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Abstract—We study a lossy source coding problem with secrecy
constraints in which a remote information source should be
transmitted to a single destination via multiple agents in the
presence of a passive eavesdropper. The agents observe noisy
versions of the source and independently encode and transmit
their observations to the destination via noiseless rate-limited
links. The destination should estimate the remote source based
on the information received from the agents within a certain
mean distortion threshold. The eavesdropper, with access to side
information correlated to the source, is able to listen in on one of
the links from the agents to the destination in order to obtain as
much information as possible about the source. This problem can
be viewed as the so-called CEO problem with additional secrecy
constraints. We establish inner and outer bounds on the rate-
distortion-equivocation region of this problem. We also obtain the
region in special cases where the bounds are tight. Furthermore,
we study the quadratic Gaussian case and provide the optimal
rate-distortion-equivocation region when the eavesdropper has
no side information and an achievable region for a more general
setup with side information at the eavesdropper.

Index Terms—CEO problem, multiterminal source coding,
secrecy constraints, eavesdropping, equivocation.

I. INTRODUCTION

As networks are becoming more distributed, their vulner-
ability to malicious activities increases which in turn raises
the concern on the security of such networks. Consequently,
information-theoretic security as a concrete framework for
analyzing secrecy in networks has gained attention among
researchers [2], [3]. Information-theoretic security, which was
initially introduced by Shannon [4], exploits different statis-
tical characteristics of received information at the legitimate
receiver and at the eavesdropper. Moreover, it makes no
assumptions on the computational power of the eavesdropper,
unlike the traditional cryptographic approaches for secrecy.
Later, Wyner introduced the Wiretap channel model in [5] and
showed that perfectly secure communication without a shared
secret key is possible if the channel from the transmitter to
the eavesdropper is a degraded version of the channel to the
legitimate receiver. This result was generalized to broadcast
channels with confidential messages by Csiszár and Körner in
[6]. Subsequently, many extensions to this problem have been
developed and studied in the literature (see, for instance, [2],
[3], and references therein).
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In this paper, we consider secrecy in a multiterminal source
coding problem. In particular, we study the problem of convey-
ing an information source to a single destination via multiple
agents (encoders) in the presence of a passive eavesdropper.
The agents have access to noisy observations of the source and
are connected to the destination via noiseless rate-limited links.
They do not cooperate or communicate to one another and are
not required to estimate the source themselves. This scenario
is of interest for many applications such as sensor networks
or smart grid systems where reconstruction of the source at
sensors and smart meters is not necessary. The distributed
nature of such networks makes them more susceptible to
eavesdropping. At each instant, the eavesdropper listens in on
one of the links from the agents to the destination in order to
obtain information about the source. In addition, it has access
to side information correlated to the source. Since the link
that will be compromised by the eavesdropper is unknown
to the agents prior to their transmissions, each agent should
protect its link in order to leak as little information as possible
about the source. Our objective is to characterize the trade-off
among agents’ transmission rates, incurred distortion at the
destination, and the amount of information revealed to the
eavesdropper. This setup can be viewed as the extension of
the so-called CEO problem [7] in which secrecy constraints
are considered.

A. Related Work

The chief executive/estimation officer (CEO) problem was
motivated in [7] by a communication and distributed pro-
cessing system analogous to a scenario in which a firm’s
CEO is interested in information of a source that cannot be
observed directly. The CEO assigns a group of agents to
independently observe a corrupted version of the source and
communicate their observations. The lossless variant of this
setup was initially studied by Gel’fand and Pinsker [8]. It was
extended by Yamamoto and Itoh [9] as well as Flynn and
Gray [10] to the lossy case with only two encoders for which
an achievable rate-distortion region was derived. The model
was generalized to the CEO problem with many encoders by
Berger and Viswanathan [7] in which the trade-off between the
end-to-end average distortion and sum of the rates at which
the agents transmit to the CEO was studied. Multiterminal
lossy source coding problems, including the CEO problem,
are still open in general. However, for the special case of the
quadratic Gaussian CEO problem [11], the sum-rate-distortion
function for infinite number of agents with identical signal-to-
noise ratios (SNRs) was derived by Oohama [12], and later, the
complete rate-distortion region with arbitrary number of agents
and SNR values was characterized by Prabhakaran et al. [13]
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and Oohama [14]. More recently, Courtade and Weissman [15]
gave the rate-distortion region of the CEO problem under the
logarithmic-loss distortion measure.

Secure lossless source coding with uncoded side informa-
tion at the legitimate decoder and the eavesdropper was studied
by Prabhakaran and Ramchandran [16] with the assumption of
no rate constraint on the encoder-decoder link. The minimum
leakage rate was derived and it was shown that due to
the side information at the eavesdropper, the usual Slepian-
Wolf scheme [17] is not always optimal. Lossless source
coding with coded side information at the decoder (the so-
called one-helper problem) and no side information at the
eavesdropper was studied by Tandon et al. [18] where the
rate-equivocation region was characterized. This setup was ex-
tended by Gündüz et al. [19] with additional side information
at the eavesdropper in which inner and outer bounds on the
compression-equivocation rate region were derived that did
not match in general. Secure distributed lossless compression
of two correlated sources, in which both sources were to be
estimated at the decoder, was considered by Luh and Kundur
[20] without side information at the eavesdropper and by
Gündüz et al. [21] with side information at the eavesdropper.
These models were generalized by Salimi et al. [22] to the case
where both the legitimate receiver and the eavesdropper have
access to correlated side information and the eavesdropper
can choose to intercept either links from the encoders to the
decoder at each instant. In [22], inner and outer bounds for the
compression-equivocation region were provided which were
proved to be tight for several special cases.

The extension to the lossy case was considered in [23]–[25],
and more recently by Villard and Piantanida [26] in which
inner and outer bounds on the rate-distortion-equivocation
region were derived. The optimal characterization of the rate-
distortion-equivocation region was first found in [24] for the
lossy case with uncoded side information. Later in [26], the
optimal characterization for the lossless case was also derived.
A different setup was considered by Kittichokechai et al. [27]
in which the eavesdropper can only access the coded side
information, and the complete region was characterized under
the logarithmic-loss distortion [15]. Chia and Kittichokechai
[28] studied the case when the encoder has access to the side
information of the decoder. Tandon et al. [29] considered a
scenario with two legitimate receivers and investigated the
privacy of side information at one receiver with respect to
the other one. An alternative approach to provide secrecy in
source coding problems is based on having a shared secret key
between the transmitter and the legitimate receiver [30]–[32],
although we do not exploit this approach in our work.

B. Contributions

Our setup in this paper has two main distinctions from
the aforementioned scenarios; first, the destination (CEO) is
interested in estimation of the original source rather than
the agents’ observations as in all prior works. Similarly, the
secrecy constraints in our problem are on the equivocation of
the eavesdropper with respect to the remote source, not to the
observations of the agents. In fact, our setup is a generalization
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Fig. 1. The CEO problem with secrecy constraints.

eavesdropper with respect to the original source, not to the observations of the agents. In fact, our setup

is a generalization of the previous scenarios considered for lossy secure source coding problems. We

extend our previous work [30] for the lossless variant of this problem to the lossy case and we derive

inner and outer bounds on the rate-distortion-equivocation region for the CEO problem with secrecy

constraints. We also investigate the region in special cases where the bounds are tight and we show that

for these special cases our results coincide with the previously obtained results. In addition, we consider

the quadratic Gaussian CEO problem with secrecy constraints and provide an achievable rate region based

on our results for the discrete case.

In this paper, we use capital letters to indicate a random variable, small letters to indicate realization

of a random variable, calligraphic letters to denote a set, e.g,X , and |X | to indicate the cardinality of

the set. The notationXn denotes the sequence{X1, . . . ,Xn}. The notionX − Y −Z shows thatX, Y ,

andZ form a Markov chain. Finally, we defineIM , {1, . . . ,M} for M ∈ N, and [x]+ , max{0, x}
for x ∈ R.

The rest of the paper is organized as follows: in Section II, we describe the problem along with

some definitions. Main results for inner and outer bounds on the rate-distortion-equivocation region are

presented in Section III. Then, we study some special cases of our results in Section IV where the region

is completely characterized. The quadratic Gaussian case is considered in Section V. Finally, the paper

is concluded in Section VI.

II. PROBLEM SETUP

We consider the CEO problem with secrecy constraints as depicted in Fig. 1. In this setup, two agents

have access to length-n observationsY n
1 andY n

2 , respectively, which are noisy versions of the source
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Fig. 1. The CEO problem with secrecy constraints.

of the previous cases considered for lossy secure source coding
problems. We extend our previous work [33] for the lossless
variant of this problem to the lossy case and derive inner and
outer bounds on the rate-distortion-equivocation region of the
CEO problem with secrecy constraints. We also investigate
the region in special cases where the bounds are tight and we
show that for these special cases our results coincide with the
previous results in the literature.

In addition, we consider the quadratic Gaussian CEO
problem with secrecy constraints and provide the optimal
characterization of the rate-distortion-equivocation region for
the case when the eavesdropper has no side information and
an achievable region for a more general setup with side
information at the eavesdropper.

C. Notations and Organization

In this paper, we use capital letters to indicate a random
variable, small letters to indicate realization of a random
variable, calligraphic letters to denote a set, e.g., X , and |X | to
indicate the cardinality of the set. The notation Xn denotes the
sequence {X1, . . . , Xn}. The notion X−Y −Z shows that X ,
Y , and Z form a Markov chain, i.e., p(x, y, z) = p(x, y)p(z|y)
or p(x, y, z) = p(x|y)p(y, z). We define IM := {1, . . . ,M}
for M ∈ N, and [x]+ := max{0, x} for x ∈ R. Finally,
1R>0

(x) : X → {0, 1} denotes the indicator function such
that 1R>0(x) = 1 for x ∈ R>0, and 1R>0(x) = 0 otherwise.

The rest of the paper is organized as follows: In Section II,
we describe the problem along with some definitions. Main
results for inner and outer bounds on the rate-distortion-
equivocation region are presented in Section III. Then, we
study some special cases of our results in Section IV where
the region is completely characterized. The rate-distortion-
equivocation region for the quadratic Gaussian case is given
in Section V. Finally, the paper is concluded in Section VI.

II. PROBLEM SETTING

We consider the CEO problem with secrecy constraints
as depicted in Fig. 1. In this setup, two non-cooperative
and independent agents have access to length-n observations
Y n1 and Y n2 , respectively, which are noisy versions of the
source sequence Xn. These observations are conditionally
independent given Xn. Each agent independently transmits
a compressed version of its observation to the CEO over
a rate-limited noiseless link. The CEO estimates the source
sequence X̂n based on the received information from the two
agents. An eavesdropper, referred to as Eve, with access to
side information En correlated to the source sequence Xn can
eavesdrop only one of the links from the agents to the CEO at
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each time instance to obtain as much information as possible
about the source. Therefore, agents’ transmission rates should
be such that the CEO can reconstruct the source reliably within
a certain mean distortion threshold while simultaneously the
equivocation at Eve is maximized. Eve’s equivocation, with
respect to either links, corresponds to her uncertainty about
the original source when she combines her side information
with the information obtained from the link. We assume that
Eve cannot access both links simultaneously as the links are
noise-free and in such case she would be more powerful
than the CEO for estimating the source due to her additional
side information. The sequences Xn, Y n1 , Y n2 , and En are
independent and identically distributed (i.i.d.) according to
joint distribution p(x, y1, y2, e) = p(x)p(y1|x)p(y2|x)p(e|x)
over the finite alphabet X × Y1 × Y2 × E .

Let d : X ×X → [0, dmax] be a finite distortion measure.
We define the component-wise mean distortion between two
sequences xn, x̂n in Xn as

d(n)(xn, x̂n) :=
1

n

n∑

i=1

d(xi, x̂i). (1)

Definition 1: A (M1,M2, n)-code for compression and
transmission of the source by the agents with secrecy con-
straints consists of an encoding function at each agent, fj :
Ynj → IMj for j ∈ {1, 2}, and a decoding function at the
CEO, g : IM1 × IM2 → Xn. The equivocation rates for this
code are defined as 1

nH
(
Xn|fj(Y nj ), En

)
for j ∈ {1, 2}.

Definition 2: A tuple (R1, R2,∆1,∆2, D) is said to be
achievable if ∀ε > 0 there exists N0 ∈ N>0 such that for all
n > N0 there exists a sequence of (M1,M2, n)-codes with

log(Mj) ≤ n(Rj + ε), ∀j ∈ {1, 2},
H
(
Xn|fj(Y nj ), En

)
≥ n(∆j − ε), ∀j ∈ {1, 2},

E
[
d(n)

(
Xn, g(f1(Y n1 ), f2(Y n2 ))

)]
≤ D + ε.

Let R denote the rate-distortion-equivocation region defined
as the set of all achievable tuples (R1, R2,∆1,∆2, D).

III. INNER AND OUTER BOUNDS ON THE
RATE-DISTORTION-EQUIVOCATION REGION

A. Inner Bound

Theorem 1: LetRin denote the region defined as the closure
of the convex hull of the set of all tuples (R1, R2,∆1,∆2, D)
such that there exist random variables V1, V2, U1, and
U2 on some finite sets V1, V2, U1, and U2, respectively,
according to the distribution p(x, y1, y2, e, v1, v2, u1, u2) =
p(x)p(y1|x)p(y2|x)p(e|x)p(u1|y1)p(u2|y2)p(v1|u1)p(v2|u2)
and a function X̂ : U1 × U2 → X that satisfy

R1 ≥ I(U1;Y1|U2), (2)
R2 ≥ I(U2;Y2|U1), (3)

R1 +R2 ≥ I(U1, U2;Y1, Y2), (4)

∆1 ≤
[
H(X|V1, E)− I(U1;Y1|V1, U2)

+ I(U1;Y1|V1, X)
]+
, (5)

∆2 ≤
[
H(X|V2, E)− I(U2;Y2|V2, U1)

+ I(U2;Y2|V2, X)
]+
, (6)

∆1 + ∆2 ≤
[
H(X|V1, E) +H(X|V2, E)

− I(U1, U2;Y1, Y2|V1, V2)

+ I(U1;Y1|V1, X) + I(U2;Y2|V2, X)
]+
, (7)

∆1 −R2 ≤
[
H(X|V1, E)− I(U2;Y2|U1)

− I(U1;Y1|V1) + I(U1;Y1|V1, X)
]+
, (8)

∆2 −R1 ≤
[
H(X|V2, E)− I(U1;Y1|U2)

− I(U2;Y2|V2) + I(U2;Y2|V2, X)
]+
, (9)

D ≥ E
[
d
(
X, X̂(U1, U2)

)]
. (10)

Then, we have Rin ⊂ R.
Proof: The proof is given in Appendix A.

Proposition 1: In Theorem 1, it suffices to consider aux-
iliary random variables Vj and Uj for j ∈ {1, 2} with
cardinalities |Vj | ≤ |Yj |+ 9 and |Uj | ≤ (|Yj |+ 9)(|Yj |+ 5),
respectively (see Appendix B for the proof).

The achievability scheme resulting in the inner bound is
based on superposition coding and random binning at the
agents, and joint decoding at the CEO. In particular, agent
j first transmits the bin index related to the auxiliary random
variable Vj with distribution p(vj |uj) via the noiseless link.
Then, the agents send the remaining information which is
required for the CEO to be able to reconstruct the source based
on the Wyner-Ziv scheme [34]. The detailed proof is given
in Appendix A, however, we provide some intuitions on the
results. Inequalities (2)–(4) and (10) are similar to the Berger-
Tung bounds [35], [36] that establish perfect estimation of U1

and U2 at the CEO from which X can be reconstructed within
the distortion limit D. In the equivocation bounds (5) and
(6), the first term corresponds to Eve’s uncertainty about the
source after decoding the codeword vnj based on the received
bin index combined with her side information and the second
term is the reduction in her uncertainty when receiving the
remaining information transmitted to the CEO by the agents.
Finally, the last term in (5) and (6) stems from the fact that
in contrast to previous works, the secrecy constraints are on
Eve’s equivocation with respect to the original source while
the transmitted information by the agents are functions of their
respective observations and not the source, resulting in an
increase in Eve’s uncertainty. Inequalities (8) and (9) depict a
trade-off between Eve’s equivocation and transmission rates,
implying that each link’s transmission rate limits the other
link’s equivocation rate.

Remark 1: The region of Theorem 1 can also be obtained
by constructing six different codes achieving the corner points
shown in Tables I–II and using the time-sharing technique
between these points. Each corner point is achieved using a
four-step communication to transmit variables V1, V2, U1, and
U2 to the CEO with different decoding orders, provided that Vj
is decoded prior to Uj for j ∈ {1, 2}. In each step, previously
received and decoded information at the CEO is used as side
information for the current decoding step. Each code employs
superposition coding, with Vj as the first layer and Uj as the
second layer, and random binning based on the available side
information at the CEO in each communication step.
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TABLE I
CORNER POINTS OF THE INNER REGION CORRESPONDING TO DIFFERENT DECODING ORDERS: RATES AND DISTORTION.

Corner point Decoding order R1 R2 D

1 V2, U2, V1, U1 I(U1;Y1|U2) I(U2;Y2) E
[
d
(
X, X̂(U1, U2)

)]
2 V2, V1, U2, U1 I(V1;Y1|V2) + I(U1;Y1|V1, U2) I(V2;Y2) + I(U2;Y2|V1, V2) E

[
d
(
X, X̂(U1, U2)

)]
3 V1, V2, U2, U1 I(V1;Y1) + I(U1;Y1|V1, U2) I(U2;Y2|V1) E

[
d
(
X, X̂(U1, U2)

)]
4 V1, U1, V2, U2 I(U1;Y1) I(U2;Y2|U1) E

[
d
(
X, X̂(U1, U2)

)]
5 V1, V2, U1, U2 I(V1;Y1) + I(U1;Y1|V1, V2) I(V2;Y2|V1) + I(U2;Y2|V2, U1) E

[
d
(
X, X̂(U1, U2)

)]
6 V2, V1, U1, U2 I(U1;Y1|V2) I(V2;Y2) + I(U2;Y2|V2, U1) E

[
d
(
X, X̂(U1, U2)

)]
TABLE II

CORNER POINTS OF THE INNER REGION CORRESPONDING TO DIFFERENT DECODING ORDERS: EQUIVOCATION RATES.

Corner point Decoding order ∆1 ∆2

1 V2, U2, V1, U1

[
H(X|V1, E)− I(U1;Y1|V1, U2) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V2) + I(U2;Y2|V2, X)

]+
2 V2, V1, U2, U1

[
H(X|V1, E)− I(U1;Y1|V1, U2) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V1, V2) + I(U2;Y2|V2, X)

]+
3 V1, V2, U2, U1

[
H(X|V1, E)− I(U1;Y1|V1, U2) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V1, V2) + I(U2;Y2|V2, X)

]+
4 V1, U1, V2, U2

[
H(X|V1, E)− I(U1;Y1|V1) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V2, U1) + I(U2;Y2|V2, X)

]+
5 V1, V2, U1, U2

[
H(X|V1, E)− I(U1;Y1|V1, V2) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V2, U1) + I(U2;Y2|V2, X)

]+
6 V2, V1, U1, U2

[
H(X|V1, E)− I(U1;Y1|V1, V2) + I(U1;Y1|V1, X)

]+ [
H(X|V2, E)− I(U2;Y2|V2, U1) + I(U2;Y2|V2, X)

]+

B. Outer Bound

Theorem 2: Let Rout denote the region defined as the
closure of the set of all tuples (R1, R2,∆1,∆2, D) such that
there exist random variables V1, V2, U1, and U2 on some finite
sets V1, V2, U1, and U2, respectively, which form Markov
chains Vj − Uj − Yj − (X,E, Yj′) for j, j′ ∈ {1, 2} with
j 6= j′, and a function X̂ : U1 × U2 → X that satisfy

R1 ≥ I(U1;Y1|U2), (11)
R2 ≥ I(U2;Y2|U1), (12)

R1 +R2 ≥ I(U1, U2;Y1, Y2), (13)
∆1 ≤ H(X|E)− I(X;V1|E), (14)
∆2 ≤ H(X|E)− I(X;V2|E), (15)

∆1 −R2 ≤ H(X|E)− I(X;V1|E)− I(X;V2|V1, E), (16)
∆2 −R1 ≤ H(X|E)− I(X;V2|E)− I(X;V1|V2, E), (17)

D ≥ E
[
d
(
X, X̂(U1, U2)

)]
. (18)

Then, we have R ⊂ Rout.
Proof: The proof is given in Appendix C.

Proposition 2: In Theorem 2, it suffices to consider aux-
iliary random variables Vj and Uj for j ∈ {1, 2} with
cardinalities |Vj | ≤ |Yj |+ 7 and |Uj | ≤ (|Yj |+ 7)(|Yj |+ 3),
respectively (see Appendix D for the proof).

IV. SPECIAL CASE: THE ONE-HELPER PROBLEM WITH
SECRECY CONSTRAINTS

If Agent 1 has access to the source sequence Xn, our setup
reduces to the lossy source coding problem with a helper and
an eavesdropper who can choose to listen in on either source-
destination or helper-destination links.

Corollary 1: In the above setting, if we additionally assume
the helper’s link is perfectly secure, our results coincide with
the results given by Villard and Piantanida [26, Theorem 3].

The inner bound is obtained by setting Y1 = X , V2 = U2, and
removing the constraints on ∆2 in Theorem 1, and the outer
bound can be proved similar to the proof of Theorem 2.

Corollary 2: In the described one-helper problem with se-
crecy constraints, if R2 ≥ H(Y2), the helper’s sequence can
be reconstructed by the destination losslessly. Then, the rate-
distortion-equivocation region is characterized by

R1 ≥ I(X;U1|Y2), (19)

∆1 ≤
[
H(X|V1, E)− I(U1;Y1|V1, Y2)

]+
, (20)

∆2 ≤ H(X|Y2, E), (21)

D ≥ E
[
d
(
X, X̂(U1, Y2)

)]
, (22)

where the auxiliary random variables V1 and U1 satisfy the
Markov chain V1 − U1 −X − (E, Y2).

The achievability proof follows from the proof of Theorem 1
by setting Y1 = X and V2 = U2 = Y2. Inequalities (7)–(9)
are inactive for this setup. The converse proof is given in [26,
Theorem 3] for the secure lossy source coding with uncoded
side information. Note that if Eve intercepts the helper’s link,
it can also reconstruct the helper’s sequence Y n2 losslessly.

Corollary 3: For the lossless one-helper setting, i.e., D =
0, if R2 ≥ H(Y2), the rate-equivocation region writes as:

R1 ≥ H(X|Y2), (23)
∆1 ≤ I(X;Y2|V1)− I(X;E|V1), (24)
∆2 ≤ H(X|Y2E). (25)

The achievability proof follows from the proof of Theorem 1
by setting U1 = Y1 = X and V2 = U2 = Y2. The converse
proof is similar to the proof given in [16].

Corollary 4: For the lossless one-helper setting, i.e., D =
0, if the eavesdropper has no side information, the rate-
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Theorem 3: In the quadratic Gaussian CEO problem with

secrecy constraints, the rate-distortion-equivocation region is

characterized by the set of all tuples (R1, R2,∆1,∆2, D) such

that

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (18)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (19)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (20)

∆1 ≤
[
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)]+
, (21)

∆2 ≤
[
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)]+
, (22)

∆1 +∆2 ≤
[
log(2πe)− 1

2
log

1

D
− 1

2
log

1

σ2
X

]+
, (23)

∆1 −R2 ≤
[
1

2
log(2πe)− 1

2
log

1

D
− r2

]+
, (24)

∆2 −R1 ≤
[
1

2
log(2πe)− 1

2
log

1

D
− r1

]+
, (25)

for some (r1, r2) ∈ R2
+ that satisfy

1

D
≤ 1

σ2
X

+
1− 2−2r1

σ2
N1

+
1− 2−2r2

σ2
N2

. (26)

Proof: The proof is given in Appendix D.

Now, we consider the case where Eve has access to addi-

tional side information correlated with the source. We model

this side information as E = X+NE where NE is a Gaussian

random variable with NE ∼ N (0, σ2
NE

) and is independent of

X , N1, and N2.

The following theorem gives an inner bound for the rate-

distortion-equivocation region of the quadratic Gaussian CEO

problem with secrecy constraints and side information at the

eavesdropper.

Theorem 4: In the quadratic Gaussian CEO problem with

secrecy constraints and side information at the eavesdropper,

the tuple (R1, R2,∆1,∆2, D) is achievable if

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (27)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (28)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (29)

∆1 ≤
[
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)
− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
+ T1

]+
, (30)

∆2 ≤
[
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)
− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
+ T2

]+
, (31)

Fig. 2. The quadratic Gaussian case with no side information at Eve.

equivocation region is characterized by

R1 ≥ H(X|U2), (26)
R2 ≥ I(Y2;U2), (27)
∆1 ≤ I(X;U2), (28)
∆2 ≤ H(X|U2). (29)

The achievability is a special case of Theorem 1 and obtained
by setting V1 and E to be constants, U1 = Y1 = X , and
V2 = U2. The proof of converse is given in Appendix E.

V. THE QUADRATIC GAUSSIAN CASE

In this section, we study the Gaussian CEO problem with
secrecy constraints and quadratic distortion measure.

Let X be a Gaussian source, i.e., X ∼ N (0, σ2
X). The

observations at the agents are modeled as Yj = X + Nj for
j ∈ {1, 2}, with Nj ∼ N (0, σ2

Nj
), where Gaussian random

variables X , N1, and N2 are mutually independent.
First, we consider the case where the eavesdropper has

no side information. The model is depicted in Fig. 2 and
the following theorem provides the complete rate-distortion-
equivocation region for this Gaussian setup.

Theorem 3: In the quadratic Gaussian CEO problem with
secrecy constraints, the rate-distortion-equivocation region is
characterized by the set of all tuples (R1, R2,∆1,∆2, D)
satisfying

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (30)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (31)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (32)

∆1 ≤
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (33)

∆2 ≤
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (34)

∆1 + ∆2 ≤ log(2πe)− 1

2
log

1

D
− 1

2
log

1

σ2
X

, (35)

∆1 −R2 ≤
1

2
log(2πe)− 1

2
log

1

D
− r2, (36)

∆2 −R1 ≤
1

2
log(2πe)− 1

2
log

1

D
− r1, (37)
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Fig. 3. An example of the rate-distortion-equivocation region for the
quadratic Gaussian case with no side information at Eve and different
distortion constraints.

for some (r1, r2) ∈ R2
≥0 that satisfy

1

D
≤ 1

σ2
X

+
1− 2−2r1

σ2
N1

+
1− 2−2r2

σ2
N2

. (38)

Proof: The proof is given in Appendix F.
An example of the region of Theorem 3 is illustrated in

Fig. 3 for different distortion constraints.
Remark 2: We note that equivocation as the secrecy mea-

sure in the finite alphabet setting represents the uncertainty
of Eve about the source, but in the Gaussian setting, this
interpretation is not quite valid. However, based on [37, The-
orem 8.6.6], we can relate the equivocation rate (normalized
differential entropy) to the estimation error at the eavesdropper.
That is, we define the secrecy measure in the Gaussian setting
as

1

n
E
[∥∥Xn − Ẑ(n)

(
fj(Y

n
j ), En

)∥∥2
]
≥ 1

2πe
e2∆j , θj , (39)

for j = 1, 2, where Ẑ(n)
(
fj(Y

n
j ), En

)
is an estimator of Xn

at the eavesdropper. Then, we have ∆j = 1
2 log(2πeθj), and

in this sense, equivocation rate provides a lower bound on the
normalized distortion at Eve. Moreover, we can relate this to
the information leakage rate as

1

n
I
(
Xn; fj(Y

n
j , E

n)
)

= h(X)− 1

n
h
(
fj(Y

n
j , E

n)
)

≤ h(X)−∆j

= h(X)− 1

2
log(2πeθj), (40)

which is also in line with the result in [38, Theorem 7.3].
Next, we consider the case where Eve has access to addi-

tional side information correlated to the source as shown in
Fig. 4. We model this side information as E = X+NE where
NE is a Gaussian random variable with NE ∼ N (0, σ2

NE
) and

is independent of X , N1, and N2. The following theorem gives
an inner bound for the rate-distortion-equivocation region of
the quadratic Gaussian CEO problem with secrecy constraints
and side information at the eavesdropper.
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Theorem 4: In the quadratic Gaussian CEO problem with
secrecy constraints and side information at the eavesdropper,
a tuple (R1, R2,∆1,∆2, D) is achievable if

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (41)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (42)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (43)

∆1 ≤
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)

− 1

2
log

1

D
+

1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
+T1, (44)

∆2 ≤
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)

− 1

2
log

1

D
+

1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
+T2, (45)

∆1 + ∆2 ≤ log(2πe)− log

(
1

σ2
X

+
1

σ2
NE

)
− 1

2
log

1

D

+
1

2
log

1

σ2
X

+ T1 + T2

+
1

2
log

(
σ2
X+

σ2
N1

1−2−2r1

σ2
N1

1−2−2r1
+

σ2
N2

1−2−2r2

)
1R>0

(T1+T2),

(46)

∆1 −R2 ≤
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)

− 1

2
log

1

D
− r2 + T1

+
1

2
log

(
σ2
X+

σ2
N1

1−2−2r1

σ2
N1

1−2−2r1
+

σ2
N2

1−2−2r2

)
1R>0(T1), (47)

∆2 −R1 ≤
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)

− 1

2
log

1

D
− r1 + T2

+
1

2
log

(
σ2
X+

σ2
N1

1−2−2r1

σ2
N1

1−2−2r1
+

σ2
N2

1−2−2r2

)
1R>0

(T2), (48)

where 1R>0
(·) is the indicator function and

T1 := max

{
0,

1

2
log

(
1 +

σ2
N2

1−2−2r2
− σ2

NE

σ2
N1

1−2−2r1
+ σ2

NE

)}
, (49)

T2 := max

{
0,

1

2
log

(
1 +

σ2
N1

1−2−2r1
− σ2

NE

σ2
N2

1−2−2r2
+ σ2

NE

)}
, (50)

for some (r1, r2) ∈ R2
≥0 that satisfy

1

D
≤ 1

σ2
X

+
1− 2−2r1

σ2
N1

+
1− 2−2r2

σ2
N2

. (51)

Proof: The proof is given in Appendix G.
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Fig. 2. The Quadratic Gaussian case.
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Theorem 3: In the quadratic Gaussian CEO problem with

secrecy constraints, the rate-distortion-equivocation region is

characterized by the set of all tuples (R1, R2,∆1,∆2, D) such

that

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (18)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (19)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (20)

∆1 ≤
[
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)]+
, (21)

∆2 ≤
[
1

2
log(2πeσ2

X)− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)]+
, (22)

∆1 +∆2 ≤
[
log(2πe)− 1

2
log

1

D
− 1

2
log

1

σ2
X

]+
, (23)

∆1 −R2 ≤
[
1

2
log(2πe)− 1

2
log

1

D
− r2

]+
, (24)

∆2 −R1 ≤
[
1

2
log(2πe)− 1

2
log

1

D
− r1

]+
, (25)

for some (r1, r2) ∈ R2
+ that satisfy

1

D
≤ 1

σ2
X

+
1− 2−2r1

σ2
N1

+
1− 2−2r2

σ2
N2

. (26)

Proof: The proof is given in Appendix D.

Now, we consider the case where Eve has access to addi-

tional side information correlated with the source. We model

this side information as E = X+NE where NE is a Gaussian

random variable with NE ∼ N (0, σ2
NE

) and is independent of

X , N1, and N2.

The following theorem gives an inner bound for the rate-

distortion-equivocation region of the quadratic Gaussian CEO

problem with secrecy constraints and side information at the

eavesdropper.

Theorem 4: In the quadratic Gaussian CEO problem with

secrecy constraints and side information at the eavesdropper,

the tuple (R1, R2,∆1,∆2, D) is achievable if

R1 ≥ r1+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
, (27)

R2 ≥ r2+
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
, (28)

R1 +R2 ≥ r1 + r2 +
1

2
log

1

D
− 1

2
log

1

σ2
X

, (29)

∆1 ≤
[
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)
− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
+ T1

]+
, (30)

∆2 ≤
[
1

2
log(2πe)− 1

2
log

(
1

σ2
X

+
1

σ2
NE

)
− 1

2
log

1

D

+
1

2
log

(
1

σ2
X

+
1− 2−2r1

σ2
N1

)
+ T2

]+
, (31)

Fig. 4. The quadratic Gaussian case with side information at Eve.

Note that if there is no correlation between Eve’s side
information and the source, i.e., σ2

NE
→ ∞, the region of

Theorem 4 coincides with the one in Theorem 3.

VI. CONCLUSION

We studied the extension of the CEO problem with secrecy
constraints. This setup is of interest to communication scenar-
ios such as sensor networks or smart power grids in which
links are vulnerable to eavesdropping. We derived inner and
outer bounds on the rate-distortion-equivocation region in the
discrete case. We also showed that the results that were derived
for the one-helper problem with secrecy constraints in [18]
and [26] can be obtained as special cases of our results for the
CEO problem with secrecy constraints. In addition, we provide
the optimal region for the quadratic Gaussian case when Eve
has no side information as well as an achievable region for a
more general case. In this work, we have considered noise-
free links from the agents to the CEO, however, it would
be interesting to investigate the effects of noisy channels in
this problem. Moreover, extending this problem to include
more agents and eavesdroppers with possibly different side
information is another direction worthwhile investigating.

APPENDIX A
PROOF OF THEOREM 1: THE INNER BOUND

We first state the following lemma that we use in the proof
of Theorem 1. The lemma follows from [2, Section 2.3].

Lemma 1: Let Cn be a random codebook and s be the
corresponding codeword index of V n from this codebook.
Let Pr

(
(V n(s), En) ∈ T (n)

ε

)
→ 1 as n → ∞, where T (n)

ε

denotes the set of jointly ε-typical n-sequences. Then, we have

H(En|s, Cn) ≤ n
(
H(E|V ) + ε

)
. (52)

Proof of Lemma 1: Let Z be a binary variable such that

Z =

{
1 if (V n, En) ∈ T (n)

ε

0 otherwise.

If Pr(Z = 0) ≤ ε for sufficiently large n, we have

H(En|s, Cn) ≤ H(En|V n, Cn)

≤ H(En|V n, Z) +H(Z)

≤ Pr(Z = 1)H(En|V n, Z = 1)

+ Pr(Z = 0)H(En|V n, Z = 0) +H(Z)

≤ H(En|V n, Z = 1) + nε log |E|+H(Z)

≤
∑

vn∈T (n)
ε

p(vn|Z = 1)H(En|V n = vn, Z = 1)
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+ nε log |E|+H(Z)

≤
∑

vn∈T (n)
ε

p(vn|Z = 1) log |T (n)
ε (E|vn)|

+ nε log |E|+H2(ε)

≤ n
(
H(E|V ) + ε′

)
, (53)

where H2(·) is the binary entropy function. The last inequality
is due to properties of jointly typical sequences [39, Chap-
ter 2].
Now, we proceed to prove Theorem 1.

Let V1, V2, U1, and U2 be random variables on some
finite sets V1, V2, U1, and U2 according to the joint distribu-
tion p(x, y1, y2, e, v1, v2, u1, u2) = p(x)p(y1|x)p(y2|x)p(e|x)
p(u1|y1)p(u2|y2)p(v1|u1)p(v2|u2), along with a function X̂ :
U1 × U2 → X satisfying the conditions of Theorem 1.

Codebook generation: For fixed conditional distribu-
tions p(uj |yj) and p(vj |uj), j = 1, 2, randomly gen-
erate 2n(I(Vj ;Yj)+ε1) independent codewords vnj (sj) of
length n according to

∏n
i=1 PVj (vj,i(sj)), where sj ∈

{1, . . . , 2n(I(Vj ;Yj)+ε1)}. Then, divide them into 2n(RVj+ε2)

equal-sized bins, indexed by bj ∈ {1, . . . , 2n(RVj+ε2)}
and denoted by {Bj(bj)}. For each codeword vnj (sj),
randomly generate 2n(I(Uj ;Yj |Vj)+ε3) independent sequences
unj (sj , s

′
j) according to

∏n
i=1 PUj (uj,i(sj , s

′
j)), and divide

them into 2n(RUj+ε4) equal-sized bins, indexed by wj ∈
{1, . . . , 2n(RUj+ε4)} and denoted by {B′j(sj , wj)}. Define
Rj = RVj + RUj for j = 1, 2. The codebook is revealed
to the agents, CEO, and Eve.

Encoding: Assume that the sequence ynj is observed by
Agent j, j = 1, 2. Find a codeword vnj (sj) jointly typical
with ynj . If there is more than one such codeword, select one
uniformly at random. If there is no such vnj , select one out
of 2n(I(Vj ;Yj)+ε1) uniformly at random. Given vnj (sj), find a
codeword unj (sj , s

′
j) jointly typical with ynj . If there is more

than one such codeword, select one uniformly at random.
If there is no such unj , select one out of 2n(I(Uj ;Yj |Vj)+ε3)

uniformly at random. The agent transmits the bin indices bj
and wj of the codewords vnj (sj) ∈ Bj(bj) and unj (sj , s

′
j) ∈

B′j(sj , wj), respectively, i.e., fj(ynj ) = (bj , wj).
Decoding at the CEO: Given the received messages from

both agents, J1 = (b1, w1) and J2 = (b2, w2), find a
unique index tuple (ŝ1, ŝ

′
1, ŝ2, ŝ

′
2) such that the codewords

(vn1 (ŝ1), un1 (ŝ1, ŝ
′
1), vn2 (ŝ2), un2 (ŝ2, ŝ

′
2)) are jointly typical, and

they are in the bin indexed by (b1, w1, b2, w2). If there is such a
unique index tuple, compute the source estimate component-
wise as x̂i = gi(J1, J2) := X̂

(
u1,i(ŝ1, ŝ

′
1), u2,i(ŝ2, ŝ

′
2)
)

for
i = 1, . . . , n; otherwise set the output to an arbitrary sequence
in Xn.

Error analysis: Let (s1, s
′
1, s2, s

′
2) and (ŝ1, ŝ

′
1, ŝ2, ŝ

′
2) be

the chosen indices at the encoders and decoder, respectively.
Let Pr(E) denote the probability of an error event during
encoding and decoding steps. We now show that this prob-
ability, averaged over all possible codebooks, tends to zero as
n → ∞ provided that conditions of Theorem 1 is satisfied.
Consider the following error events in the encoding steps (for

j, j′ = 1, 2, and j 6= j′):

E0 =
{(
Sn, Y n1 , Y

n
2 , E

n
)
/∈ T (n)

δ (S, Y1, Y2, E)
}
,

E1 =Ec0 ∩
{(
V nj (s̃j), Y

n
j

)
/∈ T (n)

δ (Vj , Yj)
}
,

∀s̃j ∈ {1, . . . , 2n(I(Vj ;Yj)+ε1)},
E2 =Ec0 ∩ Ec1 ∩

{(
Unj (sj , s̃

′
j), Y

n
j

)
/∈ T (n)

δ (Uj , Yj |vnj (sj))
}
,

∀s̃′j ∈ {1, . . . , 2n(I(Uj ;Yj |Vj)+ε3)},

E3 =
( 2⋂

t=0

Ect

)
∩
{(
V nj (sj), Y

n
1 , Y

n
2

)
/∈ T (n)

δ (Vj , Y1, Y2)
}
,

E4 =
( 3⋂

t=0

Ect

)
∩
{(
Unj (sj , s

′
j), Y

n
1 , Y

n
2

)

/∈ T (n)
δ (Uj , Y1, Y2|vnj (sj))

}
,

E5 =
( 4⋂

t=0

Ect

)
∩
{(
V nj (sj), U

n
j′(sj′ , s

′
j′), Y

n
1 , Y

n
2

)

/∈ T (n)
δ (Vj , Uj′ , Y1, Y2|vnj′(sj′))

}
,

E6 =
( 5⋂

t=0

Ect

)
∩
{(
V n1 (s1), V n2 (s2), Y n1 , Y

n
2

)

/∈ T (n)
δ (V1, V2, Y1, Y2)

}
,

E7 =
( 6⋂

t=0

Ect

)
∩
{(
Un1 (s1, s

′
1), Un2 (s2, s

′
2), Y n1 , Y

n
2

)

/∈ T (n)
δ (U1, U2, Y1, Y2|vn1 (s1), vn2 (s2))

}
.

Next, consider the following error event in decoding step:

E8 =
( 7⋂

t=0

Ect

)
∩
{(
V n1 (s̃1), Un1 (s̃1, s̃

′
1), V n2 (s̃2), Un2 (s̃2, s̃

′
2)
)

∈ T (n)
δ (V1, U1, V2, U2),

for some (s̃1, s̃
′
1, s̃2, s̃

′
2) 6= (s1, s

′
1, s2, s

′
2),

s.t.
(
V n1 (s̃1), Un1 (s̃1, s̃

′
1), V n2 (s̃2), Un2 (s̃2, s̃

′
2)
)

∈ B1(b1)× B′1(s̃1, w1)× B2(b2)× B′2(s̃2, w2)
}
.

Finally, by the union of events bound, the probability of error
in the encoding and decoding steps is upper bounded as

Pr(E) ≤ Pr
( 8⋃

t=0

Et
)
≤

8∑

t=0

Pr(Et). (54)

We proceed to bound each term in (54). From properties of
typical sequences, Pr(E0) vanishes as n → ∞. By covering
lemma [39, Lemma 3.3], Pr(E1) and Pr(E2) tend to zero as
n → ∞. For j, j′ = 1, 2, and j 6= j′, since

{
Y nj′ |V nj (sj) =

vnj , Y
n
j = ynj

}
∼ ∏n

i=1 p(yj′,i|yj,i), by conditional typicality
lemma [39, Chapter 2], Pr(E3) tends to zero as n → ∞.
Similarly, as

{
Y nj′ |V nj (sj) = vnj , U

n
j (sj , s

′
j) = unj , Y

n
j =

ynj
}
∼∏n

i=1 p(yj′,i|yj,i), Pr(E4) also vanishes as n→∞. To
bound Pr(E5), let (vnj′ , u

n
j′ , y

n
1 , y

n
2 ) ∈ T (n)

δ (Vj′ , Uj′ , Y1, Y2).
Then, Pr

(
V nj (sj)|V nj′ (sj′) = vnj′ , U

n
j (sj , s

′
j) = unj′ , Y

n
1 =

yn1 , Y
n
2 = yn2 ) = p(vnj |ynj

)
, and by Markov lemma [39,
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Lemma 12.1], Pr(E5) tends to zero as n→∞. Using similar
steps and based on Markov lemma, Pr(E6) and Pr(E7) also
tend to zeros as n→∞.

As can be seen from E8, in the decoding step, an error oc-
curs if the decoded codewords are jointly typical and they are
in the bin indexed by (b1, w1, b2, w2), however, the decoded
tuple (ŝ1, ŝ

′
1, ŝ2, ŝ

′
2) of codeword indices are different from

the chosen ones at the encoders, i.e., (s1, s
′
1, s2, s

′
2). We split

this event into eight possible events (other events result in the
same constraints as one of these eight events) and bound its
probability using the union of events bound as follows:

Pr(E8) = Pr
(
(ŝ1, ŝ

′
1, ŝ2, ŝ

′
2) 6= (s1, s

′
1, s2, s

′
2)
)

(55)
≤ Pr(ŝ1 6= s1) (56)

+ Pr(ŝ1 = s1, ŝ2 6= s2) (57)
+ Pr(ŝ1 6= s1, ŝ2 = s2) (58)
+ Pr(ŝ1 = s1, ŝ

′
1 6= s′1, ŝ2 = s2) (59)

+ Pr(ŝ1 = s1, ŝ
′
1 = s′1, ŝ2 6= s2) (60)

+ Pr(ŝ1 6= s1, ŝ2 = s2, ŝ
′
2 = s′2) (61)

+ Pr(ŝ1 = s1, ŝ
′
1 = s′1, ŝ2 = s2, ŝ

′
2 6= s′2) (62)

+ Pr(ŝ1 = s1, ŝ
′
1 6= s′1, ŝ2 = s2, ŝ

′
2 = s′2). (63)

Now, we consider each of the terms in (56)–(63).

Pr(ŝ1 6= s1)

= Pr
(
∃ŝ1 6= s1, s̃

′
1, s̃2, s̃

′
2, s.t.

(
vn1 (ŝ1), un1 (ŝ1, s̃

′
1),

vn2 (s̃2), un2 (s̃2, s̃
′
2)
)
∈ T (n)

δ (V1, U1, V2, U2)

∩
{
B1(b1)× B′1(ŝ1, w1)× B2(b2)× B′2(s̃2, w2)

})

≤ Pr
(

(V n1 , U
n
1 , V

n
2 , U

n
2 ) ∈ T (n)

δ (V1, U1, V2, U2)
∣∣

(V n1 , U
n
1 ) ∈ T (n)

δ (V1, U1), (V n2 , U
n
2 ) ∈ T (n)

δ (V2, U2)
)

· 2n
∑2
j=1[I(Vj ;Yj)+ε1−RVj+I(Uj ;Yj |Vj)+ε3−RUj ]

(a)

≤ 2−n(I(V1,U1;V2,U2)−η)

· 2n
∑2
j=1[I(Vj ;Yj)+ε1−RVj+I(Uj ;Yj |Vj)+ε3−RUj ]

= 2n(
∑2
j=1[I(Vj ;Yj)+ε1−RVj+I(Uj ;Yj |Vj)+ε3−RUj ]−I(U1;U2)+η),

(64)

where (a) is due to the mutual packing lemma [39,
Lemma 12.2]. Therefore, Pr(ŝ1 6= s1) vanishes as n → ∞
if

2∑

j=1

RVj +RUj ≥
2∑

j=1

I(Vj ;Yj) + I(Uj ;Yj |Vj)− I(U1;U2)

(a)
= I(U1;Y1) + I(U2;Y2)− I(U1;U2)

(b)
= I(U1, U2;Y1, Y2), (65)

where (a) and (b) follow from the long Markov chain V1 −
U1 − Y1 − Y2 − U2 − V2.

Next, we bound the probability of the event in which s1 is
correctly decoded but not s2, i.e., (57) as

Pr(ŝ1 = s1, ŝ2 6= s2)

= Pr
(
∃ŝ2 6= s2, s̃

′
1, s̃
′
2, s.t.

(
vn1 (s1), un1 (s1, s̃

′
1),

vn2 (ŝ2), un2 (ŝ2, s̃
′
2)
)
∈ T (n)

δ (V1, U1, V2, U2)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(ŝ2, w2)

})

≤ Pr
(

(V n1 , U
n
1 , V

n
2 , U

n
2 ) ∈ T (n)

δ (V1, U1, V2, U2)
∣∣

(V n1 , U
n
1 ) ∈ T (n)

δ (V1, U1), (V n2 , U
n
2 ) ∈ T (n)

δ (V2, U2)
)

· 2n(I(V2;Y2)+ε1−RV2+
∑2
j=1[I(Uj ;Yj |Vj)+ε3−RUj ])

≤ 2n(I(V2;Y2)+ε1−RV2+
∑2
j=1[I(Uj ;Yj |Vj)+ε3−RUj ]−I(U1;U2)+η),

(66)

Therefore, Pr(ŝ1 = s1, ŝ2 6= s2) vanishes as n→∞ if

RV2
+

2∑

j=1

RUj ≥ I(V2;Y2) +

2∑

j=1

I(Uj ;Yj |Vj)− I(U1;U2)

(a)
= I(U1;Y1|V1) + I(U2;Y2|U1)

(b)
= I(U1;Y1, Y2|V1) + I(U2;Y1, Y2|V1, U1)

(c)
= I(U1, U2;Y1, Y2|V1), (67)

where (a), (b), and (c) follow from the Markov chain V1−U1−
Y1 − Y2 − U2 − V2. With similar steps, Pr(ŝ1 6= s1, ŝ2 = s2)
in (58) tends to zero as n→∞ if

RV1
+

2∑

j=1

RUj ≥ I(U1, U2;Y1, Y2|V2). (68)

We now bound (59) where s1 and s2 are decoded correctly:

Pr(ŝ1 = s1, ŝ
′
1 6= s′1, ŝ2 = s2)

= Pr
(
∃ŝ′1 6= s′1, s̃

′
2, s.t.

(
vn1 (s1), un1 (s1, ŝ

′
1),

vn2 (s2), un2 (s2, s̃
′
2)
)
∈ T (n)

δ (V1, U1, V2, U2)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(s2, w2)

})

= Pr
((

(V n1 , U
n
1 ), V n2 , U

n
2

)
∈ T (n)

δ (V1, U1, V2, U2)

∩ (V n1 , U
n
1 , V

n
2 ) ∈ T (n)

δ (V1, U1, V2)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(s2, w2)

})

= Pr
((

(V n1 , U
n
1 ), V n2 , U

n
2

)
∈ T (n)

δ (V1, U1, V2, U2)
∣∣

(V n1 , U
n
1 ) ∈ T (n)

δ (V1, U1), (V n2 , U
n
2 ) ∈ T (n)

δ (V2, U2)
)

· Pr
(

(V n1 , U
n
1 , V

n
2 ) ∈ T (n)

δ (V1, U1, V2)
∣∣

(V n1 , U
n
1 ) ∈ T (n)

δ (V1, U1), (V n1 , V
n
2 ) ∈ T (n)

δ (V1, V2)
)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(s2, w2)

})

(a)

≤ 2−n(I(V1,U1;U2|V2)−η) · 2−n(I(U1;V2|V1)−η)

· 2n
∑2
j=1[I(Uj ;Yj |Vj)+ε3−RUj ]
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= 2n(
∑2
j=1[I(Uj ;Yj |Vj)+ε3−RUj ]−I(V1,U1;U2|V2)−I(U1;V2|V1)+2η),

(69)

where (a) follows from the joint typicality lemma and the fact
that Un2 ∼

∏n
i=1 p(u2,i|v2,i), and Un1 ∼

∏n
i=1 p(u1,i|v1,i).

Therefore, Pr(ŝ1 = s1, ŝ
′
1 6= s′1, ŝ2 = s2) vanishes as n→∞

if
2∑

j=1

RUj ≥ I(U1;Y1|V1)− I(U1;V2|V1) + I(U2;Y2|V2)

− I(V1, U1;U2|V2)

(a)
= I(U1;Y1|V1, V2) + I(U2;Y2|V1, U1, V2)

(b)
= I(U1;Y1, Y2|V1, V2) + I(U2;Y1, Y2|V1, U1, V2)

= I(U1, U2;Y1, Y2|V1, V2), (70)

where (a) is due the Markov chains U1 − Y1 − V2 and U2 −
Y1 − (U1, V1), (b) is due to Uj − Yj − Yj′ .

Next, for (60), we have

Pr(ŝ1 = s1, ŝ
′
1 = s′1, ŝ2 6= s2)

= Pr
(
∃ŝ2 6= s2, s̃

′
2, s.t.

(
vn1 (s1), un1 (s1, s

′
1),

vn2 (ŝ2), un2 (ŝ2, s̃
′
2)
)
∈ T (n)

δ (V1, U1, V2, U2)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(ŝ2, w2)

})

≤ Pr
(

(V n1 , U
n
1 , V

n
2 , U

n
2 ) ∈ T (n)

δ (V1, U1, V2, U2)
∣∣

(V n1 , U
n
1 ) ∈ T (n)

δ (V1, U1), (V n2 , U
n
2 ) ∈ T (n)

δ (V2, U2)
)

· 2n(I(V2;Y2)+ε1−RV2+I(U2;Y2|V2)+ε3−RU2
)

≤ 2n(I(V2;Y2)+ε1−RV2+I(U2;Y2|V2)+ε3−RU2
−I(U1;U2)+η).

(71)

Therefore, Pr(ŝ1 = s1, ŝ
′
1 = s′1, ŝ2 6= s2) vanishes as n→∞

if

RV2
+RU2

≥ I(V2;Y2) + I(U2;Y2|V2)− I(U1;U2)

= I(U2;Y2|U1), (72)

which follows from the Markov chain V2 − U2 − Y2 − U1.
Similarly, Pr(ŝ1 6= s1, ŝ2 = s2, ŝ

′
2 = s′2) in (61) tends to zero

as n→∞ if

RV1
+RU1

≥ I(U1;Y1|U2). (73)

We proceed to bound (62) where (s1, s
′
1, s2) are decoded

correctly:

Pr(ŝ1 = s1, ŝ
′
1 = s′1, ŝ2 = s2, ŝ

′
2 6= s′2)

= Pr
(
∃ŝ′2 6= s′2, s.t.

(
vn1 (s1), un1 (s1, s

′
1),

vn2 (s2), un2 (s2, hats
′
2)
)
∈ T (n)

δ (V1, U1, V2, U2)

∩
{
B1(b1)× B′1(s1, w1)× B2(b2)× B′2(s2, w2)

})

≤ Pr
(

(V n1 , U
n
1 , V

n
2 , U

n
2 ) ∈ T (n)

δ (V1, U1, V2, U2)
∣∣

(
(V n1 , U

n
1 ), V n2

)
∈ T (n)

δ (V1, U1, V2),

(V n2 , U
n
2 ) ∈ T (n)

δ (V2, U2)
)

· 2n(I(U2;Y2|V2)+ε3−RU2
)

≤ 2n(I(U2;Y2|V2)+ε3−RU2
−I(V1,U1;U2|V2)+η), (74)

from the joint typicality lemma by considering (V1, U1) as one
variable and the fact that Un2 ∼

∏n
i=1 p(u2,i|v2,i). Therefore,

Pr(ŝ1 = s1, ŝ
′
1 6= s′1, ŝ2 = s2, ŝ

′
2 = s′2) tends to zero as

n→∞ if

RU2 ≥ I(U2;Y2|V2)− I(V1, U1;U2|V2)

= I(U2;Y2|V2, U1), (75)

where the last equality is due to V1−U1−Y2−U2. Similarly,
Pr(ŝ1 = s1, ŝ

′
1 6= s′1, ŝ2 = s2, ŝ

′
2 = s′2) in (63) vanishes as

n→∞ if

RU1
≥ I(U1;Y1|V1, U2). (76)

Gathering (65)–(76), probability of error event E8 in (55)
vanishes as n → ∞ if, for j, j′ = 1, 2 and j 6= j′, the rates
Rj = RVj +RUj satisfy

R1 ≥ I(U1;Y1|U2), (77)
R2 ≥ I(U2;Y2|U1), (78)

R1 +R2 ≥ I(U1, U2;Y1, Y2), (79)
RUj ≥ I(Uj ;Yj |Vj , Uj′), (80)

RU1 +RU2 ≥ I(U1, U2;Y1, Y2|V1, V2), (81)
Rj +RUj′ ≥ I(U1, U2;Y1, Y2|Vj′). (82)

Finally, Pr(E) in (54) tends to zero as n → ∞ provided
that (77)–(82) are satisfied.

Equivocation rates: The equivocation rate with respect to
Agent 1, averaged over all codebooks Cn, is written as

H(Xn|f1(Y n1 ), En, Cn) = H(Xn|b1, w1, E
n, Cn)

= H(Xn, Y n1 |b1, w1, E
n, Cn)−H(Y n1 |b1, w1, E

n, Xn, Cn)

= H(Y n1 |b1, w1, E
n, Cn) +H(Xn|b1, w1, E

n, Y n1 , Cn)

−H(Y n1 |b1, w1, E
n, Xn, Cn)

= H(Y n1 |b1, w1, E
n, Cn) +H(Xn|En, Y n1 )

−H(Y n1 |b1, w1, X
n, Cn) (83)

where the last equality holds since f1(Y n1 ) = (b1, w1) is a
deterministic function, Y n1 −(b1, w1, X

n, Cn)−En is a Markov
chain, and (Xn, Y n1 , E

n) are independent of the codebook.
The first term in (83) is bounded as

H(Y n1 |b1, w1, E
n, Cn)

= H(Y n1 |b1, En, Cn)− I(Y n1 ;w1|b1, En, Cn)

(a)

≥ H(Y n1 |b1, En, Cn)−H(w1|b1, En, Cn)

(b)

≥ H(Y n1 |s1, E
n, Cn)−H(w1|Cn)

= H(Y n1 , E
n|s1, Cn)−H(En|s1, Cn)−H(w1|Cn)

(c)
= H(Y n1 , E

n)−H(s1|Cn) +H(s1|Y n1 , En, Cn)

−H(En|s1, Cn)−H(w1|Cn)

(d)

≥ H(Y n1 , E
n)−H(s1|Cn)−H(En|s1, Cn)−H(w1|Cn)

(e)

≥ nH(Y1, E)− nI(V1;Y1)− nε1 −H(En|s1, Cn)

− nRU1 − nε4



10

(f)

≥ n
[
H(Y1, E)− I(V1;Y1)−H(E|V1)−RU1

− ε′
− ε1 − ε4

]

(g)

≥ n
[
H(Y1|E)− I(V1;Y1|E)−RU1

− ε′ − ε1 − ε4
]

= n
[
H(Y1|V1E)−RU1

− ε′ − ε1 − ε4
]
, (84)

where
(a) follows as the bin index w1 is a deterministic function of

Y n1 ;
(b) follows since the bin index b1 is a deterministic function of

the codeword index s1, and conditioning reduces entropy;
(c) follows since (Y n1 , E

n) are independent of the codebook;
(d) follows since the codeword index s1 is a deterministic

function of Y n1 ;
(e) follows since random variables Y1,i and Ei are i.i.d.,

s1 and w1 are random variables over sets of size
2n(I(V1;Y1)+ε1) and 2n(RU1

+ε4), respectively;
(f) follows from (52) in Lemma 1;
(g) follows from the Markov chain V1 − Y1 − E.
The last term in (83) can be bounded as

H(Y n1 |b1, w1, X
n, Cn)

(a)
= H(Y n1 |b1, w1, U

n
2 , X

n, Cn)

= H(Y n1 |b1, w1, U
n
1 , U

n
2 , X

n, Cn)

+ I(Un1 ;Y n1 |b1, w1, U
n
2 , X

n, Cn)

(b)

≤ H(Y n1 |Un1 , Xn, Cn) +H(Un1 |b1, w1, U
n
2 , X

n, Cn)

(c)

≤ n
[
H(Y1|U1, X) + ε

]
, (85)

where
(a) follows from the Markov chain Y n1 −(b1, w1, X

n, Cn)−Un2 ;
(b) follows since conditioning reduces entropy, the bin index

w1 is a deterministic function of Un1 , and the Markov
chain Un1 − (Xn, Cn)− Un2 ;

(c) follows from Fano’s inequality (i.e., in the decoding
scheme having Un2 , b1, and w1, the CEO decodes Un1
with high probability).

Substituting (84) and (85) in (83), we obtain

H
(
Xn|f1(Y n1 ), En, Cn

)

≥ n
[
H(Y1|V1, E)−RU1 +H(X|Y1, E)−H(Y1|U1, X)

− ε− ε′ − ε1 − ε4
]
. (86)

Therefore,

∆1 ≤ H(Y1|V1, E)−RU1
+H(X|Y1, E)−H(Y1|U1, X)

(87)
is achievable. Based on (80), using Fourier-Motzkin elimina-
tion yields

∆1 ≤ H(Y1|V1, E)− I(U1;Y1|V1, U2) +H(X|Y1, E)

−H(Y1|U1, X)

(a)
= H(Y1|V1, E)− I(U1;Y1|V1, U2) +H(X|Y1, E, V1)

−H(Y1|U1, V1, X)

= H(Y1, X|V1, E)− I(U1;Y1|V1, U2)

−H(Y1|U1, V1, X)

= H(X|V1, E) +H(Y1|V1, X,E)− I(U1;Y1|V1, U2)

−H(Y1|U1, V1, X)

(b)
= H(X|V1, E)− I(U1;Y1|V1, U2) + I(U1;Y1|V1, X),

(88)

where

(a) follows from the Markov chains V1 − (U1, X) − Y1 and
V1 − (Y1, E)−X;

(b) follows from the Markov chain Y1 − (V1, X)− E.

Similarly for the second link, we obtain

∆2 ≤ H(X|V2, E)− I(U2;Y2|V2, U1) + I(U2;Y2|V2, X).
(89)

For the sum of the equivocation rates, following the proof
of the equivocation rate, we have

∆1 + ∆2 ≤ H(X|V1, E) +H(X|V2, E)−RU1 −RU2

+ I(U1;Y1|V1, X) + I(U2;Y2|V2, X)

≤ H(X|V1, E) +H(X|V2, E)

− I(U1, U2;Y1, Y2|V1, V2)

+ I(U1;Y1|V1, X) + I(U2;Y2|V2, X), (90)

where we substitute (81) in the second inequality. In order to
prove (8), we have

∆1 ≤ H(X|V1, E)−RU1
+ I(U1;Y1|V1, X)

(a)

≤ H(X|V1, E)− I(U1, U2;Y1, Y2|V1) +R2

+ I(U1;Y1|V1, X)

(b)
= H(X|V1, E)− I(U1;Y1|V1)− I(U2;Y2|V1, U1)

+R2 + I(U1;Y1|V1, X)

(c)
= H(X|V1, E)− I(U1;Y1|V1)− I(U2;Y2|U1) +R2

+ I(U1;Y1|V1, X), (91)

where

(a) follows from (82);
(b) follows since U1 − Y1 − Y2 − U2 is a Markov chain;
(c) follows since V1 − U1 − U2 forms a Markov chain.

Inequality (9) can be proved similarly.
Distortion at the CEO: The distortion at the CEO is written

as

E
[
d
(
Xn, g(f1(Y n1 ), f2(Y n2 ))

)]
≤ Pr(E)dmax

+ Pr(Ec)E
[
d
(
Xn, X̂

(
un1 (s1, s

′
1), un2 (s2, s

′
2)
))∣∣∣Ec

]

(a)

≤ εn+
1

n

n∑

i=1

E
[
d
(
Xi, X̂

(
u1,i(s1, s

′
1), u2,i(s2, s

′
2)
))∣∣∣Ec

]

(b)

≤ εn + E
[
d
(
X, X̂(U1, U2)

)]
, (92)

where

(a) follows since the probability of an error event becomes
small as n→∞ if the rate constraints are satisfied.
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(b) follows since for every jointly typical sequences
(xn, un1 , u

n
2 ), we have

d
(
xn, X̂(un1 , u

n
2 )
)

=
1

n

n∑

i=1

d
(
xi, X̂(u1,i, u2,i)

)

=
1

n

∑

(x,u1,u2)∈X×U1×U2

[
d
(
x, X̂(u1, u2)

)

N
(
x, u1, u2|xn, un1 , un2

)]

= E
[
d
(
X, X̂(U1, U2)

)]

+
1

n

∑

(x,u1,u2)∈X×U1×U2

[
d
(
x, X̂(u1, u2)

)

( 1

n
N
(
x, u1, u2|xn, un1 , un2

)
− p(x, u1, u2)

)]

≤ E
[
d
(
X, X̂(U1, U2)

)]
+ dmax|X ||U1||U2|ε′n, (93)

with ε′n → 0 as n→∞ from properties of jointly (strong) typ-
ical sequences. Therefore, to satisfy the distortion constraint
at the CEO, it is sufficient to have

E
[
d
(
X, X̂(U1, U2)

)]
≤ D. (94)

This concludes the proof of Theorem 1.

APPENDIX B
PROOF OF PROPOSITION 1: CARDINALITIES IN THE INNER

BOUND

To bound the cardinality of alphabets of auxiliary random
variables V1 and U1 in Theorem 1, we rewrite the equations
of the inner bound using straightforward derivations as

R1 ≥ H(Y1|U2)−H(Y1|U1, U2), (95)
R2 ≥ I(U2;Y2|U1), (96)

R1 +R2 ≥ H(Y1)−H(Y1|U1) + I(U2;Y2|U1), (97)

∆1 ≤
[
I(X;U2|V1)− I(X;E|V1) +H(X|U1, U2)

]+
,

(98)

∆2 ≤
[
H(X|V2, E)−H(X|V2, U1)+H(X|U1, U2)

]+
,

(99)

∆1 + ∆2 ≤
[
I(X;V2|V1)− I(X;E|V1)

+H(X|V2, E) +H(X|U1, U2)
]+
, (100)

∆1 −R2 ≤
[
I(X;U2|V1)− I(X;E|V1)

− I(U2;Y2|V1) +H(X|U1, U2)
]+
, (101)

∆2 −R1 ≤
[
H(X|V2, E)−H(Y1|U2)

+H(Y1|U1, U2)− I(U2;X|V2)
]+
, (102)

D ≥ E
[
d
(
X, X̂(U1, U2)

)]
. (103)

Using standard arguments based on the Fenchel-Eggleston-
Carathéodory theorem and the support lemma [39,
Appendix C], it can be shown that V1 should have |Y1| − 1
letters to preserve the probability distribution p(y1), and ten
more to preserve H(Y1|U1, U2), I(U2;Y2|U1), H(Y1|U1),
I(X;U2|V1), I(X;E|V1), H(X|U1, U2), H(X|V2, U1),
I(X;V2|V1), I(U2;Y2|V1), and the distortion constraint.

Furthermore, for each v1 ∈ V1, there exists a set U ′1 with
|Y1| − 1 letters to preserve the distribution p(y1), plus six
more to preserve H(Y1|U1, U2), I(U2;Y2|U1), H(Y1|U1),
H(X|U1, U2), H(X|V2, U1), and the distortion constraint.

Therefore, it suffices to have |V1| ≤ |Y1| + 9 and |U1| ≤
(|Y1| + 9)(|Y1| + 5). The same holds for the cardinalities of
the sets V2 and U2.

APPENDIX C
PROOF OF THEOREM 2: THE OUTER BOUND

We denote the message transmitted by the jth agent as Jj =
fj(Y

n
j ), and also define auxiliary random variables

Vj,i := (Jj , X
i−1), (104)

Uj,i := (Vj,i, Y
i−1
1 , Y i−1

2 )

= (Jj , X
i−1, Y i−1

1 , Y i−1
2 ), (105)

for j ∈ {1, 2} and i ∈ {1, . . . , n}. Then, we have the following
chain of inequalities for Agent 1’s rate:

n(R1 + ε) ≥ H(J1)

(a)
= I(J1; J2, X

n, Y n1 , Y
n
2 )

(b)

≥ I(J1;Xn, Y n1 , Y
n
2 |J2)

(c)
=

n∑

i=1

I(J1;Xi, Y1,i, Y2,i|J2, X
i−1, Y i−1

1 , Y i−1
2 )

(d)

≥
n∑

i=1

I(J1;Y1,i|J2, X
i−1, Y i−1

1 , Y i−1
2 )

=

n∑

i=1

I(J1, X
i−1, Y i−1

1 , Y i−1
2 ;Y1,i|J2, X

i−1, Y i−1
1 , Y i−1

2 )

(e)
=

n∑

i=1

I(U1,i;Y1,i|U2,i), (106)

where
(a) follows as J1 = f1(Y n1 );
(b) follows from the non-negativity of mutual information;
(c) follows from the chain rule of conditional mutual infor-

mation;
(d) follows from the non-negativity of mutual information;
(e) follows from the definition of auxiliary random variables

in (104)–(105).
The equivocation with respect to Agent 1 is bounded as

n(∆1 − ε) ≤ H(Xn|J1, E
n)

= H(Xn|J1)− I(Xn;En|J1)

(a)
= H(Xn|J1)− I(Xn;En) + I(J1;En)

(b)
=

n∑

i=1

[
H(Xi|J1, X

i−1)− I(Xi;Ei) + I(J1, E
i−1;Ei)

]

(c)

≤
n∑

i=1

[
H(Xi|J1, X

i−1) + I(J1, X
i−1, Ei−1;Ei)

− I(Xi;Ei)
]

(d)
=

n∑

i=1

[
H(Xi|J1, X

i−1)− I(Xi;Ei|J1, X
i−1)

]



12

(e)
=

n∑

i=1

[
H(Xi|V1,i)− I(Xi;Ei|V1,i)

]

=

n∑

i=1

[
H(Xi|Ei)− I(Xi;V1,i|Ei)

]
(107)

where
(a) follows since J1 −Xn − En is a Markov chain;
(b) follows since Xi and Ei are memoryless, and the chain

rule of conditional entropy;
(c) follows the non-negativity of mutual information;
(d) follows from the Markov chain Ei−Xi−(J1, X

i−1)−Ei−1;
(e) follows from the definition of auxiliary random variable

in (104).
To prove (16), we have

n(∆1 − ε) ≤ H(Xn|J1, E
n)

= H(Xn|J1, J2, E
n) + I(Xn; J2|J1, E

n)

(a)

≤
n∑

i=1

[
H(Xi|J1, J2, X

i−1, En)
]

+H(J2)

(b)

≤
n∑

i=1

[
H(Xi|J1, J2, X

i−1, Ei)
]

+H(J2)

(c)
=

n∑

i=1

[
H(Xi|V1,i, V2,i, Ei)

]
+H(J2)

≤
n∑

i=1

[
H(Xi|V1,i, Ei)− I(Xi;V2,i|V1,i, Ei)

]
+ nR2 + nε,

(108)

where
(a) follows from the non-negativity of conditional mutual

information and the fact that conditioning reduces entropy;
(b) follows since conditioning reduces entropy:
(c) follows from definition of auxiliary random variables

(104).
Since the setup is symmetric, bounds on Agent 2’s transmis-

sion and equivocation rates in (12), (15), and (17) are derived
similar to those of Agent 1. The sum rate is bounded as

n(R1 +R2 + 2ε) ≥ H(J1, J2)

(a)
= I(J1, J2;Xn, Y n1 , Y

n
2 )

(b)
=

n∑

i=1

I(J1, J2;Xi, Y1,i, Y2,i|Xi−1, Y i−1
1 , Y i−1

2 )

=

n∑

i=1

I(J1, J2, X
i−1, Y i−1

1 , Y i−1
2 ;Xi, Y1,i, Y2,i)

− I(Xi−1, Y i−1
1 , Y i−1

2 ;Xi, Y1,i, Y2,i)

(c)
=

n∑

i=1

I(J1, J2, X
i−1, Y i−1

1 , Y i−1
2 ;Xi, Y1,i, Y2,i)

(d)

≥
n∑

i=1

I(J1, J2, X
i−1, Y i−1

1 , Y i−1
2 ;Y1,i, Y2,i)

(e)
=

n∑

i=1

I(U1,i, U2,i;Y1,i, Y2,i), (109)

where

(a) follows as J1 = f1(Y n1 ) and J2 = f2(Y n2 );
(b) follows from the chain rule of mutual information;
(c) follows since Xi, Y1,i, Y2,i are memoryless;
(d) follows from the non-negativity of mutual information;
(e) follows from definition of auxiliary random variables

(105).

Next, the distortion bound at the CEO is written as

D + ε ≥ E
[
d
(
Xn, g(J1, J2)

)]

≥ 1

n

n∑

i=1

E
[
d
(
Xi, X̂i

(
U1,i, U2,i

))]
, (110)

where X̂i(U1,i, U2,i) := gi(J1, J2) is the ith element of the
CEO’s decoded sequence.

We define a time sharing random variable Q independent
from all other random variables and uniformly distributed over
the set {1, . . . , n}. We further define X = XQ, Yj = Yj,Q,
E = EQ, Uj = (Q,Uj,Q), and Vj = (Q,Vj,Q) for j ∈ {1, 2}.
Also let X̂(U1, U2) = X̂(Q,U1,Q, U2,Q) = X̂Q(U1,Q, U2,Q).
We have the Markov chains Vj − Uj − Yj − (X,E, Yj′) for
j, j′ ∈ {1, 2} and j 6= j′. Now, we can write the rates and
equivocation bounds for Agent 1 (and similarly for Agent 2)
as follows:

R1 + ε ≥ 1

n

n∑

i=1

I(U1,i;Y1,i|U2,i)

=
1

n

n∑

i=1

I(U1,Q;Y1,Q|U2,Q, Q = i)

= I(U1;Y1|U2), (111)

∆1 − ε ≤
1

n

n∑

i=1

[
H(Xi|Ei)− I(Xi;V1,i|Ei)

]

=
1

n

n∑

i=1

[
H(XQ|EQ, Q = i)

− I(XQ;V1,Q|EQ, Q = i)
]

= H(X|E)− I(X;V1|E), (112)

∆1 −R2 − 2ε

≤ 1

n

n∑

i=1

[
H(Xi|V1,i, Ei)− I(Xi;V2,i|V1,i, Ei)

]

=
1

n

n∑

i=1

[
H(XQ|V1,Q, EQ, Q = i)

− I(XQ;V2,Q|V1,Q, EQ, Q = i)
]

= H(X|V1, E)− I(X;V2|V1, E). (113)

The sum rate and the distortion bounds can also be written as

R1 +R2 + 2ε ≥ 1

n

n∑

i=1

I(U1,i, U2,i;Y1,i, Y2,i)

=
1

n

n∑

i=1

I(U1,Q, U2,Q;Y1,Q, Y2,Q|Q = i)

= I(U1, U2;Y1, Y2), (114)
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D + ε ≥ 1

n

n∑

i=1

E
[
d
(
Xi, X̂i

(
U1,i, U2,i

))]

=
1

n

n∑

i=1

E
[
d
(
XQ, X̂Q

(
U1,Q, U2,Q

))∣∣∣Q = i
]

= E
[
d
(
XQ, X̂Q

(
U1,Q, U2,Q

))]

= E
[
d
(
X, X̂

(
U1, U2

))]
. (115)

Letting ε and εn tend to zero, inequalities of the Theorem 2
follow.

APPENDIX D
PROOF OF PROPOSITION 2: CARDINALITIES IN THE OUTER

BOUND

To bound the cardinality of the sets V1 and U1 in Theorem 2,
we rewrite the equations of the outer bound as

R1 ≥ H(Y1|U2)−H(Y1|U1, U2), (116)
R2 ≥ I(U2;Y2|U1), (117)

R1 +R2 ≥ H(Y1)−H(Y1|U1) + I(U2;Y2|U1), (118)
∆1 ≤ H(X|V1)− I(X;E|V1), (119)
∆2 ≤ H(X|V2)− I(X;E|V2), (120)

∆1 −R2 ≤ H(X|V1)− I(X;E|V1)− I(X;V2|V1)

+ I(E;V2|V1), (121)
∆2 −R1 ≤ H(X|V1)− I(X;V2|V1)− I(X;E|V1)

+ I(E;V2|V1), (122)

D ≥ E
[
d
(
X, X̂(U1, U2)

)]
. (123)

Similar to the approach in Appendix B, using standard ar-
guments based on the Fenchel-Eggleston-Carathéodory the-
orem and the support lemma [39, Appendix C], it can
be shown that V1 should have |Y1| − 1 letters to pre-
serve the probability distribution p(y1), and eight more to
preserve H(Y1|U1, U2), I(U2;Y2|U1), H(Y1|U1), H(X|V1),
I(X;E|V1), I(X;V2|V1), I(E;V2|V1), and the distortion con-
straint. Furthermore, for each v1 ∈ V1, there exists a set U ′1
with |Y1|−1 letters to preserve the distribution p(y1), plus four
more to preserve H(Y1|U1, U2), I(U2;Y2|U1), H(Y1|U1), and
the distortion constraint.

Therefore, it suffices to have |V1| ≤ |Y1| + 7 and |U1| ≤
(|Y1| + 7)(|Y1| + 3). The same holds for the cardinalities of
the sets V2 and U2.

APPENDIX E
CONVERSE PROOF OF COROLLARY 4

Let J1 = f1(Xn) and J2 = f2(Y n2 ) denote the messages
transmitted by Agent 1 and Agent 2, respectively, and also
define the auxiliary random variable U2,i = (J2, X

i−1), for
i ∈ {1, . . . , n}.

For the equivocation rates, we have

n(∆1 − ε) ≤ H(Xn|J1)

= H(Xn, J2|J1)−H(J2|J1X
n)

= H(J2|J1)−H(J2|J1X
n) +H(Xn|J1J2)

(a)

≤ H(J2)−H(J2|Xn) + nεn

= I(J2;Xn) + nεn

=

n∑

i=1

I(J2X
i−1;Xi) + nεn

=

n∑

i=1

I(U2,i;Xi) + nεn, (124)

where (a) follows from Fano’s inequality, the Markov chain
J1−Xn− J2, and the fact that conditioning reduces entropy.
We also have

n(∆2 − ε) ≤ H(Xn|J2)

=

n∑

i=1

H(Xi|J2X
i−1)

=

n∑

i=1

H(Xi|U2,i). (125)

Similar to the proof of Theorem 2, by using an independent
random variable Q, inequalities of Corollary 4 follow.

APPENDIX F
PROOF OF THEOREM 3: QUADRATIC GAUSSIAN CASE

WITHOUT SIDE INFORMATION AT EVE

A. Achievability

The achievability is proved by applying the results of
Theorem 1 to the Gaussian case. Although Theorem 1 is
proved for finite alphabet sources with bounded distortion
measure, its results can be applied to the Gaussian sources
with quadratic distortion measure as shown e.g., in [40]. In
addition similar results are proved for the Gaussian CEO
problem (without secrecy constraints) in [13] and [14].

It follows from Theorem 1 that with no side information at
Eve the following region is achievable:

R1 ≥ I(U1;Y1|U2), (126)
R2 ≥ I(U2;Y2|U1), (127)

R1 +R2 ≥ I(U1, U2;Y1, Y2), (128)
∆1 ≤ h(X)− I(U1;Y1|U2) + I(U1;Y1|X), (129)
∆2 ≤ h(X)− I(U2;Y2|U1) + I(U2;Y2|X), (130)

∆1 + ∆2 ≤ 2h(X)− I(U1, U2;Y1, Y2)

+ I(U1;Y1|X) + I(U2;Y2|X), (131)
∆1 −R2 ≤ h(X)− I(U2;Y2|U1)− I(U1;Y1)

+ I(U1;Y1|X), (132)
∆2 −R1 ≤ h(X)− I(U1;Y1|U2)− I(U2;Y2)

+ I(U2;Y2|X), (133)

D ≥ E
[
d
(
X, X̂(U1, U2)

)]
, (134)
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where h(·) is the differential entropy. This region is obtained
by setting V1, V2, and E to be constant in (5)–(9).

Let U1 and U2 be auxiliary random variables jointly dis-
tributed with the source X and the respective agent’s obser-
vation Y1 and Y2 such that

Uj = Yj + Zj , j ∈ {1, 2} (135)

where Zj ∼ N (0, σ2
Zj

) for j ∈ {1, 2} is independent of X , Y1,
and Y2. Given U1 and U2, we choose the estimator function
X̂(U1, U2) to be the minimum mean square error (MMSE)
estimator. For a fixed target distortion D > 0, the auxiliary
random variables are adjusted so that the distortion constraint
(134) is satisfied. Therefore, we have

D = E
[
d
(
X, X̂(U1, U2)

)]
= E

[(
X − X̂(U1, U2)

)2]

=
1

2πe
22h(X|U1,U2), (136)

where (136) follows from [37, Theorem 8.6.6]. We then
calculate

h(X|U1, U2) = h(X,U1, U2)− h(U1, U2)

=
1

2
log

(
(2πe)

detKXU1U2

detKU1U2

)
, (137)

where the covariance matrix KXU1U2
is

KXU1U2
=



σ2
X σ2

X σ2
X

σ2
X σ2

X + σ2
N1

+ σ2
Z1

σ2
X

σ2
X σ2

X σ2
X + σ2

N2
+ σ2

Z2


 .

Substituting (137) in (136), we obtain

1

D
=

1

σ2
X

+
1

σ2
N1

+ σ2
Z1

+
1

σ2
N2

+ σ2
Z2

. (138)

Next, for j ∈ {1, 2}, we define

rj := I(Uj ;Yj |X) (139)
= I(Uj ;Yj)− I(Uj ;X) (140)

=
1

2
log

σ2
Nj

+ σ2
Zj

σ2
Zj

, (141)

where the second equality is due to the Markov chain Uj−Yj−
X . For any rj ≥ 0 with j ∈ {1, 2}, there exists corresponding
σ2
Zj

, and thus, auxiliary random variable Uj . Then, using
(141), we can rewrite (138) as

1

D
=

1

σ2
X

+
1− 2−2r1

σ2
N1

+
1− 2−2r2

σ2
N2

. (142)

Now, for the rate of Agent 1, from (126) we have

R1 ≥ I(U1;Y1|U2)

(a)
= I(U1;X,Y1|U2)

(b)
= I(U1;X|U2) + I(U1;Y1|X)

(c)
= h(X|U2)− h(X|U1, U2) + r1

(d)
= −1

2
log

(
1

2πe

( 1

σ2
X

+
1− 2−2r2

σ2
N2

))

− 1

2
log(2πeD) + r1

=
1

2
log

1

D
− 1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
+ r1, (143)

where

(a) follows as U1 − Y1 − (X,U2) forms a Markov chain;
(b) follows as (U1, Y1)−X − U2 is also a Markov chain;
(c) follows from the definition of r1 in (139);
(d) follows from (136) and (141).

The rate of Agent 2 in (127) is written in a similar way. For
the sum rate, we have

R1 +R2 ≥ I(U1, U2;Y1, Y2)

(a)
= I(U1, U2;X,Y1, Y2)

(b)
= I(U1, U2;X) + I(U1, U2;Y1, Y2|X)

(c)
= h(X)− h(X|U1, U2) + I(U1;Y1|X) + I(U2;Y2|X)

(d)
=

1

2
log(2πeσ2

X)− 1

2
log(2πeD) + r1 + r2

=
1

2
log

1

D
− 1

2
log

1

σ2
X

+ r1 + r2, (144)

where (a)–(c) are due to the long Markov chain U1 − Y1 −
X − Y2 − U2 and (d) from (136) and (139).

Using (139) and the bound on R1 (and R2), the equivocation
rate in (129) (and similarly (130)) can be written as

∆1 ≤ h(X)− I(U1;Y1|U2) + I(U1;Y1|X)

=
1

2
log(2πeσ2

X)− 1

2
log

1

D
+

1

2
log

(
1

σ2
X

+
1− 2−2r2

σ2
N2

)
.

(145)

For sum of the equivocation rates, we have

∆1 + ∆2 ≤ 2h(X)− I(U1, U2;Y1, Y2) + I(U1;Y1|X)

+ I(U2;Y2|X)

= log(2πeσ2
X)− 1

2
log

1

D
+

1

2
log

1

σ2
X

= log(2πe)− 1

2
log

1

D
− 1

2
log

1

σ2
X

. (146)

Finally, the bound in (132) (and similarly (133)) can be
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rewritten as

∆1 −R2

≤ h(X)− I(U2;Y2|U1)− I(U1;Y1) + I(U1;Y1|X)

(a)
= h(X)− I(U1, U2;Y1, Y2) + I(U1;Y1|X)

= log(2πeσ2
X)− 1

2
log

1

D
+

1

2
log

1

σ2
X

− r1 − r2 + r1

= log(2πe)− 1

2
log

1

D
− r2, (147)

where (a) is due to the Markov chains U1 − Y1 − Y2 and
Y1 − Y2 − U2.

B. Converse

Denote the messages transmitted by the agents as J1 =
f1(Y n1 ) and J2 = f2(Y n2 ), and define

rj :=
1

n
I(Jj ;Y

n
j |Xn). (148)

Let J be a subset of {1, 2} and J c its complement. We have
∑

j∈J
n(Rj + ε) ≥ H(JJ )

≥ H(JJ |JJ c)
= I(JJ ;Y nJ |JJ c)
(a)
= I(JJ ;Xn, Y nJ |JJ c)
= I(JJ ;Xn|JJ c) + I(JJ ;Y nJ |Xn, JJ c)
(b)
= I(JJ , JJ c ;X

n)− I(JJ c ;X
n) +

∑

j∈J
I(Jj ;Y

n
j |Xn)

(c)

≥
[
I(X̂n;Xn)− I(JJ c ;X

n)
]+

+
∑

j∈J
nrj , (149)

where
(a) follows from the Markov chain JJ − (Y nJ , JJ c)−Xn;
(b) follows from the Markov chain (Jj , Y

n
j )−Xn − Jj′ for

j 6= j′;
(c) follows from the data processing inequality and the defi-

nition of rj in (148).
The first term in the right-hand side of (149) is bounded as

I(X̂n;Xn) = h(Xn)− h(Xn|X̂n)

= h(Xn)− h(Xn − X̂n|X̂n)

≥ h(Xn)− h(Xn − X̂n)

≥ n

2
log(2πeσ2

X)− n

2
log(2πeD)

=
n

2
log

σ2
X

D
. (150)

We use the following lemma to bound the second term in the
right-hand side of (149). The proof of the lemma is given in
[13] and [14].

Lemma 2: Define rj := 1
nI(Jj ;Y

n
j |Xn) for j ∈ {1, 2}.

Then, for J ⊆ {1, 2},

1

n
I(JJ ;Xn) ≤ 1

2
log


σ2

X


 1

σ2
X

+
∑

j∈J

1− 2−2rj

σ2
Nj




 .

Based on Lemma 2, (150), and (149), we obtain

∑

j∈J
Rj ≥

1

2
log

1

D
− 1

2
log


 1

σ2
X

+
∑

j∈J c

1− 2−2rj

σ2
Nj




+
∑

j∈J
rj . (151)

Now, substituting J with sets {1}, {2}, {1, 2}, and ∅ leads
to the bounds (30)–(32) and (38) of Theorem 3, respectively.

The bounds on the equivocation rates are obtained as
∑

j∈J
n(∆j − ε) ≤

∑

j∈J
h(Xn|Jj)

=
∑

j∈J
h(Xn)−H(Jj) +H(Jj |Xn)

(a)
=
∑

j∈J
h(Xn)−H(Jj) + I(Jj ;Y

n
j |Xn)

(b)

≤
∑

j∈J

[
h(Xn) + I(Jj ;Y

n
j |Xn)

]
−H(JJ )

(c)

≤
∑

j∈J

n

2
log(2πeσ2

X)− n

2
log

1

D

+
n

2
log


 1

σ2
X

+
∑

j∈J c

1− 2−2rj

σ2
Nj


 , (152)

where

(a) follows since Jj = fj(Y
n
j );

(b) follows since H(JJ ) ≤∑j∈J H(Jj);
(c) follows from the definition of rj in (148) and the same

techniques used to bound H(JJ ) in (149).

Setting J to {1}, {2}, and {1, 2} leads to the bounds (33)–
(35), respectively.

For the bound in (36), consider

n(∆1 − ε) ≤ h(Xn|J1)

= h(Xn|J1, J2) + I(Xn; J2|J1)

= h(Xn)− I(Xn; J1, J2) +H(J2|J1)−H(J2|J1, X
n)

(a)

≤ h(Xn)− I(Xn; X̂n) +H(J2)−H(J2|Xn)

(b)

≤ h(Xn)− I(Xn; X̂n) + nR2 − I(J2;Y n2 |Xn)

(c)

≤ n

2
log(2πeσ2

X)− n

2
log

σ2
X

D
+ nR2 − nr2, (153)

where

(a) follows since J1−Xn−J2 and that conditioning reduces
entropy;

(b) follows since J2 = f2(Y n2 );
(c) follows from (150) and the definition of rj in (148).

Therefore,

∆1 −R2 ≤
1

2
log(2πe)− 1

2
log

1

D
− r2. (154)

The bound in (37) can be proved similarly.
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APPENDIX G
PROOF OF THEOREM 4: QUADRATIC GAUSSIAN CASE

WITH SIDE INFORMATION AT EVE

The proof of Theorem 4 is based on a similar approach
for the achievability proof of Theorem 3 described in Ap-
pendix F-A. However, in this case due to the side information
at Eve, setting the auxiliary random variable Vj to a constant
value in Theorem 1 does not always maximize the equivoca-
tion rates. We rewrite the bounds on the equivocation rates in
Theorem 1 as follows:

∆1 ≤ h(X|E)− I(U1;Y1|U2) + I(U1;Y1|X)

+ I(V1;E)− I(V1;U2), (155)
∆2 ≤ h(X|E)− I(U2;Y2|U1) + I(U2;Y2|X)

+ I(V2;E)− I(V2;U1), (156)
∆1 + ∆2 ≤ 2h(X|E)− I(U1, U2;Y1, Y2)

+ I(U1;Y1|X) + I(U2;Y2|X)

+ I(V1;E) + I(V2;E)− I(V1;V2), (157)
∆1 −R2 ≤ h(X|E)− I(U2;Y2|U1)− I(U1;Y1)

+ I(U1;Y1|X) + I(V1;E), (158)
∆2 −R1 ≤ h(X|E)− I(U1;Y1|U2)− I(U2;Y2)

+ I(U2;Y2|X) + I(V2;E). (159)

Then, considering the Markov chains Vj −X − (E,Uj′) for
j′ 6= j ∈ {1, 2} and the fact that the variables X and E as
well as the auxiliary random variables U1 and U2 in (135) are
Gaussian, we have four possibilities:
• E is less noisy than U2 w.r.t. X ⇒ I(V1;E) ≥ I(V1;U2)
⇒ setting V1 = U1 maximizes (155);

• U2 is less noisy than E w.r.t. X ⇒ I(V1;E) ≤ I(V1;U2)
⇒ setting V1 = ∅ maximizes (155);

• E is less noisy than U1 w.r.t. X ⇒ I(V2;E) ≥ I(V2;U1)
⇒ setting V2 = U2 maximizes (156);

• U1 is less noisy than E w.r.t. X ⇒ I(V2;E) ≤ I(V2;U1)
⇒ setting V2 = ∅ maximizes (156).

Therefore, we define

T1 := max
V1

I(V1;E)− I(V1;U2)

= max
{

0, I(U1;E)− I(U1;U2)
}
, (160)

T2 := max
V2

I(V2;E)− I(V2;U1)

= max
{

0, I(U2;E)− I(U1;U2)
}
, (161)

and rewrite (155)–(159) as

∆1 ≤ h(X|E)−I(U1;Y1|U2)+I(U1;Y1|X)+T1,
(162)

∆2 ≤ h(X|E)−I(U2;Y2|U1)+I(U2;Y2|X)+T2,
(163)

∆1+∆2 ≤ 2h(X|E)−I(U1, U2;Y1, Y2)

+ I(U1;Y1|X)+I(U2;Y2|X)

+ T1+T2+I(U1;U2)1R>0
(T1+T2), (164)

∆1−R2 ≤ h(X|E)−I(U2;Y2|U1)−I(U1;Y1)

+ I(U1;Y1|X)+T1+I(U1;U2)1R>0
(T1), (165)

∆2−R1 ≤ h(X|E)−I(U1;Y1|U2)−I(U2;Y2)

+ I(U2;Y2|X)+T2+I(U1;U2)1R>0
(T2), (166)

where 1R>0(·) is the indicator function. Based on the defi-
nitions of the auxiliary random variables in (135) and rj in
(141), with straightforward calculations we obtain

T1 = max

{
0,

1

2
log

(
1 +

σ2
N2

1−2−2r2
− σ2

NE

σ2
N1

1−2−2r1
+ σ2

NE

)}
, (167)

T2 = max

{
0,

1

2
log

(
1 +

σ2
N1

1−2−2r1
− σ2

NE

σ2
N2

1−2−2r2
+ σ2

NE

)}
, (168)

I(U1;U2) =
1

2
log

(
σ2
X+

σ2
N1

1−2−2r1

σ2
N1

1−2−2r1
+

σ2
N2

1−2−2r2

)
. (169)

Using (162)–(169) and the proof given in Appendix F-A,
inequalities of Theorem 4 follows.
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