the following
theorem.

Theorem 1: If a code for the compound BCC has the
vanishing output variation property, i.e., ‖W

n
Z,s(·|m0, m1) −

ϑs,m0‖ ≤ 2−nβ is satisfied for all s ∈ S and (m0, m1) ∈
M0 × M1, then secrecy is guaranteed in the information
theoretic sense of

max
s∈S

max
{

I (M1; Zn
s ), I (M1; Zn

s |M0)
} ≤ εn

but also in the signal processing sense of

min
s∈S

ē′
2,n(s) ≥ 1 − 1

|M1| − λn

with 1/|M1| → 0, εn → 0, and λn → 0 exponentially fast
as n → ∞.

Remark 6: As Theorem 1 holds for any decoding strategy,
there are no restrictions on the complexity or computational
resources. This leads to universal results which hold for any
applied post-processing strategy of the non-legitimate receiver.

C. Operational Meaning

So far we studied codes with vanishing output variation
and showed that such codes realize secrecy in the sense of
information theoretic strong secrecy, cf. (6) and (15), but also
in the sense of the signal processing inspired approach of worst
decoding performance, cf. (16).

Now, we directly connect the information theoretic criterion
with the signal processing inspired concept. The following
shows that strong secrecy maxs∈S I (M1; Zn

s |M0) → 0 expo-
nentially fast implies worst behavior of decoding performance
at the non-legitimate receiver, i.e., mins∈S ē′

2,n(s) → 1
exponentially fast. This gives the strong secrecy criterion
an important signal processing meaning. This is particularly
important as this result shows that any code (not necessarily
having the vanishing output variation property) that realizes
strong secrecy guarantees that average decoding error at the
non-legitimate receiver goes to 1.

Corollary 1: The validity of the strong secrecy criterion
maxs∈S I (M1; Zn

s |M0) ≤ εn immediately implies worst
decoding performance, i.e., mins∈S ē′

2,n(s) ≥ 1−1/|M1|−λn .
Proof: The result follows immediately from Pinsker’s

inequality, cf. for example [24, Problem 3.18], and from
previous Proposition 2. In more detail, for each s ∈ S we have

εn ≥ I (M1; Zn
s |M0)

= 1

|M0|
∑

m0∈M0

I (M1; Zn
s |M0 = m0)

= 1

|M0|
∑

m0∈M0

D(PZn
s M1|M0=m0‖PZn

s |M0=m0 PM1|M0=m0)

≥ 1

|M0|
∑

m0∈M0

1

2 ln 2

∥
∥PZn

s |M0=m0 PM1|M0=m0

− PZn
s M1|M0=m0

∥
∥2

≥ 1

|M0|
∑

m0∈M0

1

ln 2

×
(

PZn
s |M0 PM1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

)

−PZn
s M1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

))2

where the second last step follows from Pinsker’s inequality
and the last step from the definition of total variation distance.
In particular, recall the definition ‖μ − ν‖ := 2 supA⊆A
|μ(A) − ν(A)|, cf. for example [22, Lemma 4.1.1], so that
the last inequality is true for any sets, i.e., especially for
the choice of

⋃
m1∈M1

{D̃c
s,m0

(m1), m1}. Using Jensen’s
inequality, we then obtain

εn ≥ 1

ln 2

(
1

|M0|
∑

m0∈M0

× PZn
s |M0 PM1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

)

− 1

|M0|
∑

m0∈M0

× PZn
s M1|M0

( ⋃

m1∈M1

{
D̃c

s,m0
(m1), m1

}|m0

))2

.

Now observe that the second term corresponds to the
formulation of the average probability of error given in (18).
Thus, extracting the root and inserting this into (19) yields

ē′
2,n(s) ≥ 1 − 1

|M1| − λn

with λn = √
εn ln 2 for all s ∈ S similarly as in Proposition 2

from (19) onwards.

IV. ACHIEVABLE SECRECY RATE REGION

The code design for the compound BCC is a challenging
task. On the one hand, it has to protect the confidential
message against the non-legitimate receiver 2 requiring a code
which reveals no information to him. On the other hand,
receiver 2 is also a legitimate receiver for the common message
requiring a code suitable for reliable communication. At a first
glance, these two intentions seem to be conflictive.

The previous section showed that a code having the vanish-
ing output variation property is desirable for the secrecy task
as it realizes secrecy in the information theoretic sense of the
generalized criterion of strong secrecy, i.e,

max
s∈S

max
{

I (M1; Zn
s ), I (M1; Zn

s |M0)
} ≤ εn (20)

but also in the signal processing sense of worst decoding
performance, i.e.,

min
s∈S

ē′
2,n(s) ≥ 1 − 1

|M1| − λn, (21)
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cf. also Theorem 1. Next, we show that such codes can
simultaneously be good for transmitting the common message
to both receivers.

In the following we establish an achievable secrecy rate
region for the compound BCC. As we make use of codes
having vanishing output variation, we note that this result
is valid for all discussed information theoretic and signal
processing secrecy criteria. Therefore we simply refer to it
as secrecy rate region and do not always explicitly state all
the satisfied secrecy criteria.

Theorem 2: An achievable secrecy rate region for the com-
pound BCC is given by the set of all rate pairs (R0, R1)
∈ R

2+ that satisfy

R0 ≤ min
s∈S

min
{

I (U ; Ys), I (U ; Zs)
}

(22a)

R1 ≤ min
s∈S

I (V ; Ys |U) − max
s∈S

I (V ; Zs |U) (22b)

for random variables U − V − X − (Ys , Zs). Furthermore, the
generalized criterion of strong secrecy (20) goes exponentially
fast to zero and the decoding error (21) the non-legitimate
receiver exponentially fast to one.

Proof: Instead of directly proving the achievability
of (22), we will drop the auxiliary random variable V for
a moment and will only show the achievability of

R0 ≤ min
s∈S

min
{

I (U ; Ys), I (U ; Zs)
}

(23a)

R1 ≤ min
s∈S

I (X; Ys |U) − max
s∈S

I (X; Zs |U) (23b)

for random variables U − X − (Ys , Zs). Then this result
generalizes to the whole region (22) including the auxiliary
V by the following reasoning. Prefixing an artificial channel
PX |V : V → P(X ) with finite V to the original channel
Ws = (WY,s, WZ,s) yields a “new” channel

W̃s(y, z|v) :=
∑

x∈X
Ws(y, z|x)PX |V (x |v) (24)

which includes additional randomization. Clearly, the whole
construction which we will carry out for Ws to prove
(23), can immediately be applied to W̃s to obtain a
proof for (22).

In particular, the additional randomization will preserve the
vanishing output variation property of a code. Recall that the
corresponding definition already takes randomization (from
the stochastic encoder) into account by a proper definition
of the channel W

n
Z,s : M → P(Zn), cf. (4). Thus, additional

randomization as in (24) is easily incorporated by defining the
channel as W

n
Z,s as

W
n
Z,s(z

n |m0, m1) = ∑

vn∈Vn
W̃ n

Z,s(z
n |vn)E(vn |m0, m1).

We now come to the random coding proof of (23). For
this we have to construct a codebook that realizes two tasks
simultaneously: reliable communication of all messages to
their respective receivers according to the rates given in (23)
and secrecy of the confidential message. The constructed
code will possess the vanishing output variation property,
cf. Definition 4, so that from Theorem 1 we know that all
discussed secrecy criteria will be satisfied.

In the following we extensively make use of the concept
of δ-typical sequences from Csiszár and Körner [24] which is
briefly recalled. Let δ > 0. For any distribution PU ∈ P(U), a
sequence un ∈ Un is called δ-typical if | 1

n N(u|un)− PU (u)| ≤
δ for all u ∈ U and, in addition, N(u|un) = 0 if PU (u) = 0.
Here, N(u|un) denotes the number of indices i such that
ui = u, i = 1, ..., n. The set of all such typical sequences
is denoted by T n

U,δ . Further, for any stochastic matrix PX |U :
U → P(X ), a sequence xn ∈ X n is called δ-typical for given
un ∈ Un if | 1

n N(u, x |un , xn) − 1
n N(u|un)PX |U (x |u)| ≤ δ

for all x ∈ X and, in addition, N(u, x |un, xn) = 0 if
PX |U (x |u) = 0. The set of all such sequences is denoted
by T n

X |U,δ(u
n).

For probability distribution PU ∈ P(U) and δ > 0, we
define the probability measure P ′

U n ∈ P(Un) as

P ′
U n (un) := Pn

U (un)

Pn
U (T n

U,δ)
(25)

if un ∈ T n
U,δ and P ′

U n (un) = 0 else, where Pn
U (un) =∏n

i=1 PU (ui ). Similarly, for PX |U : U → P(X ) we define
P ′

Xn |U n : Un → P(X n) as

P ′
Xn |U n (xn|un) := Pn

X |U (xn|un)

Pn
X |U (T n

X |U,δ(u
n)|un)

(26)

if xn ∈ T n
X |U,δ(u

n) and P ′
Xn |U n (xn|un) = 0 else, where

Pn
X |U (xn|un) = ∏n

i=1 PX |U (xi |ui ).
Let M0 be the set of common messages with size M0,n =

�mins∈S{2n(I (U ;Ys)−τ/2, 2n(I (U ;Zs)−τ/2}�. Let M1 be the set of
confidential messages and further L := {1, ..., Ln} satisfying
M ′

1,n := Ln M1,n = �mins∈S 2n(I (X;Ys |U )−τ/2)� for some
(small) τ > 0. Thereby, the set L will carry no confidential
information, but “dummy” messages for additional random-
ization. The actual sizes of Ln and M1,n will be determined
later and the main question is how many resources have to
be allocated to that “dummy” message set in order to ensure
secrecy of the confidential messages.

First, generate M0,n independent random codewords Un
m0

∈
Un with m0 ∈ M0 according to P ′

U n , cf. (25). Then, for each
Un

m0
∈ Un generate Ln M1,n independent random codewords

Xn
lm1m0

∈ X n with l ∈ L and m1 ∈ M1 according to P ′
Xn |U n ,

cf. (26).
Let us drop the secrecy requirement for a moment and

interpret m′
1 = (l, m1) ∈ L×M1 = M′

1 as a public message
intended for receiver 1 which need not be kept secret from
non-legitimate receiver 2. Then this scenario is related to the
broadcast channel with degraded message sets [26].

Lemma 1: With the random coding scheme defined above,
all rate pairs (R0, R′

1) ∈ R
2+ that satisfy

R0 ≤ min
s∈S

min
{

I (U ; Ys), I (U ; Zs)
}

(27a)

R′
1 ≤ min

s∈S
I (X; Ys |U) (27b)

for random variables U − X − (Ys , Zs) are achievable for the
compound broadcast channel with degraded message sets. In
particular, these rates are achievable with average probability
of errors of the form ē1,n, ē2,n ≤ 2−nγ for some γ > 0.
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Sketch of Proof: A random codebook as defined above, i.e.,
a superposition of codewords for the common message and for
the public message according to the chosen input distributions
(25) and (26), will allow to prove the result in a similar way as
for example in [27] for the compound bidirectional broadcast
channel. The details are omitted.

Remark 7: For |S| = 1 the region (27) reduces to a
subregion of [26]. More precisely, the sum constraint on
receiver 1 of the form R0 + R1 ≤ I (X; Ys ) in [26] is
replaced by individual constraints on R0 ≤ I (U ; Ys) and
R1 ≤ I (X; Ys |U) which makes the region smaller. However,
(27) will be sufficient to establish the desired result in (22).

Next we incorporate the secrecy requirement on the con-
fidential message, where we want to exploit the concept of
vanishing output variation, cf. Definition 4 and Theorem 1. For
this purpose, we have to carefully choose the desired channel
outputs at the non-legitimate receiver 2 (given by the measures
ϑs,m0 , s ∈ S, m0 ∈ M0). The set L of “dummy” messages
will then be used to ensure that the code will possess the
vanishing output variation property such that (5) is satisfied
(which then implies secrecy, cf. Theorem 1). Accordingly, the
main important points to address in the following are: first,
how should the measures ϑs,m0 be chosen and, second, how
large should be the size of L.

To address the first point, we note that the channel WZ,s
can also be regarded as a channel with inputs in U ×X where
the U-inputs do not make any difference. Moreover, it will be
sufficient to concentrate only on those outputs that are typical;
the probability of all other outputs will be of no consequence
as we will see later. Therefore, we define for every channel
realization s ∈ S, message triple (l, m1, m0) ∈ L×M1 ×M0,
and channel output zn ∈ Zn the random variable

Qn
s (zn |Xn

lm1m0
, Un

m0
)

:= W n
Z,s(z

n|Xn
lm1m0

)�T n
Zs |XU,δ (Xn

lm1m0
,U n

m0
)(z

n), (28)

where for any set A ⊂ Zn , we let �A(zn) = 1 if zn ∈ A
and �A(zn) = 0 else. Conditional on Un

m0
, these random

variables are i.i.d. Moreover, as the input (Xn
lm1m0

, Un
m0

) is
jointly 2δ-typical with respect to the joint distribution PXU ,
and the outputs of Qn

s are δ-typical conditional on the inputs,
we know from [24] that (28) is bounded from above by

Qn
s (zn |Xn

lm1m0
, Un

m0
) ≤ 2−n(H(Zs |X,U )−δ1) (29)

for some δ1 = δ1(δ). Now let

ϑ ′
s,U n

m0
(zn) = E

[
Qn

s (zn|Xn
lm1m0

, Un
m0

)|Un
m0

]

be the expectation of (28) conditional on Un
m0

. Note that due
to construction, ϑ ′

s,U n
m0

is a non-negative measure. For any
εn > 0 we define

Fs,U n
m0

:= {
zn ∈ T n

Zs |U,2|X |δ(U
n
m0

) :
ϑ ′

s,U n
m0

(zn) ≥ εn |T n
Zs |U,2|X |δ(U

n
m0

)|−1}. (30)

Finally, we set

ϑs,U n
m0

(zn) := ϑ ′
s,U n

m0
(zn)�Fs,Un

m0
(zn). (31)

As we will see later in the proof, this will be a suitable choice
for the desired channel output at the non-legitimate receiver.
Next, we turn our attention to the second important point,
which is the size of L. Similarly, we set

Q̃n
s (zn |Xn

lm1m0
, Un

m0
) = Qn

s (zn|Xn
lm1m0

, Un
m0

)�Fs,Un
m0

(zn).

Then we define the event Qs,U n
m0

(zn) as

1

Ln

Ln∑

l=1

Q̃n
s (zn|Xn

lm1m0
, Un

m0
) ∈ [

(1 ± εn)ϑs,U n
m0

(zn)
]
. (32)

For the analysis of this event we need a bound on the
concentration of sums of i.i.d. random variables around their
expectation as given in the following lemma which is due to
Chernoff and Hoeffding.

Lemma 2: Let b > 0 and Z1, Z2, ..., Z L be i.i.d. random
variables with values in [0, b]. Further, let μ = E[Z1] be the
expectation of Z1. Then

P

{
1

L

L∑

l=1

Zl /∈ [(1 ± ε)μ]
}

≤ 2 exp

(

−L · ε2μ

2b ln 2

)

where [(1 ± ε)μ] denotes the interval [(1 − ε)μ, (1 + ε)μ].
Proof: A proof can be found in [28] or [29].

Now let zn ∈ Zn . Then the probability of the complement
of Qs,U n

m0
(zn) is

P
{
(Qs,U n

m0
(zn))c}

=
∑

un∈Un

P{Un
m0

= un}P{
(Qs,U n

m0
(zn))c|Un

m0
= un}

≤
∑

un∈Un

P{Un
m0

= un}

×2 exp

(

−Ln · ε2
n 2n(H(Zs |X,U )−δ1)ϑs,un(zn)

2 ln 2

)

≤ 2 exp

(

−Ln · ε3
n2−n(I (X;Zs |U )+δ1+δ2)

2 ln 2

)

(33)

where the first step follows from the law of total probability,
the second step from Lemma 2 (with ϑs,U n

m0
(zn) in the role

of μ) and (29), and the last step from (30) and
∣
∣T n

Zs |U,2|X |δ(U
n
m0

)
∣
∣ ≤ 2n(H(Zs |U )+δ2)

for some δ2 = δ2(δ), see [24], which applies here since Un
m0

is δ-typical. Note that if we choose εn = 2−nβ for some
β ≤ 1

4 min{γ, δ1 + δ2}, then (33) tends to zero doubly-
exponentially fast for

Ln ≥ 2n(maxs∈S I (X;Zs |U )+2(δ1+δ2)). (34)

Note that we have to choose the maximum in (34) to ensure
that (33) tends to zero doubly-exponentially for all channel
realizations s ∈ S.

Next, we determine the sizes of the remaining sets
for the confidential message. For maxs∈S I (X; Zs |U) <
mins∈S I (X; Ys |U), we choose δ (and therewith also
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δ1 and δ2) small enough such that (34) is satisfied and at
the same time

Ln ≤ 2n(maxs∈S I (X;Zs |U )+3(δ1+δ2)) (35a)

< 2n(mins∈S I (X;Ys |U )−τ/2). (35b)

With (34) and (35) we have determined the size of the
“dummy” message set L. This provides the basis to prove that
this code has the vanishing output variation property, cf. (5).
Once this property is guaranteed, the discussion in Section III
ensures the secrecy of the confidential message. Further, for
the confidential messages we set

M1,n ≤ 2n(mins∈S I (X;Ys |U )−τ/2−maxs∈S I (X;Zs |U )−3(δ1+δ2)).

From (33)-(34) we know that (32) is satisfied for every s ∈ S,
(m0, m1) ∈ M0 × M1, and zn ∈ Zn with probability
close to one. Further, with M′

1 = L × M1 we know from
Lemma 1 that the random codewords we have chosen are the
codewords of a deterministic code achieving ē1,n, ē2,n ≤ 2−nγ

for some γ > 0 with probability close to one. Thus, there
must be realizations of (Un

m0
, Xn

lm1m0
) and ϑs,U n

m0
with both

these properties, which we denote by (un
m0

, xn
lm1m0

) and ϑs,m0

respectively.
From this we obtain an appropriate code with a stochastic

encoder as follows. Each message pair (m0, m1) ∈ M0 ×M1
is mapped into the codeword xn

lm1m0
∈ X n with proba-

bility 1/Ln which defines a stochastic encoder as given in
Definition 2, cf. also Remark 2. The decoder at legitimate
receiver 1 decodes all indices, i.e., (l, m1, m0), while the
decoder at non-legitimate receiver 2 only decodes the common
message m0. Interpreting (l, m1) as a public message m′

1 for
receiver 1, we know from Lemma 1 that this code is suitable
for reliable transmission of all messages to their respective
receivers. It remains to prove that this code has also the
vanishing output variation property, cf. (5).

From the triangle inequality we obtain for every s ∈ S and
(m0, m1) ∈ M0 × M1
∥
∥W

n
Z,s(·|m0, m1) − ϑs,m0

∥
∥

≤
∥
∥
∥
∥W

n
Z,s(·|m0, m1) − 1

Ln

Ln∑

l=1

Qn
s (·|xn

lm1m0
, un

m0
)

∥
∥
∥
∥

+
∥
∥
∥
∥

1

Ln

Ln∑

l=1

Qn
s (·|xn

lm1m0
, un

m0
)(1 − �Fs,m0

)

∥
∥
∥
∥

+
∥
∥
∥
∥

1

Ln

Ln∑

l=1

Qn
s (·|xn

lm1m0
, un

m0
)�Fs,m0

− ϑs,m0

∥
∥
∥
∥.

We denote the three parts by I , II , and III in that order
and bound each of them separately. Since all codewords
satisfy (32), we immediately have for the third term III ≤ ε.

For the first term I we have

I ≤ 1

Ln

Ln∑

l=1

∥
∥
∥W n

Z,s(·|xn
lm1m0

, un
m0

) − Qn
s (·|xn

lm1m0
, un

m0
)
∥
∥
∥

= 1

Ln

Ln∑

l=1

∥
∥
∥W n

Z,s(·|xn
lm1m0

, un
m0

)
(
1 − �T n

Zs |XU,δ (xn
lm1m0

,un
m0

)

)∥∥
∥

= 1

Ln

Ln∑

l=1

W n
Z,s

(
(T n

Zs |XU,δ(xn
lm1m0

, un
m0

))c|xn
lm1m0

, un
m0

)

≤ (n + 1)|U ||X ||Z|2−ncδ2

for some constant c > 0, where we again interpret WZ,s as a
channel from U ×X to Z and use the fact that the probability
that the output of a channel is not δ-typical conditional on the
inputs is exponentially small, cf. for example [27, Lemma 2]
or [30, Lemma III.1.3].

Finally, the second term II can be rewritten as

II ≤ 1 − 1

Ln

Ln∑

l=1

Qn
s (Fs,m0|xn

lm1m0
, un

m0
)

≤ 1 − (1 − εn)ϑs,m0(Fs,m0)

= 1 − (1 − εn)ϑ ′
s,m0

(Fs,m0)

= 1 − (1 − εn)
(
ϑ ′

s,m0
(T n

Zs |U,2|X |δ(u
n
m0

))

− ϑ ′
s,m0

(T n
Zs |U,2|X |δ(u

n
m0

)\Fs,m0)
)

(36)

where the second step follows from (32) and the third from
the fact that ϑs,m0(Fs,m0) = ϑ ′

s,m0
(Fs,m0), cf. (31), and the

last step from the definition of Fs,m0 , cf. (30). Now we have

ϑ ′
s,m0

(T n
Zs |U,2|X |δ(u

n
m0

))

= E
[
Qn

s (T n
Zs |U,2|X |δ(U

n
m0

)|Xn
lm1m0

, Un
m0

)|un
m0

]

≥ E
[
W n

Z,s(T
n

Zs |XU,δ(Xn
lm1m0

, Un
m0

)|Xn
lm1m0

, Un
m0

)|un
m0

]

≥ 1 − (n + 1)|U ||X ||Z|2−ncδ2
(37)

and further

ϑ ′
s,m0

(T n
Zs |U,2|X |δ(u

n
m0

)\Fs,m0) ≤ εn . (38)

Now, with (37) and (38) in (36), we obtain for the second
term

II ≤ 1 − (1 − εn)(1 − (n + 1)|U ||X ||Z|2−ncδ2 − εn)

≤ 2εn + (n + 1)|U ||X ||Z|2−ncδ2
.

Putting all three terms together, we can bound the total
variation distance as
∥
∥W

n
Z,s(·|m0, m1)−ϑs,m0

∥
∥≤ 3εn +2(n+1)|U ||X ||Z|2−ncδ2

(39)

which proves (5). Note that (39) becomes exponentially small
since we chose εn = 2−nβ . Thus, our code has exponentially
fast vanishing output variation according to Definition 4,
cf. (5), so that the secrecy criteria discussed in Section III,
cf. especially Theorem 1, are satisfied as well.

V. OUTER BOUND AND MULTI-LETTER DESCRIPTION

Here we consider the counterpart of Theorem 2 and estab-
lish a multi-letter characterization of an outer bound on the
strong secrecy capacity region. For this purpose we define
the region R as the set of all rate pairs (R0, R1) ∈ R

2+
that satisfy

R0 ≤ lim
n→∞

1
n inf

s∈S
min

{
I (U ; Y n

s ), I (U ; Zn
s )

}
(40a)

R1 ≤ lim
n→∞

1
n

(
inf
s∈S

I (V ; Y n
s |U) − sup

s∈S
I (V ; Zn

s |U)
)

(40b)
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for random variables satisfying the Markov chain relationship
U − V − Xn − (Y n

s , Zn
s ). This means, the joint probability

distribution is specified by

PU V XnY n
s Zn

s
(u, v, xn , yn, zn)

= W n
s (yn, zn|xn)PXn |V (xn|v)PV |U (v|u)PU (u)

=
n∏

i=1

Ws(yi , zi |xi )PXn |V (xn|v)PV |U (v|u)PU (u). (41)

We further need the following lemma.
Lemma 3: Let W := {(WY,s, WZ,s ) : s ∈ S} be an

arbitrary compound broadcast channel. For random variables
U − V − Xn − (Y n

s , Zn
s ), the limit

lim
n→∞

1
n

(
inf
s∈S

I (V ; Y n
s |U) − sup

s∈S
I (V ; Zn

s |U)
)

exists and is equal to supn∈N
1
n (infs∈S I (V ; Y n

s |U) −
sups∈S I (V ; Zn

s |U)).
Proof: We follow [15] and use Fekete’s lemma [31] to

prove the desired result. We have to show that the sequence
(an)n∈N with

an := inf
s∈S

I (V ; Y n
s |U) − sup

s∈S
I (V ; Zn

s |U)

satisfies

an+m ≥ an + am

for all n, m ∈ N. Therefore, we define Markov chains U1 −
V1 − Xn − (Y n

s , Zn
s ) and U2 − V2 − X̃m − (Ỹ m

s , Z̃m
s ) and

set U := (U1, U2), V := (V1, V2), Xn+m := (Xn , X̃m), and
(Y n+m

s , Zn+m
s ) := ((Y n

s , Ỹ m
s ), (Zn

s , Z̃m
s )). By the definition of

an we have

an+m = inf
s∈S

I (V ; Y n+m
s |U) − sup

s∈S
I (V ; Zn+m

s |U)

≥ inf
s∈S

I (V1; Y n
s |U1) + inf

s∈S
I (V2; Ỹ m

s |U2)

− sup
s∈S

I (V1; Zn
s |U1) − sup

s∈S
I (V2; Z̃m

s |U2)

which follows from the independence of the two Markov
chains. Since these Markov chains can be arbitrary, we con-
clude that an+m ≥ an + am holds for all n, m ∈ N.

Theorem 3: The region R given in (40) is a multi-letter
outer bound on the strong secrecy capacity region CS(W) of
the compound BCC W, i.e., we have

CS(W) ⊆ R.
Proof: For any given sequence of (n, M0,n , M1,n)-codes

of Definition 2 with ē1,n, ē2,n → 0 and

sup
s∈S

I (M1; Zn
s ) = H (M1) − inf

s∈S
H (M1|Zn

s ) =: εc,n (42)

with εc,n → 0, there exist random variables U − V −
Xn − (Y n

s , Zn
s ) such that all rate pairs (R0, R1) ∈ R

2+ are
bounded by (40).

Let M0 and M1 be random variables uniformly distributed
over the message sets M0 and M1. We have the Markov
chains

(M0, M1) − Xn − Y n
s − (M̂0,1, M̂1)

and

(M0, M1) − Xn − Zn
s − M̂0,2

where in both cases the first transition is governed by the
stochastic encoder E , cf. (1), the second by the corresponding
channel W n

Y,s and W n
Z,s , and last one by the corresponding

decoder, cf. (2a) and (2b). Then we have for all s ∈ S at
receiver 1 for the common rate

n R0 = H (M0)

= I (M0; Y n
s ) + H (M0|Y n

s )

≤ I (M0; Y n
s ) + nε1,n (43)

where the last inequality follows from Fano’s inequality, i.e.,
H (M0|Y n

s ) ≤ H (M0, M1|Y n
s ) ≤ nε1,n , and similarly for all

s ∈ S at receiver 2 we get

n R0 = H (M0) ≤ I (M0; Zn
s ) + nε2,n (44)

by using Fano’s inequality H (M0|Zn
s ) ≤ nε2,n .

Next, we follow [5] and make use of the definition of mutual
information. Rewriting (42) we get for the confidential rate

n R1 = H (M1)

= inf
s∈S

H (M1|Zn
s ) + εc,n

= inf
s∈S

(
H (M1|Zn

s , M0) + I (M1; M0|Zn
s )

) + εc,n

≤ H (M1|M0) − sup
s∈S

I (M1; Zn
s |M0) + nε2,n + εc,n

≤ I (M1; Y n
s |M0) − sup

s ′∈S
I (M1; Zn

s ′ |M0) + nεn (45)

with εn = ε1,n + ε2,n + εc,n where the first inequality fol-
lows from I (M1; M0|Zn

s ) = H (M0|Zn
s ) − H (M0|Zn

s , M1) ≤
H (M0|Zn

s ) ≤ nε2,n and the second inequality from
H (M1|Y n

s , M0) ≤ H (M0, M1|Y n
s ) ≤ nε1,n .

With I (M1; Y n
s |M0) = I (M0, M1; Y n

s |M0) and
I (M1; Zn

s |M0) = I (M0, M1; Zn
s |M0), (43)-(45) imply

that the rates are bounded by

n R0 ≤ inf
s∈S

min
{

I (M0; Y n
s ), I (M0;Zn

s )
} + nεn

n R1 ≤ inf
s∈S

I (M0, M1; Y n
s |M0)−sup

s∈S
I (M0, M1;Zn

s |M0)+nεn.

Recall that the transition between the messages (M0, M1)
and the input Xn is governed by a stochastic encoder E , cf.
(1), which allows us to introduce arbitrary auxiliary random
variables U and V which satisfy the Markov chain U − V −
Xn − (Y n

s , Zn
s ). Dividing by n and taking the limit yields

R0 ≤ lim
n→∞

1
n inf

s∈S
min

{
I (U ; Y n

s ), I (U ; Zn
s )

}

R1 ≤ lim
n→∞

1
n

(
inf
s∈S

I (V ; Y n
s |U) − sup

s∈S
I (V ; Zn

s |U)
)

where Lemma 3 guarantees that the quantities on right hand
side exist and are well defined. This concludes the proof.

The multi-letter outer bound given in Theorem 3 and the
achievability result in Theorem 2 applied to the n-fold product
of the broadcast channel yields the following.
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Corollary 2: A multi-letter description of the strong secrecy
capacity region CS(W) of the compound BCC W is given by

CS(W) = R.
Proof: Consider the n-fold product of the broadcast

channel W n
s : X n → P(Yn × Zn) and further the auxiliary

channel PXn |V : V → P(X n), cf. also (41). Together this
defines a channel from V to Yn × Zn specified by

Ŵs(yn, zn |v) :=
∑

xn∈X n

W n
s (yn, zn |xn)PXn |V (xn|v) (46)

which collects the n channel uses into one new “block.”
Applying the one-shot achievability result given in Theorem 2
to the corresponding marginal channels ŴY,s and ŴZ,s of
the “blocked” channel in (46) yields R as an achievable rate
region for the corresponding multi-letter case. Note that this
blocking preserves the vanishing output variation property of
the code, cf. Definition 4, so that the information theoretic and
signal processing secrecy criteria (as discussed in Section III
and Theorem 1) are satisfied.

The multi-letter outer bound given Theorem 3 yields the
matching converse and completes the proof.

Corollary 3: For all rate pairs (R0, R1) ∈ R there are
coding schemes that realize the generalized strong secrecy cri-
terion (20), i.e., maxs∈S max

{
I (M1; Zn

s ), I (M1; Zn
s |M0)

} →
0 exponentially fast, and also worst decoding performance
of the non-legitimate receiver (21), i.e., mins∈S ē′

2,n(s) → 1
exponentially fast for all decoding strategies.

Proof: The result follows immediately from Theorem 1
and Corollary 2.

Remark 8: In the original definition of achievability, the
strong secrecy criterion is defined in the traditional way as
maxs∈S I (M1; Zn

s ) ≤ εn , cf. Definition 3 and (3), which yields
the secrecy capacity region CS(W). Obviously, one could state
an own formal definition of achievability with the generalized
secrecy criterion maxs∈S max{I (M1; Zn

s ), I (M1; Zn
s |M0)} ≤

εn , cf. (20). However, from Corollary 2 we know that this
would lead to the same secrecy capacity region as for the
traditional definition. The reasoning is the following. Obvi-
ously, the generalized secrecy criterion (20) is stronger than
the traditional one in (3). Thus, the corresponding secrecy
region must be contained in CS(W). But Corollary 2 actually
shows that we achieve CS(W) also for the generalized secrecy
criterion, both regions must coincide.

VI. CONCLUSION

In this paper we studied robust broadcasting of common
and confidential messages over compound channels. This can
be modeled by the compound broadcast channel with confi-
dential messages (BCC), where a transmitter sends a common
message to two receivers and a confidential message intended
for receiver 1 which has to be kept secret from receiver 2.
Thus, receiver 2 is a legitimate receiver for the common
message and, at the same time, a non-legitimate receiver for
the confidential message. This necessitated a careful code
design, which realizes both conflicting tasks simultaneously.

We questioned the validity of the classical definition of
information theoretic strong secrecy in our scenario, since

the non-legitimate receiver 2 is part of the communication
system. As he is intended to decode the common message,
this may be available as side information for inferring the
confidential message. Accordingly we generalized the strong
secrecy criterion taking such side information into account.

Along with this, we investigated the code concept of vanish-
ing output variation and showed that such codes guarantee both
notions of strong secrecy (the classical and the generalized
version). Moreover, such codes also yield the worst decoding
performance at the non-legitimate receiver regardless of his
computational capabilities. This makes the concept of van-
ishing output variation particularly desirable, since it realizes
secrecy from the information theoretic but also from the signal
processing point of view.

We further derived an achievable secrecy rate region for
the compound BCC and presented a multi-letter outer bound.
Both together establishes a multi-letter characterization of the
corresponding secrecy capacity region. Thereby, the secrecy
capacity region reveals an interesting structure, since different
assumptions have to be made on the channel to receiver 2.
As he is a legitimate receiver for the common message and at
the same time a non-legitimate receiver for the confidential
message, we have to assume the worst channel realization
to guarantee reliability of the common message and the best
channel realization to guarantee secrecy of the confidential
message.

Finally, we want to mention that the results derived for
the compound BCC immediately yield also solutions for the
corresponding multicast scenario. Here, the transmitter sends
a common message to a whole group of receivers. Some of
them are further legitimate receivers of a confidential message,
which has to be kept secret from the other group of non-
legitimate receivers. Then the compound BCC provides a
framework which also includes this scenario. In this case, the
number of possible channel realizations corresponds to the
groups of legitimate and non-legitimate receivers so that each
particular channel realization belongs to a certain legitimate
or non-legitimate receiver.

ACKNOWLEDGMENT

The authors would like to thank for the valuable discus-
sions with the Federal Office for Information Security (BSI)
of Germany which raised the problem of robust broadcast-
ing of common and confidential messages over compound
channels.

REFERENCES

[1] R. F. Wyrembelski and H. Boche, “Strong secrecy in compound broad-
cast channels with confidential messages,” in Proc. IEEE Int. Symp. Inf.
Theory, Cambridge, MA, USA, Jul. 2012, pp. 76–80.

[2] R. F. Schaefer and H. Boche, “Strong secrecy and decoding perfor-
mance analysis for robust broadcasting under channel uncertainty,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Florence, Italy,
May 2014, pp. 3973–3977.

[3] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.

[4] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54,
pp. 1355–1387, Oct. 1975.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.



1732 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 10, OCTOBER 2014

[6] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Information theoretic
security,” Found. Trends Commun. Inf. Theory, vol. 5, nos. 4–5,
pp. 355–580, 2009.

[7] R. Liu and W. Trappe, Eds., Securing Wireless Communications at the
Physical Layer. New York, NY, USA: Springer-Verlag, 2010.

[8] E. A. Jorswieck, A. Wolf, and S. Gerbracht, “Secrecy on the physical
layer in wireless networks,” in Trends in Telecommunications Technolo-
gies. Rijeka, Croatia: InTech, Mar. 2010, pp. 413–435.

[9] M. Bloch and J. Barros, Physical-Layer Security: From Information The-
ory to Security Engineering. Cambridge, U.K.: Cambridge Univ. Press,
2011.

[10] R. F. Schaefer and H. Boche, “Physical layer service integration in
wireless networks: Signal processing challenges,” IEEE Signal Process.
Mag., vol. 31, no. 3, pp. 147–156, May 2014.

[11] Deutsche Telekom AG Laboratories. (2010). “Next generation mobile
networks: Revolution in mobile communications,” Technology Radar
Edition III, Feature Paper. [Online]. Available: http://www.lti.ei.tum.de/
index.php?id=boche

[12] U. Helmbrecht and R. Plaga, “New challenges for IT-security research
in ICT,” in Proc. World Federation Scientists Int. Seminars Planetary
Emergencies, Erice, Italy, Aug. 2008, pp. 1–6.

[13] I. Csiszár, “Almost independence and secrecy capacity,” Probl. Pered.
Inf., vol. 32, no. 1, pp. 48–57, 1996.

[14] U. Maurer and S. Wolf, “Information-theoretic key agreement: From
weak to strong secrecy for free,” in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 1807. Berlin,
Germany: Springer-Verlag, May 2000, pp. 351–368.
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