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Biometrics Evaluation under Spoofing Attacks
Ivana Chingovska, André Anjos, Sébastien Marcel

Abstract—While more accurate and reliable than ever, the
trustworthiness of biometric verification systems is compromised
by the emergence of spoofing attacks. Responding to this threat,
numerous research publications address isolated spoofing detec-
tion, resulting in efficient counter-measures for many biomet-
ric modes. However, an important, but often overlooked issue
regards their engagement into a verification task and how to
measure their impact on the verification systems themselves.
A novel evaluation framework for verification systems under
spoofing attacks, called Expected Performance and Spoofability
(EPS) framework, is the major contribution of this paper. Its
purpose is to serve for an objective comparison of different ver-
ification systems with regards to their verification performance
and vulnerability to spoofing, taking into account the system’s
application-dependent susceptibility to spoofing attacks and cost
of the errors. The convenience of the proposed open-source
framework is demonstrated for the face mode, by comparing
the security guarantee of four baseline face verification systems
before and after they are secured with anti-spoofing algorithms.

Index Terms—Attack, Counter-Measures, Counter-Spoofing,
Disguise, Dishonest Acts, Biometric Verification, Forgery, Live-
ness Detection, Replay, Spoofing, Evaluation, Face recognition

I. INTRODUCTION

Automatically recognizing people by their biometric char-
acteristics is a well-established research area. Although some
biometric modes already have a wide usage in security sys-
tems, novel traits keep on being discovered [1], [2], [3]. The
typical way to recognize people by their traits is to create a
biometric reference (often referred to as template or model)
which allows comparison (matching) to biometric samples [4].
For example, in a face recognition system, models can be
created from existing user face photos and matched against
new photos or video sequences acquired by a camera. Varying
acquisition conditions, noise and poor lighting are some of
the problems that the biometric community is facing, but has
successfully solved in many cases. A relatively new security
threat that these systems have to handle comes from spoofing
attacks.

Unlike a zero-effort impostor who may positively claim
a different identity despite presenting his own biometric
traits [5], in the case of spoofing, the attacker (active im-
postor), tries to fake somebody else’s identity by presenting
fake samples of that person’s traits to the acquisition device.
The type of sample used in the attack heavily depends on the
acquisition system being attacked. In a fingerprint spoofing
attempt, attackers may show molds containing a copy of
somebody’s prints prepared with silicon [6]. For the voice
mode, on the other side, it suffices to present a signal which
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contains the speaker’s vocal characteristics [7]. Interestingly
enough, the signal does not even need to be understandable
by a human, as long as it exhibits the deterministic vocal
features of the attacked identity. Unfortunately, information
globalization acts in favor for malicious users, making access
to biometric data easily accessible: users’ photos and possibly
videos may be available through various sites on the Internet.
Users’ voice can be easily recorded and examined at distance.
Fingerprint molds can be easily manufactured from latent
marks left on cups and door knobs.

After recognizing the problem of spoofing, different
counter-measures have been proposed for many biometric
modes. One possible approach, relying on the assumption that
spoofing two or more modes is more difficult than spoofing a
single one, [8], [9], is combining several of them. Another
set of options use additional hardware that will verify the
presence of a live person in front of the recognition system,
referring to the process as liveness detection. Examples are
temperature sensing or pulsation detection in the case of
fingerprint recognition systems [10]. Other systems ask users
to correctly respond to a challenge, like repeating a particular
phrase in speaker recognition or changing the facial expres-
sion in face recognition. The current trend though suggests
completely automatic and autonomous software-based anti-
spoofing solutions which rely solely on additional processing
of the information captured by the system’s biometric sensor
and which are likely more convenient for deployment and user
experience [11].

Up to this point, biometrics researchers have tackled the
problems of biometric recognition and anti-spoofing indepen-
dently. Researchers in biometric verification develop binary
classification systems capable of distinguishing two categories
of samples: genuine users as a positive class and zero-
effort impostors as a negative one. On the other hand, the
anti-spoofing community has been focused on the binary
classification problem of discriminating real accesses as a
positive with respect to spoofing attempts as a negative class.
The relation of the anti-spoofing to the biometric systems
has been mostly disregarded. Evaluation of the two types of
systems is also performed independently, usually following
the evaluation conventions for binary classification systems.
Note that, besides verification, biometric recognition systems
can work in an identification mode, which is more suitable
for negative recognition applications [5]. This paper, however,
focuses on biometric verification and biometric identification
is out of its scope.

A spoofing counter-measure, by definition, needs to protect
a biometric verification system and its role comes into play
when coupled with the latter. From an application point of
view, we are interested not in a system which detects spoofing
attacks, but which recognizes identities and accepts them only
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if they are not spoofing attacks. Thus, to build a highly
secure environment, we need a system which, one way or
the other, performs person verification in a highly reliable and
trustworthy way.

These observations emphasize the drawbacks of the inde-
pendent treatment of verification and anti-spoofing systems
for real-world applications. Attempt to ally the two systems
together in order to create a spoof-resistant verification system
have been already presented in several publications [12], [13],
[14]. In such a setup, unless the spoofing counter-measure has
perfect discrimination capabilities, a drop in the verification
performance can be expected.

The biometric verification system, regardless of whether and
how it incorporates mechanism for rejecting spoofing attacks,
now has to handle them as an additional input class. We at-
tribute the necessity of this step to the fact that the final system
design considerations, like the expected frequency of attacks,
can not be known prior to deployment time. Having three
classes at input instead of two requires a complete redefinition
of the problem of biometric verification. Furthermore, if we
want to have a precise analysis of the system performance,
we need to have a suitable metrics for measuring its spoof-
ability. Up to this point, different systems have performed
the evaluation in a different way and, despite the many
attempts, there is no golden standard for evaluating biometric
verification systems under spoofing attacks.

The main goal of this paper is to emphasize this issue and
the necessity to solve it in order to provide real-world appli-
cations, as well as to establish an evaluation framework based
on the newly proposed Expected Performance and Spoofability
(EPS) framework, that considers all the parameters imposed
by the new problem domain. To do this, we firstly review
the standards for evaluation of biometric systems in their
common setup. Then, we inspect the efforts to adapt them
to the new problem definition reporting on their drawbacks
for deployment in real world conditions.

To demonstrate the capacity of the proposed evaluation
framework, we evaluate and compare several state-of-the-art
verification systems under spoofing attacks. The verification
systems work with the face mode. The analysis of the spoofing
vulnerability of these systems, as well as the study of the
change in their performance after adding a spoofing counter-
measure are additional contributions. The source code for
calculating the measurements and plotting the curves is freely
available as well.

In the text that follows, Section II provides a survey on the
standard evaluation metrics for binary classification problems,
as a basis for the widely accepted methodology for evalua-
tion of biometric verification and anti-spoofing systems. The
restatement of the problem of biometric verification system
under spoofing attacks, together with the commonly used
evaluation methodologies are given in Section III. Section IV
describes the proposed evaluation framework. Its practical
usage is illustrated in Section V via a comparative analysis of
several baseline as well as trustworthy systems in the domain
of face verification. Section VI gives our final remarks.

II. SUMMARY OF EVALUATION METRICS IN BIOMETRICS

As both biometric verification and anti-spoofing systems by
themselves are of binary nature, the overview of the state-of-
the-art will firstly cover the standard metrics for evaluation of
binary classification systems in Section II-A. The adaptations
of the general metrics to the specific tasks of biometric veri-
fication and anti-spoofing are given in Sections II-B and II-C,
respectively.

A. Evaluation of binary classification systems

Binary classification systems receive two types of input
belonging to two classes, usually referred to as positive and
negative class. They are trained to assign scores to the input
samples. Then, a threshold is calculated to separate the scores
of the positive and the negative class and the samples with
scores above the threshold are classified as positives, while
the ones with scores below the threshold as negatives.

Metrics for evaluation of binary classification systems are
associated to the types of errors they commit and how to
measure them, as well as to the threshold calculation and
evaluation criterion [15]. Binary classification systems are
subject to two types of errors: False Positive (FP) and False
Negative (FN). Typically, the error rates that are reported are
False Positive Rate (FPR), which corresponds to the ratio
between FP and the total number of negative samples and
False Negative Rate (FNR), which corresponds to the ratio
between FN and the total number of positive samples.

An objective and unbiased performance evaluation of the
binary classification systems requires a database with a specific
design and strictly defined protocols. It is recommended that
the samples in the database are divided into three subsets:
training Dtrain, development (validation) Ddev and test (eval-
uation) setDtest [16]. Even greater objectivity will be achieved
if the identities in separate subsets do not overlap [17]. The
training set serves to train the system, while its fine tuning is
done using the development set. Since in a real world scenario
the final system will be used for data which have not been
seen before, the performance measure is normally reported on
the test set [16], [18]. An exception from this recommended
design may happen if the number of samples in the database
is not big enough. In such a case, the samples can be divided
only in training and test set, and tuning of the parameters is
done with a cross-validation procedure [16].

The decision threshold τ is computed to serve as a boundary
between the output scores of the positive and the negative
class. By changing this threshold one can balance between
FPR and FNR: increasing FPR reduces FNR and vice-versa.
However, it is often desired that an optimal threshold τ∗

is chosen according to some criterion. One well established
criterion is Equal Error Rate (EER) [15], which selects the
threshold τ∗EER to ensure that the difference between FPR and
FNR is as small as possible (Eq. 1). The optimal threshold,
also referred to as operating point, is a tuning parameter, and
it is usually determined using the development set [16], [18].

τ∗EER = arg min
τ
|FPR(τ,Ddev)− FNR(τ,Ddev)| (1)



JOURNAL SUBMISSION UNDER REVIEW, JULY 2014 3

Once the threshold τ∗ is determined, the accuracy of the
system can be summarized reporting different metrics. For ex-
ample, the Detection Cost Function (DCF), given in Eq. 2, has
been proposed in [19] and is used in the NIST evaluations [20].
The DCF accounts for the cost of the error rates (cFPR and
cFNR), as well as for the probability of occurrence of positive
and negative samples (ppos and pneg).

DCF(τ∗,Dtest) = cFPR · pneg · FPR(τ∗,Dtest)
+ cFNR · ppos · FNR(τ∗,Dtest)

(2)

By giving equal priors to the occurrence of positive and
negative samples and normalizing the cost values, Weighted
Error Rate (WER) is proposed in [18]. In its computation
(Eq.3), β ∈ [0, 1] is the parameter balancing between the cost
of FPR and FNR. For the special case of β = 0.5, the Half
Total Error Rate (HTER) is reached.

WERβ(τ
∗,Dtest) = β · FPR(τ∗,Dtest)

+ (1− β) · FNR(τ∗,Dtest)
(3)

Important tools in evaluation of classification systems are
the different graphical representations of the classification
results. For example, to present the trade-off between FPR
and FNR depending on the threshold, the performance of the
binary classification systems is often visualized using Receiver
Operating Characteristic (ROC) curve. Parameterizing over
different values for the decision threshold, the ROC curve
usually plots FPR versus 1-FNR. Sometimes, when one num-
ber is needed to represent the performance of the system in
comparison with other systems, the Area Under ROC curve
(AUC) may be reported. The higher the AUC the better the
system.

A normal deviate transformation of the ROC curve yields
the Detection-Error Tradeoff (DET) curve [21]. Its usage is
convenient for comparing systems whose scores follow a
Gaussian distribution, since such a transformation guarantees
that the curve will become a line. It plots FPR versus FNR.
Fig. 1a illustrates the DET curve for a hypothetical binary
classification system1.

Although ROC and DET curves may give an idea about
the expected performance of a single system under different
thresholds, using them to compare two or more systems can
lead to biased conclusions [22]. Usually, when comparing two
systems using ROC or DET curves, we select a certain value
on the abscissa (most often FPR) as a first step, and then
we read the values on the ordinate for the two systems (for
example FNR) as a second step. In this way, during the first
step, we implicitly choose a threshold a posteriori, i.e. on the
same data used to read and compare the error rates in the
second step. This threshold may not be the optimal one for
any of the two systems. However, for an objective comparison,
the error rates for the two systems have to be reported at their
optimal thresholds, which have to be chosen a priori, on a
separate data. Unfortunately, by plotting only the error rates on

1Plots for a hypothetical biometric systems in the figures in this paper are
based on a synthetically generated score data. They serve solely to illustrate
the concept presented in this paper.
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Fig. 1: Evaluation plots for hypothetical biometric
verification system

a test set at thresholds not related to the development set, the
ROC and DET curves do not give any hint about the optimal
thresholds of the two systems. Hence, the conclusions about
which one out of two systems is better may be misleading if
drawn solely from the ROC or DET curves.

To solve this issue, the so-called Expected Performance
Curve (EPC) is proposed in [22]. It fills in for two main
disadvantages of the ROC and DET curves: firstly, it plots
the error rate on the test set depending on a threshold selected
a priori on the development set; and secondly, it accounts
for varying relative cost β ∈ [0; 1] of FPR and FNR when
calculating the threshold. In the EPC framework, an optimal
threshold τ∗β depending on β is computed based on a certain
criteria on the development set. For example, the threshold
can be chosen to minimize WERβ for different values of β,
which is the variable parameter plotted on the abscissa. The
performance for the calculated values of τ∗β is then computed
on the test set. WERβ or any other measure of importance
can be plotted on the ordinate axis. The parameter β can be
interpreted as the cost of the error rates, but also as the prior
of having a positive or a negative sample as an input. One may
observe the error rates and compare systems only in the range
of values of β which are of interest for a particular application.
The EPC curve is illustrated in Fig. 1b for a hypothetical
binary classification system.

The performance of a binary system can be summarized in
one value by computing the area under the EPC, defined as
the expected average of two antagonistic error rates that are
being plotted [22].

B. Evaluation of biometric verification systems

The biometrics community has established a common ter-
minology for the samples of the positive and the negative class
from the perspective of a biometric verification system [5]:
• Genuine users for samples of the positive class,
• (Zero-effort) impostors for samples of the negative class.
Hence, in the domain of biometric verification systems, the

number of errors known as FP and FN refer to the number of
zero-effort impostors incorrectly classified as genuine users
and the number of genuine users incorrectly classified as
zero-effort impostors, respectively. Since the positives and the
negatives are associated with the action of acceptance and
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rejection by the verification system, a common practice is
to replace FPR and FNR with False Acceptance Rate (FAR)
and False Rejection Rate (FRR), respectively [4]. Furthermore,
due to the process of matching between the samples and the
models, FPR and FNR are often reported as False Match
Rate (FMR) and False Non-Match Rate (FNMR) [5]2. More
thorough list of synonyms typically used is given in Table II
in Appendix A.

An important aspect of a biometric verification database
is that part of the samples in the training, development
and test set needs to be designated for creating the models
for the identities. These samples are usually referred to as
enrollment [5] (reference [23]) data.

C. Evaluation of anti-spoofing systems

In the anti-spoofing community, the terminology to name the
samples of the positive and the negative class is as follows:
• Real accesses [24] or live samples [11], [25] for samples

of the positive class,
• Spoofing or presentation attacks [26] for samples of the

negative class.
Anti-spoofing systems work on the principle of acceptance

and rejection as well. Hence, in this scope, FAR and FRR are
the most commonly used terms for FPR and FNR too. FAR
stands for the ratio of incorrectly accepted spoofing attacks
and FRR for the ratio of incorrectly rejected real accesses.
These error rates are often substituted with different synonyms
by different authors. The most common of them are listed in
Table I in Appendix A.

When it comes to databases for evaluation of anti-spoofing
systems, their primary task is to provide two types of samples:
real accesses and spoofing attacks of a number of identities.
Additionally, the spoofing database needs to satisfy the re-
quirements of binary classification problems, as the isolated
spoofing detection is.

III. EVALUATION OF BIOMETRIC VERIFICATION SYSTEMS
UNDER SPOOFING ATTACKS

While the problem of biometric verification is undoubtedly
in the class of binary classification problems, a shift in the
concept is required when spoofing attacks are present as a
third possible input type. The newly posed system needs a
new problem definition, which will be stated in Section III-A.
It will help to better understand the metrics which have been
used for evaluation of such systems, which, together with their
drawbacks, are discussed in Section III-B. We propose a novel
evaluation methodology which is better suited to the problem
in Section IV.

A. Problem statement and database design

When treating biometric verification as a binary classifica-
tion system, the designers are interested in determining the
capacity of a given system to discriminate between different

2In general, the error rates FMR and FNMR are not exactly synonymous
with FAR and FRR [5]. However, they are equivalent in the context presented
in this paper. Please see Appendix A for further details.

Biometric 
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Fig. 2: Biometric verification system under spoofing attack

identities. As explained in Section II-B the systems are as-
sumed to receive two classes of input samples. Depending on
the internal algorithm, these systems may or may not have the
competence to discover if the input sample comes from a live
person present in front of the system, or a spoofing attack.

An accurate representation of the operation of a verifica-
tion system acknowledging the spoofing attack samples as
a possible input type, is given in Fig. 2. It needs to accept
only the samples from the class of genuine users, while both
zero-effort impostors and spoofing attacks need to be rejected.
Consequently, the system is not necessarily required to be able
to discriminate between three classes and the problem does not
need to be treated as ternary. The system can still operate as a
binary classification system, as long as it is able to determine
the classes that it needs to reject. Therefore, it is convenient
to denote the two classes that need to be rejected as negative.

Despite the comfort of keeping the binary nature of the
verification system, it is still of importance to evaluate how
vulnerable the system is to spoofing attacks. The evaluation
metrics presented in Section II are sufficient to describe only
the verification performance of a system. But now, besides
FAR and FRR, suitable metric is needed to report on the
system spoofability. Additional problem is the way to deter-
mine an operation point for such a system. These issues are
discussed in Sections III-B and IV.

Before proceeding with the evaluation metrics themselves,
a short notice on the design of a database for evaluation of
verification systems under spoofing attacks is due. Namely, it
has to satisfy the requirements of both a biometric verification
(Section II-B) and spoofing II-C database. Typically, the
spoofing databases follow the design given in II-C, which
poses a major limitation: lack of data to enroll identities in
a verification system. Indeed, separate enrollment data within
the spoofing database are needed to build models for the
identities. In this way, a training and spoofability assessment
of a verification system using the spoofing database is enabled.

To formalize the process of training and evaluating a veri-
fication system using a spoofing database, let’s represent the
identity i in the database with the tuple (xri ,x

s
i ,x

e
i ), containing

real access xri , spoofing attack xsi and enrollment xei samples.
Then, the spoofing database, providing data for N identities,
can be denoted as D = {(xri ,xsi ,xei ) : i = 1..N}. The
process of training a verification system using the spoofing
database means creating a set of models M = {Mi :
i = 1..N}, where Mi = f(xei ) and f(·) is a function
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that maps samples to a model. Then, the verification system
computes the scores for the classes of real accesses, zero-
effort impostors and spoofing attacks. The set of scores for the
genuine users may be created by comparing the real access
samples of one identity to the model of the same identity:
Sgenuine = {g(xri ,Mi) : i = 1..N}, where g(·, ·) is a
matching function. A logical way to assemble the set of zero-
effort impostor scores is by comparing the real access samples
of one identity to the models of the other identities in an
exhaustive manner (full cross-comparison [5]), which results
in Simpostor = {g(xri ,Mj) : i, j = 1..N, i 6= j}. Finally, to
assemble the set of spoofing attack scores for the verification
system, one needs to compare the spoofing attack samples
from one identity to the model of the same identity, which
yields Sspoof = {g(xsi ,Mi) : i = 1..N}.

B. Evaluation methodologies

While the performance metrics for verification systems is
well established and widely used, the evaluation for verifi-
cation systems under spoofing attacks is not unified and is
ambiguous in different publications. A detailed overview of
all the error rates utilized by various authors is given in Table
II in Appendix A.

The adopted terminology in the remainder of this text is as
follows:
• FRR - ratio of incorrectly rejected genuine users,
• FAR - ratio of incorrectly accepted zero-effort impostors,
• SFAR - ratio of incorrectly accepted spoofing at-

tacks [27].
Fig. 3a shows a plot of the distributions of the scores of

the three input classes obtained by a hypothetical verification
system. The problem that arises due to the existence of
three score distributions is how to determine the decision
threshold to discriminate between the samples to accept and
reject. A widely accepted strategy to simplify the problem
is to decompose it into two sub-problems which resemble the
original binary classification problem in biometric verification.
The sub-problems correspond to two scenarios the system can
operate in:
• Licit scenario (also called normal operation mode [28]):

considers genuine users as positive and only zero-effort
impostors as negative class,

• Spoof scenario: considers genuine users as positive and
only spoofing attacks as negative class.

Researchers generally follow two main evaluation method-
ologies to obtain the decision threshold and to report the error
rates it produces, and they are discussed below.

a) Methodology 1: In the first evaluation methodology,
two decision threshold calculations are performed separately
for the two scenarios [6], [28], [27], [7]. Analysis of the
system in the licit scenario gives values for FRR and FAR,
while analysis in the spoof scenario gives values for FRR and
SFAR. Since the analysis produces different threshold in the
two scenarios, the two values of FRR are not the same. A
major weak point of this type of evaluation is that it outputs
two decision thresholds for a single verification system, while
naturally a single system can have only one operating point
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Fig. 3: Graphical tools for evaluation of hypothetical
biometric verification system under spoofing attacks

corresponding to one decision threshold. Furthermore, the
spoof scenario assumes that all the possible misuses of the
system come from spoofing attacks, which in general is not
realistic. The threshold calculated in this scenario is not a good
discriminating point for a verification system, but rather for
an anti-spoofing system and the error rates reported on this
way are not a reliable estimate of the system performance
under spoofing attacks. The decision threshold and the reported
error rates in the spoof scenario are irrelevant in a real-world
scenario. Therefore, this type of evaluation is not compliant
to a real-world requirements for operation of a verification
system.

b) Methodology 2: The second evaluation methodology
is adapted for more realistic performance evaluation. The
threshold is calculated using various criteria, for example EER,
but almost always using the licit scenario, as it is regarded
as a normal operation mode for a verification system. Taking
advantage of the fact that the licit and spoof scenario share
the same positive class, many publications choose a threshold
to achieve a particular desired value of FRR [29], [30], [31],
[32], [33], [34], [12]. Then, using the obtained threshold, FAR
for the licit and SFAR in the spoof scenario are reported and
compared.

On the hypothetical verification system whose score distri-
bution is plotted in Fig. 3a, the threshold is chosen using the
EER criteria for the licit scenario. The plotted threshold gives
an intuition about how well the system discriminates between
genuine users and zero-effort impostors, but also between
genuine users and spoofing attacks. Fig. 3b draws two DET
curves corresponding to the two scenarios. The vertical line
shows the FRR for the chosen threshold. The points where it
cuts the DET curves for the two scenarios are the reported
error rates.

As an alternative figure delivering similar information as
DET for the second evaluation methodology, [32] suggests to
plot FAR vs. SFAR. Thresholds are fixed in order to obtain
all the possible values of FAR for the licit scenario and SFAR
is computed in the spoof scenario and plotted on the ordinate
axis. By plotting the curves for different verification systems,
the plot enables to compare which one of them is less prone
to spoofing given a particular verification performance.

The issue that the second methodology overlooks is that a
system whose decision threshold is optimized for one negative
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class (usually, the zero-effort impostors), can not be evaluated
in a fair manner for another negative class (spoofing attacks).
Expectedly, such a threshold will be biased towards the single
negative class used for its determination, causing unnecessary
larger error rates for the other negative class. If the system
is expected to be exposed to two classes of negatives in the
test or deployment stage, it would be fair that both of them
play a role in the decision of the threshold in the development
stage. A novel evaluation methodology to tackle this issue is
the subject of Section IV.

IV. EXPECTED PERFORMANCE AND SPOOFABILITY
EVALUATION FRAMEWORK

Determining the decision threshold for biometric verifica-
tion systems under spoofing attacks seems to be one of the
major issues in the evaluation process. Neither the first, nor
the second of the evaluation methodologies explained in Sec-
tion III-B offer a method that determines an unbiased threshold
applicable in a realistic verification scenario. A fair evaluation
of a system which needs to reject samples of two different
classes is possible only if both of them are considered in the
development stage. By neglecting the class of spoofing attacks
when deciding on the threshold of the verification system,
one deliberately exhibits blindness to the danger of spoofing
attacks, thus potentially creating a system more vulnerable to
spoofing. Moreover, in some cases a necessity may arise to
add a cost to the error rates associated with the positive and
the negative class, and this cost has to be considered in the
process of computing a decision threshold as well.

The most straight-forward way to involve both negative
classes (zero-effort impostors and spoofing attacks) in the
threshold decision process, is simply to merge them together
into a single negative super-class. However, the number of
zero-effort impostors and spoofing attacks is highly dependent
on the database and follows the database protocol. Hence, the
ratio of the two classes into the super-class is different for
different databases and can not be controlled. Furthermore,
the super-class tends to be biased towards the component with
more samples. For example, in a typical biometric verification
database with N identities and M samples per identity, the
number of zero-effort impostors will be N × (N − 1) ×M .
On the other hand, if there is a single spoofing attack for any
genuine sample in the database, the number of spoofing attacks
will be N ×M . The above observations lead to the question
of what the correct ratio of zero-effort impostors and spoofing
attacks into the super-class of negatives is.

As a matter of fact, there may not be a single answer to that.
Any ratio of the two negative classes may be valid depending
on the deployment conditions. For example, in highly super-
vised conditions, like airport control gates, spoofing attacks are
more difficult to perform, and hence unlikely. On the other
hand, unsupervised verification systems of portable devices
are much more exposed to spoofing attacks. Thus, tuning the
operating point of any system depends on its expected usage
scenario.

The message that the metrics DCF, WERβ and EPC convey
sounds with the above reasoning for a biometric verification

system. EPC obtains a decision threshold based on a parameter
β which balances between FAR and FRR and reports the
expected performance for a wide range of values for that
parameter. The parameter β can be interpreted as the relative
cost or importance of FAR and FRR, or the prior of the
negative or the positive class. Using EPC, it is possible to
compare algorithms depending on the importance of FAR and
FRR in a certain usage scenario.

For evaluating biometric verification systems under spoofing
attacks, we develop a method inspired by EPC. Being aware
that the prior of zero-effort impostors and spoofing attacks
can not be known in advance while developing an algorithm,
we design an evaluation framework which measures the ex-
pected performance of the system for a range of values of a
parameter which balances between FAR and SFAR. Moreover,
analogously to EPC, we introduce another parameter which
considers the cost of the error rates associated with the positive
and the negative classes. As it measures both the verification
performance and the vulnerability to spoofing of a system and
unifies them into a single value, the adapted evaluation scheme
is called Expected Performance and Spoofability (EPS) frame-
work.

The goal of the EPS framework is to analyze and plot
error rates regarding the performance and spoofability of a
verification system on a test set, with respect to a decision
threshold taken on a separate development set. We define two
parameters: ω ∈ [0, 1], which denotes the relative cost of
spoofing attacks with respect to zero-effort impostors; and β ∈
[0, 1], which denotes the relative cost of the negative classes
(zero-effort impostors and spoofing attacks) with respect to
the positive class. Using these, we introduce a measurement
called FARω , which is a weighted error rate for the two
negative classes (zero-effort impostors and spoofing attacks).
It is calculated as in Eq. 4.

FARω = ω · SFAR+ (1− ω) · FAR (4)

The optimal classification threshold τ∗ω,β depends on both
parameters. It is chosen to minimize the weighted difference
between FARω and FRR on the development set, as in Eq. 5.

τ∗ω,β = arg min
τ
|β ·FARω(τ,Ddev)− (1−β) ·FRR(τ,Ddev)|

(5)
Once an optimal threshold τ∗ω,β is calculated for certain

values of ω and β, different error rates can be computed on the
test set. Probably the most important is WERω,β , which can be
accounted as a measurement summarizing both the verification
performance and the spoofability of the system and which is
calculated as in Eq. 6.

WERω,β(τ
∗
ω,β ,Dtest) = β · FARω(τ

∗
ω,β ,Dtest)

+ (1− β) · FRR(τ∗ω,β ,Dtest)
(6)

A special case of WERω,β , obtained by assigning equal cost
β = 0.5 to FARw and FRR can be defined as HTERω and
computed as in Eq. 7. In such a case, the criteria for optimal
decision threshold is analogous to the EER criteria given in
Section II-A.
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HTERω(τ
∗
ω,Dtest) =

FARω(τ
∗
ω,Dtest) + FRR(τ∗ω,Dtest)

2
(7)

The parameter ω could be interpreted as relative cost of the
error rate related to spoofing attacks. Alternatively, it could be
connected to the expected relative number of spoofing attacks
among all the negative samples presented to the system. In
other words, it could be understood as the prior probability of
the system being under a spoofing attack when it is misused.
If it is expected that there is no danger of spoofing attacks
for some particular setup, it can be set to 0. In this case,
WERω,β corresponds to WERβ in the traditional evaluation
scheme for biometric verification systems. When it is expected
that some portion of the illegitimate accesses to the system will
be spoofing attacks, ω will reflect their prior and ensure they
are not neglected in the process of determining the decision
threshold.

As in the computation of WERβ in Section II-A, the
parameter β could be interpreted as the relative cost of the
error rate related to the negative class consisting of both zero-
effort impostors and spoofing attacks. This parameter can
be controlled according to the needs or to the deployment
scenario of the system. For example, if we want to reduce
the wrong acceptance of samples to the minimum, while
allowing increased number of rejected genuine users, we need
to penalize FARω by setting β as close as possible to 1.

The EPS framework computes error rates for a range of
decision thresholds obtained by varying the parameters ω and
β. The visualization of the error rates parameterized over
two parameters will result in a 3D surface, which may not
be convenient for evaluation and analysis, especially when
one needs to compare two or more systems. Instead, we
suggest plotting the Expected Performance and Spoofability
Curve (EPSC), showing WERω,β with respect to one of the
parameters, while the other parameter is fixed to a predefined
value. For example, we can fix the parameter β = β0 and draw
a 2D curve which plots WERω,β on the ordinate with respect
to the varying parameter ω on the abscissa. Having in mind
that the relative cost given to FARω and FRR depends mostly
on the security preferences for the system, it is not difficult
to imagine that particular values for β can be selected by an
expert. Similarly, if the cost of SFAR and FAR or the prior of
spoofing attacks with regards to the zero-effort impostors can
be precisely estimated for a particular application, one can set
ω = ω0 and draw a 2D curve plotting WERω,β on the ordinate,
with respect to the varying parameter β on the abscissa.

The algorithm on Fig. 4 gives the step-by-step procedure
to compute and plot WERω,β with regards to ω and β for a
given verification system. By fixing one of the parameters ω
or β, one can plot EPSC for WERω,β with regards to the other
parameter.

Besides WERω,β , EPSC can present other error rates which
are of interest. For example, plotting SFAR can show how the
system’s robustness to spoofing changes with regards to ω
or β. Alternatively, to report on all the incorrectly accepted
samples, FARω can be plotted using EPSC.

Fig. 5 and Fig. 6 give an illustration of the EPSC plotting the

for β ∈ [0, 1] do
for ω ∈ [0, 1] do

define FARω = ω · SFAR+ (1− ω) · FAR
τ∗ω,β = arg min

τ
|β · FARω(τ,Ddev)

−(1− β) · FRR(τ,Ddev)|
compute WERω,β(τ

∗
ω,β ,Dtest);

plot WERω,β(τ
∗
ω,β ,Dtest) w.r.t. ω, β

end for
end for

Fig. 4: Pseudo code for computing WERω,β
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Fig. 5: EPSC of a hypothetical biometric verification system
under spoofing attacks, parameterized over ω

error rates WERω,β and SFAR as function of the parameters
ω and β, respectively. The plots are generated for the hypo-
thetical verification system whose score distribution is given
in Fig. 3a.

Fig. 5a and Fig. 5b show WERω,β and SFAR with respect to
ω for three predefined values of β. The blue curve on Fig. 5a,
corresponding to β = 0.5, is equivalent to HTERω . The left-
most points of the curves correspond to ω = 0, meaning that
the decision threshold is obtained disregarding the spoofing
attacks as possible input. Hence, the threshold at this point
corresponds to the threshold plotted in Fig. 3a, calculated
for the system when operating in the licit scenario. For the
particular hypothetical system and all the three considered
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Fig. 6: EPSC of a hypothetical biometric verification system
under spoofing attacks, parameterized over β
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values of β, this point corresponds to low WERω,β , which
indicates a system with good verification capabilities, but very
high SFAR due to the high overlap of the scores of spoofing
attacks and genuine users.

As we increase ω, we give weight to the spoofing attacks
so that they have a role in the threshold decision process. In
the particular example, this results in a shift of the decision
threshold to the right of the score distribution plot in Fig. 3a.
This decreases the number of spoofing attacks that pass the
system, which explains why SFAR decreases with increasing
ω. However, the additional caution for the danger of spoofing
attacks unavoidably comes with the price of more rejected
genuine users and thus higher WERω,β . A system with high
robustness to spoofing attacks will show as mild increase
of WERω,β as possible, with as steep decrease of SFAR as
possible.

Fig. 6a and Fig. 6b show EPSC parameterized over the
varying parameter β, for three predefined values of ω. For the
extreme cases where β = 0 and β = 1, WERω,β is 0 because
the threshold is determined to minimize the error rate solely
associated with the positive or the negative class, respectively.
In the case of β = 0, this results in a successful passing
through of all the spoofing attacks.

Considering the spoofing attacks when calculating the de-
cision threshold means taking additional precautions against
them. As a result of this, the threshold obtained using EPS
framework is better adapted to the input that is expected,
contributing to systems with better performance and lower
spoofing vulnerability, than systems whose decision threshold
has been determined in different way. This is illustrated for a
hypothetical biometric verification system in Appendix C.

The EPSC inherits the advantage of unbiased system com-
parison from the EPC, because it reports the error rates a
priori. Since the threshold is always determined using the
development set, and the error rates are reported using the test
set, one can estimate the expected error rates and spoofability
of the system in an unbiased way, on data which has not been
seen before. The expected error rates can be reported for a
particular value or range of values of the parameters ω and
β which are of interest in a particular application. Moreover,
EPSC allows for easy and unbiased comparison of verification
systems with regards to their performance and robustness to
spoofing, simply by comparing the EPSC for the two systems
on the same plot. Even more, one can compare verification
systems range-wise: which one performs better for a range of
values of ω or β. Practical examples of such analysis are given
in Section V.

Finally, if a single number is needed to describe the
performance of a system, we define the Area Under EPSC
(AUE) metric, which can be computed for a fixed β or ω.
For example, for a fixed β, it represents the average expected
WERω,β for all values of ω and is computed using Eq. 8. The
formula to compute AUE for fixed ω and varying β follows
accordingly. Between two systems, better is the one which
achieves smaller AUE.

AUE =

∫
ω∈[0,1]

WERω,β(τ
∗
ω,β ,Dtest)dω (8)

The AUE can be computed in between certain bounds a, b ∈
[0, 1]; a < b, enabling to compare two systems depending on
the required range of the varying parameter.

V. EXPERIMENTAL RESULTS

Extensive experiments in the domain of face verification and
anti-spoofing were conducted in order to evaluate several state-
of-the-art systems using the EPS evaluation framework. In par-
ticular, we analyzed four baseline face verification systems and
their vulnerability to spoofing attacks. Then, we tried to reduce
their vulnerability by incorporating three different spoofing
counter-measures. While this process naturally increases the
robustness to spoofing of the verification systems, it may also
significantly affect its verification performance [14]. The EPS
framework proves to be very suitable to analyze the trade-
off between these two parameters. Note that EPS framework
allows evaluation analysis of any biometric system which can
perform verification task, regardless whether and how it has
an incorporated mechanism to handle spoofing attacks.

In the following analysis, we begin by introducing a general
terminology for categorization of spoofing attacks based on
their success in deceiving a verification system in Section V-A.
Then, in Section V-B we describe the face spoofing database
as well as the face verification and anti-spoofing systems used
in the experiments. Empirical results using EPS framework
are reported in Sections V-C, V-D, V-E and V-F. Through
the analysis, we demonstrate how to interpret EPSC and we
illustrate its advantages over other evaluation methodologies.

The reported results are easily reproducible, as the ex-
periments are implemented using the free signal-processing
and machine-learning toolbox Bob [35]3. The source code to
compute and plot the EPSC is freely available as Bob’s satellite
package4.

As the comparison for 3D plots showing the error rates
depending on β and ω is difficult, in our further analysis we
fix β = 0.5 and adhere to comparing systems using HTERω .
This is not an unreasonable choice: the evaluation of many
biometric verification systems is traditionally done only by
using EER nad HTER.

A. Categories of spoofing attacks

As shown in Section III-B, a score distribution plot as
in Fig. 3a may be a good indicator of the discriminability
the system demonstrates. Not only it suggests how well the
system performs in verification of identities, but it also gives
an intuition how vulnerable the system is to spoofing attacks.
Depending on the position of the spoofing attack scores on
the abscissa, the spoofing attacks can be clustered in 4 distinct
categories with regards to a particular verification system.

3http://www.idiap.ch/software/bob
4http://pypi.python.org/pypi/antispoofing.evaluation
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• Insufficient attacks: attack scores are distributed inside
the histogram area spawned by zero-effort impostors or
to the left of it,

• Sub-optimal attacks: attack scores are situated between
impostors and genuine users,

• Optimal attacks: attack scores are contained within the
range of the scores of genuine users,

• Super-Optimal attacks: attack scores are mostly situated
to the right of the scores of genuine users.

Using the previously defined terminology, to make a system
more robust to spoofing means bringing the spoofing attacks
from optimal and super-optimal to sub-optimal, or, if possible,
insufficient level. A straight-forward way to achieve this is by
fusing several modes to be verified, like in [32], [34]. Another
approach is to blend together the outputs of two separate
systems: a verification and an anti-spoofing one. Significant
publications covering this problem include [12], [13], [14].

A visualization of the score distributions for the four cat-
egories of spoofing attacks is given in Appendix D. Further-
more, we give case studies for EPSC for the four categories
of spoofing attacks. They should give an understanding about
the differences in the EPSC appearance for a system highly
vulnerable and a system highly robust to spoofing.

B. Database and systems

All of the experiments were conducted using the Replay-
Attack database [36]5, which is specifically designed for
face spoofing. Unlike the other face spoofing databases
(NUAA [37] and CASIA-FASD [38]), Replay-Attack satisfies
the requirement for training a verification system by providing
separate enrollment samples. It contains video sequences of
real accesses and attacks to 50 identities. The types of attacks
present in this database are printed and digital photographs,
as well as videos displayed on a screen.

The experimental setup includes four baseline face verifi-
cation systems which have proven to be state-of-the-art on
several face verification databases. The first one is a Gaussian
Mixture Model (GMM) based system which extracts Discrete
Cosine Transform (DCT) features from the input images [39].
The second one, called Local Gabor Binary Pattern Histogram
Sequences (LGBPHS) [40], calculates Local Binary Patterns
(LBP) histograms over the input images convoluted with
Gabor wavelets, and computes the similarity scores using χ2

measure. The third considered system is based on [41] and
compares Gabor jets extracted from different positions and put
into a single rectangular grid graph (GJet) [42]. Finally, DCT
features are used once again in the fourth system, to create
Universal Background Model and to estimate a linear subspace
of the within-class variability [43]. We will refer to this system
as Inter-Session Variability modeling (ISV). The verification
scores of these systems on the Replay-Attack database are
obtained using the open-source face verification framework
from [44]6.

Concerning the face anti-spoofing systems, they can be
categorized in three groups with respect to the cues they

5http://www.idiap.ch/dataset/replayattack
6http://pypi.python.org/pypi/facereclib

use to detect the spoofing attack [45]. The first group of
systems tries to detect signs of vitality on the scene, like eye-
blinking or mouth movements. The second group evaluates the
differences in motion patterns, while the third one compares
the texture properties for real accesses and attacks. In this
work we used three different face anti-spoofing systems whose
implementation is published as open-source. The first one uses
(LBP) [36]7, while the second one an LBP variant capturing
dynamic texture properties in three orthogonal planes (LBP-
TOP) [46]8. The third system estimates the correlation in the
movements of the face with regards to the background and
detects higher correlation in the case of spoofing attacks [47]9.
These systems show different capacity in detecting the spoof-
ing attacks in Replay-Attack, which consequently affects the
performance of the verification system they are fused with.

With a goal to achieve greater robustness to spoofing of the
verification systems, we fuse their output with the output of
the anti-spoofing systems at score level. In particular, three of
the fusion strategies presented in [14]10 are examined: SUM
of scores, Logistic Regression (LR) and Polynomial Logistic
Regression (PLR).

In the following experiments, we firstly examine the per-
formance of the verification systems at disposal (GMM,
LGBPHS, GJet and ISV) and their vulnerability to spoofing
attacks in Section V-C. In our second experiment in Sec-
tion V-D, we compare the fusion methods when employed to
fuse the baseline systems with the simplest LBP based anti-
spoofing system. In Section V-E, we fix the fusion rule and
we perform the comparison with respect to the anti-spoofing
systems. Finally, in Section V-F, we compare all the face
verification systems fused with the best performing fusion
method and anti-spoofing system.

The primary goal of the experiments is to demonstrate
the advantages of the EPS framework over other evaluation
methodologies and its usefulness in analyzing the performance
of biometric verification systems. As an additional result, they
provide insights about how fusion affects the systems verifica-
tion performance and robustness to spoofing and demonstrates
which of the fused systems performs the best.

C. Performance of baseline face verification systems

The goal of the first experiment is to assess the performance
of the four considered face verification systems in recognizing
the identities in Replay-Attack, as well as to estimate their
vulnerability to spoofing. In this experiment, they are operating
independently, without any protection with an anti-spoofing
system. In our analysis, we will compare the conclusions
obtained using the evaluation Methodology 2 described in
Section III-B, and the ones delivered by EPS framework and
EPSC. The score distribution of the four systems are given in
Fig. 7.

To assess the verification performance of a system using
Methodology 2, we consider only the licit scenario. The

7http://pypi.python.org/pypi/antispoofing.lbp
8http://pypi.python.org/pypi/antispoofing.lbptop
9http://pypi.python.org/pypi/antispoofing.motion
10http://pypi.python.org/pypi/antispoofing.fusion faceverif
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Fig. 7: Score distributions of baseline face verification systems. The full green line shows the SFAR as the threshold changes.
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Fig. 8: DET curves for licit and spoof scenario of baseline face verification systems.

vertical lines in Fig. 7 correspond to the thresholds determined
in the licit scenario. Using this scenario, we can plot a DET
curve, showing the trade-off between FAR and FRR when
no spoofing attacks are present. Then, we can consider the
spoofing scenario only, and plot an additional DET curve,
which shows the trade-off between SFAR and FRR and ignores
to the existence of zero-effort impostors. These plots for the
four baseline systems are given in Fig. 8.

A decision threshold for such a system is taken at EER on
the development set of the licit scenario. Using this threshold,
we can compute and report FRR, FAR and SFAR. These values
for the four baseline systems are given in Table I.

TABLE I: Verification error rates and spoofing vulnerability
of baseline face verification systems (in %)

system FAR FRR HTER SFAR
GMM 0.05 0.24 0.14 91.5

LGBPHS 1.47 2.13 1.8 88.5
GJet 0.28 0.24 0.26 95.0
ISV 0.00 0.17 0.08 92.6

The results show that all the four systems perform well
in the verification task. Fig. 7 justifies the results: the score
distributions for the genuine users and impostors are almost
perfectly separated. However, if we keep the decision threshold
selected at EER on the development set for the licit protocol,
the systems exhibit a great vulnerability to spoofing of around
90%. The results come with no surprise: as suggested by
Fig. 7, the attacks of Replay-Attack appear to be sub-optimal
to optimal. Using this evaluation methodology, ISV, with

0.08% of HTER seems to perform the best in the verification
task. At the same time, GJet, with 95% of SFAR, appears to
be the most vulnerable to spoofing among all the systems.
These values are obtained only for a threshold which does not
assume any spoofing attacks to be possible.

We now proceed with EPS evaluation of the systems.
The EPSC given in Fig. 9, report HTERω and SFAR for a
threshold which considers the relative probability of spoofing
attacks, encoded in the parameter ω. Analyzing the EPSC for
the four baseline systems, we come to different conclusions.
Comparing the HTERω values in Fig. 9a, we observe that ISV
is best performing in verification only as long as the spoofing
attacks appear with a very small probability. After a certain
value of ω, GJet shows the best verification performance. The
same applies to the vulnerability to spoofing (Fig. 9b): while
being the most vulnerable when ω ≈ 0, GJet displays the
smallest values of SFAR for larger values of ω.

Hence, we can discuss two advantages of EPSC over
Methodology 2. Firstly, it overcomes the exclusiveness in
analyzing only zero-effort impostors or spoofing attacks at
a time of Methodology 2. The HTERω summarizes all the
three error rates (FRR, FAR and SFAR) into a single value,
combining them based on the prior of each of the input classes.
Secondly, it rectifies the bias that Methodology 2 demonstrates
by neglecting the spoofing attacks that may appear. Although
this may increase the value of HTERω (EPSC is usually
ascending for HTERω), it is going to greatly improve the
systems vulnerability to spoofing (EPSC is descending for
SFAR), especially in condition where spoofing attacks are
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Fig. 9: EPSC to compare baseline face verification systems
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Fig. 10: EPSC to compare fusion methods: GJet baseline
fused with LBP-based anti-spoofing system

highly probable. Finally, by selecting an a priori threshold,
EPSC allows to objectively compare several systems on the
same figure.

D. Comparison of fusion methods

In our second experiment, we employ EPSC to compare
different methods for fusion of verification and anti-spoofing
systems and how they affect the performance of the baseline
face verification systems. The reported EPSC in Fig. 10
corresponds to the best performing system in the experiment in
Section V-C, GJet, when fused with the simplest anti-spoofing
system based on LBP. Detailed results covering all the other
baseline verification systems is given in Appendix E.

The EPSC helps us to choose which system to use de-
pending on the prior of spoofing attacks we expect at input.
As can be observed from Figure 10a, when the prior of
spoofing attacks is very small (ω ≈ 0), the baseline system not
fused with an anti-spoofing system performs the best. As the
prior for spoofing attacks is small, any of the fusion schemes
only undesirably increases HTERω . However, if the prior of
spoofing attacks is higher, then fusion is necessary to avoid
high vulnerability to spoofing. Expectedly, SFAR and HTERω
have a trade-off relationship, and the fusion algorithm that
reduces SFAR the most, deteriorates HTERω the most as well.
For example, SUM fusion notes the most significant drop of
SFAR, but also degrades the verification performance the most,
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Fig. 11: EPSC to compare anti-spoofing systems: GJet
baseline fused using PLR fusion

leading to highest HTERω .
With respect to the overall performance, LR and PLR

perform on similar scale. While SUM fusion helps the baseline
only for high values of ω, LR and PLR improve the baseline
already for low values of ω. If we need to choose a single al-
gorithm based on HTERω , then PLR will be the recommended
choice for applications where ω < 0.2, and LR otherwise.

E. Comparison of anti-spoofing systems

The goal of the third experiment is to employ EPSC to
compare the different anti-spoofing systems (LBP, LBP-TOP
and MOTION) when fused with baseline face verification
systems. Led by the observations of [48] and [49] that using
multiple complementary spoofing counter-measures is more
effective than a single one, we also attempted to fuse the
verification systems with ALL the available anti-spoofing
systems at once. We present the results on GJet using PLR
fusion, as one of the best performing fusion methods in the
experiment in Section V-D. The results for the rest of the
baseline systems are given in Appendix E.

Fig. 11 shows that, similarly as in the experiment presented
in Section V-D, fusion brings better overall system perfor-
mance than the isolated baseline, unless spoofing attacks are
highly improbable (ω ≈ 0). When considering only one anti-
spoofing system, the presented results are in favor of the LBP-
TOP for all the verification systems along the full range of ω.
Yet, fusing several anti-spoofing systems further improves the
system robustness to spoofing, as well as its HTERω .

F. Performance of fused systems

In our last experiment, we utilize EPSC to compare the
four face verification systems when fused with ALL counter-
measures using the PLR fusion scheme. The results are
presented in Fig. 12.

The comparison between the EPSC for the baseline (Fig. 9a)
and the fused systems (Fig. 12a), confirms that fusion is
highly beneficial to the systems’ robustness to spoofing. While
for some of the baseline systems HTERω increases rapidly
with ω and reaches up to 25%, for the fused systems it
increases very mildly and does not exceed 4.1%. The major
augmentation of robustness to spoofing for the systems after
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fusion can be observed by comparing Fig. 9b and Fig. 12b:
while unacceptable for the baseline systems for any value of
ω, SFAR does not exceed 6% for the fused systems even in the
case when spoofing attacks are not considered in the threshold
decision process i.e. ω = 0. The benefits of fusing can be also
illustrated by the score distribution plots, which are available
in Appendix E.

If we summarize both the verification performance and
spoofability of the systems into HTERω , Fig. 12a suggests
that ISV baseline fused with ALL the available anti-spoofing
systems performs the best. With AUE value of 0.0184 and
HTERω varying between 0.8% and 2.7%, ISV is superior over
the full range of ω.

VI. CONCLUSIONS

The spoofing attacks have proven to be a security threat
for the biometric verification systems in many modes and the
problem of anti-spoofing has been significantly treated in the
past few years. However, to apply anti-spoofing in a real-world
scenario, it is of importance to make a link between anti-
spoofing and biometric verification systems. The alliance of
the two will result in a verification system which will hopefully
demonstrate higher robustness to spoofing, but probably for the
price of modified verification accuracy.

In the traditional setup, the verification systems are evalu-
ated using the well-established metrics for binary classification
systems. Their vulnerability to spoofing is rarely reported.
When the spoofing attacks are acknowledged as a possible
danger, the verification system loses its binary nature and has
to cope with three input classes: genuine users, zero-effort
impostors and spoofing attacks. Inevitably, this introduces a
new definition for the verification systems and a necessity for
adjusted evaluation methodology.

The main concern of this paper is to find an appropriate way
to evaluate verification systems under spoofing attacks. Several
attempts already exist and are thoroughly covered in this
paper. Among their most crucial disadvantages is their biased
behavior of ignoring the spoofing attacks in the threshold
decision process. This leads to unnecessary high vulnerability
to spoofing.

This paper proposes a novel evaluation methodology, which
objectively assumes that both the zero-effort impostors and
spoofing attacks need to be considered in the threshold de-
cision process with a part that reflects the prior probability
among all the misuses of the system. Furthermore, the method-
ology accounts for the application-dependent cost of the error
rates associated with the positive and the negative classes. The
proposed framework, EPS, and the corresponding curve report
on the verification performance and the spoofability of the
verification systems using a single measure, called WERω,β .
It does so a priori, setting the threshold with no knowledge
on the test set in the development phase.

The power of the EPS framework and EPSC is demonstrated
by evaluating four state-of-the-art verification systems in the
face mode, before and after they are fused with an anti-
spoofing system. The EPSC allows for objective comparison of
the systems depending on the prior probability of the spoofing
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Fig. 12: EPSC to compare fused systems: PLR fusion with
ALL anti-spoofing systems

attacks or the cost of the error rates and helps decide which
combination of verification system, anti-spoofing system and
fusion method to use for a given application.

The evaluation concepts covered in this paper are general
and could be employed for other verification systems and
modes. For this purpose, the implementation of the pro-
posed evaluation framework is available as free software and
can be downloaded at http://pypi.python.org/pypi/antispoofing.
evaluation.
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[22] S. Bengio, J. Mariéthoz, and M. Keller, “The expected performance
curve,” in International Conference on Machine Learning, ICML, Work-
shop on ROC Analysis in Machine Learning, 2005. 3

[23] “Information Technology Vocabulary Biometrics,” 2012. 4
[24] M. Wagner and G. Chetty, Encyclopedia of Biometrics. Springer-Verlag,

2009, ch. Liveness Assurance in Face Authentication, pp. 924–931. 4
[25] P.Johnson, R. Lazarick, E. Marasco, E. Newton, A. Ross, and S. Schuck-

ers, “Biometric liveness detection: Framework and metrics,” in Interna-
tional Biometric Performance Conference, 2012. 4

[26] A. Adler and S. Schuckers, Encyclopedia of Biometrics. Springer-
Verlag, 2009, ch. Security and Liveness, Overview, pp. 1146–1152. 4

[27] P. A. Johnson, B. Tan, and S. Schuckers, “Multimodal fusion vulnera-
bility to non-zero (spoof) imposters,” in IEEE International Workshop
on Information Forensics and Security, 2010. 5

[28] J. Galbally-Herrero, J. Fierrez-Aguilar, J. D. Rodriguez-Gonzalez,
F. Alonso-Fernandez, J. Ortega-Garcia, and M. Tapiador, “On the vulner-
ability of fingerprint verification systems to fake fingerprints attacks,” in
IEEE International Carnahan Conference on Security Technology, 2006,
pp. 169–179. 5

[29] J. Galbally, R. Cappelli, A. Lumini, G. G. de Rivera, D. Maltoni,
J. Fiérrez, J. Ortega-Garcia, and D. Maio, “An evaluation of direct attacks
using fake fingers generated from iso templates,” Pattern Recognition
Letters, vol. 31, no. 8, pp. 725–732, 2010. 5

[30] J. Villalba and E. Lleida, “Preventing replay attacks on speaker verifica-
tion systems,” in Security Technology (ICCST), 2011 IEEE International
Carnahan Conference on, 2011, pp. 1–8. 5

[31] V. Ruiz-Albacete, P. Tome-Gonzalez, F. Alonso-Fernandez, J. Galbally,
J. Fierrez, and J. Ortega-Garcia, “Direct attacks using fake images in iris
verification,” in Proc. COST 2101 Workshop on Biometrics and Identity
Management, BIOID. Springer, May 2008, pp. 181–190. 5

[32] R. N. Rodrigues, L. L. Ling, and V. Govindaraju, “Robustness of
multimodal biometric fusion methods against spoofing attacks,” Journal
of Visual Languages and Computing, vol. 20, no. 3, pp. 169–179, 2009.
5, 9

[33] Z. Akhtar, G. Fumera, G.-L. Marcialis, and F. Roli, “Robustness eval-
uation of biometric systems under spoof attacks,” in 16th International
Conference on Image Analysis and Processing, pp. 159–168. 5

[34] ——, “Robustness analysis of likelihood ration score fusion rule for
multi-modal biometric systems under spoof attacks,” in 45th IEEE
International Carnahan Conference on Security Technology, pp. 237–
244. 5, 9

[35] A. Anjos et al., “Bob: a free signal processing and machine learning
toolbox for researchers,” in 20th ACM Conference on Multimedia
Systems (ACMMM), Nara, Japan. ACM Press, Oct. 2012. 8

[36] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of
local binary patterns in face anti-spoofing,” in Proceedings of the 11th

International Conference of the Biometrics Special Interes Group, 2012.
9

[37] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a
single image with sparse low rank bilinear discriminative model,” in
Proc. European Conference on Computer Vision (ECCV), ser. LNCS
6316. Springer, 2010, pp. 504–517. 9

[38] Z. Zhiwei, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing
database with diverse attacks,” in Proc. IAPR Int. Conf. on Biometrics
(ICB), 2012, pp. 26–31. 9

[39] F. Cardinaux, C. Sanderson, and S. Marcel, “Comparison of mlp and
gmm classifiers for face verification on xm2vts,” in Proceedings of the
4th International Conference on AVBPA, University of Surrey, Guildford,
UK, 2003. 9

[40] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, “Local gabor binary
pattern histogram sequence (lgbphs): A novel non-statistical model for
face representation and recognition,” in Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1 -
Volume 01, ser. ICCV ’05. IEEE Computer Society, 2005, pp. 786–
791. 9

[41] L. Wiskott, J.-M. Fellous, N. Krger, and C. V. D. Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Transactions on
Pattern Analysis And Machine Inteligence, vol. 19, pp. 775–779, 1997.
9

[42] M. Günther, D. Haufe, and R. P. Würtz, “Face recognition with disparity
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Biometrics Evaluation under Spoofing Attacks
Ivana Chingovska, André Anjos, Sébastien Marcel

APPENDIX A
NOTES ON COMMON TERMINOLOGY FOR EVALUATION METRICS IN BIOMETRICS AND ANTI-SPOOFING

a) Error rates for evaluation of biometric systems: In the context of a binary classification system, we introduce False
Negative Rate (FNR) and False Positive Rate (FPR) as error rates associated with number of wrongly classified positive and
negative samples respectively. In the context of a biometric verification system, the typically used terms are False Match
Rate (FMR) and False Non-Match Rate (FNMR), as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR).
However, as suggested in [1], FRR and FAR are not synonymous with False Non-Match Rate (FNMR) and False Match Rate
(FMR). FNMR and FMR are used at a level of a single sample-to-model comparison, whereas FRR and FAR are used at
a transaction level, where a transaction includes all the allowed attempts of a user to be recognized by the system. Hence,
in general, FAR and FRR depend on FMR and FNMR, but also on error rates like Failure to Acquire (FTA), Binning Error
Rate (BER) and Penetration Rate (PR). Furthermore, FAR and FRR refer to the claim of the user, and this claim is different
for a biometric verification and biometric identification system. However, in the scope of our work, we are considering only
biometric verification systems and we do our evaluation in a pre-collected database, thus precluding error rates like FTA, BER
and PR. In such circumstances, which, as stated in [1], are typical for technology evaluation, FAR and FRR are equivalent to
FMR and FNMR. Therefore, in our manuscript, we adhere to the terms FAR and FRR. This terminology is also accepted, for
example, in [2].

b) Error rates for evaluation of anti-spoofing systems: Table I gives the most common terminology and synonyms for
error rates in evaluating anti-spoofing systems.

TABLE I: Typically used error rates for anti-spoofing systems and their synonyms.

Error rate Acronym Synonyms

False Positive Rate FPR False Acceptance Rate (FAR), False Spoof Acceptance Rate [3], False Living Rate (FLR) [4]
False Negative Rate FNR False Rejection Rate (FRR), False Alarm Rate [5], False Live Rejection Rate [3], False Fake Rate

(FFR) [4]
True Positive Rate TPR True Acceptance Rate
True Negative Rate TNR True Rejection Rate, detection rate [5], [6], [7], detection accuracy [8]
Half Total Error Rate HTER Average Classification Error (ACE) [4]

c) Error rates for evaluation of biometric verification systems under spoofing attacks: Table II gives the most common
error rates in evaluation of biometric verification systems under spoofing attacks. It contains error rates reported when the
system is evaluated only considering one negative class (either zero-effort impostors or spoofing attacks, resulting in licit or
spoof scenario, respectively), or both of them.

TABLE II: Typically used error rates for biometric verification systems under spoofing attacks and their synonyms.

Error rate Acronym Negative class Synonyms

False Negative Rate FNR any False Rejection Rate (FRR), False Non-Match Rate [9], [3], Pmiss [10])
both Global False Rejection Rate (GFRR) [3]

True Positive Rate TPR any True Acceptance Rate, Genuine Acceptance Rate [11], [12]

False Positive Rate FPR zero-effort impostors False Acceptance Rate (FAR), False Match Rate [9], [3], Pfa [10]
spoofing attacks False Acceptance Rate (FAR) [13], Spoof False Acceptance Rate [14], Liveness

False Acceptance Rate [15], Success Rate [16], Attack Success Rate [9]
both System False Acceptance Rate (SFAR) [15], Global False Acceptance Rate

(GFAR) [3]

For a more general framework, where the system is specialized to detect any kind of suspicious or subversive presentation
of samples, be it a spoofing attack, altered sample or artifact, [11] has assembled a different set of notations for error
measurements. Such a system reports False Suspicious Presentation Detection (FSPD) in the place of FNR and False Non-
Suspicious Presentation Detection (FNSPD) in the place of FPR.

Ivana Chingovska is with Idiap Research Institute and Ecole Polytechnique Fédéerale de Lausanne, Switzerland, e-mail: ivana.chingovska@idiap.ch
André Anjos and Sébastien Marcel are with the Idiap Research Institute, Switzerland, e-mails: {andre.anjos, sebastien.marcel}@idiap.ch
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APPENDIX B
EPS FRAMEWORK: 3D PLOT OF ERROR RATES WITH RESPECT TO THE PARAMETERS

If we parameterize WERω,β by the two parameters, we are going to obtain a 3D surface, which, for a hypothetical biometric
verification system is shown in Fig. 1. Using this plot, we can clearly infer on the expected error rates depending on the
parameters’ values or range of values which are of interest. However, the visualization of two or more 3D plots on the same
figure is difficult and not convenient for comparative analysis of systems.
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Fig. 1: 3D plot of WER ω,β and SFAR computed using EPS framework for a hypothetical biometric verification system
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APPENDIX C
COMPARISON OF EPSC WITH METHODOLOGY 2

To support the assertion that consideration of the spoofing attacks is necessary when determining the decision threshold, we
compare EPSC with Methodology 2 described in Section III-B. For a hypothetical verification system, Fig. 2 plots the error
rates HTERω and SFAR as they are defined in Section IV. For EPSC, the decision threshold is determined using the criteria
given in Eq.5 of the manuscript. For Methodology 2, it does not depend on the parameter ω and is determined using the licit
scenario only. In both cases we fix the parameter β = 0.5.

Fig. 2: Comparison of error rates for EPSC and Methodology 2 (hypothetical biometric verification system)

(a) HTERω

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

H
TE

R
ω

(%
)

EPSC threshold criteria
Methodology 2 threshold criteria

(b) SFAR

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

S
FA

R
(%

)

EPSC threshold criteria
Methodology 2 threshold criteria

Both EPSC and Methodology 2 give the same results when ω = 0 i.e. when the verification system is not under spoofing
attacks. However, as soon as the spoofing attacks get even a small weight ω > 0, the vulnerability of the system under
Methodology 2 remains very high, while EPSC quickly adapts the threshold and achieves much better robustness to spoofing
(Fig. 2b). This is also reflected to the HTERω: EPSC notes more mild increase of HTERω as the weight of the spoofing attacks
increases (Fig. 2a).
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APPENDIX D
CATEGORIES OF SPOOFING ATTACKS: EPSC CASE STUDY

When reporting on the performance and spoofability of a verification system, it is usually done with respect to a certain
dataset. To be accounted for robust to spoofing with respect to a dataset, the system needs to gives score distributions as
illustrated in Fig. 3a. This means that, with respect to this system, the attacks are in the insufficient category. To be accounted
as vulnerable to spoofing, the system needs to give score distributions as in Fig. 3c of Fig. 3d. In such a case, the attacks are
in the optimal or super-optimal category with respect to that system.

The success of the attacks in spoofing the system primarily depends on two factors: their quality and the system design.
Spoofing attacks of low quality, which do not look realistic and which contain a lot of noise and artifacts may be insufficient
and fail to pass the verification system. Sub-optimal attacks are probably the most common: they are realistic enough to be
verified as the claimed identity, but their score is low due to the presence of artifacts. Optimal and super-optimal attacks look
more realistically and contain less artifacts, and hence their production may require user cooperation, expensive materials and
high-level skills. Hence, they are usually difficult to create.
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(a) Insufficient attacks
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(b) Sub-optimal attacks
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(c) Optimal attacks
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(d) Super-optimal attacks

Fig. 3: Score distributions of 4 categories of spoofing attacks (hypothetical biometric verification system)

Fig. 4 illustrates the appearance of EPSC for the four hypothetical verification systems in Fig. 3 giving the four different
categories of spoofing attacks. The parameter β = 0.5 is fixed, while the parameter ω varies.

The general trend for all the cases is increasing HTERω as ω increases, but at the same time decreasing SFAR. Certainly,
this is a result of the security cautions taken by EPS framework by accounting on the spoofing attacks when deciding on
the decision threshold. However, there are significant differences in the appearance of EPSC for the systems with different
categories of attacks. For a system which is already robust to spoofing, i.e. puts the attacks in the insufficient category, both
HTERω and SFAR are relatively constant (blue curves). For systems relatively robust to spoofing, i.e. putting the attacks in
the sub-optimal category, the increase of HTERω is mild, while the decrease of SFAR is sharp (green curves). On the other
hand, for systems vulnerable to spoofing, the increase of HTERω is sharp, while the decrease of SFAR is mild (yellow and
red curves).

By visually analyzing and comparing the incline of the EPSC curves for two systems, we can infer which one has higher
robustness to spoofing.
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Fig. 4: EPSC for different categories of spoofing attacks
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Fig. 5: EPSC to compare fusion methods: the four baseline face verification systems fused with LBP-based anti-spoofing
system. The four columns correspond to the four baselines: GMM, LGBPHS, GJet and ISV, respectively. The top row gives

the EPSC for HTERω , while the bottom row the EPSC for SFAR.
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Fig. 6: EPSC to compare anti-spoofing systems: the four baseline face verification systems fused using PLR fusion. The four
columns correspond to the four baselines: GMM, LGBPHS, GJet and ISV, respectively. The top row gives the EPSC for

HTERω , while the bottom row the EPSC for SFAR.
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Fig. 7: Score distributions of fused systems: PLR fusion with ALL anti-spoofing systems. The full green line shows the
SFAR as the threshold changes.
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