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Abstract—Laser printer attribution is an increasing problem
with several applications, such as pointing out the ownership of
crime proofs and authentication of printed documents. However,
as commonly proposed methods for this task are based on
custom-tailored features, they are limited by modeling assump-
tions about printing artifacts. In this work, we explore solutions
able to learn discriminant-printing patterns directly from the
available data during an investigation, without any further
feature engineering, proposing the first approach based on deep
learning to laser printer attribution. This allows us to avoid any
prior assumption about printing artifacts that characterize each
printer, thus highlighting almost invisible and difficult printer
footprints generated during the printing process. The proposed
approach merges, in a synergistic fashion, Convolutional Neural
Networks (CNNs) applied on multiple representations of multiple
data. Multiple representations, generated through different pre-
processing operations, enable the use of small and lightweight
CNNs whilst the use of multiple data enable the use of ag-
gregation procedures to better determine the provenance of a
document. Experimental results show that the proposed method
is robust to noisy data and outperforms existing counterparts in
the literature for this problem.

Index Terms—Laser printer attribution; deep learning-based
document provenance analysis; convolutional neural networks;
multiple representation; multiple data.

I. INTRODUCTION

Printed documents are found everywhere. From simple
documents available today such as homeworks and warnings,
to more crucial ones such as contractual clauses and scientific
articles, a printer is always involved, being it a dot matrix, dye-
sublimation, thermal, ink-jet or laser. The last one has been
the choice of ordinary people and offices in the last decade
because of its speed, quality of printing and decreasing price.

However, with this massive access to printing devices, a new
threat has also emerged: the use of laser printers for criminal
intentions. Additional contractual clauses inexistent before,
child pornography and animal abuse photos, life threatening
letters, illegal correspondence, terrorist plots, fake currency
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and fake documents can now be easily printed by anyone.
Hence, providing ways of pinpointing printing ownership of
documents is paramount, mainly to link them to criminals.
Also, linking a document to a printer is another way of
authenticating official documents.

Several approaches have been proposed for this task in the
literature. Some techniques are based on laboratory analysis
of the actual used paper [1], [2]. However, these methods can
damage or even destroy investigated documents as chemical
and physical procedures are involved. Another branch of ap-
proaches exploits the so called extrinsic signatures, which are
characteristic footprints printed on documents, either visible or
not to the naked eye. These signatures can be embedded into
printed material by modifying the printing process to encode
some sort of source identification [3]. This can be done,
for example, using watermarks, pulse width modulation, QR-
codes or security deterrents [4], [5], [6], [7]. Recently, it has
been reported that some printers encode, on the printed pages,
some provenance information using tiny yellow dots spread
over the printing material, no matter if the document is colored
or not [8], [9]. The limitation of these approaches is the fact
that they do not represent a golden standard followed by the
whole industry, and an expert user can change the printer’s
firmware maliciously.

Finally, another group of methods aims at solving printer
attribution in a non-invasive (i.e., preserving the original
document) blind fashion. This means these methods do not rely
on printer information embedded into documents. Rather, they
rely on signatures left by mechanical imperfections specific of
printers that can be searched for on the printed material [10],
[11], [12], [13]. These techniques use computer vision and
machine learning approaches applied to scanned versions
of suspected documents. More specifically, existing methods
for text (non-colored) documents make use of hand-crafted
features generated by an initial assumption about printing
imperfections. These features are then extracted from a limited
part of the data (e.g., one symbol or letter of the raw text) [11],
[14], [15], [16] and fed to supervised classifiers for reaching
a decision upon the printer source of the document.

As the use of engineered features has been recently chal-
lenged by feature learning paradigms in many detection and
recognition tasks [17], in this paper, we present a data-driven
printer attribution approach. This is the first deep learning solu-
tion for laser printer attribution that uses several Convolutional
Neural Networks (CNNs) in parallel, extracting meaningful
discriminative patterns straight from the analyzed documents
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instead of using ordinary feature engineering. Our approach
exploits the advantages of back-propagation procedures, com-
monly used in CNNs, to automatically learn discriminant
features from a set of existing training documents. It also uses
different data representations to better identify printing pattern
artifacts on an input printed character, further enhancing the
characterization process and the analysis of provenance of
a printed document (attribution task). Finally, we apply a
late-fusion paradigm to integrate the classification outcomes
coming from different letters within the same document.

The proposed approach is tailored to blind laser printer
attribution for grayscale text documents. This means we do not
rely upon any prior information such as inserted watermarks,
and the traces we exploit can be extracted by the analysis
on sets of letters. As the proposed method builds upon a
machine learning framework, we assume the availability of a
set of training documents as for any other supervised learning
approach in the literature [12], [18]. More specifically, we
consider that the only available data are scanned versions
of: (i) the questioned document, and; (ii) a set of training
documents coming from a set of suspect or candidate printers.
The available training documents are considered to be printed
with the same font and approximately the same font-size of
the document under analysis. Moreover, we assume that some
training documents actually come from the printer used to
generate the document under investigation. In this setup, we
consider that all the documents have been scanned with the
same scanner, in order to avoid introducing any additional bias.

Notice that, even though these hypotheses may seem strict,
we are not bounding our method neither to work with a
single font and font-size, nor to work with a fixed character.
Moreover, in courts of law, it is common that: (i) the analyst
has direct access to many documents printed with the suspect
printer, or; (ii) the analyst has access to the suspect printer
itself. In the first case, as the commonly used fonts and sizes
for official documents are not many, the analyst has a high
probability of owning sufficient data with the same font and
(approximate) size. In the second case, the analysis is even
simpler, as the analyst can print as many documents he/she
wants, with any font and size.

In summary, the main contributions of this paper are:
1) The design and development of an ad-hoc CNN for

laser printer attribution based on the analysis of small
patches representing text characters. The network is
characterized by a small amount of parameters, thus
allowing a fast yet reliable training with a limited set
of labeled data.

2) The use of CNNs on multiple representations of the
same character to learn complementary features that are
fused together for an increased recognition accuracy.

3) The use of a late-fusion paradigm to merge results com-
ing from the analysis of different characters within the
same document. In this way, each character is classified
separately, and individual results contribute to the final
document label. This is useful especially for documents
containing repetitions of some letters.

We organized the remaining of this paper into six sections.
Sec. II discusses the most important techniques in the liter-

ature to identify the intrinsic artifacts of laser printers using
computer vision and machine learning approaches. Sec. III
introduces the concept of CNN, which is necessary for under-
standing the rest of the work. Sec. IV introduces our approach
for source printer attribution. Sec. V reports all the details
about the experimental methodology used for validating the
proposed method and compare it to the existing counterparts in
the literature while Sec. VI shows the performed experiments
and results. Finally, Sec. VII concludes this work reporting
our final considerations and proposals for future work.

II. LITERATURE SOLUTIONS FOR LASER PRINTER
ATTRIBUTION

Laser Printers (LPs), differently from ink-jet printers, use a
dry painting process based on the electromagnetic attraction
of sooty powders inside a toner and the paper to be printed, in
a process conducted by modifying charges on a light-sensitive
revolving drum by a laser light source reflected by mirrors.
The laser printer process occurs, in a nutshell, by charging
this drum by a laser reflected by a mirror, which attracts the
positive charged toner. Finally, the paper attracts the toner and
a fusing process, by heat, joins the toner to the paper.

The intrinsic characteristics that can be seen on printed
pages during this process are generated by imperfections in
the manufactured parts of LPs, such as the leak of electric
charges in some parts of the drum, different patterns of
mirrors angle for different manufacturers, different speed of
the revolving drum, among others. One of these intrinsic
characteristics is called banding and is the most considered by
the literature. Banding is defined as light and dark lines in a
perpendicular direction to where the paper is moved inside the
printer [4], [19]. Different brands are characterized by almost
unique banding frequencies on different models of printers
[12]. Several techniques in the literature have been focused on
detecting such banding artifacts. Most of them can be divided
in approaches focused on color documents (images) and text-
only-documents. We discuss both of them in the following
subsections.

A. Solutions for color documents

Existing methods to identify the source printer of color
documents (i.e., documents with images) often exploit intrinsic
signatures in the printing process, such as noise and geomet-
ric distortions, or in statistics derived from the transformed
scanned images.

1) Solutions based on noise analysis: Lee et al. [20], [21]
used the CMYK color space to detect the printer source
of a document. The authors calculate a residual image by
subtracting the scanned version of a document to its Wiener-
filtered version. The residual image is then summarized using
gray-level co-occurence matrix (GLCM) statistics [22] and
classified using a machine learning algorithm. Following a
similar path, Choi et al. [23] and Tsai et al. [24] incorporated
different color channels in the analysis and employed wavelets
for feature extraction.

Elkasrawi and Shafait [18] also used the noise residual
pattern to identify the printer even with common-resolution
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scans (400dpi). For this they propose a descriptor based on
the work of Khanna et al. [25], in which statistics of the row
and column directions of the image are calculated. However,
image filtering is performed differently, with the aid of the
Otsu’s threshold method [26].

2) Solutions based on the analysis of geometric distortions:
Bulan et al. [27] used geometric distortions to identify the
source of a color document. First, geometric signatures are
extracted by estimating the positions of dots in halftone in
training scanned documents of a given set of printers. Then,
by correlation, the halftone points in a test document are linked
to their source. Wu et al. [28] created printer models composed
of distance and angles of halftone dots. K-means clustering on
these Euclidean distances help in the final printer attribution
process.

3) Solutions based on the analysis of statistics of the
transformed image: Ryu et al. [29] proposed the analysis of
very high-resolution scanned images through histograms of
Hough transform angles in CMYK color channels, generating
a feature vector of printing patterns for each document printed
by a given printer. The printer attribution is performed by
correlating this pattern with a reference created for each
printer.

Kim and Lee [30] used the halftone patterns for laser printer
identification, acquiring images by photography, instead of
scanning. First, the image is preprocessed to eliminate illu-
mination variability using each channel in the CMY domain.
Then, a set of 15 halftone texture features are extracted in
the discrete Fourier transform domain and are used to feed
a machine learning classifier. This work was extended upon
in [13] using the curvelet transform and correlation-based
attribution.

B. Solutions for text documents
For text documents, most of the approaches to printer

attribution rely upon texture, noise and geometric distortion
analysis in the printed letters to find the extrinsic signatures
of the banding process common to different printers.

1) Solutions based on the texture of printed letters:
Mikkilineni et al. [10], [31] proposed the use of texture
descriptors based on statistics of gray-level co-occurrence
matrices to identify the source of text documents. A set of
letters “e”, which is the most used letter in English texts [32],
is chosen for feature extraction. Then, 22 statistics of gray-
level co-occurrence matrices are extracted and used as input
to a previously trained 5-nearest neighbors classifier, with the
majority voting of the classified letters defining the final source
of a document. In follow-up works, support vector machines
(SVM) were used [14], as well as clustering and Euclidean
distances [33]. Jiang et al. [34] proposed the extraction of
feature vectors based on Benford’s law. The extracted features
were the first digit probability distribution of discrete cosine
transform coefficients from multi-size blocks. Following a
different path, Ali et al. [35] used the linearized pixel values of
letters “i” as features properly mapped onto lower dimensional
spaces through Principal Component Analysis. The decision
making is then performed using a Gaussian mixture model
machine learning classifier.

Ferreira et al. [12] proposed a series of approaches based
on the multidirectionality and multiple resolution banding
texture effects present in printed letters in a document. The
authors extended the GLCM texture descriptor to consider
more directions and scales in the analysis of the input letter.
They also proposed another descriptor, called the convolutional
texture gradient filter, which filters textures with specific
gradient, present in areas that better differentiate the printers.
The authors used the proposed approaches on “e” letters and
proposed to consider another region for analysis: the frames,
which are rectangular areas with sufficient printing material.

Finally, other authors have focused on the attribution prob-
lem for languages using different alphabets. Tsai et al. [36],
[15] combined features from statistics of gray level co-
occurrence matrices and sub-bands of wavelet transform for
laser printer source of Chinese printed documents. As with
English language, a specific symbol of Chinese language was
chosen for analysis. Tsai et al. [16] extended upon this method
by using statistical features from a gray-level co-occurrence
matrix, discrete wavelet transform, spatial filter, Wiener filter
and Gabor filter to identify the source of Japanese printed
documents.

2) Solutions based on the analysis of noise and geometric
distortions: Kee and Farid [11] proposed to use reference
characters and the reconstruction error to identify the source
of text documents. The authors start with a reference “e”
character of each printer. Then the search of similar characters
from the same printer is done in a training step by template
matching. These letters are then used to build the printer
profile, useful for printer attribution later on. This profile is
firstly built by preprocessing letters with histogram normal-
ization and registration with respect to the reference letter
of the printer. Then the mean character is calculated and the
top p eigenvectors from principal component analysis [37] are
calculated on aligned characters, yielding the printer profile.

Wu et al. [38] used geometric distortions to identify the laser
printer source of documents. They first model a projective
transformation using the center of characters and the whole
scanned image in uncompressed format. Then, they solve this
model with least squares and singular value decomposition
for outliers removal. The estimated model parameters are
used as geometric signatures inserted in a machine learning
classifier. Finally, Schreyer [39] used statistical features from
noise images in the discrete cosine transformed domain and
in the multi-resolution wavelet domain, to train a machine
learning classifiers for source printer attribution.

C. Remarks

In this work, instead of grappling with the printer attribution
problem with hand-crafted features, similarly to previous so-
lutions in the literature, we set ourselves the following guiding
research principles:

1) Learn the discriminative features directly from the avail-
able collected data in a totally data-driven fashion.

2) Extract meaningful discriminative characteristics from a
reduced set of training data, instead of the large ones
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often necessary for training deep Convolutional Neural
Networks.

Before we discuss how we deal with these requirements
in our proposed method to perform laser printer attribution,
it is worth discussing some basic concepts about deep neural
networks. We do this in the next section.

III. CONVOLUTIONAL NEURAL NETWORKS

Since 2012 [40], convolutional neural networks have shown
to be very effective in complex image classification tasks. Pi-
oneered by LeCun et al. [41], the main benefit of using CNNs
with respect to traditional fully-connected neural networks is
the reduced amount of parameters to be learned. Convolutional
layers made of small size kernels allow an effective way of
extracting high-level features that are fed to fully-connected
layers. The training of a CNN is performed through back-
propagation and stochastic gradient descent. The misclassifi-
cation error drives the weights update of both convolutional
and fully-connected layers. After training, it is possible to use
the output of a network’s layer as feature vector paired with
an external classifier, rather than simply relying on network
classification layer. The basic layers of a CNN are listed below:

1) Input layer: where data is fed to the network. Input data
can be either raw image pixels or their transformations,
whichever better emphasize some specific aspects of the
image.

2) Convolutional layers: contain a series of filters with
fixed size used to perform convolution on the image
data, generating a so called feature map. These filters
can highlight some patterns helpful for image character-
ization, such as edges, regular patterns, etc.

3) Pooling layers: these layers ensure that the network
focuses only on the most important patterns yielded by
convolution and ReLU. A pooling layer summarizes the
data by sliding a window across the feature maps and
applying some linear or non-linear operations on the data
within the window, such as generalized mean or max,
reducing the dimensionality of the feature maps used by
the following layers.

4) Rectified Linear Unit (ReLU): ReLU layers normally
follow a convolution operation and are responsible for
applying a non-linear function to the output x of the
previous layer, such as f(x) = max(0, x). According
to Krizhevsky et al. [40], they can be used for fast
convergence in the training of CNNs, speeding-up the
training as they deal with the vanishing gradient problem
by keeping the gradient more or less constant in all
network layers.

5) Fully-connected layers: used for the understanding of
patterns generated by the previous layers. They are
located at the end of the network and act as classifiers,
usually followed by a soft-max layer to determine the
class associated to the input image.

6) Soft-max layer: typically used at the end of the network
during training. It normalizes input values in order to
guarantee they sum to one. In doing so, its output can

Fig. 1. Common architecture arrangement of a CNN. The input image is
transformed into feature maps by the first convolution layer C1. A pooling
stage S1 reduces the dimensions across the feature maps. The same process
is repeated for layers C2 and S2. Finally, the last layer is used to classify the
input.

be interpreted as a probability distribution (e.g., pointing
out the probability of a sample to belong to each class).

Fig. 1 depicts one possible CNN architecture whose output
at a given layer is fed to an external classifier. The type and
arrangement of layers vary depending on the target application.

Although very powerful at representing patterns present in
the data, the main drawback of deep learning is the fact that
common CNNs normally need thousands or even millions
of labeled data for training. This is an unfeasible condition
in many applications due to the lack of training data and
to the big amount of time needed to train a model. In this
work, we present an alternative approach that deals with these
requirements by considering several lightweight CNNs for
laser printer attribution, as we shall discuss in Sec. IV.

IV. PROPOSED METHOD

The proposed solution for laser printer attribution works ac-
cording to the following supervised machine learning pipeline.
First, documents under analysis are digitalized and different
sets of characters Schar are extracted from them (e.g., Se and
Sa for characters “e” and “a”, respectively). Each character of
each set is processed separately. Characters are processed to
obtain multiple representations of them (i.e., S raw

char, Smed
char and

Savg
char contains the raw, median filtered residual and average

filtered residual versions of the characters). For each repre-
sentation, different features f raw

char, f
med
char and f avg

char are extracted
using small CNNs trained for this problem. These features
are combined for each character set into a single feature
vector fchar, which is used to classify each character separately.
Finally, a voting step aggregates all labels lprint

char assigned to
each character into a final decision lprint. In the following, we
provide a detailed description of each step.

A. Characters extraction

Choosing the appropriate input data to solve laser printer
attribution problem with the proposed architecture is an im-
portant step. As a matter of fact, selected data should contain
enough information to characterize the used printer (e.g.,
banding artifacts). However, this data should not be strongly
influenced by the semantic of the content, otherwise the
network training would be negatively affected. As a good
compromise, and motivated by state-of-the-art methods using
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Template
Matcher

e
Lorem
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dolor sit 
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ipsum 

dolor sit 
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dolor sit 
amet

Se = {e, e}

Fig. 2. Document digitalization and character extractor pipeline. Printed
documents are scanned, and letters are extracted by template matching using
the procedure described in [12]. The set Se is composed by the detected pixel
patches containing character “e”.

characters as the minimal entity for text documents analysis
[12], we also decided to start the analysis at character level.

To extract characters from printed documents, a digital
version of them must be obtained. To this purpose, our
algorithm starts by scanning all documents under analysis
and extracting from scanned versions sets of characters using
the same extractor devised by Ferreira et al. [12], as shown
in Fig. 2. The extractor works according to the following
pipeline. First, we generate a reference letter, which has the
same font typeface and is adjusted to have the same size as
one letter from the scanned documents. Then, the algorithm
slices the letter in eight regions and counts the proportion of
black and white pixels in each one, yielding a feature vector
used for letter extraction later on. To extract letters from the
documents, black pixels connected components are extracted
(i.e., character candidates) and the black/white ratio descriptor
is computed again (the same as did before for the reference
letter) for each connected component. Candidate letters whose
descriptor has low cosine distance with respect to the reference
letter descriptor are selected. Although the extractor is not
perfect (the images of extracted letters have not the same size
and some false positives may happen), it guarantees that most
of the letters extracted are the same as the reference letter.

B. Multiple representation of input data

By using different characters and different representations of
them, it is possible to separately train several small networks
in parallel instead of a single complex network, thus reducing
the computational complexity and still achieving promising
results. The intuition is that: (i) several simpler deep networks
can be effectively trained using less training examples and
(ii) early layers of simple networks are sufficient to iden-
tify interesting artifacts contained in the pixel domain (e.g.,
banding). Moreover, we also decided to consider different
representations of the input data along with multiple simple
deep networks. Different data representations rather than raw
image pixels have already been considered in the forensic
literature, such as for median filtering detection [42].

To this purpose, from each document, different sets Schar of
grayscale characters of the same font and approximately the
same size are extracted. As an example, a set Se of letters
“e” and Sa of letters “a” are used. In order to exploit the
advantages given by multiple representation, for each set Schar,
we resorted to the following three different representations:

1) Raw data (S raw
char): image pixels are used as input to the

network as they are. This is the common representation

Fig. 3. Same letter “e” printed by different printers.

Fig. 4. Median filter residual representation of the same letters “e” showed
in Fig. 3. Here, some minimal borders are highlighted. Pixel values (black
and white) are inverted in this figure for better visualization.

Fig. 5. Average filter residual representation of the same letters “e” showed
in Fig. 3. Here, natural borders are highlighted. Pixel values (black and white)
are inverted in this figure for better visualization.

used as input for CNNs, as it contains high and low
frequency components that can be isolated by the CNN
filters and can be useful for image classification (see
Fig. 3).

2) Median filter residual (Smed
char ): we apply a 3× 3 median

filter over the image and subtract the image from the
filtered version. The yielded noise pattern is used as in-
put to the network. As the median filter better preserves
edges, the median filter residual will contain, mostly,
high frequency imperfections, which can be regarded as
the banding (see Fig. 4).

3) Average filter residual (Savg
char): we apply a 3× 3 average

filter over the image and subtract the image from its fil-
tered version, using this residual as input to the network.
This residual isolates border effects (see Fig. 5).

C. Feature extraction

To extract relevant features from our input data, we use
a deep learning approach as discussed in Sec. III. More
specifically, we train a simple CNN for each character and
each set S raw

char, Smed
char and Savg

char. Then we feed again patches
from S raw

char, Smed
char and Savg

char to the networks to obtain three
feature vectors f raw

char, f
med
char and f avg

char for each character within
each set, using these vectors in a supervised classifier.

The used network architecture is common to each character
and set and is similar in spirit to the MNIST network for
digit recognition [43]. However, for a better representation
of the data of interest herein, we train the network from
scratch, yielding new filter weights able to recognize inter-
esting characteristics for laser printer attribution. As far as
we know, this is the first deep network custom-tailored to the
printer attribution problem. The used CNN architecture has
the following layers:

1) One input layer, where the raw image or a different
representation (median filter residual or average filter
residual) is used. It requires 28× 28 images as input.

2) The first convolutional layer is made of 20 5× 5 filters
and is followed by a non-overlapping max pooling layer
of size 2× 2 and stride 2.
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3) A second convolutional layer, with 50 filters of size
5× 5× 20 is followed by another non-overlapping max
pooling layer of size 2× 2 and stride 2.

4) An inner product layer, which generates a vector ∈ R500.
5) The 500 dimensional vector is non-linearly processed

with a ReLU function applied element-wise.
6) An inner product layer acts as classifier with as many

output confidence scores as the number of printers
available during training.

7) A soft-max layer finally outputs the index and the
confidence of the most probable printer.

In our proposed approach, we train the network using
this architecture and then feed the training images again to
the already trained the network, extracting 500-dimensional
feature vectors in the last but one layer and repeating the
process for the testing images. To follow the literature, we used
the network as a feature extractor only, transferring the feature
vectors to another and well used classifier for this application.
The network autonomously learns which characteristics of
the input images are relevant for discriminating the different
printers.

Specifically, the network is trained using stochastic gradient
descent with a momentum set to 0.9. We used an initial
learning rate of 0.001 and a weight decay of 0.0005 without
dropout. We used a batch size (subsampling of image examples
used in one forward/backward pass through the network)
of 100 images without batch normalization. The number of
training epochs, which is the number of one forward and one
backward pass of all training examples through the network
was set to 30, and the model generated at the epoch with the
smallest validation loss (20 epochs) was selected.

Fig. 6 and 7 depict the 20 5 × 5 filters of the first
convolutional layer and also the characteristics they highlight
from a letter printed by a given printer in the case the set S raw

e
is considered. These figures show that different filters enhance
different areas of letters, such as texture and borders, which
have been shown to be important to detect banding for LP
attribution by existing methods in the literature such as [12].

D. Classification with early and late fusion

The proposed CNN architecture is characterized by a limited
amount of parameters, in order to allow a fast and reliable

Fig. 6. Example of filters weights for the first convolutional layer operating
on the raw input image pixels. Weight values are mapped in grayscale.

Fig. 7. Convolutional output of the first layer of the trained network, given an
input letter from an investigated printer. For each filter, different areas inside
or outside the borders are highlighted.

training even with a small number of labeled samples avail-
able. Small networks, as the one we are using, are expected
to have worse performance with respect to bigger and deeper
networks typically used in the computer vision community
[17]. To compensate for this issue, we propose to use two
lightweight fusion methods depicted in Fig 8:

1) Early fusion – multiple representations of the same
data: we apply three different networks on input charac-
ters (of one type) coming from S raw

char, Smed
char and Savg

char. We
concatenate the generated feature vectors f raw

char, f
med
char and

f avg
char into a single vector fchar in an early-fusion fashion

[44]. This vector is fed to a set of linear SVMs used
with a One-vs-One classification policy [45] to classify
each character separately assigning a label lprint

char to each
one of them. The rationale for using this technique is
that different representations highlight complementary
artifacts.

2) Late fusion – multiple representations of different
data: after taking decisions at the character level within
a document, we apply a late-fusion technique [44] by
using majority voting on sets of different characters.
This is useful especially when dealing with documents
presenting a limited amount of characters within a single
set (e.g., only a few “e” letters). The obtained document
label lprint allows us to pinpoint which printer was used
to print the document.

For final decision making, we analyze the list of classifi-
cation outcomes (votes) of letters from a document. In the
case of ties, we decide the mode as being the first most
frequent value that appears in the list. For example, in a list

early 

late 

Fig. 8. Proposed multiple representations of different data for laser printer
attribution through a set of lightweight Convolutional Neural Networks. Early
and late fusion steps are highlighted in blue and green, respectively.
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of classifications x = [9, 7, 7, 7, 9, 9], the final classification
would be 7. This can be thought of a pseudo-random tie-
breaking and its most important advantage is simplicity. A
more interesting tie-breaking policy would be be summing up
the distances to the hyperplane of each classified letter in a
document, per class, and then deciding the final class as being
the one with the highest sum (i.e., surer about the classification
from the classifier).

E. Remarks

As we show later on in this paper, it is indeed possible
to train effective deep learning networks (DNNs) with less
data if we take appropriate actions such as: (i) not selecting
a too deep network, (ii) learning the features on different,
and complementary, representations of the data; and (iii)
combining the different outputs in the end through fusion.
That being said, our motivation for using a solution based on
a DNN for feature extraction and a discriminative classifier
at the end was threefold. First, we wanted to evaluate the
richness of data-driven features directly and not the DNN
as a full-fledged feature extractor + classifier. Altough it is
straightforward to attach a last soft-max layer in the end of
the network for classification, we opted to use a discriminative
classifier at the end to have a standardized form of comparison
with previous works, which have used SVMs for classification.
By doing this, we ended up having just one free comparison
parameter (the features themselves). Second, our own previous
experience with DNNs show that the combination of a DNN
for feature extraction and a discriminative classifier at the end
are very powerful, especially if we intend to perform fusion
later on. Finally, our third motivation comes from that fact
that by using a discriminative classifier at the end of the
DNN-based feature extraction, we could simplify the fusion
of different methods at the end, thus creating a lightweight
integrated solution. The positive effects of these early and late
fusion techniques will be discussed on Sec. VI.

V. EXPERIMENTAL SETUP

This section presents the experimental methodology used
in this paper along with the used evaluation metrics, dataset
and statistical tests. Finally, it details all the tested algorithms,
some of which are baseline methods whereas some others are
individual parts of our algorithm used to separately validate
each step.

A. Dataset

For validation, we considered the same dataset of documents
proposed by Ferreira et al. [12] and freely available for
download at Figshare1. It comprises 120 Wikipedia documents
containing up to three pages each converted to Portable
Document Format (PDF). These documents were printed by
10 printers using 75g/m2 letter paper and scanned using a
600 dpi resolution Plustek SO PL2546 device, generating a
total of 1,184 images. Table I shows the printers breakdown

1http://dx.doi.org/10.6084/m9.figshare.1263501

TABLE I
PRINTERS AND NUMBER OF DOCUMENTS PER PRINTER USED IN THE

DATASET OF FERREIRA ET AL. [12]

ID Brand Model Documents
B4070 Brother HL-4070CDW 120
C1150 Canon D1150 116
C3240 Canon MF3240 120
C4370 Canon MF4370DN 120
H1518 Hewlett Packard CP1518 120
H225A Hewlett Packard CP2025 119
H225B Hewlett Packard CP2025 110
LE260 Lexmark E260DN 119
OC330 OKI Data C330DN 120
SC315 Samsung CLP315 120

Total 1,184

along with their main characteristics. This is the first stan-
dardized dataset in the literature containing documents in two
languages: English and Portuguese. Although the characters in
these two languages appear to be similar, in Portuguese texts,
there are some accentuation signals in some letters (e.g., é and
ã) that can confuse the letter extraction or the classification.

In [12], the authors have used two different datasets,
one considering regions of interest of 980×800 pixels ex-
tracted from the input documents — referred to as Frames
Dataset — and another one with only detected and ex-
tracted characters from the input documents — referred to
as Letters/Characters Dataset. After strongly rea-
soning about this problem, we further motivated our research
to cope with the following real-world setups: (i) classifying
documents for which only a few printed lines are available,
making it impossible to extract many frames and end up with a
reliable attribution solution in an investigation; and (ii) having
available only small pieces of document, a torn apart document
or a shredded one. Those cases would render the analysis of
frames impossible or useless.

Based on this motivation, we set forth the objective of
tailoring a solution to the problem that would allow us
to have the highest possible attribution effectiveness while,
at the same time, not requiring large input regions from
the investigated document. Thus, we decided to use the
Letters/Characters Dataset presented in [12] as our
reference benchmark. In addition, we also established the
objective of exploring data-driven features directly learned
from the data instead of hand-crafted oriented solutions as
the ones exploited and reported in [12]. For that, we would
need inputs that would not lead to an explosion of parameters
in our DNN-oriented solution.

In addition to only using the “e” letters extracted from the
documents as [12], in this paper, we go beyond and exploit
the impact of using different letters as well, as the authors
in [12] did not consider these cases. Table II summarizes the
datasets of letters used for the tests we generated from the
aforementioned documents. As already mentioned, these have
been extracted exploiting the characters extractor devised by
Ferreira et al. [12]. With this method, we extracted several
different letters of approximately 38× 47 pixels printed with
the Wikipedia font from the documents according to their
frequency in the English language [32], resulting in four
datasets of different letters De, Da, Dd, Do as reported in
Table II.

http://dx.doi.org/10.6084/m9.figshare.1263501
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TABLE II
DATASETS USED FOR EXPERIMENTAL EVALUATION.

Dataset Letter Samples
De “e” 245,650
Da “a” 286,098
Dd “d” 185,009
Do “o” 351,850
D̃e “e” 131,435
Dframe frames 352,433
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Fig. 9. Distribution of the extracted letter “e” sizes for each printer. Most
of the characters have a resolution of 38× 47 pixels, but some have slightly
different sizes.

As the extractor in [12] also detects letters of similar font
and size, these datasets can be regarded as affected by a
small amount of noise. As an example, Fig. 9 shows the
distribution of sizes of the extracted “e” letters for each printer.
Although most of them share a common size, some of them
slightly deviate. These datasets are then very useful to test the
performance of the proposed algorithm in adverse conditions.

To validate the proposed method in a noiseless scenario,
we also created a clean dataset D̃e of 131, 435 “e” letters.
This dataset was created starting from the noisy “e” dataset
De keeping only the most similar letters sharing a (38± 1)×
(47± 1) resolution.

At this point, it is worth mentioning that the input of our
network is always a 28×28 pixel patch. Therefore, we always
crop the center region of the letters so as to have inputs exactly
matching this network requirement. We do not perform any
resampling/resizing in order to avoid introducing additional
processing artifacts that can hinder attribution performances
by masking part of the telltales left behind by printers.

Finally, to validate our idea of using characters to train our
small CNNs, we also built a dataset of small frames (e.g., small
random patches). To this purpose, we applied a 28×28 frame
extractor in the documents, extracting 300 valid frames whose
ratio between black and white pixels r is 0.6 ≤ r ≤ 0.8 from
each scanned document. This resulted in the Dframe dataset.

B. Experimental methodology, evaluation metrics and statis-
tical tests

For validation, we consider the same 5 × 2 cross-validation
protocol used in [12]. In this protocol, we replicate the
traditional 2-fold cross-validation protocol five times (thus
5 × 2). In each of these 2-fold cross validations, a set of
documents (not characters) D is split into D1 and D2. In each
of the five executions, a classifier is trained with characters

of documents in D1 and tested on characters present in D2,
and then vice-versa. After that, we report the results based
on documents classification (after majority voting of test
documents letters) and perform the statistical tests after 10
rounds of experiments. In this experimental protocol, each
combination of training and test will use letters from 592
documents for training an one-against-one SVM classifier
while the remaining 592 documents letters are used for testing
the classifier. The number of letters used in the training and
testing of each of 10 experiments (which we call fold) will
depend on how many letters are extracted from each training
and testing document and will also depend on which letter is
being used in the analysis. For example, in the total 5 × 2
protocol, there are a mean of 122,825 letters ‘e’ for training
and the same for testing. According to a study conducted by
Dietterich et al. [46], the 5 × 2 cross-validation is considered
an optimal experimental protocol for learning algorithms.

In a multi-class problem with n classes, the classification
results may be represented in an n × n confusion matrix. In
this case, the main diagonal contains the correct classifications
while the other entries contain misclassifications. In the 5× 2
cross validation protocol, one confusion matrix is yielded per
experiment. Therefore, we present results by averaging these
matrices.

To test the statistical relevance of the obtained experimental
results, we consider a two-level statistical test. In the first level,
we use the Friedman test as a pre-test to point out whether or
not there is statistical difference in the obtained results. Then
we refine these results with the Tukey-Kramer post-test, also
known as honestly significant difference (HSD) test to point
out statistical differences (if any) pairwise. In all tests, we set
the confidence level to 95%.

C. Tested algorithms

We performed several tests to validate the proposed ap-
proach. First, we conducted a set of experiments aimed at
selecting the reference CNN architecture. Then we tested each
separate step of our algorithm (e.g., robustness to noise, early
fusion, late fusion, etc.). Finally, we validated the proposed
algorithm against state-of-the-art baseline methods.

At first we compared several different Convolutional Neural
Network architectures in order to find the right balance be-
tween complexity and accuracy. To this purpose, in addition to
the architecture proposed in Section IV, hereinafter denoted as
S2-Conv, we also tested some deeper solutions. By adding one
and two more convolutional layers, each followed by a max-
pooling layer, we created two CNNs, denoted as S3-Conv and
S4-Conv. Two additional state-of-the-art network architectures
were used as benchmark: AlexNet [40], denoted as SAlexNet,
and GoogLeNet [47], denoted as SGoogLeNet.

After validating the use of S2-Conv as CNN (hereinafter
simply denoted as S for the sake of clarity), we also tested
each data representation separately. This means we extracted
features using CNNs on a single representation of the input
data (e.g., raw letters “e”) and used the obtained feature vectors
for classification with SVM. Majority voting was applied
to letters to take a decision at document level. As single
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representations, we tested the median filter residual of the
image (Smed

char ), the average filter residual (Savg
char) and the raw

image pixels (S raw
char). We also tested different representations

inspired by the existing methods in the literature. As a matter
of fact, we tested the filtered image from the Convolutional
Texture Gradient Filter (CTGF) using both the 3× 3 (SCTGF3

char )
and the 5 × 5 (SCTGF5

char ) filters from the work of Ferreira et
al. [12] and also the Wiener filter residual [48] (SWiener

char ). For
each approach, the subscript “char” represents the letter we
tested (e.g., SWiener

e for the Wiener-based representation on “e”
letters). With an abuse of notation, we use the symbol S to
refer to both the algorithm and the set of input data.

We also tested the performance of the early fusion approach.
For this, we concatenated the feature vectors from the last but
one layer of CNNs applied on three different representations
of the same data, making them the input of an SVM classifier.
We refer to early fusion methods as {S raw,Smed,Savg}char,
where the methods in the brackets represent the used data
representations, and the subscript indicates the used letter (i.e.,
“e”, “a”, “d”, “o” or 28× 28 frames).

To test the late fusion, we performed majority voting to
classification labels obtained with early fusion methods run
on different character families. We call these approaches
{S raw,Smed,Savg}char1, ..., charN, specifying the different sets of
characters used for fusion. Notice that late fusion approaches
also embed early fusion. The source-codes for all the proposed
approaches will be available at GitHub2 upon the acceptance
of this paper. The same applies to all used dataset variations,
which will be available through FigShare.

We also compared our proposed technique to eight state-
of-the-art methods (see Sec. II) focused on text documents.
The first one is the GLCM-based method from Mikkilineni et
al. [10], [31], which describes the signature present in the
banding with 22 statistics calculated per matrix. We refer
to this approach in the experiments GLCM. The next four
methods used in the experiments were proposed in the work
of Ferreira et al. [12]. The first one uses GLCM with multiple
directions (GLCM-MD), while the second uses GLCM with
multiple directions and multiple scales in the input data
(GLCM-MD-MS). The third one uses CTGF with size 3 × 3
(CTGF) and the fourth method uses a combination of all these
methods (CTGF-GLCM-MD-MS).

The sixth implemented method from the literature was
proposed by Kee and Farid [11] (RECONST-ERR) and uses
reference characters to extract letters from documents. To
detect the source of a document, letters “e” are extracted
and compared with the profile of each printer to obtain a
reconstruction error for each printer. The printer with the
smallest mean error is detected as the source. Finally, we
also tested two well-known texture descriptors widely used
in the literature: (i) local binary patterns (LBP) [49]; and (ii)
histogram of oriented gradients [50] (HOG).

VI. RESULTS AND DISCUSSION

We now turn our attention to the experimental results
obtained with different methods. First, we test our proposed

2https://github.com/anselmoferreira/deep-learning-printer-attribution

lightweight CNN fusion approach against several individual
CNN architectures . Second, we dissect the proposed approach
to test each of its steps separately. Third, we show results
considering the effects of training CNNs on noisy rather than
noiseless data. Then, we compare different representations
of the input data. Afterwards, we show the advantages of
using multiple representations (early fusion) and multiple data
(late fusion). Finally, we present experiments comparing the
performance of our approach to the methods discussed in
Sec. V-C. All experiments were performed using the method-
ology presented in Sec. V-B on the dataset with 1,184 printings
presented in Sec. V-A.

A. Evaluation of the CNN model

The first step toward the development of our proposed deep
learning approach for laser printer attribution is to determine
the kind of CNN architecture that best suits the problem
at hand. One natural solution would be using the whole
digitalized document as input for a Convolutional Neural
Network, but this procedure have the following drawbacks: (i)
it requires the designing of deeper networks, which will require
a larger amount of data, computational time and memory
resources to train the network; and (ii) the network training
process will be strongly influenced by the semantic of the
documents. Conversely, smaller areas with fixed patterns used
as input to smaller networks do not require as many layers
as using the whole document as input and also can lead to a
faster learning of network parameters and weights.

In this vein, we selected CNNs whose input are small
patches of size as 28× 28, 227× 227 and 224× 224 as can-
didate architectures for our proposed multiple representation
of multiple data approach. For each candidate architecture, we
train and test the first split of the raw “e” dataset De, training
these architectures for 30 epochs. The model generated at the
epoch with the smallest validation loss is selected as the best
candidate for each CNN. We show in Table III results con-
sidering our fusion approach, denoted as {S raw,Smed,Savg}a,e,
using six lightweight networks with 2 convolutional layers
(architecture that we denote as S2-Conv) and some individual
deeper architectures, using the networks as feature extractors
and a linear SVM as the classifier.

TABLE III
RESULTS COMPARING DIFFERENT DEEP LEARNING APPROACHES FOR

LASER PRINTER ATTRIBUTION IN ONE COMBINATION OF TRAINING AND
TESTING. OUR BEST PROPOSED LATE FUSION APPROACH IS HIGHLIGHTED

IN LIGHT GRAY. TTE REFERS TO THE TRAINING TIME FOR A SINGLE
EPOCH.

Method Accuracy TTE [s] Size [MB] Input Data

{Sraw,Smed,Savg}a,e 98.30% 20.22 9.84 Da,De

SGoogLeNet [47] 98.30% 886.00 39.40 De

SAlexNet [40] 98.13% 290.00 217.00 De

S4-Conv,raw
e 97.29% 21.70 15.43 De

S3-Conv,raw
e 96.10% 8.10 2.92 De

As shown in Table III, the proposed approach, underpinned
by six lightweight networks instead of one, has similar results

https://github.com/anselmoferreira/deep-learning-printer-attribution
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to a more complex network (SGoogLeNet) while presenting a
memory footprint 75% more efficient and being, approxi-
mately, 43× faster to train. Moreover, each individual network
of the proposed late-fusion approach consumes 1.64MB, thus
the final footprint is 6 × 1.64 = 9.84MB of space. This is a
further confirmation that the use of the proposed lightweight
simple networks in a fusion framework outperforms deeper
solutions in terms of complexity-accuracy trade-off, at least
for the particular setup considered herein. Indeed, the fusion
approach with six networks reaches an accuracy equals the one
generated by a deeper network, but with a reduced complexity.

We also evaluate the solutions for laser printer attribution
with different training set sizes. We start comparing our
proposed lightweight fusion of CNNs to existing solutions
for laser printer attribution on different proportions of training
data. For this experiment, we separated one combination of
training and test data, sub-sampling the training data to be
1%, 10%, 30%, 50%, 70%, and 100% of the original training
data, classifying the same testing data using the same SVM
linear classifier used in the experiments. We show the results
in Table IV. Each column shows a percentage of the training
data used.

TABLE IV
RESULTS COMPARING DIFFERENT DEEP LEARNING APPROACHES AGAINST

OUR PROPOSED APPROACH FOR LASER PRINTER ATTRIBUTION IN ONE
COMBINATION OF TRAINING AND TESTING ON DIFFERENT AMOUNTS OF

TRAINING DATA. THE BEST ACCURACY PER TRAINING DATA PROPORTION
USED IS HIGHLIGHTED IN GRAY.

Method 1% 10% 30% 50% 70% 100%

{S raw,Smed,Savg}a,e 91.20% 97.29% 97.63% 97.63% 97.96% 98.30%

SGoogLeNet [47] 87.64% 96.27% 94.92% 94.07% 98.13% 98.30%

SAlexNet [40] 89.00% 96.44% 95.77% 96.44% 97.29% 98.13%

Normally, deeper networks require more data to show good
results if compared to smaller ones. As Table IV shows, the
proposed approach outperforms more complex CNNs for 1%,
10%, 30% and 50% of training data proportion used. A deeper
network (GoogLeNet) starts to catch up and outperforms the
proposed method when using 70% of data. In summary, the
fusion of S2-Conv networks has the following advantages (i) it
requires less data for effective training; and (ii) individually,
each network (S2 architecture) used in the fusion requires
less memory and time to train than using more complex
networks. Therefore, we chose S2-Conv architecture in our
proposed fusion approach. In the following, we will denote
the S2-Conv architecture simply as S in order to allow for a
more compact notation.

B. Dealing with noisy data
In order to be useful in a real-world scenario, it is important

that the developed method is robust against non-ideal working
conditions. More specifically, it is paramount that the features
learned by the CNNs are generalizable enough to guarantee
good performance also on noisy data (e.g., letters of slightly
different sizes). To test this property, we trained and tested
the algorithm using different single representations of the “e”
character (i.e., S raw

e , Savg
e , and Smed

e ) on different combinations
of datasets (i.e., the noiseless D̃e and the noisy De).

Table V shows the achieved results. For each representation,
the best accuracy (around 97%) is obtained when the algorithm
is trained and tested on clean data not containing characters
at different size (D̃e). When the same network trained on
clean data (D̃e) is tested against dirty data (De), accuracy falls
down at approximately 85%. However, it is sufficient to train
CNNs on De to obtain results comparable to the noiseless case
even when dirty data is tested (94%). Therefore, to ensure
enough robustness, from this point on, we always consider
noisy datasets for both training and testing, as they are closer
to a real-world setup.

TABLE V
AVERAGE RESULTS USING EARLY FUSION AND SINGLE REPRESENTATIONS

ON NOISELESS (D̃E ) AND NOISY (DE ) DATASETS.

Method Mean Training Data Test Data
97.95% D̃e D̃e

Sraw
e 96.13% De De

84.43% D̃e De

97.56% D̃e D̃e
Savg

e 94.50% De De

85.81% D̃e De

96.87% D̃e D̃e
Smed

e 94.30% De De

85.58% D̃e De

C. Choice of multiple representations

The proposed algorithm works exploiting multiple repre-
sentations of the input data. It is therefore important to detect
which representations contain more discriminative information
for LP attribution. Table VI shows the best results obtained
using different representations (e.g., S raw

char, SWiener
char , etc.) on the

different datasets (e.g., Da, De, Do, etc.).

TABLE VI
RESULTS OBTAINED USING DIFFERENT REPRESENTATIONS ON DIFFERENT

DATASETS SORTED FROM BEST TO WORST.

Method Mean ± Std.Dev. Input Data
Sraw

e 96.13% ± 0.00 De
Savg

a 94.89% ± 0.30 Da
Savg

e 94.50% ± 0.03 De
Smed

e 94.30% ± 0.01 De
Smed

a 93.34% ± 0.02 Da
Sraw

a 93.07% ± 0.03 Da
SCTGF3

e 89.12% ± 0.03 De
SWiener

e 84.84% ± 0.30 De
SCTGF5

e 83.15% ± 0.06 De

Representations yielding higher accuracies are S raw
char, S

avg
char

and Smed
char , whereas the use of CTGF or Wiener-filtered versions

of the characters provide the worst results. The best results are
obtained using “a” and “e” datasets. This can be explained
as they are the most common characters in English and
Portuguese. Therefore, Da and De are larger than Dd, whereas
Do probably is affected by too much noise as “o” can be often
mistaken with other letters during the characters extraction
phase.

Interestingly, for some data (letters), the raw representation
in deep networks is not good enough. For instance, deep
networks applied on average filter residual (Savg

a ) of letters
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“a” yielded an accuracy of 94.89%, against the accuracy of
93.07% on letters “a” raw image pixels (S raw

a ). This justifies
the use of multiple representations and motivates the use of
data fusion.

D. Early and late fusion

To validate the early and late fusion stages, we tested only
the three selected best representations S raw

char, S
avg
char and Smed

char .
Table VII shows the results of the 5 × 2 cross-validation
experiments considering this scenario.

TABLE VII
RESULTS COMPARING EARLY AND LATE FUSION USING THE BEST
REPRESENTATIONS SORTED FROM BEST TO WORST. LATE FUSION

APPROACHES ARE HIGHLIGHTED IN LIGHT GRAY.

Method Mean ± Std.Dev. Input Data
{S raw,Smed,Savg}a,e 97.33% ± 0.00 Da,De

{S raw,Smed,Savg}a 96.89% ± 0.00 Da

{S raw,Smed,Savg}a,e,d 96.87% ± 0.00 Da,De,Dd

{S raw,Smed,Savg}e 96.84% ± 0.00 De

{S raw,Smed,Savg}a,e,o 96.24% ± 0.03 Da,De,Do

{S raw,Smed,Savg}d 93.67% ± 0.03 Dd

{S raw,Smed,Savg}o 92.21% ± 0.03 Do

{S raw,Smed,Savg}a,e,frame 88.72% ± 0.02 Da,De,Dframes

{S raw,Smed,Savg}frame 73.69% ± 0.05 Dframes

Fusion approaches typically outperform the ones using only
single representations. This is because different representations
in the input layers of CNNs can contain important information
that better identifies the banding over the different networks, as
well as other printing artifacts left behind during the physical
printing of a document. For example, banding in the borders
contained in the average filter residual are better highlighted in
its CNN and can complement the information found in the two
other CNNs that use information from the raw image data and
median filter residual. Moreover, different letters (late fusion)
can contain even more explicit banding patterns than using
the same letter. With these findings, we conclude that both
multiple representation approach and late-fusion are useful for
laser printer attribution using deep networks.

A special comment is in order regarding the use of frames
({S raw,Smed,Savg}frame). As a matter of fact, their use, instead
of letters, is not as effective when deploying a solution using
deep learning. This is explained by the fact that different data
are used as input at the same time to the same network,
each of them presenting different printing patterns, probably
demanding a different and deeper CNN architecture. This
further confirms the idea of using characters for the proposed
method.

Considering all the presented results, the statistical test using
the Friedmann pre-test yielded the p-value of 7.55 ×10−154,
helping us to state that the approaches have a statistical signif-
icant difference. Table VIII shows the statistical Tukey HSD
tests. This confirms that our proposed fusion approaches have
statistically significant difference when compared to all the
single representations. Notice that, even if the results obtained
using early and late fusion are statistically equivalent, the use
of late fusion is strongly motivated whenever a document does
not contain enough letters from the same set (e.g., enough “e”
letters).

TABLE VIII
TUKEY-HSD PAIRWISE STATISTICAL TESTS CONSIDERING CNN

APPROACHES THAT USE UNIQUE AND MULTIPLE DATA.

Ra
nk Method

TO
TAL

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 12
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
4 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 11
5 -1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 2
6 -1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 2
7 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
8 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
9 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
10 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
11 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
12 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
13 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 -1
14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14
15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -12
16 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 -1
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14
18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14

 1  = Line method is better than column method
 0  = Line method is equivalent to column method

-1 = Line method is worse than column method
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E. Comparison with existing techniques in the literature

Table IX shows the results of the 5 × 2 cross-validation
experiments considering our best approaches and existing
counterparts in the literature. In this scenario, we are using
all approaches as feature extractors and feeding a linear SVM
classifier with these vectors in the training and testing step.

TABLE IX
RESULTS COMPARING THE BEST CONFIGURATIONS OF THE PROPOSED

METHOD TO THE EXISTING METHODS IN THE LITERATURE AFTER 5× 2
VALIDATION. LATE FUSION APPROACHES ARE HIGHLIGHTED IN LIGHT

GRAY.

Method Mean ± Std.Dev. Input Data
{Sraw,Smed,Savg}a,e 97.33% ± 0.0065 Da,De

{Sraw,Smed,Savg}a 96.89% ± 0.0052 Da

{Sraw,Smed,Savg}a,e,d 96.87% ± 0.0087 Da,De,Dd

{Sraw,Smed,Savg}e 96.84% ± 0.0068 De

CTGF-GLCM-MD-MS [12] 96.26% ± 0.0054 De

S4-Conv,raw
e 95.84% ± 1.4700 De

S3-Conv,raw
e 95.40% ± 0.8400 De

GLCM-MD-MS [12] 94.30% ± 0.0110 De

GLCM-MD [12] 91.08% ± 0.0089 De

HOG [50] 90.59% ± 0.0214 De

LBP [49] 88.66% ± 0.0145 De

RECONST-ERR [11] 78.90% ± 0.0210 De

GLCM [10], [31] 77.87% ± 0.0459 De

CTGF [12] 72.46% ± 0.0377 De

Table IX shows that the first proposed method that outper-
forms the state-of-the-art is the one that uses multiple repre-
sentations of the letter “e” ({S raw,Smed,Savg}e), classifying,
on average, three more documents in each fold of the cross
validation when compared to the best existing solution in the
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literature.
When using a different letter rather than “e”, such as the

letter “a”, we also see an improvement in the results. The use
of multiple representations of letter “a” ({S raw,Smed,Savg}a)
enables to classify a mean of four more documents in
each fold when compared to state-of-the-art techniques.
The multiple representation of multiple data “a” and “e”
({S raw,Smed,Savg}a,e) shows its efficacy by showing the best
overall accuracy of the experiments (97.33%), classifying six
more documents than the best existing counterpart in the
literature, on average. The reason for this good performance
relies on the fact that this method takes into account multiple
data with different banding artifacts that can be better high-
lighted using different representations in the specialized deep
networks.

To validate the efficacy of the proposed methods, we also
performed statistical tests. The Friedmann test showed a p-
value of 3.16 × 10−138, which helps us to state that the
difference amongst the methods’ performance is statistically
significant. Table X shows the Tukey-HSD pairwise tests.

TABLE X
TUKEY-HSD PAIRWISE STATISTICAL TEST RESULTS COMPARING THE

PROPOSED METHODS TO THE EXISTING ONES IN THE LITERATURE.

Ra
nk Method
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G
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TO
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L

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10
2 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9
3 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9
4 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9
5 CTGF-GLCM-MD-MS [12] -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 2
6 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 2
7 -1 0 0 0 0 0 0 1 1 1 1 1 1 1 6
8 GLCM-MD-MS [12] -1 -1 -1 -1 0 0 -1 0 0 0 1 1 1 1 -1
9 GLCM-MD [12] -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 -4
10 HOG [50] -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 0 -5
11 LBP [49] -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 0 0 -7
12 RECONST-ERR [11] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -11
13 GLCM [10,32] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0
14 CTGF [12] -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0

 1  = Line method is better than column method
 0  = Line method is equivalent to column method

-1 = Line method is worse than column method
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Considering the best performing configuration of our algo-
rithm ({S raw,Smed,Savg}a,e) and the best literature approach
(CTGF-GLCM-MD-MS), Table XI and Table XII show con-
fusion matrices representing the classification accuracies per
printer. In Table XI, the confusion matrix of the proposed
method shows that it is possible to identify 100% of three
out of ten printers used in the experiments. These printers
are Canon MF4370DN, OKI Data C330DN and Samsung
CLP315. The CTGF-GLCM-MD-MS confusion matrix in Ta-
ble XII, on the other hand, shows 100% classification for only
one printer, the OKI Data C330DN.

It is also remarkable the fact that we are using two printers
of the same model and brand (H225A and H225B) and it is
possible to see, in Tables XI and XII, that there are just some

TABLE XI
CONFUSION MATRIX OF THE BEST PROPOSED APPROACH

({Sraw,Smed,Savg}a,e) SHOWING, IN PERCENTAGES, THE RIGHT AND
WRONG MEAN HITS PER PRINTER AFTER THE 5 × 2 CROSS VALIDATION.

BEST PROPOSED
Attributed Printer

B4070 C1150 C3240 C4370 H1518 H225A H225B LE260 OC330 SC315

Ac
tu

al
 P

rin
te

r

B4070 99.50 0.00 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00
C1150 0.52 99.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3240 0.67 0.00 98.83 0.50 0.00 0.00 0.00 0.00 0.00 0.00
C4370 100.00
H1518 0.33 10.50 89.17
H225A 93.10 6.90
H225B 0.18 6.37 93.45
LE260 0.17 0.33 99.50
OC330 100.00
SC315 100.00

TABLE XII
CONFUSION MATRIX OF THE BEST LITERATURE SOLUTION SHOWING, IN
PERCENTAGES, THE RIGHT AND WRONG MEAN HITS PER PRINTER AFTER

THE 5 × 2 CROSS VALIDATION.

CTGF-GLCM-MD-MS [12]
Attributed Printer

B4070 C1150 C3240 C4370 H1518 H225A H225B LE260 OC330 SC315

Ac
tu

al
 P

rin
te

r

B4070 98.67 0.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1150 1.72 98.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3240 0.00 0.00 97.83 2.17 0.00 0.00 0.00 0.00 0.00 0.00
C4370 0.00 1.00 0.50 98.50 0.00 0.00 0.00 0.00 0.00 0.00
H1518 1.33 10.33 0.00 0.00 86.83 0.50 0.00 0.00 0.84 0.17
H225A 0.00 0.50 96.98 2.52
H225B 12.90 87.10
LE260 0.67 0.50 0.17 98.66
OC330 100.00
SC315 0.50 0.33 99.17

misclassifications between them. The errors in these cases are
likely related to the printing artifacts generated by these two
printers, which are similar for some documents. The proposed
approach misclassified an average of 6.6% of the documents
in these two classes, while the best existing method in the
literature did it for 7.7% of the documents. It is also important
to note that there are some misclassifications when classifying
printers H1518 (an HP printer) and C3240 (a Canon printer)
in both cases. This happens because these two printers present
a slightly smaller average font size with respect to the other
eight, as can be seen in Fig. 9. Therefore, they probably share
some common artifacts.

VII. CONCLUSIONS AND FUTURE WORK

Laser printer attribution is a difficult task that involves
investigating several printing patterns, created with different
manufacturing processes, models and brands. Existing meth-
ods in the literature rely on computer vision and machine
learning algorithms applied to scanned versions of documents,
aiming at finding intrinsic signatures on printed material that
better discriminate different printers. The main problem with
these approaches is that they are underpinned by so-called
hand-crafted features, which often require expert domain-
knowledge to proper capture discriminative artifacts useful
in the attribution process (e.g., intrinsic texture, geometric
distortions in the printed material, etc.). Ideally, it would be
interesting to also be able to detect important discriminative
features directly from training data (data-driven methods).
Those features could be even combined with hand-crafted ones
for a more effective method.

In this vein, in this work, we have proposed a solution capa-
ble of learning discriminative features for the printer attribu-
tion problem directly from available training data (i.e., scanned
versions of printed papers). The solution inherits the benefits
of convolutional neural networks and back-propagation proce-
dures, evolving the descriptor during training, thus making
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these networks tailored to the analyzed data. The method
relies on artifacts captured from different letters of documents
in different languages. It also uses other letters rather than
the commonly used “e”. To better highlight characteristic
artifacts, different data representations through some image
transformations were also investigated.

As we discussed thoroughly in this work, the use of multiple
representations of multiple data allows to outperform the state
of the art when for the laser printer attribution problem. Multi-
ple representations fed as input to the used deep networks are
important because they highlight different characteristics of the
input images. We also showed that multiple representations of
multiple data is a reasonable choice for laser printer attribution
with deep networks. Indeed, with the benefits of the multiple
representations presented before, multiple data also ensures a
larger amount of voters per document.

One interesting finding in this research is the promising
use of these different representations, composed by low-pass
filtering residuals, as input to Convolutional Neural Networks.
In a real-world setup, in which a suspect document was printed
using a toner different from the one used for training the
method, these low-pass filtering residuals can work better
for pointing out the source than raw image inputs, as this
last representation is more affected by the change of toner
due to the increased presence of high-frequency components
linked to toner artifacts. One natural extension of this proposed
approach for this cross-dataset setup is replacing the raw
image representation with other low-pass filtering residual
analyses, such as the Gaussian filtering residual [51], bilateral
filtering [52] and guided image filtering [53].

With current solutions to the printer attribution problem
achieving high classification results, we believe it is time to
aim at more daring challenges. For instance, current methods
in the literature have shown great potential for classifying
documents printed in similar conditions (both physical but
also temporally close together. As a matter of fact, the printer
attribution problem is much more difficult than its related
problem of sensor attribution (for cameras and scanners). The
reason is that the printing process has much more mechanical
elements involved and intertwined when printing a document.
Such elements surely play different roles in the creation of a
unique signature for each printer. However, and the literature
needs more study in this regard, it is natural that such signature
will not last forever and will surely degrade over time as
different elements in the printer age and defects appear. Then
the next question is what happens if a document was printed
several years ago and the printer under suspicion was just
recently seized. A thorough investigation of this problem
considering data captured in several moments along the years
will be a significant contribution to the field.

Additional future work may be devoted to developing deep
networks to be applied on different types of data, such as
bigger letters and frames. Finally, we believe that also other
different representations can be taken into account in further
investigations. Finally, we also plan to study the behavior of
the proposed approach on interpolated (rather than cropped)
data.
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