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Abstract

A new fault attack, double counting attack (DCA), on the precompu-
tation of 2t-ary modular exponentiation for a classical RSA digital sig-
nature (i.e., RSA without the Chinese remainder theorem) is proposed.
The 2t-ary method is the most popular and widely used algorithm to
speed up the RSA signature process. Developers can realize the fastest
signature process by choosing optimum t. For example, t = 6 is optimum
for a 1536-bit classical RSA implementation. The 2t-ary method requires
precomputation to generate small exponentials of message. Conventional
fault attack research has paid little attention to precomputation, even
though precomputation could be a target of a fault attack. The pro-
posed DCA induces faults in precomputation by using instruction skip
technique, which is equivalent to replacing an instruction with a no op-
eration in assembly language. This paper also presents a useful “position
checker” tool to determine the position of the 2t-ary coefficients of the
secret exponent from signatures based on faulted precomputations. The
DCA is demonstrated to be an effective attack method for some widely
used parameters. DCA can reconstruct an entire secret exponent using
the position checker with 63(= 26 − 1) faulted signatures in a short time
for a 1536-bit RSA implementation using the 26-ary method. The DCA
process can be accelerated for a small public exponent (e.g., 65537). The
the best of our knowledge, the proposed DCA is the first fault attack
against classical RSA precomputation.

1 Introduction

Since the publication of Boneh, DeMillo, and Lipton’s landmark paper[1], dif-
ferential fault analysis (DFA) has been an active area of cryptography. DFA
is a technique to extract secret information from cryptographic device such as
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a smart card by provoking a computational fault. Faults are often caused by
abnormal voltage, and clock signals[2], or an optical flush [3]. Bar et al. [4]
and Osward and F.-X. Standaert (Chapter 1 in [5]) are good guides to practical
application of fault attacks. Many researchers are developing DFA techniques
for RSA signature schemes. RSA is the most popular digital signature scheme.
For signing a message m, the signer computes the signature S = µ(m)d mod N
using an encoding function µ, where N = pq with distinct primes p and q.
In this paper, we consider a deterministic encoding function such as PKCS#1
v.1.5 [6], and a full domain hash scheme. To verify the signature S, the verifier
checks the validity of the received signature (S,m) with the public exponent e
to determine if Se ≡ µ(m)(mod N) holds. There are two types of RSA signa-
ture implementations, classical RSA, i.e., RSA without the Chinese remainder
theorem (CRT), and RSA-CRT, i.e., RSA with CRT. Traditionally, CRT has
been used to speed up the RSA signing process; however, there are also many
effective DFA techniques. Lenstra [7] showed that the public modulus N can
be factored with only one signature/faulted signature pair.

On the other hand, in classical RSA implementations, obtaining the entire
secret exponent and factorization of the public modulus with a few faulted
signatures is more difficult. In many papers (e.g. Boneh-DeMillo-Lipton [1], Bao
et al. [8], and Yen-Joye [9]), the goal of the attacker is to gradually reconstruct
the secret exponent rather than factor the public modulus. A unique exception
is Seifert’s attack [10], which is based on the assumption that an attacker can
induce faults as the device moves N data from memory. Under this assumption,
the attacker can create a new faulted modulus N̂ . Seifert pointed out that if
N̂ is prime, the attacker can compute a new secret exponent. Muir et al. [11]
simplified Seifert’s attack and showed that the simplified version works under
a relaxed condition, i.e., N̂ can be factored. Under this condition, the attacker
can obtain a new secret exponent e−1 mod ϕ(N̂), where, ϕ is Euler’s totient
function. Their attack methods are quite sophisticated; however, successful
attack is entirely dependent on whether N̂ can be factored. In contrast, our
attack method is not dependent on such a condition.

This paper proposes a new and effective fault attack, double counting attack
(DCA) targeting at precomputation process in 2t-ary modular exponentiation.
Conventional fault attack reseach has paid little attention to precomputation in
the 2t-ary method, which is an algorithm used to preform efficient calculations
of modular exponentiation. The proposed DCA is built on an instruction skip
technique. The instruction skip is equivalent to replacing an instruction with
a no operation in assembly language. Let Z[a, b] be a set of integers in the
interval [a, b]. We introduce a “position checker” tool to determine the set
Pn,t,ℓ = {j ∈ Z[0, ⌈n/t⌉ − 1] : d[t, j] = ℓ} for the 2t-ary representation of the n-

bit secret exponent d =
∑⌈n/t⌉−1

j=0 d[t, j](2t)j . Pn,t,ℓ(ℓ ∈ Z[0, 2t − 1]) determines
the entire secret exponent d for typical choices of n and t. For example, DCA
can reconstruct the entire secret exponent d from 63 faulted signatures in a short
time for n = 1536 and t = 6, which is the fastest parameter for n = 1536. The
DCA process can be accelerated for small public exponents such as 65537. To
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the best of our knowledge, the DCA is the first fault attack method targeting
at the precomputation of the 2t-ary method.

The remainder of this paper is organized as follows. Section II presents basic
facts about the target implementation of DCA, the instruction skip technique,
and a naive attack using the instruction skip. Section III presents the position
checker and describes the general principle and procedures of the DCA. Simu-
lated attack results are presented in Section IV. An effective attack method for
a small public exponent is described in Section V. Several software countermea-
sures against DCA are presented in Section VI, and conclusions are presented
in Section VII.

2 Preliminaries

2.1 Modular Multiplication Coprocessor

Coprocessors for smart card microcontrollers have been specifically designed to
perform efficient calculations of public-key algorithms, such as modular multipli-
cation in an RSA cryptosystem [12]. The RSA digital signature S = Md mod N
is performed using a modular multiplication “AB mod N” coprocessor. We as-
sume that this coprocessor has three registers, A, B, and N . The coprocessor
computes AB mod N and writes the result to register A. Here, we assume
this coprocessor has two modes, SQUARE [A ← A2 mod N ] and MULTIPLY
[A ← AB mod N ] (denoted “SQARE enable” and “MULTIPLY enable,” re-
spectively). The coprocessor executes once when the enable bit is set to one
by a specific instruction, such as a “move” instruction. Some microcontrollers
with coprocessors have a similar function. Since the microcontroller consumes
a significant amount of power [5], the attacker can easily distinguish the tim-
ing of modular multiplication from other instructions by performing a power
consumption trace [13]. This fact means that determining the timing of in-
jected fault for skipping a conditional/unconditional branch instruction or in-
crement/decrement instruction is easier than it is for other DFA techniques.
DCA is applicable to a microchip without a coprocessor if the timing of each
AB mod N subroutine can be distinguished by the attacker. Here, we describe
the attack for a case by using an AB mod N coprocessor; however, DCA also
works for a modular multiplication coprocessor using the Montgomery method
[14], i.e., compute ABR−1 mod N(R = 2n) rather than AB mod N , where N
is n-bits long. In the Montgomery coprocessor, internal data are formatted as
Mont(A) = AR mod N .

2.2 The 2t-ary method

For classical RSA implementations, the 2t-ary exponentiation method is used to
speed up the signing process. The 2t-ary method generalizes binary exponenti-
ation and is based on 2t-ary representation of the exponent, which is expressed
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as follows:

d =

⌈n/t⌉−1
∑

j=0

d[t, j](2t)j ,

where d[t, j] ∈ Z[0, 2t − 1].

Definition 1. The 2t-ary table T2t is defined as a set consisting of

M i mod N for every i ∈ Z[1, 2t − 1].

The classical 2t-ary RSA implementation [15] is given in LIST I. In the
precomputation in List I, the microcontroller computes all values of T2t and
stores them in RAM. The 2t-ary modular exponentiation uses the values in the
table T2t after precomputation. We discuss some stochastic properties of this
precomputation in Section 3.2. Here, we describe the value t minimizing the
execution time of 2t-ary modular exponentiation.

LIST I

Classical 2t-ary RSA implementation

Input: M, n, t, d, N

Output: S = M^d mod N

# precomputation

Compute M^i mod N(i=1,...,2^t-1)

and store them in RAM

j = ceiling(n/t)-1

MOVE A <- 1

Loop:

If j < 0 then

Break and Return A

SQUARE enable (t times)

[A <- A*A mod N: t times]

If d[t,j] is not equal to 0 then

MOVE M^d[t,j] mod N to register B

MULTIPLY enable ---(*)

[A <- A*B mod N]

decrement j

goto Loop

It is natural to assume that the average execution time of A2 mod N is equal
to that of the AB mod N coprocessor. Then, the total execution time of the
modular exponentiation using the 2t-ary method is proportional to the number
of executions of the AB mod N coprocessor. Since the number of MULTIPLY
instructions required to generate table T2t is 2t − 1, the number of SQUARE
instructions is always n, and the average number of MULTIPLY instructions is
n
t

(

1− 1
2t

)

. Therefore, we can estimate the average execution time τ(n, t) from
the average execution time of MULTIPLY as follows:

τ(n, t) = (2t − 1) + n+
n

t

(

1− 1

2t

)

.
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Figure 1: τ(n, t)/n for n = 1024, 1536, and 2048

Table 1: τ(n, t) for n = 1024, 1536, and 2048
t 3 4 5 6 7 8

τ(1024, t) 1329.7 1279.0 1253.4 1255.0 1296.1 1406.5
τ(1536, t) 1991.0 1911.0 1864.6 1851.0 1880.7 1982.3
τ(2048, t) 2652.3 2543.0 2475.8 2447.0 2465.3 2558.0

Here, τ(n, t) is a convex function in t. We show τ(n, t)/n for n = 1024, 1536,
and 2048 in Fig.1. We also show precise values of τ(n, t) for n = 1024, 1536,
and 2048 in Table 1. τ(1024, t), τ(1536, t), and τ(2048, t) take a minimum at
t = 5, 6, and 6, respectively. Note that there is very little difference between
τ(1024, 5) and τ(1024, 6). The actual execution time depends on the length of
the exponent n and t, which is restricted by hardware specifications such as
the amount of RAM available. Most developers of RSA primitives are likely to
choose an optimum or near-optimum value for t.

2.3 Instruction Skip Technique

Most DFA papers assume that injected faults affect several bits of the internal
data. However, several researches have investigated DFA using an instruction
skip, or a bypass operation [16], [17], [18]. The instruction skip does not affect
the registers, internal memory, and calculation process. Successful instruction
skip attacks have been reported for the PIC16F877 [16], ATmega 128 [17], and
ATmega 168 [18] microcontrollers. Choukri-Tunstall [16] and Park et al. [17]
showed that an entire Advanced Encryption Standard secret key could be recon-
structed by skipping a branch instruction used to check the number of rounds.
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Yoshikawa et al. [18] described a method to reconstruct the entire secret key of
several ciphers of a generalized Feistel network, such as CLEFIA, by skipping
the increment or decrement instruction used to count the number of rounds.

2.4 Naive Attack Using an Instruction Skip

The simplest attack on RSA using an instruction skip attacks the j-th MULTI-
PLY enable command (*) for every j ∈ Z[0, ⌈n/t⌉− 1]. When the j-th MULTI-
PLY enable command is skipped, the faulted result can be represented by

Ŝj = Md−d[t,j](2t)jmod N.

Therefore, we obtain

SŜ−1
j ≡Md[t,j](2t)j (mod N).

Then, the attacker determines the j-th coefficient d[t, j] by comparing SŜ−1
j mod N

with values of M ℓ(2t)j mod N for ℓ ∈ Z[0, 2t − 1]. Essentially, the same attack
on a binary RSA implementation was proposed by Kaminaga et al. [19]. This
attack requires ⌈n/t⌉ − 1 fault injections. For example, the attacker needs 255
fault injections for the case n = 1536 and t = 6. From the attacker’s point
of view, fewer fault injections are desirable because an actual attack generally
requires careful timing of injection. DCA requires fewer faults than the given
naive example.

3 Proposed Attack

3.1 Position Checker

The central idea of DCA is to determine the position set Pn,t,ℓ = {j ∈ Z[0, ⌈n/t⌉−
1] : d[t, j] = ℓ} using the position checker. Here, we define the position exponent
and position checker.

Definition 2. For any subset A of Z[0, ⌈n/t⌉ − 1], we define

d[t,A] =
∑

j∈A

(2t)j .

Here, d[t,A] = 0 whenever A = ∅. The position exponent for coefficient ℓ is

defined by d[t,Pn,t,ℓ].

An example of position exponents for t = 2 is represented in Fig. 2. The
exponent d can be recovered from {d[t,Pn,t,ℓ], ℓ ∈ Z[0, 2t − 1]} as

d =

2t−1
∑

ℓ=0

ℓd[t,Pn,t,ℓ].

6



Definition 3. Let Z∗
N = (Z/NZ)∗ be the reduced residue system mod N . For

every ℓ ∈ Z[0, 2t− 1], the position checker for coefficient ℓ is defined by the map

from Z
∗
N to itself:

Ct,ℓ(x) = xd[t,Pn,t,ℓ] mod N.

Figure 2: Position exponent for t = 2. Blank cells denote zero.

3.2 Stochastic Properties of the 2t-ary Table

In this section, we describe the stochastic properties of table T2t . The target
process of DCA is the precomputation. We observe that the number of 2t-ary
coefficients in d is equal to ⌈n/t⌉, and M j mod N for every j ∈ Z[1, 2t − 1] is
stored in RAM. Let Xn,t,ℓ = ♯Pn,t,ℓ, where the cardinality of set A is denoted
♯A. 2t-tuples of random variables (Xn,t,0, · · · , Xn,t,2t−1) obey multinomial dis-
tribution with probabilities P(Xn,t,0 = m) = 2−t, · · · ,P(Xn,t,2t−1 = m) = 2−t

for eachm ∈ Z[0, ⌈n/t⌉−1]. Here, we only consider the ℓ-independent stochastic
properties of Xn,t,ℓ; therefore, we omit ℓ of Xn,t,ℓ. Thus, the expectation and
variance of Xn,t are given by

E[Xn,t] =
n

t2t
, Var[Xn,t] =

n

t2t

(

1− 1

2t

)

,

respectively. Its probability histogram is of approximately normal distribution
for small t, whereas E[Xn,t] is large.

On the other hand, the histogram is strongly skewed to the left for relatively
large t and can be approximated by Poisson distribution. The histogram of Xn,t

for t = 5 and t = 6 are shown in Fig. 3.
Consider the relationship between the binary logarithm of the number of

positions given by

Vk,t = log2

(

k
∑

z=0

(⌈n/t⌉
z

)

)

and the cumulative probability P(Xn,t ≤ k). Here, Vk is the bit size of the
attacker’s target search space. We plot points {(Vk,t,P(X1536,t ≤ k)) : k ≥ 0}
for t = 4, 5, and 6 in Fig. 4. For example, for t = 6,

7



0 1 2 3 4 5 6 7 8 9 11 13 15 17 19

X1536, t

0.
00

0.
05

0.
10

0.
15

t=5

t=6

Figure 3: Distribution of X1536,t for t = 5 and t = 6

(V4,6,P(X1536,6 ≤ 4)) = P (27.4, 0.629).

This V4,6 is sufficiently small for an attacker to search all combinations of po-
sition by brute force. The probability P(Xn,t ≤ 4) is quite sensitive to t. As a
matter of fact, for t = 5,

(V4,5,P(X1536,5 ≤ 4)) = Q(28.5, 0.0351).

This means that the bit size of search space V4,5 grows twice of V4,6. However,
obtaining coefficients mere 3.5%.

3.3 Generating Position Checker from Faulted Signatures

Here, we describe how to generate the position checker from faulted signatures.
We first call the standard precomputation algorithm (List II). The table T2t

generated according to the following recursive relation.

M j = M j−1M mod N for j ∈ Z[1, 2t − 1]

If the MULTIPLY enable command (*) at j = k is skipped in List II, the
microcontroller generates a faulted table given by

M,M2, · · · ,Mk−1,Mk−1 · · · ,M2t−2.

In this faulted table, Mk−1 appears twice, and k−1 is double counted. The j-th
value in this faulted table can be represented by M j mod N for j ∈ Z[1, k− 1],
and M j−1 mod N for j ∈ Z[k, 2t − 1].
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Figure 4: Relation between Vk and P(Xn,t ≤ k) for n = 1536

LIST II

Precomputation for 2t-ary RSA implementation

Input:M,t,N

Output: M[j] = M^j mod N, j=1,2,...,2^t-1

A <- 1, B <- M, j = 1

Loop:

If j >= 2^t then

break and return 1, M mod N,..., M^(2^t-1) mod N

MULTIPLY enable ---(*)

[A <- AB mod N]

Move A -> RAM as M^j mod N

increment j

goto Loop

Note that the size of the table does not vary by the attack. We denote such
a faulted table as T̂2t(k). The faulted signature Ŝt,k generated from T̂2t(k) is
given by

Ŝt,k = Md−d[t,∪k≤ℓ≤2t−1
Pn,t,ℓ] mod N.

Therefore, we obtain the following position checker:

Ŝt,k+1Ŝ
−1
t,k ≡ Md[t,Pn,t,k]

≡ Ct,k(M)(mod N) for k ∈ Z[1, 2t − 2].

Note that Ŝt,2t−1 is equal to the correct signature S, and we cannot deter-
mine Ct,0. Therefore, the set Pn,t,0 is determined as the complement set of
∪ℓ∈Z[1,2t−1]Pn,t,ℓ.
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3.4 Attack Procedure

The attacker determines the position set Pn,t,k using the position checker. The
attacker knows that there is one correct position for k; all other positions are
incorrect. The goal is to identify the correct position. The following steps
provide an example of the DCA process. Note that processes 2 and 3 are
completely off-line attacks.

1. Collect 2t−1 faulted signatures Ŝk from the faulted table T̂2t(k) for every
k ∈ Z[1, 2t − 1].

2. The attacker computes position checkersCt,k(M) from the relation Ŝt,k+1Ŝ
−1
t,k ≡

Ct,k(M)(mod N) for every k ∈ Z[1, 2t − 2].

3. The attacker chooses a position set P̃n,t,k for k and computes the following:

C̃t,k(M) = Md[t,P̃n,t,k] mod N.

The attacker checks whether the value C̃t,k(M) is equal to the value of

the position checker Ct,k(M). If C̃t,k(M) = Ct,k(M), then it is highly

probable that the position set P̃n,t,k is equal to the correct position set
Pn,t,k. The attacker repeats this process for each k ∈ Z[1, 2t − 1].

3.5 Value of Position Checker Determines the Position

Exponent

The basic question is whether the observed values of the position checkerCt,ℓ(M)
for M determine the position set Pn,t,ℓ uniquely in attack process 3.

Generally, the answer is no. It is possible that P̃n,t,ℓ 6= Pn,t,ℓ even though

Md[t,P̃n,t,ℓ] ≡ Ct,ℓ(M)( mod N) holds for some M . For example, Ct,ℓ(1) = 1 for
every Pn,t,ℓ, and Ct,ℓ(−1) = 1 for every even d[t,Pn,t,ℓ]. In this case, the attacker
cannot determine the position set Pn,t,ℓ correctly using the value of Ct,ℓ(M) for
such M . This depends on the order of M mod N , which is defined as the least
positive integer s that satisfies M s ≡ 1(mod N), denoted by ordN (M). There
are a few M of small order because the number of roots of xordN (M) ≡ 1(mod N)
is at most ordN (M)2. Here the exponent “2” is from the number of factors of
N . Carmichael’s theorem states that Mλ(N) ≡ 1(mod N) for every M ∈ Z

∗
N

and the order of M mod N is a factor of λ(N) = lcm(p− 1, q − 1).
Suppose the attacker obtains a non-trivial pair of exponents such thatM s1 ≡

M s2(mod N) with s1 > s2. Then, s1 − s2 is a factor of λ(N). In many case,
s1 − s2 is large because there are a few M of small order. Hence, s1 − s2 gives
the attacker information that is useful for factorizing the public modulus N .
Consequently, we expect that such a situation will not occur frequently.

As will be discussed in Section 4, from many situations, we did not obtained
an incorrect estimate for the position exponent from a value of the position
checker. Thus, it seems that its error probability is negligible. Therefore, the
position checker works practically for most values of M .
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4 Attack Simulation

4.1 Simulation Settings and Overview

Computer simulations were performed based on the attack procedure presented
in Section 3.4. The simulation steps are as follows, where steps 1 and 2 are
to be performed on the user side or by the coprocessor, and steps 3 - 5 are
the attacker’s process. Note that, from simple power analysis and supporting
information, the attacker is assumed to know the value of t.

1. A secret exponent d = e−1 mod (p−1)(q−1) is calculated after randomly
generating two distinct prime numbers p and q of n bits each. A message
M and a public exponent e are also randomly generated.

2. The faulted signatures Ŝt,k are generated for k ∈ Z[1, 2t − 1]. Here, let

the correct signature be denoted Ŝt,2t . These signatures are known by the
attacker.

3. The attacker creates the position checkers Ct,k(M) = Ŝt,k+1Ŝ
−1
t,k mod N

from faulted signatures Ŝt,k and Ŝt,k+1 for k ∈ Z[1, 2t − 1].

4. To determine d, n bits of d are divided for every t bits from the least
significant bit (LSB) to the most significant bit (MSB). A t-bit chunk is
called a “block” and is numbered 1 through B = ⌈n/t⌉ from a block that
includes the MSB to a block that includes the LSB.

5. The d-search algorithm described in Section 4.2 is then performed.

4.2 d-search algorithm

An example of the d-search algorithm is presented in LIST III, where a coefficient
in the b-th block of d is stored in de[b].

LIST III

Search Process Example

a) // initialize

de[b] = -1 for b=1,2,c,B;

coef[k] = -1 for k = 1,2,c,2^t-1

b) // find coefficient coef[k] which appear once

// at de[ja] in B blocks.

for (ja = 1; ja <=B; ja++) {

if (de[ja] == -1) {

expA = (2^t)^(B-ja);

posId = powmod(M, expA, N);

If (posId C_k(M)) {

find k such that posID = C_k(M);

de[ja] = k; coef[k] = 1;

}

}

}

11



c) // find coefficient coef[k] which appear

// two times at {de[ja], de[jb]} in B blocks.

for (ja = 1; ja<=B; ja++) {

if (de[ja] == -1) {

expA = (2^t)^(B-ja);

for (jb = ja+1; jb<=B; jb++) {

if (de[jb] == -1 {

expB = expA + (2^t)^(B-jb);

posId = powmod(M, expB, N);

If (posId C_k(M)) {

find k such that posID = C_k(M);

de[ja] = de[jb] = k; coef[k] = 2;

goto nxt;

}

}

}

}

label nxt;

}

d) find coefficient coef[k] which appear up to

Lmt (<=B) times at {de[ja], de[jb], .., de[Lmt]}

for k = 1,2,c,2^t-1

e) // the remaining positions are for coefficient 0.

if b satisfies de[b] = -1, then let de[b] = 0;

Here coef[k] is a search flag. When the position of coefficient k is found,
coef[k] becomes 1, otherwise it becomes −1. The de[b] for b ∈ Z[0, 2t − 1] is
the secret exponent at the end of the search process. The background of this
algorithm is as follows. The probability of one coefficient having z blocks in d
is given by

p(B, z) =

(

B

z

)(

1

w

)z (

1− 1

w

)B−z

,

where w = 2t. Let the expected number of coefficients having z positions
each be W z, and the expected number of occupied positions by all coefficients
having z blocks each is Bz. These expectations are given by W z = wp(B, z)
and Bz = zwp(B, z). If the coefficient 0 is excluded for these expectations, they

become W
′

z = (w − 1)p(B, z) and B
′

z = z(w − 1)p(B, z). On the other hand, z
blocks can be chosen from B blocks by

(

B
z

)

. Therefore, the probability to pass
the position check for a combination of z blocks in B blocks is given by

W
′

z/

(

B

z

)

=
(w − 1)B−z+1

wB

which decreases when z becomes large. This means that we should first check

positions for z = 1 for quick results. Then, we can determine the average B
′

1

positions. The coefficients having two positions each should be searched, and
the probability to pass the position check is

(w − 1)B−B
′

1
−1

wB−B
′

1

.
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In the same manner, next search is for coefficients having an incremental number
of positions are then searched.

4.3 Simulation Results

The experiment was performed on a computer with a 16-core(XENON) 3.8
GHz CPU and 256 GB of memory. We implemented the attack presented in
LIST III using the Number Theory Library [20] developed by Victor Shoup. In
this experiment, we measured the processing time required to derive the secret
exponent d. Attack simulation was performed for (n, t) = (1536, 6) 101 times,
where d, e, and M were randomly generated 101 times. All estimation results
for each d were confirmed to be correct. The median and average CPU times
required for the attack were approximately 962 and 1120 min, respectively. The
attack time for the worst case was 5189 min, and the best attack time was 249
min.

5 Small t case

Smaller t makes our attack difficult because the size of the position set Pn,t,ℓ

for most ℓ ∈ Z[0, 2t − 1] is too large to search by brute force. Under such
an unfavourable attack condition the attacker can determine the position of
several “rare” coefficients of the secret exponent d. However, for a small t case,
the attacker generally requires significant time to determine the complete secret
exponent d even for t = 5 and n = 1024.

On the other hand, for a small t case, the attacker can reconstruct the
complete d if the public exponent e is relatively small. A small public exponent
e (e.g., 65537 = 216 + 1) is often used to speed up signature verification. By
observing the RSA equation

ed− kϕ(N) = 1,

we have

d =
k

e
ϕ(N) +

1

e
=

k

e
(N − s) +

1

e
,

where s = p+ q − 1. Suppose p and q are balanced, i.e., p < q < 2p. Then, we
have s = p+ q− 1 < 3

√
N . Note that k takes a value that satisfies gcd(e, k) = 1

and k ∈ Z[1, e−1] because d < ϕ(N). The length of s is approximately half that
of N . Therefore, it is highly probability that the upper bits of d will be equal
to the upper bits of kN/e when e is small. If the attacker knows some partial
coefficients in the DCA process, they can determine k uniquely by comparing the
upper bits of kN/e with those coefficients. Thus, the attacker can determine
the upper bits of d after determining a unique k. In this manner, the DCA
process can be accelerated. For example, for e = 65537, the attacker can obtain
the upper half bits of d by e − 1 = 65536 trials at most. The attacker must
only search the coefficients using the proposed attack method for most of the
lower half bits of d. For the case n = 1024 and t = 5, we expect that more than

13



half the coefficients can be searched in a short time. Our simulation shows that
all coefficients of d can be searched within a few days by Mathematica 9 on a
Windows 7 PC (2.3 GHz).

6 Software countermeasures against DCA

6.1 Small t and large e

A simple and effective countermeasure against DCA is to adopt small t and e
of length that is approximately equal to the length of N . For instance, consider
the case where t = 4 and N is 1536-bits long. In this case, the number of
positions for the same coefficient ≤ 20 is approximately 2109.9767. In this case,
it is difficult for the proposed DCA alone to find the complete secret exponent.

In addition, this countermeasure reduces RAM space for the table. Clearly,
RAM space is reduced by half, and, as can be seen in Table 1, the average
computation time increases by approximately 3.2% when t is reduced from 6 to
4.

If a chip developer adopts this countermeasure, the choice of t, e, and the
length of N must be considered very carefully. For example, the attacker can
determine the secret exponent using DCA in a short time for a 512-bit N even
if t = 4.

The attacker can determine several coefficients using the naive attack de-
scribed in Section 2.4 if the chip does not provide other countermeasures against
fault attacks.

6.2 Execution Redundancy

Execution redundancy is the repeatition of computations and comparison of re-
sults to verify that the correct result is generated [4]. The simplest execution
redundancy is recomputation, i.e., performing a computation twice on the same
hardware. This countermeasure executes the same computation twice and com-
pares the first and second results. If these results are not equal, then a fault
is detected. The recomputation consists of precomputation and exponentiation
processes. Generally, in order to accelerate of recomputation, only exponenti-
ation process executes twice. However, our attack works if the chip executes
precomputation only once. Therefore, precomputing twice are indispensable to
prevent our attack.

Another effective countermeasure is an inverse computation, i.e., the en-
cryption and comparison of M to an encrypted signature [3]. This is not only
effective but also is faster than the recomputation countermeasure if the public
exponent is relatively small such as 65537. A condition by which an inverse
computation works successfully is given in Theorem 4.

Theorem 4. Pick M ∈ Z
∗
N . Suppose ord(M) is not a common divisor of ϕ(N)

and d[t,∪k≤ℓ≤2t−1Pn,t,ℓ] for every k ∈ Z[1, 2t−1]. Then, for some k, the inverse
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computation detects the faulted signatures Ŝt,k created from faulted table T̂2t(k)
with message M .

Proof. As discussed in Section 3.3, the faulted signature created from faulted
table T̂2t(k) with message M is represented as

Ŝt,k = Md−d[t,∪k≤ℓ≤2t−1
Pn,t,ℓ] mod N.

Then, Ŝe
t,k is given by

Ŝe
t,k ≡ M ed−ed[t,∪k≤ℓ≤2t−1

Pn,t,ℓ]

≡ M ·M−ed[t,∪k≤ℓ≤2t−1
Pn,t,ℓ](mod N)

If the inverse computation does not detect this fault, i.e., Ŝe
t,k ≡M holds, then,

M ed[t,∪k≤ℓ≤2t−1
Pn,t,ℓ] ≡ 1(mod N).

Thus, ord(M) is a common divisor of ed[t,∪k≤ℓ≤2t−1Pn,t,ℓ] for every k ∈ Z[1, 2t−
1]. Since ord(M) is a factor of ϕ(N) and gcd(e, ϕ(N)) = 1, ord(M) is a common
divisor of ϕ(N) and d[t,∪k≤ℓ≤2t−1Pn,t,ℓ] for every k ∈ Z[1, 2t − 1], which gives
the desired result. �

6.3 Exponent randomization

The exponent randomization method was proposed by P. Kocher [21] in 1996
to defeat power analysis. The exponent randomization picks a random integer
r and computes a digital signature with d̃ = d + rϕ(N) rather than the raw
d. Coron [22] extended this countermeasure to an elliptic curve cryptosystem.
For an RSA case, this is an effective countermeasure against numerous fault
attacks. For example, the safe error attack developed by Yen-Joye [9] does not
work if the card developer adopts exponent randomization because the attack
uses bit-flipping of the secret exponent. Exponent randomization also works
for other fault attacks [[8], [4]] by relying on the stationary nature of the secret
exponent. Berzati et al. [23] developed an effective fault attack against ex-
ponent randomization. Their attack succeeds from approximately 1000 faulty
signatures for a 1024-bit RSA signature algorithm. Nevertheless, exponent ran-
domization makes it difficult for their fault attacks to reconstruct the complete
secret exponent. On the other hand, precomputation is independent of the ex-
ponent; therefore, this countermeasure has no adverse effect on the proposed
DCA.

7 Conclusion

In this paper, we have introduced a position checker to determine the posi-
tion set Pn,t,ℓ for 2t-ary modular exponentiation and have proposed a double
counting attack that uses the proposed position checker against a 2t-ary RSA
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signature. The attack is the first fault attack based on an instruction skip
against precomputation. We have also provided an estimate of the probability
of uniquely determining the position exponent from a value obtained by the
position checker. We also performed attack simulations for several parameters,
including 1536-bit RSA with the 26-ary method. In addition, if the public expo-
nent is small, search time is reduced. From several attack simulations for public
exponent e = 65537, we have also shown that 1024-bit RSA with the 25-ary
method can be broken in a short time.

Empirically, we did not obtain any incorrect estimates for the position expo-
nent from a value of the position checker in many simulations. Thus, it appears
that the error probability of the proposed method is significantly small. More-
over, we have also discussed efficacy of several software countermeasures. We
have concluded that neither recomputation with a single precomputation nor
the use of a randomized exponent have adverse effect against our attack.
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