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Asymptotics of Fingerprinting and Group Testing:
Tight Bounds from Channel Capacities

Thijs Laarhoven

Abstract—In this work we consider the large-coalition asymp-
totics of various fingerprinting and group testing games, and
derive explicit expressions for the capacities for each of these
models. We do this both for simple decoders (fast but suboptimal)
and for joint decoders (slow but optimal).

For fingerprinting, we show that if the pirate strategy is
known, the capacity often decreases linearly with the number
of colluders, instead of quadratically as in the uninformed
fingerprinting game. For many attacks the joint capacity is
further shown to be strictly higher than the simple capacity.

For group testing, we improve upon known results about
the joint capacities, and derive new explicit asymptotics for the
simple capacities. These show that existing simple group testing
algorithms are suboptimal, and that simple decoders cannot
asymptotically be as efficient as joint decoders. For the traditional
group testing model, we show that the gap between the simple
and joint capacities is a factor log2(e) ≈ 1.44 for large numbers
of defectives.

Index Terms—Fingerprinting, traitor tracing, group testing,
channel capacities, search problems, compressive sensing.

I. INTRODUCTION

A. Fingerprinting

TO protect copyrighted content against unauthorized re-
distribution, distributors commonly embed watermarks

or fingerprints in the content, uniquely linking copies to
individual users. If the distributor finds an illegal copy of
the content online, he can then extract the watermark from
this copy and compare it to the database of watermarks, to
determine which user was responsible.

To combat this solution, a group of c pirates may try to form
a coalition and perform a collusion attack. By comparing their
unique versions of the content, they will detect differences in
their copies which must be part of the watermark. They can
then try to create a mixed pirate copy, where the resulting wa-
termark matches the watermark of different pirates in different
segments of the content, making it hard for the distributor to
find the responsible users. The goal of the distributor of the
content is to assign the watermarks to the users in such a way
that, even if many pirates collude, the pirate copy can still be
traced back to the responsible users.

B. Group testing
A different area of research that has received considerable

attention in the last few decades is group testing, introduced
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by Dorfman [24] in the 1940s. Suppose a large population
contains a small number c of infected (or defective) items.
To identify these items, it is possible to perform group tests:
testing a subset of the population will lead to a positive
test result if this subset contains at least one defective item,
and a negative result otherwise. Since the time to run a
single test may be very long, the subsets to test need to be
chosen in advance, after which all group tests are performed
simultaneously. Then, when the test results come back, the
subset of defective items needs to be identified. The goal of
the game is to identify these defectives using as few group
tests as possible, and with a probability of error as small as
possible.

C. Model

The above problems of fingerprinting and group testing can
be jointly modeled by the following two-person game between
(in terms of fingerprinting) the distributor D and the adversary
C (the set of colluders, or the set of defectives). Throughout the
paper we will mostly use terminology from fingerprinting (i.e.
users instead of items, colluders instead of defective items),
unless we are specifically dealing with group testing results.

First, there is a universe U of n users, and the adversary is
assigned a random subset of users C ⊆ U of size |C| = c. This
subset C is unknown to the distributor (but we assume that the
distributor does know the size c of C), and the aim of the game
for the distributor is ultimately to discover C. The two-person
game consists of three phases: (1) the distributor uses an
encoder to generate a fingerprinting code, used for assigning
versions to users; (2) the colluders employ a collusion channel
to generate the pirate output from their given code words; and
(3) the distributor uses a decoder to map the pirate output to
a set C′ ⊆ U .

1) Encoder: First, the distributor generates a fingerprinting
code X of n binary code words of length `.1 The parameter
` is referred to as the code length, and the distributor would
like ` to be as small as possible. For the eventual embedded
watermark, we assume that for each segment of the content
there are two differently watermarked versions, so the water-
mark of user j is determined by the ` entries in the jth code
word of X .

A common restriction on the encoding process is to assume
that X is created by first generating a bias vector P ∈ (0, 1)`

(by choosing each entry Pi, for i = 1, . . . , `, independently

1In fingerprinting a common generalization is to assume that the entries of
the code words come from an alphabet of size q ≥ 2, but in this paper we
restrict our attention to the binary case q = 2.
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from a certain distribution fP ), and then generating code
words Xj ∈ X according to P(Xj,i = 1) = Pi. This guar-
antees that watermarks of different users j are independent,
and that watermarks in different positions i are independent.
Fingerprinting schemes that satisfy this assumption are some-
times called bias-based schemes, and the encoders in this paper
(both for group testing and fingerprinting) are also assumed
to belong to this category.

2) Collusion channel: After generating X , the code words
are used to select and embed watermarks in the content, and
the content is sent out to all users. The colluders then get
together, compare their copies, and use a certain collusion
channel or pirate attack Θ to determine the pirate output
Y ∈ {0, 1}`. If the pirate attack behaves symmetrically both
in the colluders and in the positions i, then the collusion
channel can be modeled by a vector θ ∈ [0, 1]c+1, consisting
of entries θz = P(Yi = 1|z) (for z = 0, . . . , c) indicating the
probability of outputting a 1 when the pirates received z ones
and c−z zeroes. A further restriction on θ in fingerprinting is
the marking assumption introduced by Boneh and Shaw [11],
which says that θ0 = 0 and θc = 1, i.e., if the pirates receive
only zeros or ones they have to output this symbol.

3) Decoder: Finally, after the pirate output has been gen-
erated and distributed, we assume the distributor intercepts it
and applies a decoding algorithm to Y , X and P to compute
a set C′ ⊆ U of accused users. The distributor wins the game
if C′ = C and loses if this is not the case.2

Fingerprinting vs. group testing: While the above model is
described in fingerprinting terminology, it also covers many
common group testing models. The users then correspond to
items, the colluders translate to defectives, the code X corre-
sponds to the group testing matrix X (where Xj,i = 1 if item j
is included in the ith test), and the pirate output corresponds to
positive/negative test results. The collusion channel is exactly
what separates group testing from fingerprinting: while in
fingerprinting it is commonly assumed that this channel is
not known or only weakly known to the distributor, in group
testing this channel is usually assumed known in advance. This
means that there is no malicious adversary in group testing,
but only a randomization procedure that determines Y . Note
also that in (noisy) group testing, the Boneh-Shaw marking
assumption may not always hold.

D. Related work

Work on the fingerprinting game described above started
in the late 90s, and lower bounds on the code length were
established of the order ` ∝ c lnn [11], until in 2003
Tardos [52] proved a lower bound of the order ` ∝ c2 lnn and
described a scheme with ` = O(c2 lnn), showing this bound
is tight. The lower bound however did not explicitly mention
leading constants, so later work on fingerprinting focused on
finding this constant. Amiri and Tardos [5] and Huang and
Moulin [29]–[32], [44] independently worked on this problem
and found that the exact asymptotic lower bound on ` is

2In this paper we thus consider the catch-all scenario, where not at least
one colluder (the catch-one scenario) but all colluders should be found for
the distributor to win the game.

` ∼ 2c2 lnn for large n and c. Huang and Moulin further
derived the pirate strategy and encoder achieving this lower
bound, which were later used [39], [42], [45] to construct
efficient schemes matching these bounds. Most of this work
on lower bounds considers the setting with worst-case pirate
attacks, and little is known about lower bounds for specific,
suboptimal pirate attacks considered in e.g. [9], [15], [28],
[38], [42], [45]. It is well known that for suboptimal pirate
attacks the required code length may be significantly smaller
than the ` ∼ 2c2 lnn for arbitrary attacks, but no tight bounds
are known.

Research on the group testing problem started much longer
ago, and already in 1985 exact asymptotics on the code length
for probabilistic schemes were derived as ` ∼ c log2 n [48],
whereas deterministic schemes require a code length of ` ∝
c2 lnn [25], [26]. Later work focused on slight variations
of the classical model such as noisy group testing, where a
positive result may not always correspond to the presence of
a defective item due to ‘noise’ in the test output [6], [7], [17],
[18], [34], [37], [49], and threshold group testing, where the
test result may only be positive if sufficiently many defective
items are included in the tested subset [1]–[3], [16], [19],
[22], [37], [41]. For noisy and threshold group testing, exact
asymptotics on the capacities are yet unknown, and so it is
not known whether existing constructions are optimal.

E. Contributions and outline
In this paper we extend the work of Huang and Moulin [32]

to various fingerprinting and group testing models where
θ is known in advance. We derive the simple capacities
(Section II) and the joint capacities (Section III) for these
pirate attacks/group testing models, and prove that these results
are the exact optima. An overview of these results can be
found in Table I. Finally, we discuss the results (Section IV)
and mention some directions for future work (Section V).

II. SIMPLE CAPACITIES

In simple decoding, “the receiver makes an innocent/guilty
decision on each user independently of the other users, and
there lies the simplicity but also the suboptimality of this
decoder.” [44, Section 4.3] In other words, a simple decoder
bases its decision whether or not to accuse user j only on the
jth code word of X , and not on other code words in X . This
means that the decoding step will generally be fast but less
accurate than when all information available to the decoder
(the entire code X ) is taken into account.

Huang and Moulin [29]–[32] previously studied simple
capacities in the context of fingerprinting, and showed that
given a set of allowed collusion channels Pc (depending only
on θ) and a set of allowed encoders Pe, any fingerprinting
rate below

Cs(Pe,Pc) = max
fP∈Pe

min
θ∈Pc

EP I(p,θ) (1)

is achievable3, where

I(p,θ) = I(X1;Y |P = p) (2)

3Certain conditions on Pc and Pe need to be satisfied for this to hold, but
we refer the reader to [32] for details.
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TABLE I
AN OVERVIEW OF THE CAPACITY RESULTS DERIVED IN THIS PAPER. THE TOP ROWS DESCRIBE PIRATE ATTACKS IN FINGERPRINTING AND THE BOTTOM
ROWS CONSIDER VARIOUS DIFFERENT MODELS IN GROUP TESTING. THE RESULTS FOR THE INTERLEAVING ATTACK AND UNKNOWN ATTACKS [32] AND

THE JOINT CAPACITY FOR THE CLASSICAL GROUP TESTING MODEL [48] WERE DERIVED BEFORE, WHILE THE OTHER RESULTS ARE NEW.

Attacks / Models Simple capacities (Section II) Joint capacities (Section III)

Fi
ng

er
pr

in
tin

g

θint: interleaving attack
(

1
2 ln 2

)
/c2 ≈ 0.72/c2 (Section II-A1)

(
1

2 ln 2

)
/c2 ≈ 0.72/c2 (Section III-A1)

θall1: all-1 attack (ln 2)/c ≈ 0.69/c (Section II-A2) (1)/c ≈ 1.00/c (Section III-A2)
θmaj: majority voting

(
1

π ln 2

)
/c ≈ 0.46/c (Section II-A3) (1)/c ≈ 1.00/c (Section III-A3)

θmin: minority voting (ln 2)/c ≈ 0.69/c (Section II-A4) (1)/c ≈ 1.00/c (Section III-A4)
θcoin: coin-flip attack

(
1
4
ln 2

)
/c ≈ 0.17/c (Section II-A5)

(
log2(

5
4
)
)
/c ≈ 0.32/c (Section III-A5)

Pmark: unknown attacks
(

1
2 ln 2

)
/c2 ≈ 0.72/c2 (Section II-A6)

(
1

2 ln 2

)
/c2 ≈ 0.72/c2 (Section III-A6)

G
ro

up
te

st
in

g

θall1: classical model (ln 2)/c ≈ 0.69/c (Section II-B1) (1)/c ≈ 1.00/c (Section III-B1)
θadd: additive noise (ln 2− r)/c ≈ 0.69/c (Section II-B2) (1− 1

2
h(r))/c ≈ 1.00/c (Section III-B2)

θdil: dilution noise (ln 2−O(r ln r))/c ≈ 0.69/c (Section II-B3) (1− 1
2
h(r) ln 2)/c ≈ 1.00/c (Section III-B3)

θ
(u)
thr : threshold (no gap) between 0.46/c and 0.69/c (Section II-B4) (1)/c ≈ 1.00/c (Section III-B4)

θ
(l,u)
int : threshold (int. gap) between 0.72/c2 and 0.69/c (Section II-B5) between 0.72/c2 and 1.00/c (Section III-B5)

θ
(l,u)
coin : threshold (coin. gap) between 0.17/c and 0.69/c (Section II-B5) between 0.32/c and 1.00/c (Section III-B5)

is the mutual information between a colluder’s symbol X1

and the pirate output Y in one segment i. In this work we
will always let Pe be the set of all probability distribution
functions on (0, 1), and we will commonly omit the argument
Pe from Cs. For fixed collusion channels Pc = {θ}, fixing
P is optimal [32, Section IV.B], in which case the expression
from (1) reduces to

Cs({θ}) = max
fP

EP I(p, θ) = max
p∈(0,1)

I(X1;Y |P = p). (3)

With slight abuse of notation we will abbreviate the left
hand side as Cs(θ). We will also consider some cases where
(part of) the collusion channel is unknown, in which case the
capacity includes a minimization over θ as well:

Cs(Pc) = max
fP

min
θ∈Pc

EP I(X1;Y |P = p). (4)

To study the mutual information payoff function I(p,θ) we
will use the following identity [32, Equation (61)]:

I(p,θ) = pd(a1‖a) + (1− p)d(a0‖a), (5)

where a, a0, a1 are defined as

a =

c∑
z=0

(
c

z

)
pz(1− p)c−zθz, (6)

a0 =

c−1∑
z=0

(
c− 1

z

)
pz(1− p)c−z−1θz, (7)

a1 =

c∑
z=1

(
c− 1

z − 1

)
pz−1(1− p)c−zθz. (8)

Here, d(·‖·) denotes the relative entropy or Kullback-
Leibler divergence, defined by d(α‖β) = α log2(αβ ) + (1 −
α) log2( 1−α

1−β ). Given p and θ, the above formulas allow us to
compute the mutual information I(p,θ) explicitly.

For obtaining the simple capacities for various models, we
will extensively work with the Kullback-Leibler divergence.
In general analyzing this function is not so pretty, but we

can simplify some computations with the following Taylor
expansion around α = β:

d(α‖β) =
(α− β)2

2β(1− β) ln 2

(
1 +O

(
|α− β|
β(1− β)

))
. (9)

Intuitively, this says that the divergence is bigger if α and β
are further apart, but for α and β both close to 0 or 1 the
divergence may blow up as well due to the β and 1 − β in
the denominator. In that case we have to be careful and see
whether |α−β| approaches 0 faster than β or 1−β. A special
case of (9) for β = 1

2 and α ≈ 1
2 is

d

(
1

2
± γ
∥∥∥1

2

)
=

2γ2

ln 2
+O(γ4). (10)

Finally, if α = 1
2 and β ≈ 1

2 , we can rewrite d(α‖β) as

d

(
1

2

∥∥∥1

2
(1± γ)

)
=

1

2
d
(
1‖1− γ2

)
, (11)

and regardless of α and β, we always have d(α‖β) = d(1 −
α‖1− β).

A. Fingerprinting

We will study the simple capacities for five commonly
considered fingerprinting attacks, and for completeness also
mention the result of Huang and Moulin regarding the simple
capacity for unknown attacks.

1) Interleaving attack: The interleaving attack in finger-
printing (considered in e.g. [9], [15], [28], [32], [38], [45]) is
characterized by the coalition choosing one of its members at
random, and outputting his symbol. Given z members with a
1 and c− z members with a 0, the probability of outputting a
1 is then equal to z

c , regardless of z and c:

(θint)z =
z

c
. (0 ≤ z ≤ c) (12)

This attack is known to be one of the strongest pirate attacks,
and the capacity is proportional to 1

c2 . The exact asymptotics of
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the simple capacity for the interleaving attack were previously
derived by Huang and Moulin.

Proposition 1: [32, Theorem 6] The simple capacity for
the interleaving attack is:

Cs(θint) =
1

2c2 ln 2
+O

(
1

c4

)
≈ 0.72

c2
, (13)

and the maximizing value of p is psint = 1
2 .

2) All-1 attack: Another commonly considered attack is the
all-1 attack, where pirates output a 1 whenever they can [15],
[38], [42], [45]. Due to the marking assumption they are forced
to output a 0 when they did not receive any ones, but otherwise
a coalition using the all-1 attack will always output a 1:

(θall1)z =

{
0 if z = 0;

1 if z > 0.
(14)

We will show below that this attack is significantly weaker
than the interleaving attack.

Proposition 2: The simple capacity and the corresponding
maximizing value of p for the all-1 attack are:

Cs(θall1) =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
, (15)

psall1 =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
. (16)

Proof: First, consider a, a0 and a1. Using θz = 0 if z = 0
and θz = 1 otherwise, we get

a =

c∑
z=0

(
c

z

)
pz(1− p)c−zθz = 1− (1− p)c. (17)

Working out a0 and a1 in a similar way, we get a0 = 1 −
(1 − p)c−1 and a1 = 1. For ease of notation, let us write
s = (1− p)c and I(p) = I(p,θall1), so that we get

I(p) = pd (1‖1− s) + (1− p)d
(

s

1− p

∥∥∥s) . (18)

Now, consider the second term. For large c, we argue that this
term is small, i.e. of the order O( 1

c2 ), regardless of p:

(1− p)d
(

s

1− p

∥∥∥ s)
= −s log2(1− p) + (1− p− s) log2

(
1− ps

(1− p)(1− s)

)
(a)
= −s log2(1− p) +

1− p− s
ln 2

[
−ps

(1− p)(1− s)
+O

(
1

c2

)]
(b)
= +

ps

ln 2
− ps

ln 2

[
1− ps

(1− p)(1− s)
+O

(
1

c2

)]
(c)
= +

ps

ln 2
− ps

ln 2
+O

(
1

c2

)
= O

(
1

c2

)
.

Here (a) follows from ps
(1−p)(1−s) = O( 1

c ) and ps = O( 1
c )

for all p, (b) follows from p2s = O( 1
c2 ), and (c) follows from

p2s2

(1−p)(1−s) = O( 1
c2 ) and p2s = O( 1

c2 ) for arbitrary p. So we
are now left with:

I(p) = −p log2(1− s) +O

(
1

c2

)
. (19)

For p to be a global maximum we need either that I ′(p) = 0
or p should be one of the end-points 0 or 1. For p → 0, 1
we get I(p) → 0, so we need to find a value p ∈ (0, 1) with
I ′(p) = 0. Writing out the remaining term and differentiating,
this condition is equivalent to

cps

(1− p)(1− s)
= − ln(1− s). (20)

Since the left hand side is O(1) regardless of p, the right hand
side must be too, so s = 1− o(1) is excluded. To exclude the
case s = o(1) we rewrite (20) to get

cp

1− p
=

1− s
s

ln

(
1

1− s

)
. (21)

Now if s = o(1) then the right hand side becomes 1 − o(1),
which implies in the left hand side that p = 1

c − o(
1
c ), which

implies that s 6= o(1), contradicting our assumption that s =
o(1). So for large c a maximum can only occur at o(1) < s <
1 − o(1). Suppose that s(c) → s∗ ∈ (0, 1) for c → ∞, with
s∗ 6= s∗(c) not depending on c. Then p(c) → p∗ = −1

c ln s∗,
so the condition on p and s is then asymptotically equivalent
to:

s∗ ln s∗ = (1− s∗) ln(1− s∗) +O

(
1

c

)
. (22)

This has a unique solution at s∗ = 1
2 + O( 1

c ), leading to the
given values of psall1 and Cs(θall1).

In terms of code lengths, this means that any simple
decoding algorithm for the all-1 attack requires an asymptotic
number of fingerprint positions of at least ` ∼ 1

ln 2c log2 n ≈
2.08c lnn for large n. This seems to contradict earlier results
of [37], [38], which suggested that under a certain Gaussian
assumption, only ` ∼ 2c lnn tests are required. This ap-
parent contradiction is caused by the fact that the Gaussian
assumption in that paper is not correct in the regime of small
p, for which those results were derived. Rigorous analysis
of the scores in [37], [38] shows that with that scheme, an
asymptotic code length of about ` ≈ 3c lnn is sufficient when
p ∼ 1

c ln(2), which is well above the lower bound obtained
above.

3) Majority voting: The majority voting attack [9], [15],
[28], [38], [43], [45] is characterized by the pirates choosing
the symbol they have seen the most often. To avoid ambiguity,
we will assume c is odd, in which case the attack is given by

(θmaj)z =

{
0 if z < c

2 ;

1 if z > c
2 .

(23)

For this attack we obtain the following result.
Proposition 3: For the majority voting attack, the simple

capacity is

Cs(θmaj) =
1

πc ln 2
+O

(
1

c2

)
≈ 0.46

c
, (24)

and the maximizing value of p is psmaj = 1
2 .

Proof: As mentioned before, to avoid ambiguity we focus
on the case where c = 2c′ + 1 is odd, and due to symmetry
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w.l.o.g. we may assume that p ≤ 1
2 . First, we have:

a =

2c′+1∑
z=c′+1

(
2c′ + 1

z

)
pz(1− p)2c

′+1−z, (25)

and a0 and a1 satisfy a0 = a + pu and a1 = a − (1 − p)u,
where u =

(
2c′

c′

)
pc

′
(1−p)c′ . Now if p = O( 1

c ), then a1 and a0
quickly approach 0 leading to I(p) = o( 1

c ). For the remaining
case p = ω( 1

c ), expanding a using Sanov’s theorem [21,
Theorem 11.4.1] we get

a ∼ exp
[
(2c′ + 1) ln(2)d

(
1
2‖p
)]

(26)

∼ pc
′+ 1

2 (1− p)c
′+ 1

2 22c
′+1. (27)

Using Stirling’s formula for the central binomial coefficient in
u, we obtain

u =

(
2c′

c′

)
pc

′
(1− p)c

′
∼ 22c

′
pc

′
(1− p)c′√
πc′

. (28)

As a consequence, ua = o(1), and using (9) we get

d(a0‖a) ∼ p2u2

2 ln 2a(1− a)
, (29)

d(a1‖a) ∼ (1− p)2u2

2 ln 2a(1− a)
. (30)

Combining these expressions, we get

I(p) = pd(a1‖a) + (1− p)d(a0‖a) (31)

∼ 24c
′
p2c

′+1(1− p)2c′+1

2πc′a(1− a) ln 2
. (32)

To see that this has a maximum at p = 1
2 , writing out the

inverse of the above expression (ignoring constants) we see
that, in terms of p,

1

I(p)
∝

c′∑
z1,z2=0

(
2c′ + 1

z1

)(
2c′ + 1

z2

)(
p

1− p

)z1−z2
(33)

= C1 +
∑
z1<z2

C2

[(
p

1− p

)z2−z1
+

(
1− p
p

)z2−z1]
(34)

= C1 +
∑
z1<z2

C2 [2 cosh((z2 − z1) lnx)] , (35)

where x = 1−p
p > 1 for p < 1

2 and x = 1 if p = 1
2 , and

C1, C2 are expressions that do not depend on p. The function
between square brackets is positive and increasing in x for
x ≥ 1, so it has a global minimum at x = 1, corresponding
to p = 1

2 . So the maximum for I(p) is attained at p = 1
2 , in

which case u satisfies

u =
1√
πc/2

(
1 +O

(
1

c

))
. (36)

To get exact asymptotics for I( 1
2 ), we return to the expression

for I(p) of (9). Since from (25) it follows that a = 1
2 , and

both terms are identical, we obtain:

I

(
1

2

)
= d

(
1

2
+

1√
2πc

[
1 +O

(
1

c

)]∥∥∥ 1

2

)
. (37)

Using (10) the result then follows.
This result matches the bounds obtained in [37], [38], which

showed that with an almost trivial decoding algorithm one
can asymptotically achieve a code length of ` ∼ πc lnn for
large n and c. The construction of [37], [38] is thus capacity-
achieving.

4) Minority voting: As the name suggests, when pirates
use the minority voting attack [9], [15], [28], [38], [45], they
output the symbol they have received the least often. Due to
the marking assumption they are not able to output symbols
they have not received, so in the binary setting the attack is
defined as follows. Again, we will assume that c is odd.

(θmin)z =

{
0 if z = 0 or c

2 < z < c;

1 if z = c or 0 < z < c
2 .

(38)

As shown below, this attack has the same simple capacity as
the all-1 attack.

Proposition 4: The simple capacity and the corresponding
optimal value of p for the minority voting attack are:

Cs(θmin) =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
, (39)

psmin =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
. (40)

Proof: In this case the function I(p) is symmetric around
p = 1

2 , so w.l.o.g. we may assume p ≤ 1
2 . For small values

of p, minority voting is equivalent to the all-1 attack up to
negligible order terms, while for p ≈ 1

2 the attack is very
similar to majority voting by θmin ≈ 1−θmaj. This means that
for small p the mutual information payoff will be equivalent
to that of the all-1 attack, while for p ≈ 1

2 we get the same
values as for majority voting. Since the simple capacity for the
all-1 attack is higher than for majority voting, the distributor
should choose p close to psall1, leading to the result.

5) Coin-flip attack: Instead of choosing a pirate at random
and outputting his symbol (the interleaving attack), the pirates
may also decide to choose a symbol at random from their set
of received symbols, without paying attention to how often
they received each symbol [9], [28], [38], [45]. In other words,
when a coalition receives both symbols, they let a fair coin-flip
decide which symbol to output. This means that the collusion
channel satisfies:

(θcoin)z =


0 if z = 0;
1
2 if 0 < z < c;

1 if z = c.

(41)

This pirate attack is weaker than the interleaving attack, but
stronger than the other pirate attacks considered above.

Proposition 5: For the coin-flip attack, the simple capacity
and the corresponding maximizing value of p are:

Cs(θcoin) =
ln 2

4c
+O

(
1

c2

)
≈ 0.17

c
, (42)

pscoin =
ln 2

2c
+O

(
1

c2

)
≈ 0.35

c
. (43)
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Proof: Since I(p) is symmetric around p = 1
2 , let us

assume w.l.o.g. that p ≤ 1
2 . For a, a0 and a1 we obtain:

a =
1

2
(1 + pc − (1− p)c) , (44)

a0 =
1

2

(
1− (1− p)c−1

)
, (45)

a1 =
1

2

(
1 + pc−1

)
. (46)

So for the mutual information, we obtain

I(p) = pd

(
1

2

(
1 + pc−1

) ∥∥∥1

2
(1 + pc − (1− p)c)

)
(47)

+ (1− p)d
(

1

2

(
1− (1− p)c−1

) ∥∥∥1

2
(1 + pc − (1− p)c)

)
.

(48)

For p ≤ 1
2 , the terms pc and pc−1 are negligible, so up to

small order terms, we get

I(p) = pd

(
1

2

∥∥∥1

2
(1− (1− p)c)

)
(49)

+ (1− p)d
(

1

2

(
1− (1− p)c−1

) ∥∥∥1

2
(1− (1− p)c)

)
. (50)

Similar to the proof of the all-1 attack, the second term is
O( 1

c2 ), while using (11) we can rewrite the first term to a
recognizable form:

I(p) =
1

2

[
−p log

(
1− (1− p)2c

)]
+O

(
1

c2

)
. (51)

The term between square brackets is exactly the dominating
term for the simple capacity of the all-1 attack for c′ = 2c. In
other words:

Ic(p,θcoin) =
1

2
I2c(p,θall1) +O

(
1

c2

)
. (52)

Using Proposition 2, the result follows.
For this attack, the result in [38] was also too optimistic

due to the incorrect Gaussian assumption. Any simple decoder
must have a code length of at least ` ∼ 4

ln 2c log2 n ≈
8.33c lnn, while the result in [38] suggests that a code length
of ` ∼ 4c lnn suffices under a certain Gaussian assumption.
Again, the Gaussian assumption is to blame, and since the
optimal value of p is even smaller here than for the all-1 attack,
the error of [38] is even bigger here.

6) Unknown attacks: Finally, the most often studied setting
in fingerprinting is the scenario where the pirate attack is not
known to the distributor. Due to the marking assumption the
distributor does know that θ0 = 0 and θc = 1, but otherwise
no assumptions are made on the pirate strategy. The set of
allowed attacks can then be described as

Pmark = {θ ∈ [0, 1]c+1 | θ0 = 0, θc = 1}. (53)

Huang and Moulin solved the related max-min game for large
c, and found the asymptotic optimal encoder and collusion
channel leading to the saddle point solution.

Proposition 6: [32, Theorem 6, Corollary 7] The simple
capacity for the uninformed fingerprinting game is

Cs(Pmark) =
1

2c2 ln 2
+O

(
1

c3

)
≈ 0.72

c2
, (54)

and the optimizing encoder fP and collusion channel θ
achieving this bound for large c are the arcsine distribution,
defined by

f∗P (p) =
1

π
√
p(1− p)

, (p ∈ (0, 1)) (55)

and the interleaving attack θint.

B. Group testing

For group testing, we will study five different models: the
classical (noiseless) model, the models with additive noise and
dilution noise, and threshold group testing with and without
gaps. Other models where the test result Y depends only on
the tally Z may be analyzed in a similar fashion.

1) Classical model: In the classical model, the outcome of
a group test is positive iff at least one defective was present
in the tested pool. This model is equivalent to the all-1 attack
in fingerprinting, as was previously noted in e.g. [37], [42],
[51]. This immediately leads to the following result.

Corollary 1: For the classical group testing model, the
simple informed capacity and the corresponding optimal value
of p are:

Cs(θall1) =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
, (56)

psall1 =
ln 2

c
+O

(
1

c2

)
≈ 0.69

c
. (57)

In terms of group testing algorithms, this means that any
simple decoding algorithm for c defectives and n total items
requires an asymptotic number of group tests ` of at least

` ∼ c log2 n

ln 2
≈ 1.44 c log2 n ≈ 2.08 c lnn, (58)

where the asymptotics are for n→∞. This improves upon the
known lower bound for joint decoders of ` ≥ c log2 n for large
n [48], and this shows that the algorithm of Chan et al. [12]
(which achieves a code length of ` ∼ e lnn) is suboptimal.
The related paper [40] shows how this bound can actually be
achieved with efficient simple decoders.

2) Additive noise: The classical group testing model is
sometimes considered to be too optimistic, as the outcome
of the group tests may not always be accurate. One ‘noisy’
variant of the classical model that is sometimes considered in
the literature is the additive noise model [7], [12], [18], [49],
where a test result may even be positive (with some small
probability r) if there were no defectives in the tested group.
This corresponds to the following channel θadd:

(θadd)z =

{
r if z = 0;

1 if z > 0.
(59)

For small r we do not expect the simple capacity or the optimal
choice of p to change drastically compared to the classical
model, and the following analysis confirms this.
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Proposition 7: For the additive noise model with parameter
r, the simple capacity and the maximizing value of p are:

Cs(θadd) =
ln 2

c

(
1− r

ln 2
+O(r2)

)
+O

(
1

c2

)
, (60)

psadd =
ln 2

c

(
1 +

r(2 ln 2− 1)

2 ln 2(1− ln 2)
+O(r2)

)
+O

(
1

c2

)
.

(61)

Proof: Working out a, a0 and a1, and substituting them
into I(p) = pd(a1‖a) + (1− p)d(a0‖a), we obtain

I(p) = pd(1‖1− (1− p)c(1− r)) (62)

+ (1− p)d((1− p)c−1(1− r)‖(1− p)c(1− r)). (63)

For similar reasons as for the all-1 attack, for small values
of r the second term is O( 1

c2 ) while the first term is Θ( 1
c )

and dominates the expression for large c. This means that for
small r we have

I(p) = −p log2(1− (1− p)c(1− r)) +O

(
1

c2

)
. (64)

To find the maximum we take the derivative with respect to p
and set it equal to 0 to obtain

ln(1− (1− p)c(1− r)) = − cp

1− p
· (1− p)c(1− r)

1− (1− p)c(1− r)
.

(65)

For small r, the above expression is very close to the one
we had for the all-1 attack, and again the optimal value of
p is close to ln 2

c . Writing s = (1 − p)c(1 − r), so that
p = −1

c ln( s
1−r ) + O( 1

c2 ) and 1 − p = 1 − O( 1
c ), the above

expression reduces to

ln(1− s) = ln

(
s

1− r

)
· s

1− s
+O

(
1

c

)
. (66)

For small r, this means that s ≈ 1
2 , so suppose s = 1

2 (1 + ε).
Filling this in in the above equation, Tayloring around ε = 0,
and disregarding terms of the order ε2, r2, εr, we get

− ln 2− ε = (− ln 2 + r + ε)(1 + 2ε). (67)

Rearranging the terms, this leads to

ε = − r

2(1− ln 2)
+O(r2). (68)

Substituting ε into s and solving for p, we get

p = −1

c
ln

(
1

2
·

1− r
2(1−ln 2)

1− r

)
+O

(
1

c2

)
(69)

=
ln 2

c
+
r

c
· 2 ln 2− 1

2− 2 ln 2
+O

(
r2

c
+

1

c2

)
, (70)

and for the capacity we get

I(p) = − p

ln 2
ln(1− s) (71)

=

[
−1

c
+

r

c ln 2
· 2 ln 2− 1

2− 2 ln 2

] [
− ln 2 +

r

c
· 1

2− 2 ln 2

]
(72)

=
ln 2

c

(
1− r

ln 2
+O(r2)

)
+O

(
1

c2

)
. (73)

For small values of r, one should therefore take p to be
slightly smaller than 1

c ln 2, and the capacity will be slightly
lower than in the classical model.

3) Dilution noise: Another commonly considered noisy
group testing model is the dilution noise model [7], [17], [18],
[34], [49], where the probability of a positive test outcome
depends on the number of defectives in the tested pool. More
precisely, θdil is defined as follows:

(θdil)z =

{
0 if z = 0;

1− rz if z > 0.
(74)

Again, for small r this model is close to the traditional group
testing model, so both the capacity and the optimal value of
p are close to the values of Proposition 2.

Proposition 8: For the dilution noise model with parameter
r, neglecting terms of the order c−2 and r2, the simple capacity
and the corresponding optimal value of p are:

Cs(θdil) =
ln 2

c

(
1 +

r ln r

2 ln 2
− r(1− ln 2)

2 ln 2
+O(r2 ln r)

)
+O

(
1

c2

)
(75)

psdil =
ln 2

c

(
1 +

r ln r

4 ln 2
+
r(−3(ln 2)2 + 5 ln 2− 1)

4 ln 2(1− ln 2)
(76)

+O(r2 ln r)

)
+O

(
1

c2

)
. (77)

Proof: For a, a0 and a1 we get

a = 1− (1− p+ pr)c, (78)

a0 = 1− (1− p+ pr)c−1, (79)

a1 = 1− r(1− p+ pr)c−1, (80)

so letting s = (1− p+ pr)c, the mutual information satisfies

I(p) = pd

(
rs

1− p+ pr
‖s
)

+ (1− p)d
(

s

1− p+ pr
‖s
)
.

(81)

For small r, the second term is again small. So expanding the
left term, knowing that p = Θ( 1

c ), we obtain:

I(p) =
p

ln 2

(
rs ln r + (1− rs) ln

(
1− rs
1− s

))
. (82)

Writing p = ln 2
c (1 + ε), we can Taylor s and rs (disregarding

terms of the order r2, rε2, ε3, 1c ) to obtain

s =
1

2

(
1− ε ln 2 + r ln 2 + εr ln 2(1− ln 2) +

ε2

2
(ln 2)2

)
.

(83)

This means that up to small order terms, we get rs =
1
2 (r − εr ln 2). Plugging these into the expression for I(p),
we eventually get

I(p) =
ln 2

c

(
1 + r

(
ln r − 1 + ln 2

2 ln 2

)
+ ε2 (ln 2− 1) (84)

+ εr

(
ln r(1− ln 2)− 3(ln 2)2 + 5 ln 2− 1

2 ln 2

)
+O(. . . )

)
.

(85)



8

This immediately leads to the given expression for the capacity
by disregarding small terms, while differentiating with respect
to ε and setting equal to 0 leads to

ε =

(
ln r(1− ln 2)− 1 + 5 ln 2− 3(ln 2)2

4 ln 2(1− ln 2)

)
r +O(r2).

(86)

This leads to the given expression for p.
4) Threshold without gaps: Besides accounting for possible

mistakes in the test results (noisy group testing), models have
also been considered to account for sensitivity in detecting
positive items. In threshold group testing [1]–[3], [14], [19],
[22], [41], it is assumed that if the number of defectives z in
the tested pool is at most l then the test comes back negative,
and if z is at least u then the test result is always positive. For
the case u = l+ 1, which we will refer to as threshold group
testing without a gap (where g = u − l − 1 is the gap size),
this completely determines the model:

(θ
(u)
thr )z =

{
0 if z < u;

1 if z ≥ u.
(87)

Although simple to state, even for small u and c finding the
simple capacity and optimal choice of p analytically seems
very hard, if not impossible. We can intuitively see how the
capacity will roughly behave though, since we know that:
• The case u = 1 corresponds to θ(u)thr = θall1, for which
p = ln 2

c and I ≈ ln 2
c ≈

1.44
c are optimal.

• The case u = c+1
2 corresponds to θ(u)thr = θmaj, for which

p = 1
2 and I = 1

πc ln 2 ≈
0.46
c are optimal.

For values of u between 1 and c
2 , we expect the capacity to

decrease as u increases, and the optimal value p is expected
to be close to u

c .
Numerical evidence supports this intuition, as it shows that

the capacity strictly decreases from u = 1 up to u = c+1
2 ,

and that the optimal values of p are almost evenly spaced for
u = 1 up to u = c

2 . The capacity quickly drops at small values
of u, i.e., the gap between Cs(θ

(1)
thr ) and Cs(θ

(2)
thr ) is bigger

than the gap between Cs(θ(2)thr ) and Cs(θ(13)thr ) for c = 25.
5) Threshold with gaps: An even harder case to deal with

is threshold group testing with g = u− l − 1 > 0, which we
will refer to as threshold group testing with a gap. If u > l+1,
then the model is not yet defined properly, as we do not know
what θz is for l + 1 ≤ z ≤ u − 1. Different models were
considered to capture the behavior of the outcome of the test
results in these gaps, such as: [14]
• The test outcome is uniformly random:

(θ
(l,u)
coin )z =


0 if z ≤ l;
1
2 if l < z < u;

1 if z ≥ u.
(88)

• The probability of a positive result increases linearly:

(θ
(l,u)
int )z =


0 if z ≤ l;
z−l
u−l if l < z < u;

1 if z ≥ u.
(89)

• We simply do not know what the test outcome will be.

Note that θ(0,c)coin = θcoin and θ(0,c)int = θint, so these models
can be seen as generalizations of the corresponding attacks in
fingerprinting. Also note that θ(u−1,u)coin = θ

(u−1,u)
int = θ

(u)
thr .

Regardless of the gap model, for arbitrary l and u these
models all seem hard to analyze exactly. Using results obtained
previously, we can however try to ‘interpolate’ the results
to get somewhat decent estimates. For instance, for the first
model we can interpolate between the results for threshold
group testing without a gap (Section II-B4) and the coin-
flip attack (Section II-A5) to get upper and lower bounds on
the simple capacity. For the second case, we can interpolate
between threshold group testing without a gap (Section II-B4)
and the interleaving attack (Section II-A1) to get an idea how
the capacity and the optimal value of p scale.

To verify this intuition, Figure 1 shows a density plot of
the capacities (multiplied by c) for both the coin-flip gap
model and the interleaving gap model. These plots are based
on numerics for c = 25, but already show some trends. For
instance, there are sharp peaks in the lower left and upper
right corner; even when moving on the diagonal, the capacity
quickly drops when leaving the corners. The capacities further
take their maxima on and near the diagonal. In the coin-flip
gap model, the capacity quickly converges to its minimum at
g = c as the gap size increases, while this takes longer for the
interleaving gap model. Finally, from Sections II-A1, II-A2,
II-A3, and II-A5, we know exactly how the corners and center
of each plot behave asymptotically, so we have a decent idea
how the capacity scales for large c and arbitrary values of l
and u.

III. JOINT CAPACITIES

Where a simple decoder bases its decision to accuse user j
only on the jth code word of X (and not on other code words),
a joint decoder is allowed to use all information available to
make a more informed decision. In particular, the whole code
X may be taken into account. Huang and Moulin [29]–[32]
previously studied joint capacities as well, and showed that
given a set of allowed collusion channels Pc (depending only
on θ) and a set of allowed encoders Pe, any fingerprinting
rate below

Cj(Pe,Pc) = max
fP∈Pe

min
θ∈Pc

EP I(p,θ) (90)

is achievable, where

I(p,θ) =
1

c
I(X1, . . . , Xc;Y |P = p) (91)

is the mutual information between all colluder symbols
X1, . . . , Xc and the pirate output Y in one segment i. Note
that from the assumption that Y only depends on X1, . . . , Xc

through θ, it follows that I(X1, . . . , Xc;Y |P = p) =
I(Z;Y |P = p), where Z =

∑c
i=1Xi. To study the payoff

function I(p,θ) = I(Z;Y |P = p), we will use the following
identity [32, Equation (59)]:

I(p,θ) =
1

c
[h(a)− ah] (92)

with ah =

c∑
z=0

(
c

z

)
pz(1− p)c−zh(θz). (93)



9

(a) Simple capacity in the coin-flip gap model (b) Simple capacity in the interleaving gap model

Fig. 1. The simple capacity for threshold group testing for different values of l and u, when there is (a) a coin-flip gap or (b) an interleaving gap. The
three corners correspond to the all-1, all-0 and coin-flip or interleaving attack, and the centers of the graphs correspond to the majority voting attack in
fingerprinting. The capacity is maximal in the lower left and upper right corner, for which c · Cj(θ) ∼ ln 2 ≈ 0.69.

Here h(·) denotes the binary entropy function, defined by
h(α) = −α log2 α − (1 − α) log2(1 − α). Given p and θ,
this allows us to compute I(p,θ) explicitly. In the analysis
of specific models θ, we will again commonly omit θ as an
argument of I and write I(p).

For obtaining the joint capacities for various models, we will
extensively work with the binary entropy function. Again, this
function can be quite ugly for arbitrary arguments α, but in
some cases we can somewhat simplify the expressions. For
instance, for arguments close to 0 or 1

2 we have

h(γ) =
γ(1− ln γ)

ln 2
−O(γ2) = O(γ ln γ), (94)

h

(
1

2
± γ
)

= 1− 2γ2

ln 2
−O(γ4) = 1−O(γ2). (95)

The most important properties to keep in mind are that h(0) =
h(1) = 0 and h takes its maximum at α = 1

2 with h( 1
2 ) =

1. Using only these latter properties, we immediately get the
following lemma regarding deterministic attacks, i.e., attacks
satisfying θ ∈ {0, 1}c+1.

Lemma 1: For any deterministic attack θ satisfying the
marking assumption θ0 = 0 and θc = 1, the joint capacity
equals Cj(θ) = 1

c , and p is a maximizing value if it satisfies

a =
∑

z: θz=1

(
c

z

)
pz(1− p)c−z =

1

2
. (96)

Proof: Since θz ∈ {0, 1} for all z, we have h(θz) = 0
for each z, so ah = 0 and it thus follows that

Cj(θ) = max
p

1

c
[h(a)− ah] =

1

c
max
p

h(a). (97)

Since a = a(p) is continuous in p, and a(0) = 0 and a(1) = 1
due to the marking assumption, from the intermediate value
theorem it follows that there must be a value p ∈ (0, 1) for
which a(p) = 1

2 . So we get

Cj(θ) =
1

c
max
p

[h(a)] =
1

c
h

(
1

2

)
=

1

c
, (98)

and p is a maximizing value iff a(p) = 1
2 .

This lemma makes finding the joint capacities and the
optimal values of p very easy for several of the following
models.

A. Fingerprinting

1) Interleaving attack: We previously saw that the simple
capacity for the interleaving attack is proportional to 1

c2 .
The exact asymptotics for the joint capacity were previously
derived by Huang and Moulin as well, showing that for large
c the joint capacity is the same as the simple capacity.

Proposition 9: [32, Corollary 6] The joint capacity for the
interleaving attack θint is:

Cj(θint) =
1

2c2 ln 2
+O

(
1

c4

)
≈ 0.72

c2
. (99)

Asymptotically, the interleaving attack is an “equalizing
strategy” [32], guaranteeing that up to order terms I(p) is
the same for all p ∈ (0, 1).

2) All-1 attack: Since the all-1 attack is a deterministic
attack and satisfies the marking assumption, the capacity
follows immediately from Lemma 1, and finding the optimal
value of p is straightforward.

Proposition 10: For the all-1 attack, the joint capacity and
the maximizing value of p are:

Cj(θall1) =
1

c
, pjall1 =

ln 2

c
+O

(
1

c2

)
. (100)

To be precise, the optimal value for p is p = 1− 2−1/c.
3) Majority voting: Lemma 1 also applies to the majority

voting attack θmaj, and since this attack is symbol-symmetric
the optimal value for p is trivially p = 1

2 .
Proposition 11: For the majority voting attack, the joint

capacity and the corresponding optimal value of p are:

Cj(θmaj) =
1

c
, pjmaj =

1

2
. (101)
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Note that the joint capacity for majority voting is equal
to the joint capacity of the all-1 attack, while their simple
capacities differ. Also note that again, the optimal value for p
is asymptotically the same as for the simple capacity.

4) Minority voting: Since minority voting is also a deter-
ministic and symbol-symmetric attack, the following result
directly follows from Lemma 1.

Proposition 12: The joint capacity and a corresponding
optimal value of p for the minority voting attack are:

Cj(θmin) =
1

c
, pjmin =

1

2
. (102)

In fact, there are three values of p that are asymptotically
optimal, the other two being p ≈ ln 2

c and p ≈ 1− ln 2
c .

5) Coin-flip attack: Besides the interleaving attack, the
only other non-trivial fingerprinting attack with respect to
joint capacities is the coin-flip attack. This attack is not
deterministic, so ah > 0. Working out the details, we obtain
the following result.

Proposition 13: For the coin-flip attack, the joint capacity
and the maximizing value of p are:

Cj(θcoin) =
log2(5/4)

c
+O

(
1

c2

)
≈ 0.32

c
, (103)

pjcoin =
ln(5/3)

c
+O

(
1

c2

)
≈ 0.51

c
. (104)

Proof: For ah, note that h(θ0) = h(θc) = 0 and h(θz) =
1 otherwise, so ah = 1 − pc − (1 − p)c. For a, recall from
the proof of Proposition 5 that a = 1

2 (1 − (1 − p)c + pc).
Combining the above, we get

I(p) =
1

c

[
h

(
1− (1− p)c + pc

2

)
− (1− pc − (1− p)c)

]
.

(105)

Since the attack is symbol-symmetric, w.l.o.g. we may assume
that p ≤ 1

2 , in which case the terms pc are negligible for large
c. Writing t = 1− (1− p)c, we get

I(t) =
1

c

[
h

(
t

2

)
− t
]

+O

(
1

c2

)
. (106)

This function has a maximum at t = 1− (1− p)c = 2
5 , which

leads to the given values of pjcoin and Cj(θcoin).
6) Unknown attacks: Finally, the case where the attack is

not known (but is assumed to satisfy the marking assumption)
was previously solved by Huang and Moulin, showing that
again the interleaving attack is asymptotically optimal.

Proposition 14: [32, Corollary 7] The joint uninformed
capacity is given by

Cj(Pmark) =
1

2c2 ln 2
+O

(
1

c3

)
≈ 0.72

c2
, (107)

and the optimizing encoder fP and collusion channel θ
achieving this bound for large c are the arcsine distribution
f∗P and the interleaving attack θint.

So while the joint capacities are asymptotically the same
as the simple capacities for the interleaving attack and for
the uninformed setting, for several other attacks the joint
capacities are strictly higher than the simple capacities.

B. Group testing

1) Classical model: Since the classical model is equivalent
to the all-1 attack in group testing, the following result is
immediate.

Corollary 2: For the classical group testing model, the joint
capacity and the optimal value of p are:

Cj(θall1) =
1

c
, pjall1 =

ln 2

c
+O

(
1

c2

)
. (108)

This result was previously derived by Sebő [48, Theorem 2],
who also showed that p = 1− 2−1/c ≈ ln 2

c is optimal.
2) Additive noise: The additive noise model described in

Section II-B2 was previously studied in the context of capac-
ities in e.g. [7], [18], [49]. Cheraghchi et al. [18] showed that
Cj(θadd) = O( (1−r)3

c ), while Atia and Saligrama [7] showed
that Cj(θadd) = O( 1−r

c ). Looking closely at their proof, they
show that one obtains a capacity of I(p) ≥ 1−r

ec ln 2 ≈
1.88(1−r)

c
using p = 1

c for large c.4

Below we improve upon these results, by (i) providing the
exact leading constant on the capacity; (ii) showing exactly
how the first order term (in r) scales for small r; and (iii)
showing how p scales in terms of r.

Proposition 15: For the additive noise model, the joint
capacity and the corresponding optimal value of p are:

Cj(θadd) =
1

c

(
1− 1

2h(r) +O(r2)
)

+O

(
1

c2

)
, (109)

pjadd =
ln 2

c

(
1− r(1 + ln r)

2 ln 2
+O(r2)

)
+O

(
1

c2

)
.

(110)

Proof: First, from the definition of θadd it follows that
a = 1− (1− p)c(1− r), h(θ0) = h(1− r) and h(θz) = 0 for
z > 0. So the mutual information satisfies

I(p) =
1

c
[h((1− p)c(1− r))− (1− p)ch(1− r)] . (111)

Writing s = (1− p)c(1− r) this can be simplified to

I(s) =
1

c

[
h(s)− h(r)s

1− r

]
. (112)

We want to maximize I , so we take the derivative with respect
to s, and set it equal to 0 to obtain a condition for s, and hence
for p:

log2

(
s

1− s

)
= − h(r)

1− r
. (113)

For small r, the right hand side goes to 0, which implies that
s is close to 1

2 . So assuming r is small, we let s = 1
2 (1 + ε)

and obtain the following Taylor expansion for the left hand
side:

log2

(
1 + ε

1− ε

)
= log2

(
1 + 2ε+O(ε2)

)
=

2ε

ln 2
+O(ε2).

(114)

4The authors of [7] confirmed that the formula below [7, (45)] contains a
typo: there should be an extra e in the numerator of the code length T .
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This means that for small r, the optimal choice for ε is

ε = −h(r) ln 2

2
+O(r2). (115)

So for s we obtain

s = (1− p)c(1− r) =
1

2

(
1− 1

2h(r) ln 2 +O(r2)
)
. (116)

Substituting s into I(s), and solving s for p, we obtain the
given values for pjadd and Cj(θadd).

Note that this means that any valid group testing algorithm
asymptotically requires at least the following number of tests:

` ≥ c log2 n

1− 1
2h(r) +O(r2)

(
1 +O

(
1

c

))
. (117)

Since r = o(h(r)) for small r, this shows that the result
of [7] is slightly off; due to their suboptimal choice of p, they
obtained a code length which scales “better” in r, but has a
higher leading constant and thus converges to the wrong limit.

3) Dilution noise: The dilution noise model, as described in
Section II-B3, was previously studied in the context of lower
bounds by Atia and Saligrama [7]. In terms of capacities, they
showed that for large c, one has Cj(θdil) = O( (1−r)2

c ). Again,
they were not interested in leading constants, so they fixed p
to the suboptimal choice p = 1

c . We improve upon their result
by finding the leading constant explicitly, and proving how pjdil
and Cj(θdil) scale in terms of r.

Proposition 16: For the dilution noise model with param-
eter r, the joint capacity and the corresponding maximizing
value of p are:

Cj(θdil) =
1

c

(
1− ln 2

2
h(r) +O(r2)

)
+O

(
1

c2

)
, (118)

pjdil =
ln 2

c

(
1 + r − 1− ln 2

2
h(r) +O(r2)

)
+O

(
1

c2

)
.

(119)

Proof: For this attack, we have θz = 1− rz . Let us first
look at h(a):

h(a) = h

(
c∑

z=0

(
c

z

)
pz(1− p)c−z(1− rz)

)
(120)

= h(1− (1− p+ pr)c). (121)

Next, consider ah:

ah =

c∑
z=1

(
c

z

)
pz(1− p)c−zh(1− rz). (122)

For small r, the only significant contribution to the sum comes
from the term with z = 1:

ah = cp(1− p)c−1h(r) +O(r2). (123)

The optimal value of p again lies close to ln 2
c ; in particular, the

value is mostly determined by the term h((1−p+pr)c), which
has a maximum at (1−p+pr)c = 1

2 . Writing (1−p+pr)c =

1
2 (1 + ε), we have

p =
1

c

(
ln 2 + r ln 2− ε− rε+

ε2

2
+O(r2, ε2r, ε3)

)
,

(124)

(1− p)c =
1

2

(
1− r ln 2 + ε+ rε− ε2

2
+O(r2, ε2r, ε3)

)
.

(125)

This means that I(p) = I(ε) satisfies (neglecting terms of the
order r2, ε2r, ε3, c−1)

I(ε) ∼ 1− 1

2
h(r) ln 2 +

1

2
εh(r)(1− ln 2)− ε2

2 ln 2
. (126)

Taking the derivative with respect to ε and setting it equal to
0, we obtain

ε =
1

2
h(r) ln 2(1− ln 2) +O(r2). (127)

Substituting this value for ε in the expressions for p and I ,
we get the results.

For the resulting lower bound on the code length `, one thus
obtains

` ∼ c log2 n

1− 1
2h(r) ln 2 +O(r2)

. (128)

So also in the dilution noise model, the first order term in the
denominator scales as h(r) rather than r, as one might suspect
from the results of [7].

4) Threshold without gaps: For threshold group testing
with u = l+1 (as described in Section II-B4) we now consider
two different cases for u: u = Θ(c) and u = o(c). In both
cases, the capacity follows directly from Lemma 1, but we can
obtain slightly more accurate asymptotics for p in the second
case. The first case is sometimes referred to in the literature
as majority group testing [1]–[3].

Proposition 17: For the threshold group testing model with
u = ` + 1, the joint capacity is 1

c , and the corresponding
maximizing value of p is:

u = Θ(c) : pjthr[θ
(u)
thr ] =

1

c
(u+ γ) (|γ| ≤ 1) (129)

u = o(c) : pjthr[θ
(u)
thr ] =

1

c

(
u− 1

3
+O

(
1

u

))
. (130)

Proof: From Lemma 1 it follows that the capacity is 1
c

and that the optimal value of p satisfies a = 1
2 . Writing out a,

we have

a =

u−1∑
z=0

(
c

z

)
pz(1− p)c−z =

1

2
. (131)

The fact that a = 1
2 roughly means that u is the median of the

binomial distribution with c trials and probability of success
p. Since the median of a binomial distribution is one of the
two integers closest to cp, it follows that |u− cp| ≤ 1 leading
to the result for the case u = Θ(c).

For the case u = o(c), note that p = O( 1
c ), so (1 − p)z =

1−O(p) for z < u. So we can expand a around c =∞ as:

a = (1− p)c
u−1∑
z=0

(
c

z

)
pz +O

(
1

c

)
. (132)
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Since the solution is in the range p = Θ( 1
c ), let us write p = α

c
for some constant α. A Taylor expansion around c = ∞ of
the binomial coefficients then gives us

a = e−α
u−1∑
z=0

αz

z!
+O

(
1

c

)
. (133)

The condition that a = 1
2 means that asymptotically, u− 1 is

the median of the Poisson distribution with parameter λ = α.
Using results about the median of the Poisson distribution [20],
we obtain

α = u− 1

3
+O

(
1

u

)
. (134)

Substituting this back into p, we get the result.
Note that for u = 1 and c → ∞, the above approximation

says p ≈ 0.67
c , when in reality the optimum is at p ∼ ln 2

c ≈
0.69
c , showing that already for small values of u the term u− 1

3
is quite accurate.

5) Threshold with gaps: For threshold group testing with
gaps, let us again consider the two models described in
Section II-B5: the coin-flip gap model and the interleaving
gap model. For both models, we can again interpolate between
results obtained earlier in this section to obtain estimates
for Cj(θ(l,u)coin ) and Cj(θ

(l,u)
int ) for various l and u, and ver-

ify our intuition numerically (see Figure 2). In both plots,
from Proposition 17 it follows that the diagonals have value
c · Cj(θ) = 1, while the upper left corner in Figure 2a
converges to log2(5/4) ≈ 0.32 (Proposition 13) and the upper
left corner of Figure 2b converges to 0 (Proposition 9). In the
left graph, even for small gaps we see that the capacity quickly
decreases and approaches the coin-flip capacity. In the right
graph, we see that the capacity decreases more gradually as
the gap size increases.

IV. DISCUSSION

Building upon previous work of Huang and Moulin and
working our way through the resulting expressions for the
capacities, we have derived explicit asymptotics for both the
simple and joint capacities for various fingerprinting and group
testing models. In the end the results from fingerprinting
turned out to be useful in threshold group testing as well, for
understanding the numerics of Figures 1 and 2 and estimating
the capacities for various threshold group testing models.

One important result with respect to group testing is that
the simple capacity in the traditional model is asymptotically
a factor log2(e) lower than the joint capacity. While the joint
capacity was well known, to the best of our knowledge the
simple capacity had not yet been derived before. This result
shows that efficient (simple) group testing algorithms will
never be able to achieve the code lengths of optimal joint
decoders, and that various existing methods (e.g. [12], [13]) are
suboptimal, even for simple decoding. The related paper [40]
explicitly shows how the bounds on the code lengths of simple
decoders can be attained with log-likelihood decoders.

Comparing the simple and joint capacities, another result
worth mentioning is that except for in the cases previously
analyzed by Huang and Moulin, there is always a gap between

the simple and joint capacities. In fingerprinting, this means
that if the pirates use a suboptimal attack, joint decoders are
asymptotically significantly better than simple decoders. In
terms of group testing, this means that in almost all models,
simple decoders are strictly worse than joint decoders. So
although joint decoders are generally slower, the benefits of
joint decoding (a much shorter code length) may outweigh the
costs of a higher decoding complexity.

V. OPEN PROBLEMS

Let us finish by mentioning some open problems which are
left for future work.

A. Dynamic fingerprinting and adaptive group testing

While this paper considered only static fingerprinting and
non-adaptive group testing, in some settings the feedback
Y may be obtained in real-time. For instance, in pay-tv
pirates may try to duplicate a fingerprinted broadcast, while
in group testing it may sometimes be possible to do group
tests sequentially. These dynamic or adaptive games have
received considerable attention as well [4], [8], [23], [27],
[35], [36], [38] but little is known about the capacities of these
games. Are the dynamic/adaptive capacities strictly higher than
the static/non-adaptive capacities in the probabilistic model
considered in this paper?

B. Tuple decoders and tuple capacities

Recall that simple decoders base their decisions only on
individual code words, while joint decoders base their deci-
sions on the entire code X . The extra information used by
joint decoders generally causes the joint capacity to be higher
than the simple capacity, but the complexity of decoding
may be higher as well. A possible way to obtain a trade-off
between the code length and the time complexity would be
tuple decoding: basing the decision to accuse a user j only on
tuples of size at most t. This could be seen as a generalization
of simple and joint decoding, since those models correspond
to t = 1 and t = c respectively. Such decoders were previously
considered in e.g. [5], [43], [44], [46], and an obvious question
is: can we somehow quantize this trade-off between the time
complexity and the code length? And can we formally derive
capacities for this tuple decoding model?

C. Non-binary codes in fingerprinting

A common generalization in fingerprinting is to assume
that symbols come from an alphabet of size q ≥ 2, rather
than assuming that the code X is a binary code (q = 2).
This generalization was considered in e.g. [10], [33], [45],
[46], [50]. In the uninformed fingerprinting game, the capacity
decreases linearly with q [10], [33], so there may be significant
benefits going from a binary to a q-ary alphabet. For the
models considered in this paper, for which the capacity is only
linear in c, it is easy to see that the capacity cannot increase
linearly with q. Some basic numerics seem to indicate that
the capacity increases with a factor log q, but a more detailed
analysis is required.
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(a) Joint capacity in the coin-flip gap model (b) Joint capacity in the interleaving gap model

Fig. 2. The joint capacity for threshold group testing with different values of l and u, when there is (a) a coin-flip gap or (b) an interleaving gap. The three
corners correspond to the all-1, all-0 and coin-flip (a) or interleaving (b) attack, and the center of the graphs corresponds to the majority voting attack in
fingerprinting. The capacity is maximal on the diagonal, for which c · Cj(θ) = 1.

D. Universal encoding in fingerprinting
Finally, instead of assuming that the pirate attack is known

in advance, in fingerprinting it is more often assumed that
the encoding is done for arbitrary attacks, and that only the
decoding step may be tuned to fit the pirate attack [15],
[28], [42], [45]. Since the asymptotically optimal universal
encoding strategy is to use the arcsine distribution f∗P for
generating biases p, one could try deriving the capacities for
the various fingerprinting attacks in case the distribution fP
is fixed in advance as fP ≡ f∗P . Previous results [45] showed
that the capacities probably scale as c−3/2, and numerics of the
associated capacities (Figure 3) seem to verify this. Obtaining
exact expressions for the simple and joint capacities under
‘universal encoding’ is left for future work.

ACKNOWLEDGMENTS

The author is grateful to Benne de Weger for his help with
some of the proofs in this paper, and for his comments on
drafts of this manuscript that helped improve the paper. The
author would further like to thank Jeroen Doumen, Teddy
Furon, Jan-Jaap Oosterwijk, and Boris Škorić for their valuable
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Fig. 3. The simple (a) and joint (b) universal encoding capacities (multiplied by c3/2) as a function of c, for different pirate attacks. Except for the interleaving
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