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Abstract—Existing semantically secure public-key search-
able encryption schemes take search time linear with the
total number of the ciphertexts. This makes retrieval from
large-scale databases prohibitive. To alleviate this problem,
this paper proposes Searchable Public-Key Ciphertexts with
Hidden Structures (SPCHS) for keyword search as fast as
possible without sacrificing semantic security of the encrypted
keywords. In SPCHS, all keyword-searchable ciphertexts are
structured by hidden relations, and with the search trapdoor
corresponding to a keyword, the minimum information of the
relations is disclosed to a search algorithm as the guidance to
find all matching ciphertexts efficiently. We construct a simple
SPCHS scheme from scratch in which the ciphertexts have a
hidden star-like structure. We prove our scheme to be seman-
tically secure based on the decisional bilinear Diffie-Hellman
assumption in the Random Oracle (RO) model. The search
complexity of our scheme is dependent on the actual number of
the ciphertexts containing the queried keyword, rather than the
number of all ciphertexts. Finally, we present a generic SPCHS
construction from anonymous identity-based encryption and
collision-free full-identity malleable Identity-Based Key Encap-
sulation Mechanism (IBKEM) with anonymity. We illustrate
two collision-free full-identity malleable IBKEM instances,
which are semantically secure and anonymous, respectively,
in the RO and standard models. The latter instance enables
us to construct an SPCHS scheme with semantic security in
the standard model.

Index Terms—Public-key searchable encryption, semantic
security, identity-based key encapsulation mechanism, identity
based encryption

I. INTRODUCTION

PUBLIC-KEY encryption with keyword search (PEKS),
introduced by Boneh et al. in [1], has the advantage

that anyone who knows the receiver’s public key can upload
keyword-searchable ciphertexts to a server. The receiver can
delegate the keyword search to the server. More specifically,
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each sender separately encrypts a file and its extracted
keywords and sends the resulting ciphertexts to a server;
when the receiver wants to retrieve the files containing a
specific keyword, he delegates a keyword search trapdoor
to the server; the server finds the encrypted files containing
the queried keyword without knowing the original files or
the keyword itself, and returns the corresponding encrypted
files to the receiver; finally, the receiver decrypts these
encrypted files1. The authors of PEKS [1] also presented
semantic security against chosen keyword attacks (SS-
CKA) in the sense that the server cannot distinguish the
ciphertexts of the keywords of its choice before observing
the corresponding keyword search trapdoors. It seems an
appropriate security notion, especially if the keyword space
has no high min-entropy. Existing semantically secure
PEKS schemes take search time linear with the total num-
ber of all ciphertexts. This makes retrieval from large-scale
databases prohibitive. Therefore, more efficient searchable
public-key encryption is crucial for practically deploying
PEKS schemes.

One of the prominent works to accelerate the search
over encrypted keywords in the public-key setting is de-
terministic encryption introduced by Bellare et al. in [2].
An encryption scheme is deterministic if the encryption
algorithm is deterministic. Bellare et al. [2] focus on
enabling search over encrypted keywords to be as effi-
cient as the search for unencrypted keywords, such that
a ciphertext containing a given keyword can be retrieved
in time complexity logarithmic in the total number of all
ciphertexts. This is reasonable because the encrypted key-
words can form a tree-like structure when stored according
to their binary values. However, deterministic encryption
has two inherent limitations. First, keyword privacy can
be guaranteed only for keywords that are a priori hard-
to-guess by the adversary (i.e., keywords with high min-
entropy to the adversary); second, certain information of a
message leaks inevitably via the ciphertext of the keywords
since the encryption is deterministic. Hence, deterministic
encryption is only applicable in special scenarios.

A. Our Motivation and Basic Ideas
We are interested in providing highly efficient search

performance without sacrificing semantic security in PEKS.

1Since the encryption of the original files can be separately processed
with an independent public-key encryption scheme as in [1], we only
describe the encryption of the keywords (unless otherwise clearly stated
in the paper).
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Figure 1: Hidden star-like structure formed by keyword
searchable ciphertexts. (The dashed arrows denote the hid-
den relations. Enc(Wi) denotes the searchable ciphertext
of keyword Wi.)

Observe that a keyword space is usually of no high min-
entropy in many scenarios. Semantic security is crucial
to guarantee keyword privacy in such applications. Thus
the linear search complexity of existing schemes is the
major obstacle to their adoption. Unfortunately, the linear
complexity seems to be inevitable because the server has
to scan and test each ciphertext, due to the fact that these
ciphertexts (corresponding to the same keyword or not) are
indistinguishable to the server.

A closer look shows that there is still space to improve
search performance in PEKS without sacrificing semantic
security if one can organize the ciphertexts with elegantly
designed but hidden relations. Intuitively, if the keyword-
searchable ciphertexts have a hidden star-like structure, as
shown in Figure 1, then search over ciphertexts containing a
specific keywords may be accelerated. Specifically, suppose
all ciphertexts of the same keyword form a chain by the
correlated hidden relations, and also a hidden relation exists
from a public Head to the first ciphertext of each chain.
With a keyword search trapdoor and the Head, the server
seeks out the first matching ciphertext via the corresponding
relation from the Head. Then another relation can be
disclosed via the found ciphertext and guides the searcher
to seek out the next matching ciphertext. By carrying on in
this way, all matching ciphertexts can be found. Clearly, the
search time depends on the actual number of the ciphertexts
containing the queried keyword, rather than on the total
number of all ciphertexts.

To guarantee appropriate security, the hidden star-like
structure should preserve the semantic security of key-
words, which indicates that partial relations are disclosed
only when the corresponding keyword search trapdoor
is known. Each sender should be able to generate the
keyword-searchable ciphertexts with the hidden star-like
structure by the receiver’s public-key; the server having a
keyword search trapdoor should be able to disclose partial
relations, which is related to all matching ciphertexts.

Semantic security is preserved 1) if no keyword search
trapdoor is known, all ciphertexts are indistinguishable, and
no information is leaked about the structure, and 2) given a
keyword search trapdoor, only the corresponding relations
can be disclosed, and the matching ciphertexts leak no
information about the rest of ciphertexts, except the fact
that the rest do not contain the queried keyword.

B. Our Work
We start by formally defining the concept of Searchable

Public-key Ciphertexts with Hidden Structures (SPCHS)
and its semantic security. In this new concept, keyword-
searchable ciphertexts with their hidden structures can be
generated in the public key setting; with a keyword search
trapdoor, partial relations can be disclosed to guide the
discovery of all matching ciphertexts. Semantic security is
defined for both the keywords and the hidden structures.
It is worth noting that this new concept and its semantic
security are suitable for keyword-searchable ciphertexts
with any kind of hidden structures. In contrast, the concept
of traditional PEKS does not contain any hidden structure
among the PEKS ciphertexts; correspondingly, its semantic
security is only defined for the keywords.

Following the SPCHS definition, we construct a simple
SPCHS from scratch in the random oracle (RO) model.
The scheme generates keyword-searchable ciphertexts with
a hidden star-like structure. The search performance mainly
depends on the actual number of the ciphertexts containing
the queried keyword. For security, the scheme is proven
semantically secure based on the Decisional Bilinear Diffie-
Hellman (DBDH) assumption [3] in the RO model.

We are also interested in providing a generic SPCHS con-
struction to generate keyword-searchable ciphertexts with a
hidden star-like structure. Our generic SPCHS is inspired
by several interesting observations on Identity-Based Key
Encapsulation Mechanism (IBKEM). In IBKEM, a sender
encapsulates a key K to an intended receiver ID. Of
course, receiver ID can decapsulate and obtain K, and the
sender knows that receiver ID will obtain K. However, a
non-intended receiver ID′ may also try to decapsulate and
obtain K ′. We observe that, (1) it is usually the case that
K and K ′ are independent of each other from the view of
the receivers, and (2) in some IBKEM the sender may also
know K ′ obtained by receiver ID′. We refer to the former
property as collision freeness and to the latter as full-identity
malleability. An IBKEM scheme is said to be collision-free
full-identity malleable if it possesses both properties.

We build a generic SPCHS construction with Identity-
Based Encryption (IBE) and collision-free full-identity
malleable IBKEM. The resulting SPCHS can generate
keyword-searchable ciphertexts with a hidden star-like
structure. Moreover, if both the underlying IBKEM and IBE
have semantic security and anonymity (i.e. the privacy of
receivers’ identities), the resulting SPCHS is semantically
secure. As there are known IBE schemes [4], [5], [6], [7]
in both the RO model and the standard model, an SPCHS
construction is reduced to collision-free full-identity mal-
leable IBKEM with anonymity. In 2013, Abdalla et al.
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proposed several IBKEM schemes to construct Verifiable
Random Functions2 (VRF) [8]. We show that one of these
IBKEM schemes is anonymous and collision-free full-
identity malleable in the RO model. In [9], Freire et al.
utilized the “approximation” of multilinear maps [10] to
construct a standard-model version of Boneh-and-Franklin
(BF) IBE scheme [11]. We transform this IBE scheme into a
collision-free full-identity malleable IBKEM scheme with
semantic security and anonymity in the standard model.
Hence, this new IBKEM scheme allows us to build SPCHS
schemes secure in the standard model with the same search
performance as the previous SPCHS construction from
scratch in the RO model.

C. Other Applications of Collision-Free Full-Identity Mal-
leable IBKEM

We note that collision-free full-identity malleable
IBKEM is of independent interest. In addition to being a
building block for the generic SPCHS construction, it may
also find other applications, as outlined in the sequel.

Batch identity-based key distribution. A direct appli-
cation of collision-free full-identity malleable IBKEM is
to achieve batch identity-based key distribution. In such an
application, a sender would like to distribute different secret
session keys to multiple receivers so that each receiver
can only know the session key to himself/herself. With
collision-free full-identity malleable IBKEM, a sender just
needs to broadcast an IBKEM encapsulation in the identity-
based cryptography setting, e.g., encapsulating a session
key K to a single user ID. According to the collision-
freeness of IBKEM, each receiver ID′ can decapsulate
and obtain a different key K ′ with his/her secret key in
the identity based crypto-system. Due to the full-identity
malleability, the sender knows the decapsulated keys of
all the receivers. In this way, the sender efficiently shares
different session keys with different receivers, at the cost of
only a single encapsulation and one pass of communication.

Anonymous identity-based broadcast encryption.
A slightly more complicated application is anonymous
identity-based broadcast encryption with efficient decryp-
tion. An analogous application was proposed respec-
tively by Barth et al. [12] and Libert et al. [13] in
the traditional public-key setting. With collision-free full-
identity malleable IBKEM, a sender generates an identity-
based broadcast ciphertext 〈C1, C2, (K1

1 ||SE(K1
2 , F1)), ...,

(KN
1 ||SE(KN

2 , FN ))〉, where C1 and C2 are two IBKEM
encapsulations, Ki

1 is the encapsulated key in C1 for
receiver IDi, Ki

2 is the encapsulated key in C2 for receiver
IDi, and SE(Ki

2, Fi) is the symmetric-key encryption of
file Fi using the encapsulated key Ki

2. In this ciphertext,
the encapsulated key Ki

1 is not used to encrypt anything.
Indeed, it is an index to secretly inform receiver IDi on
which part of this ciphertext belongs to him. To decrypt the
encrypted file Fi, receiver IDi decapsulates and obtains Ki

1

from C1, finds out Ki
1||SE(Ki

2, Fi) by matching Ki
1, and

2VRF behaves like a pseudo-random function but one can verify that
the output was pseudo-random.

finally extracts Fi with the decapsulated key Ki
2 from C2.

It can be seen that the application will work if the IBKEM
is collision-free full-identity malleable. It preserves the
anonymity of receivers if the IBKEM is anonymous. Note
that trivial anonymous broadcast encryption suffers decryp-
tion cost linear with the number of the receivers. In contrast,
our anonymous identity-based broadcast encryption enjoys
constant decryption cost, plus logarithmic complexity to
search the matching index in a set (K1

1 , ...,K
N
1 ) organized

by a certain partial order, e.g., a dictionary order according
to their binary representations.

D. Related Work

Search on encrypted data has been extensively investi-
gated in recent years. From a cryptographic perspective,
the existing works fall into two categories, i.e., symmetric
searchable encryption [14] and public-key searchable en-
cryption.

Symmetric searchable encryption is occasionally re-
ferred to as symmetric-key encryption with keyword search
(SEKS). This primitive was introduced by Song et al. in
[15]. Their instantiated scheme takes search time linear with
the size of the database. A number of efforts [16], [17],
[18], [19], [20] follow this research line and refine Song et
al.’s original work. The SEKS scheme due to Curtmola et
al. [14] has been proven to be semantically secure against
an adaptive adversary. It allows the search to be processed
in logarithmic time, although the keyword search trapdoor
has length linear with the size of the database. In addition
to the above efforts devoted to either provable security or
better search performance, attention has recently been paid
to achieving versatile SEKS schemes as follows. The works
in [14], [21] extend SEKS to a multi-sender scenario. The
work in [22] realizes fuzzy keyword search in the SEKS
setting. The work in [23] shows practical applications of
SEKS and employs it to realize secure and searchable
audit logs. Chase et al. [24] proposed to encrypt structured
data and a secure method to search these data. To support
the dynamic update of the encrypted data, Kamara et al.
proposed the dynamic searchable symmetric encryption in
[25] and further enhanced its security in [26] at the cost of
large index. The very recent work [27] due to Cash et al.
simultaneously achieves strong security and high efficiency.

Following the seminal work on PEKS, Abdalla et al.
[28] fills some gaps w.r.t. consistency for PEKS and
deals with the transformations among primitives related
to PEKS. Some efforts have also been devoted to make
PEKS versatile. The work of this kind includes conjunctive
search [29], [30], [31], [32], [33], [34], range search [35],
[36], [37], subset search [37], time-scope search [28],
[38], similarity search [39], authorized search [49], [50],
equality test between heterogeneous ciphertexts [51], and
fuzzy keyword search [52]. In addition, Arriaga et al. [53]
proposed a PEKS scheme to keep the privacy of keyword
search trapdoors.

In the above PEKS schemes, the search complexity takes
time linear with the number of all ciphertexts. In [24],
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an oblivious generation of keyword search trapdoor is to
maintain the privacy of the keyword against a curious
trapdoor generation. A chain-like structure is described to
speed up the search on encrypted keywords. One may note
that the chain in [40] cannot be fully hidden to the server
and leaks the frequency of the keywords (see Supplemental
Materials A for details). To realize an efficient keyword
search, Bellare et al. [2] introduced deterministic public-
key encryption (PKE) and formalized a security notion
“as strong as possible” (stronger than onewayness but
weaker than semantic security). A deterministic search-
able encryption scheme allows efficient keyword search
as if the keywords were not encrypted. Bellare et al. [2]
also presented a deterministic PKE scheme (i.e., RSA-
DOAEP) and a generic transformation from a randomized
PKE to a deterministic PKE in the random oracle model.
Subsequently, deterministic PKE schemes secure in the
standard model were independently proposed by Bellare et
al. [41] and Boldyreva et al. [42]. The former uses general
complexity assumptions and the construction is generic,
while the latter exploits concrete complexity assumptions
and has better efficiency. Brakerski et al. [43] proposed the
deterministic PKE schemes with better security, although
these schemes are still not semantically secure. So far,
deterministic PEKS schemes can guarantee semantic se-
curity only if the keyword space has a high min-entropy.
Otherwise, an adversary can extract the encrypted keyword
by a simple encrypt-and-test attack. Hence, deterministic
PEKS schemes are applicable to applications where the
keyword space is of a high min-entropy.

E. Organization of this article

The remaining sections are as follows. Section II defines
SPCHS and its semantic security. A simple SPCHS scheme
is constructed in Section III. A general construction of
SPCHS is given in Section IV. Two collision-free full-
identity malleable IBKEM schemes, respectively in the RO
and standard models, are introduced in Section V. Section
VI concludes this paper.

II. MODELING SPCHS

We first explain intuitions behind SPCHS. We describe a
hidden structure formed by ciphertexts as (C,Pri,Pub),
where C denotes the set of all ciphertexts, Pri de-
notes the hidden relations among C, and Pub de-
notes the public parts. In case there is more than
one hidden structure formed by ciphertexts, the descrip-
tion of multiple hidden structures formed by cipher-
texts can be (C, (Pri1,Pub1), ..., (PriN ,PubN )), where
N ∈ N. Moreover, given (C,Pub1, ...,PubN ) and
(Pri1, ...,PriN ) except (Prii,Prij) (where i 6= j), one
can neither learn anything about (Prii,Prij) nor decide
whether a ciphertext is associated with Pubi or Pubj .

In SPCHS, the encryption algorithm has two function-
alities. One is to encrypt a keyword, and the other is to
generate a hidden relation, which can associate the gen-
erated ciphertext to the hidden structure. Let (Pri,Pub)

be the hidden structure. The encryption algorithm must
take Pri as input, otherwise the hidden relation cannot be
generated since Pub does not contain anything about the
hidden relations. At the end of the encryption procedure,
the Pri should be updated since a hidden relation is newly
generated (but the specific method to update Pri relies
on the specific instance of SPCHS). In addition, SPCHS
needs an algorithm to initialize (Pri,Pub) by taking the
master public key as input, and this algorithm will be
run before the first time to generate a ciphertext. With a
keyword search trapdoor, the search algorithm of SPCHS
can disclose partial relations to guide the discovery of the
ciphertexts containing the queried keyword with the hidden
structure.

Definition 1 (SPCHS). SPCHS consists of five algorithms:
• SystemSetup(1k,W): Take as input a security pa-

rameter 1k and a keyword space W , and probabilis-
tically output a pair of master public-and-secret keys
(PK,SK), where PK includes the keyword spaceW
and the ciphertext space C.

• StructureInitialization(PK): Take as input PK,
and probabilistically initialize a hidden structure by
outputting its private and public parts (Pri,Pub).

• StructuredEncryption(PK,W,Pri): Take as in-
puts PK, a keyword W ∈ W and a hidden struc-
ture’s private part Pri, and probabilistically output a
keyword-searchable ciphertext C of keyword W with
the hidden structure, and update Pri.

• Trapdoor(SK,W ): Take as inputs SK and a key-
word W ∈ W , and output a keyword search trapdoor
TW of W .

• StructuredSearch(PK,Pub,C, TW ): Take as in-
puts PK, a hidden structure’s public part Pub,
all keyword-searchable ciphertexts C and a keyword
search trapdoor TW of keyword W , disclose partial
relations to guide finding out the ciphertexts contain-
ing keyword W with the hidden structure.

An SPCHS scheme must be consistent in the sense
that given any keyword search trapdoor TW and
any hidden structure’s public part Pub, algorithm
StructuredSearch(PK,Pub,C, TW ) finds out all ci-
phertexts of keyword W with the hidden structure Pub.

In the application of SPCHS, a receiver runs algo-
rithm SystemSetup to set up SPCHS. Each sender
uploads the public part of his hidden structure and
keyword-searchable ciphertexts to a server, respec-
tively by algorithms StructureInitialization and
StructuredEncryption. Algorithm Trapdoor al-
lows the receiver to delegate a keyword search trap-
door to the server. Then the server runs algorithm
StructuredSearch for all senders’ structures to find out
the ciphertexts of the queried keyword.

The above SPCHS definition requires each sender to
maintain the private part of his hidden structure for al-
gorithm StructuredEncryption. A similar requirement
appears in symmetric-key encryption with keyword search
(SEKS) in which each sender is required to maintain a
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secret key shared with the receiver. This implies interactions
via authenticated confidential channels before a sender
encrypts the keywords to the receiver in SEKS. In contrast,
each sender in SPCHS just generates and maintains his/her
private values locally, i.e., without requirement of extra
secure interactions before encrypting keywords.

In the general case of SPCHS, each sender keeps his/her
private values Pri. We could let each sender be stateless
by storing his/her Pri in encrypted form at a server and
having each sender download and re-encrypt his/her Pri
for each update of Pri. A similar method also has been
suggested by [27].

The semantic security of SPCHS is to resist adaptively
chosen keyword and structure attacks (SS-CKSA). In this
security notion, a probabilistic polynomial-time (PPT) ad-
versary is allowed to know all structures’ public parts, query
the trapdoors for adaptively chosen keywords, query the
private parts of adaptively chosen structures, and query the
ciphertexts of adaptively chosen keywords and structures
(including the keywords and structures which the adversary
would like to be challenged). The adversary will choose
two challenge keyword-structure pairs. The SS-CKSA se-
curity means that for a ciphertext of one of two challenge
keyword-structure pairs, the adversary cannot determine
which challenge keyword or which challenge structure
the challenge ciphertext corresponds to, provided that the
adversary does not know the two challenge keywords’
search trapdoors and the two challenge structures’ private
parts.

Definition 2 (SS-CKSA Security). Suppose there are at
most N ∈ N hidden structures. An SPCHS scheme is SS-
CKSA secure, if any PPT adversary A has only a negligible
advantage AdvSS-CKSA

SPCHS,A to win in the following SS-CKSA
game:
• Setup Phase: A challenger sets up the SPCHS scheme

by running algorithm SystemSetup to generate a
pair of master public-and-secret keys (PK,SK), and
initializes N hidden structures by running algorithm
StructureInitialization N times (let PSet be the
set of all public parts of these N hidden structures.);
finally the challenger sends PK and PSet to A.

• Query Phase 1: A adaptively issues the following
queries multiple times.

– Trapdoor Query QTrap(W ): Taking as input a
keyword W ∈ W , the challenger outputs the
keyword search trapdoor of keyword W ;

– Privacy Query QPri(Pub): Taking as input a
hidden structure’s public part Pub ∈ PSet, the
challenger outputs the corresponding private part
of this structure;

– Encryption Query QEnc(W,Pub): Taking as in-
puts a keyword W ∈ W and a hidden struc-
ture’s public part Pub, the challenger outputs an
SPCHS ciphertext of keyword W with the hidden
structure Pub.

• Challenge Phase: A sends two challenge keyword-
and-structure pairs (W ∗0 ,Pub∗0) ∈ W × PSet and

(W ∗1 ,Pub∗1) ∈ W × PSet to the challenger; The
challenger randomly chooses d ∈ {0, 1}, and sends
a challenge ciphertext C∗d of keyword W ∗d with the
hidden structure Pub∗d to A.

• Query Phase 2: This phase is the same as Query
Phase 1. Note that in Query Phase 1 and Query
Phase 2, A cannot query the corresponding private
parts both of Pub∗0 and Pub∗1 and the keyword search
trapdoors both of W ∗0 and W ∗1 .

• Guess Phase: A sends a guess d′ to the challenger.
We say that A wins if d = d′. And let AdvSS-CKSA

SPCHS,A =

Pr[d = d′] − 1
2 be the advantage of A to win in the

above game.

A weaker security definition of SPCHS is the selective-
keyword security. We refer to this weaker security notion as
SS-sK-CKSA security, and the corresponding attack game
as SS-sK-CKSA game. In this attack game, the adversary
A chooses two challenge keywords before the SPCHS
scheme is set up, but the adversary still adaptively chooses
two challenge hidden structures at Challenge Phase. Let
AdvSS-sK-CKSA

SPCHS,A denote the advantage of adversary A to win
in this game.

III. A SIMPLE SPCHS SCHEME FROM SCRATCH

Let γ $← < denote an element γ randomly sampled
from <. Let G and G1 denote two multiplicative groups of
prime order q. Let g be a generator of G. A bilinear map
ê : G × G → G1 [44], [45] is an efficiently computable
and non-degenerate function, with the bilinearity property
ê(ga, gb) = ê(g, g)ab, where (a, b)

$← Z∗q and ê(g, g) is
a generator of G1. Let BGen(1k) be an efficient bilinear
map generator that takes as input a security parameter 1k

and probabilistically outputs (q,G,G1, g, ê). Let keyword
space W = {0, 1}∗.

A simple SPCHS scheme secure in the random oracle
model is constructed as follows.
• SystemSetup(1k,W): Take as input 1k and the

keyword space W , compute (q,G,G1, g, ê) =

BGen(1k), pick s
$← Z∗q , set P = gs, choose a

cryptographic hash function H : W → G, set the ci-
phertext space C ⊆ G1×G×G1, and finally output the
master public key PK = (q,G,G1, g, ê, P,H,W, C),
and the master secret key SK = s.

• StructureInitialization(PK): Take as input PK,
pick u

$← Z∗q , and initialize a hidden structure by
outputting a pair of private-and-public parts (Pri =
(u),Pub = gu). Note that Pri here is a variable list
formed as (u, {(W,Pt[u,W ])|W ∈ W}), which is
initialized as (u).

• StructuredEncryption(PK,W,Pri): Take as in-
puts PK, a keyword W ∈ W , a hidden structure’s
private part Pri, pick r

$← Z∗q and do the following
steps:

1) Search (W,Pt[u,W ]) for W in Pri;
2) If it is not found, insert (W,Pt[u,W ]

$← G1)
to Pri, and output the keyword-searchable ci-
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phertext C = (ê(P,H(W ))u, gr, ê(P,H(W ))r ·
Pt[u,W ]);

3) Otherwise, pick R
$← G1, set

C = (Pt[u,W ], gr, ê(P,H(W ))r · R), update
Pt[u,W ] = R, and output the keyword-
searchable ciphertext C;

• Trapdoor(SK,W ): Take as inputs SK and a key-
word W ∈ W , and output a keyword search trapdoor
TW = H(W )s of keyword W .

• StructuredSearch(PK,Pub,C, TW ): Take as in-
puts PK, a hidden structure’s public part Pub, all
keyword-searchable ciphertexts C (let C[i] denote one
ciphertext of C, and this ciphertext can be parsed as
(C[i, 1],C[i, 2],C[i, 3]) ∈ G1×G×G1) and a keyword
trapdoor TW of keyword W , set C′ = φ, and do the
following steps:

1) Compute Pt′ = ê(Pub, TW );
2) Seek a ciphertext C[i] having C[i, 1] = Pt′; if it

exists, add C[i] into C′;
3) If no matching ciphertext is found, output C′;
4) Compute Pt′ = ê(C[i, 2], TW )−1 ·C[i, 3], and go

to Step 2.
Figure 2 shows a hidden star-like structure, which is

generated by the SPCHS instance. When running algorithm
StructuredSearch(PK,Pub,C, TWi), it discloses the
value ê(P,H(Wi))

u by computing ê(Pub, TWi
), and

matches ê(P,H(Wi))
u with all ciphertexts to find out the

ciphertext (ê(P,H(Wi))
u, gr, ê(P,H(Wi))

r · Pt[u,Wi]).
Then the algorithm discloses Pt[u,Wi] by computing
ê(gr, TWi)

−1 · ê(P,H(Wi))
r · Pt[u,Wi], and matches

Pt[u,Wi] with all ciphertexts to find out the ciphertext
(Pt[u,Wi], g

r, ê(P,H(Wi))
r · R). By carrying on in this

way, the algorithm will find out all ciphertexts of keyword
Wi with the hidden star-like structure, and stop the search
if no matching ciphertext is found.

Consistency. Roughly speaking, algorithm
StructuredSearch repetitively discloses the value
of Pt′ and matches the value with all ciphertexts’ first
parts to find out the matching ciphertexts. Since all
disclosed values of Pt′ are either collision-free (due to
the hash function H) and random (according to algorithm
StructuredEncryption), no more than one ciphertext
matches in each matching process. The found ciphertexts
should contain the queried keyword, since given a keyword
search trapdoor, algorithm StructuredSearch only can
disclose the values of Pt′, which are corresponding to
the queried keyword. Formally, we have Theorem 1 on
consistency whose proof can be found in Supplemental
Materials B.

Theorem 1. Suppose the hash function H is collision-
free, except with a negligible probability in the security
parameter k. The above SPCHS instance is consistent,
also except with a negligible probability in the security
parameter k.

Semantic Security. The SS-CKSA security of the
above SPCHS scheme relies on the DBDH assumption in

BGen(1k). The definition of DBDH assumption [3] is as
follows.

Definition 3 (The DBDH Assumption). The DBDH
problem in BGen(1k) = (q,G,G1, g, ê) is de-
fined as the advantage of any PPT algorithm B
to distinguish the tuples (ga, gb, gc, ê(g, g)abc) and
(ga, gb, gc, ê(g, g)y), where (a, b, c, y)

$← Z∗4q . Let
AdvDBDHB (1k) = Pr[B(ga, gb, gc, ê(g, g)abc) = 1] −
Pr[B(ga, gb, gc, ê(g, g)y) = 1] be the advantage of algo-
rithm B to solve the DBDH problem. We say that the
DBDH assumption holds in BGen(1k), if the advantage
AdvDBDHB (1k) is negligible in the parameter k.

In the security proof, we prove that if there is an
adversary who can break the SS-CKSA security of the
above SPCHS instance in the RO model, then there is
an algorithm which can solve the DBDH problem in
BGen(1k). Formally we have Theorem 2 whose proof can
be found in Supplemental Materials C.

Theorem 2. Let the hash function H be modeled as the
random oracle QH(·). Suppose there are at most N ∈ N
hidden structures, and a PPT adversary A wins in the SS-
CKSA game of the above SPCHS instance with advantage
AdvSS-CKSA

SPCHS,A, in which A makes at most qt queries to
oracle QTrap(·) and at most qp queries to oracle QPri(·).
Then there is a PPT algorithm B that solves the DBDH
problem in BGen(1k) with advantage

AdvDBDHB (1k) ≈ 27

(e · qt · qp)3
·AdvSS-CKSA

SPCHS,A,

where e is the base of natural logarithms.

Forward and Backward Security. Even in the case
that a sender gets his local privacy Pri compromised,
SPCHS still offers forward security. This means that the
existing hidden structure of ciphertexts stays confidential,
since the local privacy only contains the relationship of the
new generated ciphertexts. To offer backward security with
SPCHS, the sender can initialize a new structure by al-
gorithm StructureInitialization for the new generated
ciphertexts. Because the new structure is independent of the
old one, the compromised local privacy will not leak the
new generated structure.

Search Complexity. All keyword-searchable ciphertexts
can be indexed by their first parts’ binary bits. Assume that
there are in total n ciphertexts from nS hidden structures,
and the i-th hidden structure contains nW,i ciphertexts of
keyword W ∈ W . With the i-th hidden structure, the search
complexity is O(nW,i log n). For all hidden structures, the
sum search complexity is O((nS + nW) log n), where nW =∑nS
i=1 nW,i. Since n =

∑
W∈W nW and nW =

∑nS
i=1 nW,i, we

have that nS � nW � n. Thus the above SPCHS instance
allows a much more efficient search than existing PEKS
schemes, which have O(n) search complexity.

One may note that SPCHS loses its significant advantage
in search performance compared with PEKS if nS = n
holds. However, this special case seldom happens. In prac-
tice, a sender will extract several keywords from each of
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Imply the following value Imply the following value

Have the same value Have the same value

u= gPub

ˆ ˆ( , ( )) , , ( , ( )) [ , ]u r r
L L Le P H W g e P H W Pt u W⋅

1 1ˆ[ , ], , ( , ( ))r rPt u W g e P H W R⋅

1 1ˆ[ , ], , ( , ( ))r rPt u W g e P H W R⋅

ˆ[ , ], , ( , ( ))r r
L LPt u W g e P H W R⋅

ˆ[ , ], , ( , ( ))r r
L LPt u W g e P H W R⋅

Have the same value

Have the same value

Have the same value

Have the same value

1 1 1ˆ ˆ( , ( )) , , ( , ( )) [ , ]u r re P H W g e P H W Pt u W⋅
[ , ] ( [1, ])iWhen Pt u W i L

the SPCHS ciphertexts are
∉ ∈Pri 

[ , ] ( [1, ])iWhen Pt u W i L
the SPCHS ciphertexts are

∈ ∈Pri 

Note that, in each ciphertext, the value R and the value r are randomly chosen. For i ∈ [1, L],
Pt[u,Wi] is initialized with a random value when generating the first ciphertext of keyword Wi,
and it will be updated into R after generating each subsequent ciphertext of keyword Wi.

Figure 2: Hidden star-like structure generated by the above SPCHS instance

Table I: System parameters

Hardware Intel CPU E5300 @ 2.60GHz
OS and compiler Win XP and Microsoft VC++ 6.0
Program library MIRACL version 5.4.1

Parameters of bilinear map
Elliptic curve y2 = x3 + A · x + B · x

Pentanomial basis tm + ta + tb + tc + 1
Base field: 2m m = 379

A 1
B 1

Group order: q 2m + 2(m+1)/2 + 1
a 315
b 301
c 287

The default unit is decimal.

his files. So we usually have nS � n even if each sender
only has one file. In addition, most related works on SEKS
and PEKS assume that each file has several keywords.

Experiment. We coded our SPCHS scheme, and tested
the time cost of algorithm StructuredSearch to execute
its cryptographic operations for different numbers of match-
ing ciphertexts. We also coded the PEKS scheme [1]. Table
I shows the system parameters including hardware, software
and the chosen elliptic curve. Assume there are in total
104 searchable ciphertexts. PEKS takes about 53.8 seconds
search time per keyword, since it must test all ciphertexts
for each search. Figure 3 shows the experimental results of
SPCHS. It is clear that the time cost of SPCHS is linear
with the number of matching ciphertexts, whereas for PEKS
it is linear with the number of total ciphertexts. Hence,
SPCHS is much more efficient than PEKS.

IV. A GENERIC CONSTRUCTION OF SPCHS
FROM IBKEM AND IBE

In this section, we formalize collision-free full-identity
malleable IBKEM and a generic SPCHS construction from
IBKEM and IBE.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
0

5

1 0

1 5

2 0

2 5

3 0

Tim
e(s

)

T h e  n u m b e r  o f  m a t c h i n g  c i p h e r t e x t s

Figure 3: Time cost of SPCHS

A. Reviewing IBE

Before the generic SPCHS construction, let us review
the concept of IBE and its Anonymity and Semantic Secu-
rity both under adaptive-ID and Chosen Plaintext Attacks
(Anon-SS-ID-CPA).

Definition 4 (IBE [11]). IBE consists of four algorithms:

• SetupIBE(1
k, IDIBE): Take as inputs a security param-

eter 1k and an identity space IDIBE, and probabilis-
tically output the master public-and-secret-key pair
(PKIBE,SKIBE), where PKIBE includes the message
space MIBE, the ciphertext space CIBE and the identity
space IDIBE.

• ExtractIBE(SKIBE, ID): Take as inputs SKIBE and an
identity ID ∈ IDIBE, and output a decryption key S̃ID
of ID.

• EncIBE(PKIBE, ID,M): Take as inputs PKIBE, an
identity ID ∈ IDIBE and a message M , and proba-
bilistically output a ciphertext C̃.

• DecIBE(S̃ID′ , C̃): Take as inputs the decryption key
S̃ID′ of identity ID′ and a ciphertext C̃, and output
a message or ⊥, if the ciphertext is invalid.

An IBE scheme must be consistent in the sense that
for any C̃ = EncIBE(PKIBE, ID,M) and S̃ID′ =
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ExtractIBE(SKIBE, ID
′), DecIBE(S̃ID′ , C̃) = M holds if

ID′ = ID, except with a negligible probability in the
security parameter k.

In the Anon-SS-ID-CPA security notion of IBE, a PPT
adversary is allowed to query the decryption keys for
adaptively chosen identities, and adaptively choose two
challenge identity-and-message pairs. The Anon-SS-ID-
CPA security of IBE means that for a challenge ciphertext,
the adversary cannot determine which challenge identity
and which challenge message it corresponds to, provided
that the adversary does not know the two challenge identi-
ties’ decryption keys. The Anon-SS-ID-CPA security of an
IBE scheme is as follows.

Definition 5 (Anon-SS-ID-CPA security of IBE [46]). An
IBE scheme is Anon-SS-ID-CPA secure if any PPT adver-
sary B has only a negligible advantage AdvAnon-SS-ID-CPA

IBE,B to
win in the following Anon-SS-ID-CPA game:
• Setup Phase: A challenger sets up the IBE scheme by

running algorithm SetupIBE to generate the master
public-and-secret-keys pair (PKIBE,SKIBE), and sends
PKIBE to B.

• Query Phase 1: Adversary B adaptively issues the
following query multiple times.

– Decryption Key Query QIBEDK (ID): Taking as
input an identity ID ∈ IDIBE, the challenger
outputs the decryption key of identity ID.

• Challenge Phase: Adversary B sends two chal-
lenge identity-and-message pairs (ID∗0 ,M

∗
0 ) and

(ID∗1 ,M
∗
1 ) to the challenger; the challenger picks

d̃
$← {0, 1}, and sends the challenge IBE ciphertext

C̃∗
d̃
= EncIBE(PKIBE, ID

∗
d̃
,M∗

d̃
) to B.

• Query Phase 2: This phase is the same as Query
Phase 1. Note that in Query Phase 1 and Query Phase
2, B cannot query the decryption key corresponding
to the challenge identity ID∗0 or ID∗1 .

• Guess Phase: Adversary B sends a guess d̃′ to the
challenger. We say that B wins if d̃′ = d̃. Let
AdvAnon-SS-ID-CPA

IBE,B = Pr[d̃′ = d̃] − 1
2 be the advantage

of B to win in the above game.

B. The Collision-Free Full-Identity Malleable IBKEM

Our generic construction also relies on a notion of
collision-free full-identity malleable IBKEM. The follow-
ing IBKEM definition is derived from [47]. A difference
only appears in algorithm EncapsIBKEM. In order to high-
light that the generator of an IBKEM encapsulation knows
the chosen random value used in algorithm EncapsIBKEM,
we take the random value as an input of the algorithm.

Definition 6 (IBKEM). IBKEM consists of four algorithms:
• SetupIBKEM(1

k, IDIBKEM): Take as inputs a security
parameter 1k and an identity space IDIBKEM, and
probabilistically output the master public-and-secret-
keys pair (PKIBKEM,SKIBKEM), where PKIBKEM includes
the identity space IDIBKEM, the encapsulated key space
KIBKEM and the encapsulation space CIBKEM.

• ExtractIBKEM(SKIBKEM, ID): Take as inputs SKIBKEM

and an identity ID ∈ IDIBKEM, and output a decryption
key ŜID of ID.

• EncapsIBKEM(PKIBKEM, ID, r): Take as inputs PKIBKEM,
an identity ID ∈ IDIBKEM and a random value r, and
deterministically output a key-and-encapsulation pair
(K̂, Ĉ) of ID.

• DecapsIBKEM(ŜID′ , Ĉ): Take as inputs the decryption
key ŜID′ of identity ID′ and an encapsulation Ĉ, and
output an encapsulated key or ⊥, if the encapsulation
is invalid.

An IBKEM scheme must be consistent in the sense
that for any (K̂, Ĉ) = EncapsIBKEM( PKIBKEM, ID, r),
DecapsIBKEM(ŜID′ , Ĉ) = K̂ holds if ID′ = ID, except
with a negligible probability in the security parameter k.

The collision-free full-identity malleable IBKEM implies
the following characteristics: all identities’ decryption keys
can decapsulate the same encapsulation; all decapsulated
keys are collision-free; the generator of the encapsulation
can also compute these decapsulated keys; the decapsulated
keys of different encapsulations are also collision-free.

Definition 7 (Collision-Free Full-Identity Malleable
IBKEM). IBKEM is collision-free full-identity malleable,
if there is an efficient function FIM that for any (K̂, Ĉ) =
EncapsIBKEM( PKIBKEM, ID, r), the function FIM satisfies
the following features:

• (Full-Identity Malleability) For any identity
ID′ ∈ IDIBKEM, the equation FIM(ID′, r) =
DecapsIBKEM(ŜID′ , Ĉ) always holds, where
ŜID′ = ExtractIBKEM(SKIBKEM, ID

′);
• (Collision-Freeness) For any identity ID′ ∈ IDIBKEM

and any random value r′, if ID 6= ID′
∨
r 6= r′, then

FIM(ID, r) 6= FIM(ID′, r′) holds, except with a
negligible probability in the security parameter k.

A collision-free full-identity malleable IBKEM scheme
may preserve semantic security and anonymity. We incor-
porate the semantic security and anonymity into Anon-
SS-ID-CPA secure IBKEM. But this security is different
from the traditional version [47] of the Anon-SS-ID-CPA
security due to the full-identity malleability of IBKEM. The
difference will be introduced after defining that security.
In that security, a PPT adversary is allowed to query
the decryption keys for adaptively chosen identities, and
adaptively choose two challenge identities. The Anon-SS-
ID-CPA security of IBKEM means that for a challenge
key-and-encapsulation pair, the adversary cannot determine
the correctness of this pair and the challenge identity of
this pair, given that the adversary does not know the
two challenging identities’ decryption keys. The Anon-SS-
ID-CPA security of a collision-free full-identity malleable
IBKEM scheme is as follows.

Definition 8 (Anon-SS-ID-CPA security of IBKEM). An
IBKEM scheme is Anon-SS-ID-CPA secure if any PPT ad-
versary B has only a negligible advantage AdvAnon-SS-ID-CPA

IBKEM,B
to win in the following Anon-SS-ID-CPA game:
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• Setup Phase: A challenger sets up the IBKEM scheme
by running algorithm SetupIBKEM to generate the
master public-and-secret-keys pair (PKIBKEM,SKIBKEM),
and sends PKIBKEM to B.

• Query Phase 1: B adaptively issues the following
query multiple times.

– Decryption Key Query QIBKEMDK (ID): Taking as
input an identity ID ∈ IDIBKEM, the challenger
outputs the decryption key of identity ID.

• Challenge Phase: B sends two challenge identi-
ties ID∗0 and ID∗1 to the challenger; the chal-
lenger picks d̂

$← {0, 1}, computes (K̂∗0 , Ĉ
∗
0 ) =

EncapsIBKEM(PKIBKEM, ID
∗
0 , r0) and (K̂∗1 , Ĉ

∗
1 ) =

EncapsIBKEM(PKIBKEM, ID
∗
1 , r1), and sends the chal-

lenge key-and-encapsulation pair (K̂∗
d̂
, Ĉ∗0 ) to B,

where r0 and r1 are randomly chosen.
• Query Phase 2: This phase is the same as Query

Phase 1. Note that in Query Phase 1 and Query
Phase 2, B cannot query the decryption keys both of
the challenge identities ID∗0 and ID∗1 .

• Guess Phase: B sends a guess d̂′ to the challenger.
We say that B wins if d̂′ = d̂. Let AdvAnon-SS-ID-CPA

IBKEM,B =

Pr[d̂′ = d̂] − 1
2 be the advantage of B to win in the

above game.

In the above definition, the anonymity of the encapsu-
lated keys is defined by the indistinguishability of K̂∗0 and
K̂∗1 . But we do not define the anonymity of the IBKEM
encapsulations (i.e. the challenge key-and-encapsulation
pair consists of Ĉ∗0 instead of Ĉ∗

d̂
), since the full-identity

malleability of IBKEM implies that any IBKEM encapsu-
lation is valid for all identities.

A weaker security definition of IBKEM is the selective-
identity security, referred to as the Anon-SS-sID-CPA se-
curity. The corresponding attack game is called the Anon-
SS-sID-CPA game in which the adversary must commit to
the two challenge identities before the system is set up.

C. The Proposed Generic SPCHS Construction

Let keyword space W ⊂ IDIBKEM = IDIBE. Our generic
SPCHS construction from the collision-free full-identity
malleable IBKEM and IBE is as follows.
• SystemSetup(1k,W): Take as inputs a secu-

rity parameter 1k and the keyword space W , run
(PKIBKEM,SKIBKEM) = SetupIBKEM(1

k, IDIBKEM) and
(PKIBE,SKIBE) = SetupIBE(1

k, IDIBE), and output
a pair of master public-and-secret keys (PK =
(PKIBKEM,PKIBE),SK = (SKIBKEM,SKIBE)). Let the
SPCHS ciphertext space C = KIBKEM × CIBE, and
KIBKEM =MIBE.

• StructureInitialization(PK): Take as input PK,
arbitrarily pick a keyword W ∈ W and a random
value u, generate an IBKEM encapsulated key and its
encapsulation (K̂, Ĉ) = EncapsIBKEM(PKIBKEM,W, u),
and initialize a hidden structure by outputting a pair
of private-and-public parts (Pri = (u),Pub = Ĉ).
Note that Pri here is a variable list formed as

(u, {(W,Pt[u,W ])|W ∈ W}), which is initialized as
(u).
(In the above, an IBKEM encapsulation and its related
random value are respectively taken as the public-and-
private parts of a hidden structure. To generate these
two parts , an arbitrary keyword have to be chosen to
run algorithm EncapsIBKEM.)

• StructuredEncryption(PK,W,Pri): Take as in-
puts PK, a keyword W ∈ W , a hidden structure’s
private part Pri, and do the following steps:

1) Search (W,Pt[u,W ]) for W in Pri;
2) If it is not found, insert (W,Pt[u,W ]

$←
MIBE) to Pri, and output the
keyword-searchable ciphertext C =
(FIM(W,u),EncIBE(PKIBE,W, P t[u,W ]);

3) Otherwise, pick R
$← MIBE, set

C = (Pt[u,W ],EncIBE(PKIBE,W,R)), update
Pt[u,W ] = R, and output the keyword-
searchable ciphertext C;

• Trapdoor(SK,W ): Take as inputs SK and a key-
word W ∈ W , run ŜW = ExtractIBKEM( SKIBKEM,W )
and S̃W = ExtractIBE(SKIBE,W ), and output a key-
word search trapdoor TW = (ŜW , S̃W ) of keyword
W .

• StructuredSearch(PK,Pub,C, TW ): Take as in-
puts PK, a hidden structure’s public part Pub, all
keyword-searchable ciphertexts C (let C[i] denote one
ciphertext of C, and this ciphertext can be parsed as
(C[i, 1],C[i, 2]) ∈ C = KIBKEM × CIBE) and a keyword
trapdoor TW = (ŜW , S̃W ) of keyword W , set C′ = φ,
and do the following steps:

1) Compute Pt′ = DecapsIBKEM(ŜW ,Pub);
2) Seek a ciphertext C[i] having C[i, 1] = Pt′; if it

exists, add C[i] into C′;
3) If no matching ciphertext is found, output C′;
4) Compute Pt′ = DecIBE(S̃ID′ ,C[i, 2]), go to step

2;
Figure 4 shows a hidden star-like structure generated by

the generic SPCHS construction. When running algorithm
StructuredSearch(PK,Pub,C, TWi

), the full-identity
malleability of IBKEM allows the algorithm to disclose
the value FIM(Wi, u) by computing FIM(Wi, u) =
DecapsIBKEM(ŜWi ,Pub) and find out the ciphertext
(FIM(Wi, u),EncIBE(PKIBE, Wi, P t[u,Wi])). Then the
consistency of IBE allows the algorithm to disclose
Pt[u,Wi] by decrypting EncIBE(PKIBE, Wi, P t[u,Wi]) and
find out the ciphertext (Pt[u,Wi],EncIBE( PKIBE, Wi, R)).
By carrying on in this way, the consistency of IBE allows
the algorithm to find out the rest of ciphertexts of keyword
Wi with the hidden star-like structure, and stop the search
if no more ciphertexts are found.

Consistency. When running the above algorithm
StructuredSearch(PK,Pub,C, TW ), the consistency
and full-identity malleability of IBKEM assures that
FIM(W,u) = DecapsIBKEM(ŜW ,Pub) holds. The
collision-freeness of IBKEM assures that only one cipher-
text containing keyword W has the value FIM(W,u) as
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ˆ ˆˆ ( , , )IBKEM IBKEM= C, where (K,C) W u=Pub PKEncaps

( , ), ( , , [ , ])L IBE IBE L LW u W Pt u WPKFIM Enc

1 1[ , ], ( , , )IBE IBEPt u W W RPKEnc

1 1[ , ], ( , , )IBE IBEPt u W W RPKEnc

[ , ], ( , , )L IBE IBE LPt u W W RPKEnc

[ , ], ( , , )L IBE IBE LPt u W W RPKEnc

Have the same value

Have the same value

Have the same value

Have the same value

1 1 1( , ), ( , , [ , ])IBE IBEW u W Pt u WPKFIM Enc
[ , ] ( [1, ])iWhen Pt u W i L

the SPCHS ciphertexts are
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∈ ∈Pri 

Note that in each ciphertext, the value R is randomly chosen. For i ∈ [1, L], Pt[u,Wi] is initialized
with a random value when generating the first ciphertext of keyword Wi, and it will be updated
into R after generating each subsequent ciphertext of keyword Wi.

Figure 4: Hidden star-like structure generated by the generic SPCHS construction

its first part. Therefore the algorithm can find out the
first ciphertext of keyword W with the hidden structure
Pub. Then the consistency of IBE allows the algorithm
StructuredSearch to find out the rest of ciphertexts
containing keyword W with the hidden structure Pub.
Formally we have Theorem 3. The proof can be found in
Supplemental Materials D.

Theorem 3. The above generic SPCHS scheme is consis-
tent if its underlying collision-free full-identity malleable
IBKEM and IBE schemes are both consistent.

Semantic Security. The SS-sK-CKSA security of the
above generic SPCHS construction relies on the Anon-
SS-sID-CPA security of the underlying IBKEM and the
Anon-SS-ID-CPA security of the underlying IBE. In the
security proof, we prove that if there is an adversary who
can break the SS-sK-CKSA security of the above generic
SPCHS construction, then there is another adversary who
can break the Anon-SS-sID-CPA security of the underlying
IBKEM or the Anon-SS-ID-CPA security of the underlying
IBE. Theorem 4 formally states the semantic security of
our generic SPCHS construction. The proof can be found
in Supplemental Materials E.

Theorem 4. Suppose there are at most N ∈ N hidden
structures, and a PPT adversary A wins in the SS-sK-
CKSA game with advantage AdvSS-sK-CKSA

SPCHS,A. Then there is a
PPT adversary B, who utilizes the capability of A to win
in the Anon-SS-sID-CPA game of the underlying IBKEM
or the Anon-SS-ID-CPA game of the underlying IBE with
advantage 1

4N ·Adv
SS-sK-CKSA
SPCHS,A.

V. TWO COLLISION-FREE FULL-IDENTITY
MALLEABLE IBKEM INSTANCES

The Instance in the RO Model. Abdalla et al. pro-
posed several VRF-suitable IBKEM instances in [8]. An
IBKEM instance is VRF-suitable if it provides unique
decapsulation. This means that given any encapsulation,
all the decryption keys corresponding to the same identity

decapsulate out the same encapsulated key, and the key
is pseudo-random. Here, the decryption key extraction is
probabilistic and for the same identity, different decryption
key may be extracted in different runs of the key extraction
algorithm. It is clear that our proposed collision-free full-
identity malleability not only implies unique decapsulation,
but also implies that the generator of an encapsulation
knows what keys will be decapsulated by the decryption
keys of all identities. In Supplemental Materials F, we
prove that the VRF-suitable IBKEM instance proposed in
Appendix A.2 of [8] is collision-free full-identity malleable.
Even though this IBKEM scheme has the traditional Anon-
SS-ID-CPA security, we further prove that this IBKEM
scheme is Anon-SS-ID-CPA secure based on the DBDH
assumption in the RO model according to Definition 8.

The Instance in the Standard Model. In [9], Freire
et al. utilized the “approximation” of multilinear maps
[10] to construct a programmable hash function in the
multilinear setting (MPHF). Then Freire et al. utilized this
hash function to replace the traditional hash functions of the
BF IBE scheme in [11] and reconstructed this IBE scheme
in the multilinear setting. They finally constructed a new
IBE scheme with semantic security in the standard model.
We find that this new IBE scheme can be easily transformed
into a collision-free full-identity malleable IBKEM scheme
with Anon-SS-ID-CPA security in the standard model. To
simplify the description of this IBKEM scheme, we do
not consider the “approximation” of multilinear maps. This
means that we will leave out the functions that are the
encoding of a group element, the re-randomization of an
encoding and the extraction of an encoding. Some related
definitions are reviewed as follows.

Definition 9 (Multilinear Maps [9]). An `-group sys-
tem in the multilinear setting consists of ` cyclic groups
G1, · · · ,G` of prime order p, along with bilinear maps
êi,j : Gi×Gj → Gi+j for all i, j ≥ 1 with i+j ≤ `. Let gi
be a generator of Gi. The map êi,j satisfies êi,j(gai , g

b
j) =

gabi+j (for all a, b ∈ Zp). When i, j are clear, we will simply
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write ê instead of êi,j . It will also be convenient to abbrevi-
ate ê(h1, · · · , hj) = ê(h1, ê(h2, · · · , ê(hj−1, hj) · · · )) for
hj ∈ Gij and i = (i1 + i2 + · · · + ij) ≤ `. By induction,
it is easy to see that this map is j-linear. Additionally, We
define ê(g) = g. Finally, it can also be useful to define the
group G0 = Z+

|G1| of exponents to which this pairing family
naturally extends. In the following, we will assume an `-
group system MPG` = {{Gi}i∈[1,`], p, {êi,j}i,j≥1,i+j≤`}
generated by a multilinear maps parameter generator MG`

on input a security parameter 1k.

Definition 10 (The `-MDDH Assumption [9]). Given
(g, gx1 , · · · , gx`+1) (for g

$← G1 and uniform expo-
nents xi), the `-MDDH assumption is that the element
ê(gx1 , · · · , gx`)x`+1 ∈ G` is computationally indistinguish-
able from a uniform G`-element.

Definition 11 (Group hash function [9]). A group hash
function H into G consists of two polynomial-time algo-
rithms: the probabilistic algorithm HGen(1k) outputs a
key hk, and HEval( hk,X) (for a key hk and X ∈
{0, 1}k) deterministically outputs an image Hhk(X) ∈ G.

Definition 12 (MPHF [9]). Assume an `′-group system
MPG`′ as generated by MG`′(1

k). Let H be a group
hash function into G`(` ≤ `′), and let m,n ∈ N. We
say that H is an (m,n)-programmable hash function in
the multilinear setting ((m,n)-MPHF) if there are PPT
algorithms TGen and TEval as follows.
• TGen(1k, c1, · · · , cl, h) (for ci, h ∈ G1 and h 6= 1)

outputs a key hk and a trapdoor td. We require that
for all ci, h, that distribution of hk is statistically close
to the output of HGen.

• TEval(td,X) (for a trapdoor td and X ∈ {0, 1}k)
deterministically outputs aX ∈ Z∗p and BX ∈ G`−1
with Hhk(X) = ê(c1, · · · , c`)aX · ê(BX , h). We re-
quire that there is a polynomial p(k) such that for
all hk and X1, · · · , Xm, Z1, · · · , Zn ∈ {0, 1}k with
{Xi}i

⋂
{Zj}j = ∅, Phk,{Xi},{Zj} = Pr[(aX1 =

· · · = aXm
= 0) ∧ (aZ1

, · · · , aXn
6= 0)] ≥ 1/p(k),

where the probability is over possible trapdoors td
output by TGen along with the given hk. Further-
more, we require that Phk,{Xi},{Zj} is close to statis-
tically independent of hk. (Formally, |Phk,{Xi},{Zj}−
Phk′,{Xi},{Zj}| ≤ v(k) for all hk and hk′ in the range
of TGen, all {Xi}, {Zj}, and negligible v(k).)

We say that H is a (poly, n)-MPHF if it is a (q(k), n)-
MPHF for every polynomial q(k). Note that TEval algo-
rithm of an MPHF into G1 yields BX ∈ G0, i.e., exponents
BX .

Let identity space IDIBKEM = {0, 1}k. The IBKEM
instance in the standard model is as follows.
• SetupIBKEM(1

k, IDIBKEM): Take as input a security
parameter 1k and the identity space IDIBKEM,
generate an (` + 1)-group system MPG`+1 =
{{Gi}i∈[1,`+1], p, {êi,j}i,j≥1,i+j≤`+1} ←
MG`+1(1

k), generate a (poly, 2)-MPHF H into
G` and hk ← HGen(1k), choose h

$← G1

and x
$← Zp, set the encapsulated key space

KIBKEM = G`+1, set the encapsulation space
CIBKEM = G1, and output the master public key
PKIBKEM = (MPG`+1, hk,H, h, h

x, IDIBKEM,KIBKEM,
CIBKEM) and the master secret key SKIBKEM = (hk, x).

• ExtractIBKEM(SKIBKEM, ID): Take as inputs SKIBKEM

and an identity ID ∈ IDIBKEM, and output a decryption
key ŜID = Hhk(ID)x of ID.

• EncapsIBKEM(PKIBKEM, ID, r): Take as inputs
PKIBKEM, an identity ID ∈ IDIBKEM and a random
value r ∈ Z∗p, and output a key-and-encapsulation
pair (K̂, Ĉ), where K̂ = ê(Hhk(ID), hx)r ∈ G`+1

and Ĉ = hr.
• DecapsIBKEM(ŜID′ , Ĉ): Take as inputs the decryption

key ŜID′ of identity ID′ and an encapsulation Ĉ, and
output the encapsulated key K̂ = ê(Ĉ, ŜID′) ∈ G`+1

if Ĉ ∈ G1 or output ⊥ otherwise.
Consistency. According to Definitions 9 and 11, it is

very easy to verify the consistency of the above IBKEM
scheme.

Collision-Free Full-Identity Malleability. Let the func-
tion FIM(ID, r) = ê(hx,Hhk(ID))r ∈ G`+1 for any
identity ID ∈ IDIBKEM and any random value r ∈ Z∗p. Given
any (K̂, Ĉ) ← EncapsIBKEM(PKIBKEM, ID, r), we clearly
have that: (1) for any identity ID′, equation FIM(ID′,
r) = DecapsIBKEM(ŜID′ , Ĉ) holds; (2) for any identity ID′

and any random value r′, if ID′ 6= ID
∨
r′ 6= r holds,

equation FIM(ID, r) 6= FIM(ID′, r′) holds except with
a negligible probability. So the above IBKEM scheme is
collision-free full-identity malleable.

Anon-SS-ID-CPA Security. In [9], Freire et al. utilized
a (poly, 1)-MPHF to construct a standard-model version
of the BF IBE scheme with the SS-ID-CPA security. On
the contrary, we use a (poly, 2)-MPHF in constructing the
above IBKEM scheme, since this kind of MPHF is more
useful in proving the Anon-SS-ID-CPA security. Theorem 5
formally states the Anon-SS-ID-CPA security of the above
IBKEM scheme. The proof can be found in Supplemental
Materials G.

Theorem 5. Assume the above IBKEM scheme is imple-
mented in an (` + 1)-group system, and with a (poly, 2)-
MPHF H into G`. Then, under the (`+1)-MDDH assump-
tion, this IBKEM scheme is Anon-SS-ID-CPA secure.

According to Theorem 4 and 5, the generic SPCHS
construction implies a SPCHS instance with SS-sK-CKSA
security in the standard model. Indeed, this SPCHS instance
can be provably SS-CKSA secure.

VI. CONCLUSION AND FUTURE WORK

This paper investigated as-fast-as-possible search in
PEKS with semantic security. We proposed the concept of
SPCHS as a variant of PEKS. The new concept allows
keyword-searchable ciphertexts to be generated with a
hidden structure. Given a keyword search trapdoor, the
search algorithm of SPCHS can disclose part of this hidden
structure for guidance on finding out the ciphertexts of the
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queried keyword. Semantic security of SPCHS captures the
privacy of the keywords and the invisibility of the hidden
structures. We proposed an SPCHS scheme from scratch
with semantic security in the RO model. The scheme
generates keyword-searchable ciphertexts with a hidden
star-like structure. It has search complexity mainly linear
with the exact number of the ciphertexts containing the
queried keyword. It outperforms existing PEKS schemes
with semantic security, whose search complexity is linear
with the number of all ciphertexts. We identified several in-
teresting properties, i.e., collision-freeness and full-identity
malleability in some IBKEM instances, and formalized
these properties to build a generic SPCHS construction. We
illustrated two collision-free full-identity malleable IBKEM
instances, which are respectively secure in the RO and
standard models.

SPCHS seems a promising tool to solve some chal-
lenging problems in public-key searchable encryption. One
application may be to achieve retrieval completeness ver-
ification which, to the best of our knowledge, has not
been achieved in existing PEKS schemes. Specifically, by
forming a hidden ring-like structure, i.e., letting the last
hidden pointer always point to the head, one can obtain
PEKS allowing to check the completeness of the retrieved
ciphertexts by checking whether the pointers of the returned
ciphertexts form a ring.

Another application may be to realize public key encryp-
tion with content search, a similar functionality realized
by symmetric searchable encryption. Such kind of content-
searchable encryption is useful in practice, e.g., to filter
the encrypted spams. Specially, by forming a hidden tree-
like structure between the sequentially encrypted words in
one file, one can obtain public-key searchable encryption
allowing content search (e.g., to find whether there are spe-
cific contents in an encrypted file). The search complexity
is linear with the size of the queried content.
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SUPPLEMENTAL MATERIALS

A. Analysis on The Work [40]

A sender generates the searchable ciphertexts of any keyword Wi ∈ W by the following steps:
1) The first time to encrypt keyword Wi, he uploads

PEKS(Pub,Wi,K
1
i ||P 1

i ), P
1
i ||E(K1

i , P
2
i ||K2

i ||P1
i ), P

2
i

to the server, and asks the server to store E(K1
i , P

2
i ||K2

i ||P1
i ) in position P 1

i and store a flag in
position P 2

i .
Note: algorithm PEKS(Pub,W 1
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i ) = IBE(Pub,W 1
i ,K
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i ||C2)||C2 takes public pa-
rameter Pub, identity W 1

i and plaintext K1
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i ||C2 as inputs and generates an IBE ciphertext, and
finally outputs the IBE ciphertext and C2, where the symmetric key K1

i and C2 are randomly chosen.
Algorithm E(K1

i , P
2
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i ||P1
i ) denotes using the symmetric key K1

i to encrypt P 2
i ||K2

i ||P1
i , where

the symmetric key K2
i is randomly chosen, and P1

i denotes the parameters for private information
retrieval (they will be used to retrieve the corresponding data when the keyword Wi is queried).

2) The second time to encrypt keyword Wi, he uploads P 2
i ||E(K2

i , P
3
i ||K3

i ||P2
i ), P

3
i to the server, and

asks the server to store E(K2
i , P

3
i ||K3

i ||P2
i ) in position P 2

i and store the flag in position P 3
i .

3) The subsequent encryptions of keyword Wi are similar to Step 2.

Figure 5: Procedure to generate keyword searchable ciphertexts in [40].

In Fig. 5, we first review how to generate keyword-searchable ciphertexts according to [40] such that the ciphertexts
of the same keyword form a chain. Then we analyze why the chain of any keyword is visible in the view of the server,
and give a straightforward method to make the chain invisible. But this method seems to be impractical.

According to the first step in Fig. 5, the server trivially knows the relation between ciphertexts
PEKS(Pub,Wi,K

1
i ||P 1

i ) and E(K1
i , P

2
i ||K2

i ||P1
i ), and knows that if a subsequent ciphertext is stored in the position

P2, this subsequent ciphertext is related to E(K1
i , P

2
i ||K2

i ||P1
i ). So in the second step, the server knows the relation

between ciphertexts E(K1
i , P

2
i ||K2

i ||P1
i ) and E(K2

i , P
3
i ||K3

i ||P2
i ), and knows that if another subsequent ciphertext is

stored in the position P3, this subsequent ciphertext is related to E(K2
i , P

3
i ||K3

i ||P2
i ). By the same method, the server

will know the chain of keyword Wi even without the keyword search trapdoor of keyword Wi. Furthermore, the length
of the chain leaks the frequency of keyword Wi.

A sender generates the searchable ciphertexts of any keyword Wi ∈ W by the following steps:
1) At the setup phase, he uploads {PEKS(Pub,Wi,K

1
i ||P 1

i )|i ∈ [1, |W|]} to the server, where |W|
denotes the size of keyword space W .

2) The first time to encrypt keyword Wi, he uploads P 1
i ||E(K1

i , P
2
i ||K2

i ||P1
i ) to the server, and asks

the server to store E(K1
i , P

2
i ||K2

i ||P1
i ) in position P 1

i .
3) The second time to encrypt keyword Wi, he uploads P 2

i ||E(K2
i , P

3
i ||K3

i ||P2
i ) to the server, and asks

the server to store E(K2
i , P

3
i ||K3

i ||P2
i ) in position P 2

i .
4) The subsequent encryptions of keyword Wi are similar to Step 3.

Figure 6: New procedure to generate keyword-searchable ciphertexts for [40].

In order to keep the privacy of the chain, a straightforward method is to generate the PEKS ciphertexts for all keywords
at the setup phase and delete the flag. The specific procedure is given in Fig. 6. This method hides the relation between
the PEKS ciphertext and the symmetric-key ciphertext of any keyword, and the relation between two symmetric-key
ciphertexts of any keyword also is hidden. But it seems that this method is impractical from a performance viewpoint,
since each sender must generate the PEKS ciphertexts for all keywords at the setup phase and remember lots of private
information which are encrypted by these PEKS ciphertexts.

B. Proof of Theorem 1

Proof: Without loss of generality, it is sufficient to prove that given the keyword-searchable trapdoor TWi = H(Wi)
s

of keyword Wi and the hidden structure’s public part Pub = gu, algorithm StructuredSearch(PK,Pub,C, TWi)
only finds out all ciphertexts of keyword Wi with the hidden structure Pub. Note that P = gs.

Algorithm StructuredSearch(PK,Pub,C, TWi) computes Pt′ = ê(Pub, TWi) in its first step. Since
ê(Pub, TWi

) = ê(P,H(Wi))
u, algorithm StructuredSearch(PK,Pub,C, TWi

) finds out the ciphertext
(ê(P,H(Wi))

u, gr, ê(P,H(Wi))
r ·Pt[u,Wi]) by matching Pt′ with all ciphertexts’ first part in its second step. Moreover,



due to the collision-freeness of hash function H , only keyword Wi has Pt′ = ê(P,H(Wi))
u, except with a negligible

probability in the security parameter k. So only the ciphertext (ê(P,H(Wi))
u, gr, ê(P,H(Wi))

r · Pt[u,Wi]) is found
with overwhelming probability in this step.

Then algorithm StructuredSearch(PK,Pub,C, TWi
) discloses Pt[u,Wi] from the ciphertext

(ê(P,H(Wi))
u, gr, ê(P,H(Wi))

r ·Pt[u,Wi]) by computing Pt′ = Pt[u,Wi] = ê(gr, TWi)
−1 · ê(P,H(Wi))

r ·Pt[u,Wi].
Recall that in algorithm StructuredEncryption, Pt[u,Wi] was randomly chosen in G1 and taken as

the first part of only one ciphertext of keyword Wi with the hidden structure Pub. So when algorithm
StructuredSearch(PK,Pub,C, TWi) goes back to its second step, only the ciphertext (Pt[u,Wi], g

r, ê(P,H(Wi))
r ·

R) is found with overwhelming probability.
By carrying on in this way, algorithm StructuredSearch(PK, Pub,C, TWi

) only finds out all ciphertexts of
keyword Wi with the hidden structure Pub, except with a negligible probability in the security parameter k . And the
algorithm will stop, since the random value R contained in the last found ciphertext does not match any other ciphertext’s
first part.

C. Proof of Theorem 2

Proof: To prove this theorem, we will construct a PPT algorithm B that plays the SS-CKSA game with adversary
A and utilizes the capability of A to solve the DBDH problem in BGen(1k) with advantage approximately 27

(e·qt·qp)3 ·
AdvSS-CKSA

SPCHS,A. Let Coin σ← {0, 1} denote the operation that picks Coin ∈ {0, 1} according to the probability Pr[Coin =
1] = σ (the specified value of σ will be decided latter). The constructed algorithm B in the SS-CKSA game is as follows.
• Setup Phase: Algorithm B takes as inputs (q,G,G1, g, ê, g

a, gb, gc, Z) (where Z equals either ê(g, g)abc or ê(g, g)y)
and the keyword space W , and performs the following steps:

1) Initialize the three lists Pt = ∅ ⊆ W × G × G1, SList = ∅ ⊆ G × Z∗q × {0, 1} and HList = ∅ ⊆
W ×G× Z∗q × {0, 1};

2) Set the ciphertext space C = G1 ×G×G1 and PK = (q,G,G1, g, ê, P = ga,W, C);
3) Initialize N hidden structures by repeating the following steps for i ∈ [1, N ]:

a) Pick ui
$← Z∗q and Coini

σ← {0, 1};
b) If Coini = 1, compute Pubi = gb·ui ;
c) Otherwise, compute Pubi = gui ;

4) Set PSet = {Pubi|i ∈ [1, N ]} and SList = {(Pubi, ui, Coini)|i ∈ [1, N ]};
5) Send PK and PSet to adversary A.

• Query Phase 1: Adversary A adaptively issues the following queries multiple times.
– Hash Query QH(W ): Taking as input a keyword W ∈ W , algorithm B does the following steps:

1) Pick x $← Z∗q and Coin σ← {0, 1};
2) If Coin = 0, add (W, gx, x, Coin) into HList and output gx;
3) Otherwise, add (W, gc·x, x, Coin) into HList and output gc·x;

– Trapdoor Query QTrap(W ): Taking as input a keyword W ∈ W , algorithm B does the following steps:
1) If (W, ∗, ∗, ∗) /∈ HList, query QH(W );
2) According to W , retrieve (W,X, x,Coin) from HList;
3) If Coin = 0, output ga·x; otherwise abort and output ⊥;

– Privacy Query QPri(Pub): Taking as input a structure’s public part Pub ∈ PSet, algorithm B does the
following steps:
1) According to Pub, retrieve (Pub, u, Coin) from SList;
2) If Coin = 0, output u; otherwise abort and output ⊥;

– Encryption Query QEnc(W,Pub): Taking as inputs a keyword W ∈ W and a structure’s public part Pub,
algorithm B does the following steps:
1) If (W, ∗, ∗, ∗) /∈ HList, query QH(W );
2) According to W and Pub, retrieve (W,X, x,Coin) and (Pub, u, Coin′) respectively from HList and

SList;
3) Pick r $← Z∗q , and search (W,Pub, P t[u,W ]) for W and Pub in Pt;

4) If W is not found, insert (W,Pub, P t[u,W ]
$← G1) to Pt and do the following steps:

a) If Coin = 1
∧
Coin′ = 1, output C = (Zx·u, gr, ê(ga, X)r · Pt[u,W ]);

b) If Coin = 0
∧
Coin′ = 1, output C = (ê(ga, gb·u)x, gr, ê(ga, X)r · Pt[u,W ]);

c) If Coin′ = 0, output C = (ê(ga, X)u, gr, ê(ga, X)r · Pt[u,W ]);

5) Otherwise, pick R $← G1, set C = (Pt[u,W ], gr, ê(ga, X)r ·R), update Pt[u,W ] = R and output C;



• Challenge Phase: Adversary A sends two challenge keyword-structure pairs (W ∗0 ,Pub∗0) ∈ W × PSet and
(W ∗1 ,Pub∗1) ∈ W ×PSet to algorithm B; B picks d $← {0, 1}, and does the following steps:

1) According to Pub∗0 and Pub∗1, retrieve (Pub∗0, u
∗
0, Coin

∗
0) and (Pub∗1, u

∗
1, Coin

∗
1) from SList; and if

Coin∗0 = 0
∨
Coin∗1 = 0, then abort and output ⊥;

2) If (W ∗d , ∗, ∗, ∗) /∈ HList, query QH(W ∗d );
3) According to W ∗d , retrieve (W ∗d , X

∗
d , x
∗
d, Coin) from HList; and if Coin = 0, then abort and output ⊥;

4) Search (W ∗d ,Pub∗d, P t[u
∗
d,W

∗
d ]) for W ∗d and Pub∗d in Pt;

5) If it is not found, insert (W ∗d ,Pub∗d, P t[u
∗
d,W

∗
d ]

$← G1) to Pt, and send C∗d = (Zx
∗
d·u
∗
d , gb, Zx

∗
d ·Pt[u∗d,W ∗d ])

to adversary A;
6) Otherwise, pick R

$← G1, set C∗d = (Pt[u∗d,W
∗
d ], g

b, Zx
∗
d · R), update Pt[u∗d,W

∗
d ] = R, and send C∗d to

adversary A;
• Query Phase 2: This phase is the same as Query Phase 1. Note that in Query Phase 1 and Query Phase 2,

adversary A cannot query the corresponding private parts both of Pub∗0 and Pub∗1 and the keyword search trapdoors
both of W ∗0 and W ∗1 .

• Guess Phase: Adversary A sends a guess d′ to algorithm B. If d = d′, B output 1; otherwise, output 0.
Let Abort denote the event that algorithm B does not abort in the above game. Next, we will compute the probabilities

Pr[Abort], Pr[B = 1|Z = ê(g, g)abc] and Pr[B = 1|Z = ê(g, g)y], and the advantage AdvDBDHB (1k).
According to the above game, the probability of the event Abort only relies on the probability σ and the number

of times that adversary A queries oracles QTrap(·) and QPri(·). We have that Pr[Abort] = (1 − σ)qt·qp · σ3. Let
σ = 3

3+qt·qp . We have that Pr[Abort] ≈ 27
(e·qt·qp)3 , where e is the base of natural logarithms.

When Z = ê(g, g)abc and the event Abort holds, it is easy to find that algorithm B simulates a real SS-CKSA game
in adversary A’s mind. So we have

Pr[d = d′|Abort
∧
Z = ê(g, g)abc] = (AdvSS-CKSA

SPCHS,A +
1

2
).

When Z = ê(g, g)y and the event Abort holds, algorithm B generates a challenge ciphertext, which is independent of
the challenge keywords W ∗0 and W ∗1 . So we have

Pr[d = d′|Abort
∧
Z = ê(g, g)y] =

1

2
.

Now, we can compute the advantage AdvDBDHB (1k) as follows:

AdvDBDHB (1k) = Pr[B = 1|Z = ê(g, g)abc]− Pr[B = 1|Z = ê(g, g)y]

= Pr[d = d′
∧
Abort|Z = ê(g, g)abc]− Pr[d = d′

∧
Abort|Z = ê(g, g)y]

= Pr[d = d′|Abort
∧
Z = ê(g, g)abc] · Pr[Abort|Z = ê(g, g)abc]

− Pr[d = d′|Abort
∧
Z = ê(g, g)y] · Pr[Abort|Z = ê(g, g)y]

≈ (AdvSS-CKSA
SPCHS,A +

1

2
) · 27

(e · qt · qp)3
− 1

2
· 27

(e · qt · qp)3

≈ 27

(e · qt · qp)3
·AdvSS-CKSA

SPCHS,A

In addition, it is clear that algorithm B is a PPT algorithm, if adversary A is a PPT adversary. In conclusion, if a
PPT adversary A wins in the SS-CKSA game of the above SPCHS instance with advantage AdvSS-CKSA

SPCHS,A, in which A
makes at most qt queries to oracle QTrap(·) and at most qp queries to oracle QPri(·), then there is a PPT algorithm B
that solves the DBDH problem in BGen(1k) with advantage approximately

AdvDBDHB (1k) ≈ 27

(e · qt · qp)3
·AdvSS-CKSA

SPCHS,A

where e is the base of natural logarithms.

D. Proof of Theorem 3

Proof: Without loss of generality, it is sufficient to prove that given the keyword-searchable trap-
door TWi

= (ŜWi
, S̃Wi

) of keyword Wi and the hidden structure’s public part Pub = Ĉ, algorithm
StructuredSearch(PK,Pub,C, TWi) only finds out all ciphertexts of keyword Wi with the hidden struc-
ture Pub, where ŜWi = ExtractIBKEM(SKIBKEM,Wi), S̃Wi = ExtractIBE(SKIBE, Wi), Ĉ is from (K̂, Ĉ) =
EncapsIBKEM(PKIBKEM,W, u), keyword W is arbitrarily chosen in W , and u is a random value.



Algorithm StructuredSearch(PK,Pub,C, TWi
) computes Pt′ = DecapsIBKEM(ŜWi

,Pub) in its first
step. According to the full-identity malleability of IBKEM in Definition 7, we have FIM(Wi, u) =
DecapsIBKEM(ŜWi ,Pub). So algorithm StructuredSearch(PK,Pub,C, TWi) finds out the ciphertext
(FIM(Wi, u),EncIBE(PKIBE,Wi, P t[u,Wi])) by matching Pt′ with all ciphertexts’ first part in its second step.
Moreover, due to the collision-freeness of IBKEM in Definition 7, there is no keyword Wj (6= Wi) to meet
FIM(Wi, u) = FIM(Wj , u), and no hidden structure Pub′ (6= Pub) to meet FIM(Wi, u) = FIM(Wi, u

′), where
Pub′ is generated by algorithm StructureInitialization(PK) with the random value u′. So only the ciphertext
(FIM(Wi, u),EncIBE(PKIBE,Wi, P t[u,Wi])) is found in this step, except with a negligible probability in the security
parameter k. Then, according to the consistency of IBE, algorithm StructuredSearch(PK,Pub,C, TWi) can decrypt
Pt[u,Wi] by algorithm DecIBE(S̃Wi

,EncIBE( PKIBE,Wi, P t[u,Wi])).
Recall that in algorithm StructuredEncryption, Pt[u,Wi] was randomly chosen in G1 and taken as the first

part of only one ciphertext of keyword Wi. So when StructuredSearch(PK, Pub,C, TWi) goes back to its second
step, only the ciphertext (Pt[u,Wi],EncIBE(PKIBE, Wi, R)) is found, except with a negligible probability in the security
parameter k.

By carrying on in the same way, algorithm StructuredSearch( PK,Pub,C, TWi
) only finds out all ciphertexts

of keyword Wi with the hidden structure Pub, except with a negligible probability in the security parameter k. And the
algorithm will stop, since the random value R contained in the last found ciphertext of keyword Wi fails to match any
other ciphertext’s first part.

E. Proof of Theorem 4

Proof: Let G1 and G2 be the challengers respectively in the Anon-SS-sID-CPA game of the underlying IBKEM
scheme and the Anon-SS-ID-CPA game of the underlying IBE scheme. A constructed adversary B in the SS-sK-CKSA
game of the generic SPCHS construction is as follows.
• Setup Phase: In this phase,

1) A sends two challenge keywords (W ∗0 ,W
∗
1 ) to B.

2) B arbitrarily picks I∗1 ← (IDIBKEM−W), and sends two challenge identities (W ∗0 , I
∗
1 ) to G1. (The I∗1 is existing,

since we have W ⊂ IDIBKEM.)
3) G1 generates (PKIBKEM,SKIBKEM) by algorithm SetupIBKEM and sends PKIBKEM to B.
4) B queries G1 for the challenge key-and-encapsulation pair.
5) G1 picks d̂

$← {0, 1}, generates (K̂∗0 , Ĉ
∗
0 ) = EncapsIBKEM(PKIBKEM,W

∗
0 , r0) and (K̂∗1 , Ĉ

∗
1 ) =

EncapsIBKEM(PKIBKEM, I
∗
1 , r1), and sends (K̂∗

d̂
, Ĉ∗0 ) to B, where r0 and r1 are randomly chosen.

6) B adds Ĉ∗0 into the set PSet ⊆ CIBKEM.
7) G2 generates (PKIBE,SKIBE) by algorithm SetupIBE, and sends PKIBE to B.
8) B initializes the two lists SList = ∅ ⊆ CIBKEM×{0, 1}∗ and Pt = ∅ ⊆ W×CIBKEM×MIBE, and initializes N −1

hidden structures by repeating the following steps for i ∈ [1, N − 1]:
a) Pick a random value ui and an arbitrary keyword Wi ∈ W;
b) Generate (K̂i, Ĉi) = EncapsIBKEM(PKIBKEM,Wi, ui), add Pubi = Ĉi into the set PSet, and add (Pubi, ui)

into SList;
9) B finally sends PK and PSet to A.

• Query Phase 1: In this phase, adversary A adaptively issues the following queries multiple times.
– Trapdoor Query QTrap(W ): Taking as input a keyword W ∈ W , B forwards the query W both to the decryption

key oracles ŜW = QIBKEMDK (W ) and S̃W = QIBEDK (W ), and sends TW = (ŜW , S̃W ) to A.
(In this query, A cannot query the keyword search trapdoor corresponding to the challenge keyword W ∗0 or
W ∗1 . In addition, one may find that B cannot respond the query QTrap(I∗1 ). However, this is not a problem,
since we let I∗1 ∈ (IDIBKEM −W). So A never issues that query.)

– Privacy Query QPri(Pub): Taking as input a structure’s public part Pub ∈ PSet, B aborts and outputs ⊥ if
Pub = Ĉ∗0 ; otherwise, B retrieves (Pub, u) from SList according to Pub and outputs u.

– Encryption Query QEnc(W,Pub): Taking as inputs a keyword W ∈ W and a structure’s public part Pub, B
does the following steps:
1) If Pub = Ĉ∗0

∧
W 6=W ∗0 , then

a) Search (W,Pub, P t[u∗,W ]) for W and Pub in Pt;
(Note that u∗ is not a really known value. It is just a symbol to denote the random value used to generate
Pub = Ĉ∗0 .)

b) If it is not found, query ŜW = QIBKEMDK (W ), insert (W,Pub, P t[u∗,W ]
$←MIBE) to Pt and output

C = (DecapsIBKEM(ŜW ,Pub),EncIBE(PKIBE,W, P t[u
∗,W ]));



(Note that when W =W ∗1 , B still can query ŜW = QIBKEMDK (W ), since W ∗1 is not a challenge IBKEM
identity in the above Setup Phase. )

c) Otherwise, pick R
$← MIBE, set C = (Pt[u∗,W ],EncIBE(PKIBE,W,R)), update Pt[u∗,W ] = R and

output C;
2) If Pub = Ĉ∗0

∧
W =W ∗0 , then

a) Search (W,Pub, P t[u∗,W ]) for W and Pub in Pt;
b) If it is not found, insert (W,Pub, P t[u∗,W ]

$← MIBE) to Pt, and output C =
(K̂∗

d̂
,EncIBE(PKIBE,W, P t[u

∗,W ]));
(Note that if d̂ = 0, the output ciphertext C is correct, since the full-identity malleability of the IBKEM
scheme allows FIM(Ĉ∗0 ,W

∗
0 , u

∗) = K̂∗
d̂

. Otherwise, the output ciphertext C is incorrect. If A can find
this incorrectness, it implies that d̂ = 1 holds. Accordingly, B has advantage to win in the Anon-SS-
sID-CPA game of the IBKEM scheme.)

c) Otherwise, pick R
$← MIBE, set C = (Pt[u∗,W ],EncIBE(PKIBE,W,R)), update Pt[u∗,W ] = R and

output C;
3) If Pub 6= Ĉ∗0 , then

a) According to Pub, retrieve (Pub, u) from SList;
b) Search (W,Pub, P t[u,W ]) for W and Pub in Pt;
c) If it is not found, insert (W,Pub, P t[u,W ]

$← MIBE) to Pt and output C =
(FIM(W,u),EncIBE(PkIBE,W, P t[u,W ]));

d) Otherwise, pick R $←MIBE, set C = (Pt[u,W ],EncIBE(PKIBE,W,R)), update Pt[u,W ] = R and output
C;

• Challenge Phase: In this phase,
1) A sends two challenge structures (Pub∗0,Pub∗1) ∈ PSet×PSet to B;
2) B does the following steps:

a) If Pub∗0 6= Ĉ∗0 , then abort and output ⊥;
b) Send two challenge IBE identity-and-message pairs (W ∗0 ,M

∗
0 ) and (I∗1 ,M

∗
1 ) to G1, where M∗0

$← MIBE

and M∗1
$←MIBE;

3) G2 picks d̃ $← {0, 1}, and sends the challenge IBE ciphertext C̃∗
d̃
= EncIBE(PKIBE,W

∗
0 ,M

∗
0 ) to B if d̃ = 0,

otherwise sends C̃d̃ = EncIBE(PKIBE, I
∗
1 ,M

∗
1 ) to B.

4) B does the following steps:
a) Search (W ∗0 ,Pub∗0, P t[u

∗,W ∗0 ]) for W ∗0 and Pub∗0 in Pt;
b) If it is not found, insert (W ∗0 ,Pub∗0, P t[u

∗,W ∗0 ] = M∗0 ) to Pt, output the challenge ciphertext C∗ to A
and stop this phase, where C∗ = (K̂∗

d̂
, C̃d̃);

(Note that if d̂ = 0 and d̃ = 0, the C∗ is a correct one. Otherwise, it is an incorrect one. If A confirms
the incorrectness of C∗, it implies that d̂ = 1 or d̃ = 1 holds. Accordingly, B has advantage to win in the
Anon-SS-sID-CPA game of the IBKEM or the Anon-SS-ID-CPA game of the IBE scheme.)

c) Otherwise, set the challenge ciphertext C∗ = (Pt[u∗,W ∗0 ], C̃d̃), update Pt[u∗,W ∗0 ] = M∗0 , send C∗ to A
and stop this phase.
(Note that if d̃ = 0, the C∗ is a correct one. Otherwise, it is an incorrect one. If A confirms the incorrectness
of C∗, it implies that d̃ = 1 holds. Accordingly, B has advantage to win in the Anon-SS-ID-CPA game of
the IBE scheme.)

• Query Phase 2: This phase is the same as Query Phase 1. Note that in Query Phase 1 and Query Phase 2,
adversary A cannot query the private part corresponding to the structure Pub∗0 or Pub∗1 and the keyword search
trapdoor corresponding to the challenge keyword W ∗0 or W ∗1 .

• Guess Phase: Adversary A sends a guess d′ to adversary B. B takes d′ as his guess at both d̂ and d̃, and forwards
d′ to challengers G1 and G2.

Let Abort denote the event that adversary B does not abort in the above game. Suppose adversary A totally queries
QPri for qp times. Then we have Pr[Abort] = N−qp

N · 1
N−qp = 1

N . Note that qp ≤ (N−2) always holds, since adversary
A cannot query QPri for the challenge structures (Pub∗0,Pub∗1).

Let WinAnon-SS-sID-CPA
IBKEM,B denote the event that B wins in the Anon-SS-sID-CPA game of the underlying IBKEM scheme

under the condition that B does not abort. Let WinAnon-SS-ID-CPA
IBE,B denote the event that B wins in the Anon-SS-ID-CPA

game of the underlying IBE scheme under the condition that B does not abort. Let AdvB be the advantage of B to have
WinAnon-SS-sID-CPA

IBKEM,B or WinAnon-SS-ID-CPA
IBE,B holds. Since B has the probability no less than 3

4 to have WinAnon-SS-sID-CPA
IBKEM,B or

WinAnon-SS-ID-CPA
IBE,B holds under the condition that B does not abort, we clearly have



AdvB = (Pr[WinAnon-SS-sID-CPA
IBKEM,B

∨
WinAnon-SS-ID-CPA

IBE,B |Abort]− 3

4
) · Pr[Abort]

= (Pr[WinAnon-SS-sID-CPA
IBKEM,B |Abort] + Pr[WinAnon-SS-ID-CPA

IBE,B |Abort]

− Pr[WinAnon-SS-sID-CPA
IBKEM,B

∧
WinAnon-SS-ID-CPA

IBE,B |Abort]− 3

4
) · Pr[Abort]

Let Belong denote the event that (W ∗0 ,Pub∗0, P t[u
∗,W ∗0 ]) /∈ Pt holds in the above Challenge Phase. On the contrary,

let Belong denote the event that (W ∗0 ,Pub∗0, P t[u
∗,W ∗0 ]) ∈ Pt holds in the above Challenge Phase.

We compute the probability Pr[WinAnon-SS-sID-CPA
IBKEM,B |Abort] + Pr[WinAnon-SS-ID-CPA

IBE,B |Abort] as follows.

Pr[WinAnon-SS-sID-CPA
IBKEM,B |Abort] + Pr[WinAnon-SS-ID-CPA

IBE,B |Abort]

= Pr[d′ = d̂|Abort
∧
Belong] · Pr[Belong] + Pr[d′ = d̂|Abort

∧
Belong] · Pr[Belong]

+ Pr[d′ = d̃|Abort
∧
Belong] · Pr[Belong] + Pr[d′ = d̃|Abort

∧
Belong] · Pr[Belong]

= (Pr[d′ = d̂|Abort
∧
Belong

∧
d̂ = 0

∧
d̃ = 0] · Pr[d̂ = 0

∧
d̃ = 0]

+ Pr[d′ = d̂|Abort
∧
Belong

∧
d̂ = 1

∧
d̃ = 0] · Pr[d̂ = 1

∧
d̃ = 0]

+ Pr[d′ = d̂|Abort
∧
Belong

∧
d̂ = 0

∧
d̃ = 1] · Pr[d̂ = 0

∧
d̃ = 1]

+ Pr[d′ = d̂|Abort
∧
Belong

∧
d̂ = 1

∧
d̃ = 1] · Pr[d̂ = 1
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Belong
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∧
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∧
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∧
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∧
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∧
d̃ = 1] · 1

4

=
1

2
·AdvSS-sK-CKSA

SPCHS,A + 1

We compute the probability Pr[WinAnon-SS-sID-CPA
IBKEM,B

∧
WinAnon-SS-ID-CPA

IBE,B |Abort] as follows.
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IBKEM,B

∧
WinAnon-SS-ID-CPA
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∧
Belong] · Pr[Belong] + Pr[d′ = d̂ = d̃|Abort
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Belong
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∧
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∧
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∧
d̃ = 1] · Pr[d̂ = 1

∧
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= (AdvSS-sK-CKSA
SPCHS,A +
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+ Pr[d′ = d̂ = d̃|Abort

∧
Belong

∧
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∧
d̃ = 1]) · 1

4
· Pr[Belong]

+ (AdvSS-sK-CKSA
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1
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+ Pr[d′ = d̂ = d̃|Abort

∧
Belong
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∧
d̃ = 1]) · 1

4
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= (AdvSS-sK-CKSA
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1
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∧
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∧
d̃ = 1] · 1

4
=
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4
According to the above computations, we have

AdvB = (Pr[WinAnon-SS-sID-CPA
IBKEM,B

∨
WinAnon-SS-ID-CPA

IBE,B |Abort]− 3

4
) · Pr[Abort]

= (Pr[WinAnon-SS-sID-CPA
IBKEM,B |Abort] + Pr[WinAnon-SS-ID-CPA

IBE,B |Abort]

− Pr[WinAnon-SS-sID-CPA
IBKEM,B

∧
WinAnon-SS-ID-CPA

IBE,B |Abort]− 3

4
) · Pr[Abort]

=
1

4N
·AdvSS-sK-CKSA

SPCHS,A

In addition, it is clear that adversary B is a PPT adversary, if A is a PPT adversary. In conclusion, we have that if a PPT
adversary A wins in the SS-sK-CKSA game of the generic SPCHS construction with advantage AdvSS-sK-CKSA

SPCHS,A , then the
above PPT adversary B can utilize the capability of adversary A to win in the Anon-SS-sID-CPA game of the underlying
IBKEM scheme or the Anon-SS-ID-CPA game of the underlying IBE scheme with advantage 1

4N ·Adv
SS-sK-CKSA
SPCHS,A .

F. A Collision-free Full-identity Malleable IBKEM Instance in the RO Model
We first review the VRF-suitable IBKEM instance proposed in Appendix A.2 of [8]. Then we prove its collision-free

full-identity malleability and the Anon-SS-ID-CPA security in the RO model. Let identity space IDIBKEM = {0, 1}∗. This
IBKEM instance is as follows.
• SetupIBKEM(1

k, IDIBKEM): Take as input a security parameter 1k and the identity space IDIBKEM, compute
(q,G,G1, g, ê)

$← BGen(1k), pick s $← Z∗q , set P ← gs, choose a cryptographic hash function H : {0, 1}∗ → G,
set the encapsulated key space KIBKEM = G1, set the encapsulation space CIBKEM = G, and output the master public
key PKIBKEM = (q,G,G1, g, ê, P,H, IDIBKEM,KIBKEM, CIBKEM) and the master secret key SKIBKEM = s.

• ExtractIBKEM(SKIBKEM, ID): Take as inputs SKIBKEM and an identity ID ∈ IDIBKEM, and output a decryption key
ŜID = H(ID)s of ID.

• EncapsIBKEM(PKIBKEM, ID, r): Take as inputs PKIBKEM, an identity ID ∈ IDIBKEM and a random value r, and output
a key-and-encapsulation pair (K̂, Ĉ), where K̂ = ê(P,H(ID))r and Ĉ = gr.

• DecapsIBKEM(ŜID′ , Ĉ): Take as inputs the decryption key ŜID′ of identity ID′ and an encapsulation Ĉ, and output
the encapsulated key K̂ = ê(Ĉ, ŜID′) if Ĉ ∈ G or output ⊥ otherwise.

Collision-Free Full-Identity Malleability. Let the function FIM(ID, r) = ê(P,H(ID))r for any identity ID ∈
IDIBKEM and any random value r ∈ Z∗q . Clearly, the function FIM is efficient. Moreover, it is easy to find that the
function FIM has collision-freeness and full-identity malleability by the following reasons.

For any (K̂, Ĉ) = EncapsIBKEM(PKIBKEM, ID, r) and any identity ID′ ∈ IDIBKEM, it is clear that FIM(ID′, r) =
ê(P,H(ID′))r = DecapsIBKEM(ŜID′ , Ĉ) holds. So the function FIM has full-identity malleability. In addition, for any
identity ID′ ∈ IDIBKEM, if ID 6= ID′, we clearly have FIM(ID, r) 6= FIM(ID′, r) due to the collision freeness of
the hash function H; for any random value r′ ∈ Z∗q , if r 6= r′, we clearly have FIM(ID, r) 6= FIM(ID, r′) due to
the randomness of the values r and r′. Therefore, the function FIM offers collision-freeness, except with a negligible
probability in the security parameter k.

Anon-SS-ID-CPA Security. The Anon-SS-ID-CPA security of the above IBKEM instance is based on the DBDH
assumption in the RO model. The formal result is the following theorem.

Theorem 6. Let the hash function H be modeled as the random oracle QH(·). Suppose a PPT adversary A wins in
the Anon-SS-ID-CPA game of the above IBKEM instance with advantage AdvAnon-SS-ID-CPA

IBKEM,A , in which A makes at most



qp queries to oracle QIBKEMDK (·). Then there is a PPT algorithm B that solves the DBDH problem in BGen(1k) with
advantage approximately

AdvDBDHB (1k) ≈ 4

(e · qp)2
·AdvAnon-SS-ID-CPA

IBKEM,A

where e is the base of natural logarithms.

Proof: To prove this theorem, we will construct a PPT algorithm B that plays the Anon-SS-ID-CPA game with
adversary A and utilizes the capability of A to solve the DBDH problem in BGen(1k) with advantage approximately

4
(e·qp)2 ·Adv

Anon-SS-ID-CPA
IBKEM,A . Let Coin σ← {0, 1} denote the operation that picks Coin ∈ {0, 1} according to the probability

Pr[Coin = 1] = σ (the specified value of σ will be decided latter). The constructed algorithm B in the Anon-SS-ID-CPA
game is as follows.
• Setup Phase: Algorithm B takes as inputs (q,G,G1, g, ê, g

a, gb, gc, Z) (where Z equals either ê(g, g)abc or ê(g, g)y)
and the identity space IDIBKEM, and does the following steps:

1) Initialize a list HList = ∅ ⊆ IDIBKEM ×G× Z∗q × {0, 1};
2) Set the encapsulated key space KIBKEM = G1, the encapsulation space CIBKEM = G and PKIBKEM =

(q,G,G1, g, ê, P = ga, IDIBKEM,KIBKEM, CIBKEM);
3) Send PKIBKEM to adversary A;

• Query Phase 1: Adversary A adaptively issues the following queries multiple times.
– Hash Query QH(ID): Taking as input an identity ID ∈ IDIBKEM, algorithm B does the following steps:

1) Pick x $← Z∗q and Coin σ← {0, 1};
2) If Coin = 0, add (ID, gx, x, Coin) into HList and output gx;
3) Otherwise, add (ID, gc·x, x, Coin) into HList and output gc·x;

– Decryption Key Query QIBKEMDK (ID): Taking as input an identity ID ∈ IDIBKEM, algorithm B does the
following steps:
1) If (ID, ∗, ∗, ∗) /∈ HList, query QH(ID);
2) According to ID, retrieve (ID,X, x, Coin) from HList;
3) If Coin = 0, output ga·x; otherwise, abort and output ⊥;

• Challenge Phase: Adversary A sends two challenge identities ID∗0 ∈ IDIBKEM and ID∗1 ∈ IDIBKEM to algorithm B;
B picks d̂ $← {0, 1}, and does the following steps:

1) If (ID∗0 , ∗, ∗, ∗) /∈ HList, query QH(ID∗0);
2) If (ID∗1 , ∗, ∗, ∗) /∈ HList, query QH(ID∗1);
3) According to ID∗0 and ID∗1 , retrieve (ID∗0 , X

∗
0 , x
∗
0, Coin

∗
0) and (ID∗1 , X

∗
1 , x
∗
1, Coin

∗
1) from HList;

4) If Coin∗0 = 0
∨
Coin∗1 = 0, then abort and output ⊥;

5) Finally send the challenge key-and-encapsulation pair (Zx
∗
d̂ , gb) to adversary A;

• Query Phase 2: This phase is the same as Query Phase 2. Note that in Query Phase 1 and Query Phase 2,
adversary A cannot query the decryption key corresponding to the challenge identity ID∗0 or ID∗1 .

• Guess Phase: Adversary A sends a guess d̂′ to algorithm B. If d̂ = d̂′, B output 1; otherwise, output 0.
Let Abort denote the event that algorithm B does not abort in the above game. Next, we will compute the probabilities

Pr[Abort], Pr[B = 1|Z = ê(g, g)abc] and Pr[B = 1|Z = ê(g, g)y], and the advantage AdvDBDHB (1k).
According to the above game, the probability of the event Abort only relies on the probability σ and the number of

times of adversary A to query oracle QIBKEMDK (ID). We have that Pr[Abort] = (1−σ)qp ·σ2. Let σ = 2
2+qp

. We have
that Pr[Abort] ≈ 4

(e·qp)2 , where e is the base of natural logarithms.
When Z = ê(g, g)abc and the event Abort holds, it is easy to find that algorithm B simulates a real Anon-SS-ID-CPA

game in adversary A’s mind. So we have Pr[d̂ = d̂′|Abort
∧
Z = ê(g, g)abc] = (AdvAnon-SS-ID-CPA

IBKEM,A + 1
2 ).

When Z = ê(g, g)y and the event Abort holds, algorithm B generates an incorrect challenge ciphertext, and it is
independent of the challenge identities ID∗0 and ID∗1 . So we have Pr[d̂ = d̂′|Abort

∧
Z = ê(g, g)y] = 1

2 .
Now, we can compute the advantage AdvDBDHB (1k) as follows:

AdvDBDHB (1k) = Pr[B = 1|Z = ê(g, g)abc]− Pr[B = 1|Z = ê(g, g)y]

= Pr[d̂ = d̂′
∧
Abort|Z = ê(g, g)abc]− Pr[d̂ = d̂′

∧
Abort|Z = ê(g, g)y]

= Pr[d̂ = d̂′|Abort
∧
Z = ê(g, g)abc] · Pr[Abort|Z = ê(g, g)abc]

− Pr[d̂ = d̂′|Abort
∧
Z = ê(g, g)y] · Pr[Abort|Z = ê(g, g)y]

≈ (AdvAnon-SS-ID-CPA
IBKEM,A +

1

2
) · 4

(e · qp)2
− 1

2
· 4

(e · qp)2
=

4

(e · qp)2
·AdvAnon-SS-ID-CPA

IBKEM,A



In addition, it is clear that algorithm B is a PPT algorithm, if adversary A is a PPT adversary. In conclusion, if a
PPT adversary A wins in the Anon-SS-ID-CPA game of the above IBKEM instance with advantage AdvAnon-SS-ID-CPA

IBKEM,A ,
in which A makes at most qp queries to oracle QIBKEMDK (·), then there is a PPT algorithm B that solves the DBDH
problem in BGen(1k) with advantage approximately

AdvDBDHB (1k) ≈ 4

(e · qp)2
·AdvAnon-SS-ID-CPA

IBKEM,A

where e is the base of natural logarithms.

G. Proof of Theorem 5
Proof: Suppose a PPT adversary A wins in the Anon-SS-ID-CPA game of the above IBKEM instance with advantage

AdvAnon-SS-ID-CPA
IBKEM,A , in which A makes at most qp queries to oracle QIBKEMDK (·). To prove this theorem, we will construct

a PPT algorithm B that plays the Anon-SS-ID-CPA game with adversary A and utilizes the capability of A to break the
(`+ 1)-MDDH assumption in MG`+1(1

k). The constructed algorithm B in the Anon-SS-ID-CPA game is as follows.
• Setup Phase: Algorithm B gets as input an (`+1)-group system MPG`+1 and group elements g, gx1 , · · · , gx`+2 ∈

G1 and S ∈ G`+1, where either S = ê(gx1 , · · · , gx`+1)x`+2 (i.e., S is real) or S ∈ G`+1 uniformly (i.e., S is random).
B generates a (qp, 2)-MPHF H into G`, sets up the master public key as PK = (MPG`+1, hk,H, h, h

′, ID,K, C)
for (h, h′) = (g, gx`+1) and (hk, td) ← TGen(1k, gx1 , · · · , gx` , g), finally sends PKIBKEM to adversary A. Here,
we use the TGen and TEval algorithms of the (qp, 2)-MPHF property of H.

• Query Phase 1: Adversary A adaptively issues the following query multiple times.
– Decryption Key Query QIBKEMDK (ID): Taking as input an identity ID ∈ IDIBKEM, algorithm B does the

following steps:
1) Compute TEval(td, ID) = (aID, BID);
2) If aID = 0, return ŜID = ê(BID, h

′); otherwise, abort and output ⊥;
Note that we have ŜID = ê(BID, h

′) = ê(BID, h)
x`+1 = Hhk(ID)x`+1 . So B can answer a QIBKEMDK (ID)

query of A for identity ID precisely when aID = 0.
• Challenge Phase: Adversary A sends two challenge identities ID∗0 ∈ IDIBKEM and ID∗1 ∈ IDIBKEM to algorihm B;
B picks d̂ $← {0, 1}, and does the following steps:

1) Compute TEval(td, ID∗0) = (aID∗0 , BID∗0 ) and TEval(td, ID∗1) = (aID∗1 , BID∗1 );
2) If aID∗0 = 0

∨
aID∗1 = 0, then abort and output ⊥;

3) Send the challenge key-and-encapsulation pair (K̂∗
d̂
= S

aID∗
d̂ · ê(BID∗

d̂
, gx`+1 , gx`+2), Ĉ∗0 = gx`+2) to adversary

A;
Suppose algorithm B does not abort (i.e., both aID∗0 6= 0 and aID∗1 6= 0 hold), we have Hhk(ID

∗
0) =

ê(gx1 , · · · , gx`)
aID∗0 · ê(BID∗0 , h) and Hhk(ID

∗
1) = ê(gx1 , · · · , gx`)

aID∗1 · ê(BID∗1 , h). Furthermore, if S =

ê(gx1 , · · · , gx`+1)x`+2 , we have K̂∗
d̂

= S
aID∗

d̂ · ê(BID∗
d̂
, gx`+1 , gx`+2) = ê(Hhk(ID

∗
d̂
), gx`+1)x`+2 . This implies

that the challenge key-and-encapsulation pair (K̂∗
d̂
, Ĉ∗0 ) is a valid one in this case. Otherwise, K̂∗

d̂
contains no

information about d̂.
• Query Phase 2: This phase is the same as Query Phase 2. Note that in Query Phase 1 and Query Phase 2,

adversary A cannot query the decryption key corresponding to the challenge identity ID∗0 or ID∗1 .
• Guess Phase: Adversary A sends a guess d̂′ to algorithm B. Let Abort′ denote the event that B does not abort in

the previous phases. Let I = {ID1, · · · , IDqp , ID
∗
0 , ID

∗
1} be the set of the queried IDs by A and the challenge

identities ID∗0 and ID∗1 . Let PI = Pr[Abort′|I], which will be decided later. As in [9], [48], B “artificially” aborts
with probability 1− 1/(PI · p(k)) for the polynomial p(k) from Definition 12 and outputs ⊥. If it does not abort,
B uses the guess of A. This means that if d̂ = d̂′, B outputs 1, otherwise it outputs 0.

In Guess Phase, B did not directly use the guess of A, since event Abort′ might not be independent of the identities
in I. So B “artificially” aborts to achieve the independence. Let Abort be the event that B does not abort in the
above game. We have that Pr[Abort] = 1 − Pr[Abort′|I] − Pr[Abort′|I] · (1 − 1/(PI · p(k))) = 1/p(k). Hence, we
have Pr[B = 1|S is real] = Pr[Abort] · ( 12 + AdvAnon-SS-ID-CPA

IBKEM,A ) and Pr[B = 1|S is random] = Pr[Abort] · 12 , where
1
2 +AdvAnon-SS-ID-CPA

IBKEM,A is the probability that A succeeds in the Anon-SS-ID-CPA game of IBKEM. Further, we have

Pr[B = 1|S is real]− Pr[B = 1|S is random] =
1

p(k)
·AdvAnon-SS-ID-CPA

IBKEM,A .

Hence, B breaks the (` + 1)-MDDH assumption if and only if A breaks the Anon-SS-ID-CPA security of the above
IBKEM scheme.

Finally, to evaluate PI , we can only approximate it (up to an inversely polynomial error, by running TEval with
freshly generated keys sufficiently often), which introduces an additional error term in the analysis. We refer to [48] for
details on this evaluation.
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