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Abstract—Jamming attacks represent a critical vulnerability
for wireless secret key generation (SKG) systems. In the psent
study, two counter-jamming approaches are investigated foSKG
systems: first, the employment of energy harvesting (EH) athte
legitimate nodes to turn part of the jamming power into usefd
communication power, and, second, the use of channel hopgjn
or power spreading in block fading channels to reduce the impct
of jamming. In both cases, the adversarial interaction between
the pair of legitimate nodes and the jammer is formulated as

a two-player zero-sum game and the Nash and Stackelberg

equilibria (NE and SE) are characterized analytically and n
closed form. In particular, in the case of EH receivers, the
existence of a critical transmission power for the legitimée nodes
allows the full characterization of the game’s equilibria and also
enables the complete neutralization of the jammer. In the cse
of channel hopping vs. power spreading techniques, it is skm
that the jammer's optimal strategy is always power spreadimy
while the legitimate nodes should only use power spreadinqi
the high signal-to-interference ratio (SIR) regime. In the low
SIR regime, when avoiding the jammer’s interference beconme
critical, channel hopping is optimal for the legitimate nodes.
Numerical results demonstrate the efficiency of both counte
jamming measures.

Index Terms—Secret key generation, jamming, energy harvest-
ing, channel hopping, zero-sum game.

I. INTRODUCTION

Typically, jamming in wireless communication systems has
been investigated using game theoretic tools [19]-[27h-Co
trary to our work, these earlier studies focus on perforreanc
metrics that are either based on the legitimate nodes’ kigna
to-interference-plus-noise ratio (SINR) [19]-[25] and dot
incorporate physical-layer security constraints at atl,ace
based on the secrecy capacity [26], [27]. The secrecy dgpaci
is inherently different than the SKG capacity considerettis
work; the former measures the maximum rate at which both
confidential and reliable communication is possible, whie
latter represents the maximum rate at which a common secret
key that can be extracted from the observation of correlated
sequences at two remote locations [28].

In the past, two main counter-jamming approaches have
been commonly considered: direct sequence spread spectrum
(DSSS) and frequency hopping spread spectrum (FHSS) [29],
[30]. In either approach, the impact of power constrained
jammers can be limited because their optimal strategy has
been proved to be spreading of their available power over the
entire bandwidth (and thus jam with potentially low power).
However, DSSS and FHSS systems require a pre-shared secret
to establish the spreading sequence or the hopping pattern a
Alice and Bob; as such, they are not directly applicable to
SKG systems that on the contrasgek to establisla secret

Secret key generation (SKG) from shared randomnesskal). Attempting to resolve this contradiction and recamcil

two remote locations has been extensively studied [3]-[1RSSS and FHSS with SKG, uncoordinated frequency hopping
and has recently been extended to unauthenticated chanaal$ spreading techniques have recently been investigated i
[13], [14]. SKG techniques have also been be incorporated[#1], [32]. The main idea behind the proposed approaches was
protocols that are resilient to spoofing, tampering and an-the randomization of the selection of the hopping/spreadin
the-middle active attacks [15], [16]. Still, such key geaigim sequences, at the cost of reduction of the achievable rates f
techniques are not entirely robust against active advessarsecret key establishment.
particularly during the advantage distillation phase. Ben However, in uncoordinated hopping/spreading techniques
of service attacks in the form of jamming are a knowthere are minimum requirements regarding the length of the
vulnerability of SKG systems; in [17], it was demonstrategseudorandom sequences employed. As a result, accounting
that when increasing the jamming power, the reconciliatidor the strict bandwidth specifications of fourth and fifth
rate normalized to the rate of the SKG increases sharply ageheration networks, the use of long pseudorandom segsience
the SKG process can in essence be brought to a halt. As SK&h be a limiting factor. Thus, investigating alternatioaiater-
technigques are currently being considered for applicatiuth jamming approaches based on the use of channel hopping
as the Internet of things (loT) [18], the study of appromiator power spreading over multiple orthogonal subcarrierg, e
counter-jamming approaches is timely. orthogonal frequency division multiplexing (OFDM) syst&m
. o [19], [21], is timely and offer an interesting alternative[81],
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to utilize the SKG capacity (a physical layer quantity).

On a different note, next generation terminals are likely to Hy
be enhanced with many new features that could prove pivotal Alice H, Bob
in protecting against jamming. For example, greater energy

autonomy exploiting energy harvesting (EH) approacheg [33
[34] is being researched for systems such as wireless sen- \ /
sor networks for loT applications. Thus, it is interesting Ga Eve G

to investigate whether EH could be utilized as a counter-
jamming technique by exploiting the harvested jamming powe
to enhance the quality of the legitimate communication.
Motivated by the above, in the present work we propos$gy. 1. SKG system model with two legitimate nodes and a simglversary.
two novel approaches for alleviating the impact of jamming i
SKG systems. In both approaches, we model the interaction ] )
between the legitimate nodes and the adversarial jammerh@§vest energy for a duration,, (at the NE), the jammer
a two-player zero-sum game in which the SKG Capaciﬂputrallzatlon strategy is also a SE solution. This meaag th
plays the role of the utility function. We investigate twormo N & hierarchical game, the jammer can potentially be dederr
cooperative solutions: the Nash equilibria (NE), when boffom launching the attack. o . .
players make their decision simultaneously and the Stack-n the second part of this investigation, extending theistid
elberg equilibria (SE), when the legitimate nodes hold df [19], [21] to SKG systems, counter-jamming policies are
advantage and choose their strategy first while anticigatifivestigated forN block (subcarriers) fading additive white
the jammer’s response. Gaussian noise (BF AWGN) channels. At the NE, the jammer
In the first part of this contribution, we study systems iflways spreads its power over all subcarriers, while for the
which the legitimate nodes are equipped with EH capatsliti¢egitimate nodes the optimality of channel hopping or power
and examine whether this added functionality is useful #Preading depends on the channel parameters. In the high SIR
preempting jamming attacks. We focus on time switching EF¢gime, the legitimate nodes should use power spreading to
protocols [34]: for a fraction of time the legitimate node&Xploit the entire available spectrum given the relativiely
operate in EH mode and switch to the SKG procedure fmming interference. On the other hand, at low SIR, the
the rest. To the best of our knowledge, this is among the fitggitimate nodes should use channel hopping and transmit ov
works to investigate EH as a counter-jamming approach withsingle subcarrier to avoid most of the jammer’s interfeeen
the exception of [25}. Furthermore, in characterizing the game’s SE we find that the
Our analysis reveals the existence of a critical power threPPtimal SE strategies reduce to the NE ones, demonstrating
old py, for the legitimate nodes and of an associated threshdltpt there is no extra payoff to be earned from the advantage
harvesting duration,. When the legitimate nodes employf playing first.
EH for longer thanr,, the attacker’s optimal strategy is not to Preliminary results of this work have been presented in
jam at all, i.e., the jammer is effectively neutralized. Hwer, [1] and [2]. The major contributions and improvements of
neutralizing the jammer is not a stable solution to unikiterthis journal paper as compared with [1] and [2] consist in:
deviations (if the strategic decisions are taken simuttasty) Providing complete proofs of all the results regarding the
and is therefore not a Nash equilibrium (NE) of the gam&/E analysis and the jammer neutralization state; relaxieg t
At the NE, it is found that both the legitimate nodes and th@ction set of the jammer, in the energy harvesting case, from
jammer transmit with full power and that the EH duration dod§€ discrete choice between remaining silent and transiitt
not correspond always to the above threshold. At low sign@l full power into the continuous interval of all possible
to interference ratio (SIR) (e.g., relatively low transmpitwer POwers, which has brought to light the existence of addation
or high jamming power), the EH optimal duration equal®ES; providing the additional analysis of the Stackelberg
7. Although the attacker jams with full power, the powefquilibrium; providing a comparative discussion betwelea t
collected from EH cancels out the impact of the attack af@0 counter-amming methods in Sec. V-C.
the SKG capacity is equivalent to the case of using EH for the The paper is organized as follows. In Sec. I, the SKG
same duration in absence of a jammer. At medium to high SIR@seline system model is introduced. In Sec. lIl, the advesis
the EH optimal duration is lower than, and the legitimate interaction between the EH legitimate nodes and the jammer
nodes may even not harvest energy at all. is formulated and analyzed using a zero-sum non-cooperativ
On the other hand, when moving to a hierarchical gang&me framework, while in Sec. IV this setting is used to
formulation, the SE analysis reveals that the legitimateeso Study channel hopping vs. power spreading in BF AWGN

should play the NE strategy. Whenever the legitimate nodé&ystems. Numerical illustrations and a detailed discussio

these counter-jamming strategies are provided in Sec. lewh
1The recent work [25] proposes to harvest energy from the jamgm the conclusions are given in Sec. VI.

interference in a multi-user interference channel in wttlod jammer is not

a strategic decision maker. In terms of formulation, a dlafgatimization

problem is investigated (as opposed to an adversarial g&fughermore, the |l. SKG SYSTEM MODEL IN THE PRESENCE OF AJAMMER

global performance metric in [25] does not incorporate sgciconstraints . . ..

and the harvested energy is not directly exploited in thernanication phase, The baseline SKG system model with two Iegltlmate nodes,

appearing only as an additional term in the utility function denoted by Alice and Bob and a single adversary, denoted




by Eve, is depicted in Fig. 1. Typically, the SKG process In this work, we assume that Eve is no longer a passive
consists of three phases [4], [6]. In the first phase, reflerreavesdropper but a malicious jammer. To include jamming at-
ro asshared randomness distillatipilice and Bob observe tacks in the above model, we consider the following extemsio
dependent random variables denoted By, Yz while an _

eavesdropper, referred to as Eve, obserygs In wireless Ya = VPHo+1Ga+ Za, (6)
channels, a readily available source of shared randomgess i Yp = pHo+"GB+ Zs, ()

the multipath fading due to the reciprocity of the wirelesgssuming that Alice and Bob exchange constant probe signals
medium during the channel’s coherence time [10]-[12]. Herg] with powerp < P and that Eve transmits constant jamming
we focus exclusively on shared randomness extraction frafiynals [17] with powery < I'. The fading coefficient in the
Rayleigh fading coefficients. link between Eve and Alice is denoted Iy ~ N (0,0%)

In the next two phases, known m$ormation reconciliation and in the link between Eve and Bob by ~ A (07 0123), For
and privacy amplification side informationV" is exchanged simplicity and without loss of generality, the noise vatéb
between Alice and Bob, generated by corresponding encodgrs and Z are assumed to have unit variance, i.e., are mod-
fa, [B- Atthe end of the SKG process, a common k€y= K eled as i.i.d. Gaussian random variablgs, Zz ~ N(0,1).
is extracted at Alice and Bob such that, for any> 0, the  Under these assumptions, a simple calculation reveals that

following statements hold [8]: the SKG capacity can be expressed as a function arid :
Pr(K=fa(Ya,V)=fp(YB,V)) = 1l-¢ 1) 1 o
. C(p/)/) = Slog, | 1+ le 2 ) (1402
I(K;V) < ¢ (2) 2 2+ (O_i +O’%)’y+ ( +UA“/)2( +027)
TP

H(K) > log|k| - ¢, (3) ©
where H (K) denotes the entropy of the kéy and I(K; V') By inspectir)g the .first-_order d_erivative; of (8), we cqn«ﬂud
denotes the mutual information betwe&hand V. that C(p,~y) is a strictly increasing function qf for any fixed

The first inequality demonstrates that the SKG process can@nd @ strictly decreasing function gffor any fixedp. This
be made error free; (2) ensures that the exchange of side infg'Plies that the legitimate nodes will transmit at full pawe
mation through public discussion does not leak any informi2 Maximize the SKG capacity, whereas the jammer will also
tion to eavesdroppers; while (3) establishes that the géeekr transmit with f.ull powerI" to minimize the SKG capacity.
keys attain maximum entropy (i.e., are uniform). Under th@!SO, it iS a strictly convex function with respect to (w4
three conditions, an upper bound on the rate for the generat/o" 2Ny fixedp > 0 as its second derivative w.r4. is strictly
of secret keys is given byin {1(Ya; Y5), I(Ya; Y|Vg)} [3], POSItve.
[4]. Assuming rich multipath environments, the decoriielat
properties of the wireless channel over short distancedean
exploited to ensure that Eve's observatiga is uncorrelated I order to study EH as a counter-jamming measure, we

with Y4 and Y5 [7]-[11]; in this case, the SKG capacity isfocus on a time—;w_itching EH scheme [3_4], .i..e., we assume
given by [3, Sec. II] that each transmission symbol of duratibris divided in two

parts. In the first period of duratiori” (0 < 7 < 1 being the
C =1(Ya;YB). (4) fraction of T’ dedicated to EH), both Alice and Bob operate in
EH mode with efficiencyd < ¢ < 1; in the second period of
We assume that this holds true in the rest of this study addration(1 — 7)7', the legitimate nodes operate in SKG mode
consider the SKG capacity above to be the focal performangsing the overall available power (including harvested @ow
metric. For simplicity, we assume that the energy harvested can be
SKG in Rayleigh fading channels has been extensivedyored in a battery without any overflowing issues (unlichite
analyzed, e.g., [7], [8]. In these works, it was assumed thgtbrage) [35].
Alice and Bob exchange unit probe signals to excite the fadin Furthermore, for simplicity of the mathematical derivatio
channel and obtain respective observatibisand Yz with and to ensure symmetry in the energy harvested at Alice and
Bob we assume that} = 0% = o2 (the Eve-Alice and Eve-
Ya=Ho+ Za, Yp = Ho+ Zg, Bob links have equal variance). Given the above considaTsiti

] o . and assuming that the energy harvested by Alice and Bob is
whereH), denotes the fading coefficient in the link between thghear in the received RF power [34], [36]:

legitimate nodes, modeled as a zero mean Gaussian random )

variable Hy ~ N'(0,0%), and, Z4 and Zg model the effect E = (rTvo", 9)

of AWGN and denote independent and identically distributale harvested power for each legitimate node per communica-
N(0,Ng). Using this notation, the SKG capacity has been

IIl. ENERGY HARVESTING AGAINST JAMMING

E
expressed as [8]: pPH = a—ar " (10)
— T
1 2 o C7'0'2 . . . . .
C=1(Ya:Yp)==log, [ 1+ OH — . ® wherex = 5~ is a convex increasing function of Slnc.e
2 Na+ Np + =472 the SKG procedure encompasses two cycles (from Alice to
H



Bob and from Bob to Alice), each legitimate node harvestd time harvesting the jamming interference before acyuall
2k overall power that can be used in the SKG mode. Thusansmitting. In other words, the jammer is forced to stégnsi

the SKG capacity is given by: since the harm it can cause by interfering in the SKG phase
is overcome by the harvested energy in the EH phase. This

ip, ) = 1-7 log 14 (p+ 2k7y) 0% novel result shows that the jamming interference, which is
B 2 2(1+ 02) + (+e?y)? ]7  commonly thought as being harmful to the legitimate commu-
(pF2em)oy (11) nication, can be exploited and transformed into useful gowe

via EH. If Alice and Bob transmit with exactly,(7), the
with power constraintp < P, v <T. jammer becomes indifferent between all its choiges [0, T)

A simple inspection of (11) reveals that this scenario &nd has no interest in actively jamming the transmission.
a generalization of the standard SKG setting. Indeed, if theThe necessary conditions for the jammer neutralization are
legitimate nodes decide not to harvest energy, +.e= 0, (8) formalized below.
is obtained forc% = 0% = 02, N4 = Np = 1. In the model  Proposition1: The optimal strategy for the legitimate nodes
with EH, the legitimate nodes can maximizeby tuning the that maximizes the SKG utility while ensuring that the jamme
additional variabler. However, it is no longer straightforwardhas no interest in actively jamming the transmission is mjive
that the jammer should transmit with the maximum availabley:

ower ast is no longer monotonically decreasing in
p u(pa'va) g y g pN.] _ min{P,pth(T*)} and 7_N.] — min{Tth(P),T*},

. . , (16)

Non-cooperative game theory provides the natural framvev-here « € (0,1) is the unique maximizer ai(ps(7),,0)
work to study the adversarial interaction between the ilegit - TT : q Pth{T)s T

mate nodes and the jammer. Although game theory has alre‘%%r the detailed proof the reader is referred to Appendix

been exploited in physical layer security problems, e.6],[2 . ) : : o :
[27], to the best of our knowledge, this work is among th’é" Notice that, if the jammer stays silent = 0, there is

. . : . no actual energy harvested during the EH phase of duration

first to investigate EH as an effective means to counteract oR ; . , )

jamming attacks 77/, Rather, the legitimate nodes’ choice to use EH for a

J ' fraction of timer"” acts as an effective threat to ensure the

o jammer has no interest in actively jamming the transmission

A. Jammer Neutralization However, neutralizing the jammer may not be the overall
Before introducing the game framework, we make tweptimal strategy for the legitimate nodes. A hi_nt for thi_s is

important observations regarding the SKG utility in (11fanthat wheneverr¥” = 7* < 7,;,(P), the transmit power is

discuss their implications. p¥7 < P, which we know is not optimal from Remark 1.
Remark 1:For any fixedr and~, a(p, r,) is monotonically
increasing inp and B. Game Formulation and Nash Equilibria
arg max (p,7,7) = P. (12) Th_e interac_tion between the legitimate nodes and the jam-
P€[0,P] mer is formalized as a two-player zero-sum game, defined as

the tupleG = { Az, As, @ (p,7,~)} in which the players are:
player L representing the legitimate nodes (Alice and Badb ac
as a single player) on one side, and player J, the jammer,
on the other. The actiofip, 7) of player L lies in the set
Ap = [0,P] x [0,1], and the actiony of player J lies in
the setd; = [0,T]. The objective of player L is to maximize
arg min @ (p,7,v) = 0, if p < pwm(7) (13) the SKG utilitya(p, T,~) given in (11), whereas player J aims
velo ] _ at minimizing it.
arg vg}f}] u(p,m,y) €[0T, if p=pm(r) (14) The two players are adversaries and the optimal strategy of
arg min @(p,7,9) = T, if p> pe(r). (15) one player_depend_s on the choice of_thelr oppom_ant a_nd cannot
v€[0,T] be determined unilaterally. In such interactive situatiothe
NE [37] is the natural solution concept. Intuitively, a plefi
Remark 1 shows that, to maximize the utility, the legitimatg™NZ, +NE ANE) ¢ A, x A; is a NE if none of the players
nodes should transmit at maximum powerOn the contrary, can benefit by deviating from this profile knowing that their
Remark 2 shows that the jammer should practically switch apponent plays accordingly. Hence, NEs are system staiés th
between staying silent, i.ey,= 0, and jamming at full power, are stable to unilateral deviations.
i.e.,v = I', depending on the choic@, 7) of the legitimate ~ We can easily check that the stgé"”, V7 0) is not a NE
nodes. since the legitimate nodes gain by deviating from it. Knayvin
Remark 2 reveals that the legitimate nodes can neutrakze that the jammer stays silent, player L can increase the SKG
jammer by transmitting at a relatively low power< p., (7). utility by deviating tor = 0. Using the whole symbol period
Although this result may seem counter-intuitive at firsisthin SKG mode increases the utility when no energy is harvested
P

condition is equivalent to- > 74, (P) = Frac which means in the EH phase. This, in turn, will cause also the jammer to

that the legitimate nodes spend a relatively large proportideviate fromy = 0 and actively jam the transmission.

Remark 2:For any fixedp and 7, a(p, 7,) is monotone in
~. In particular, it is monotonically decreasing nif p >
pen(T) = 125—: a constant ifp = py,(7), and monotonically

increasing ifp < p;, (7). This implies that:



Theorem 1 shows that the gargehas at least one NE at As a last result, it turns out that neutralizing the jammer
which both players transmit with maximum power. This NENJ) in Proposition 1 incurs a non-trivial cost and the alxal
may be unique or not, depending on the system parameterdility is lower or equal to the NE utility.

Theorem1: The gamey has at least one NE. Moreover, Proposition2: The SKG utility obtained when neutralizing
the profile (P,7V¥#,T) is a NE solution such that the EHthe jammer (NJ) can never be greater that the utility at the
strategy is eitherr™® = 0 or 7V = min{r,(P),Tma:} NE. Both utilities are equal, if and only iV Z = 7, (P).
with 7, (P) = %}C and 7., € (0,1) representing the Proof: Since (P,7VF) = argmax,,i(p,7,T),
critical maximum point ofa(P, 7,I") w.r.t. 7, depending on from the NE's best-response property, we have that
the system parameters. t¥¥ < 1, (P), then the profile a(p™’,7V7/.T) < a(P,7VF ). From Remark 2, we
(P,7NE T is the unique NE of the game almost surely. have thata(p™’,7V/.T) = a(p™/,7V7,0) (the jammer

The proof is detailed in Appendix B. We observe thais indifferent between all its choices) and we obtain that
at the NE above P, 7V¥ T') and depending on the systemi(P, 7V T) > a(p™N7,7¥7 0). Intuitively, when searching
parameters, player L may harvest energy for a fraction oé tinfior the NJ state in Proposition 1 the additional condition
TNE < 7NJ or not at all?N® = 0. Intuitively, not using the that the jammer has to be neutralized (i.p.,= pi (7))
SKG mode for the entire transmission symbol (for example testricts the feasible set of all paif®,r) which results
neutralize the jammer) becomes too costly at high SIR whén an optimality loss compared to the NE. Notice that
the jamming interference is relatively low or negligible. max, U(pin(7),7,0) = max, 4(pw,(7),7,T). This further

Concerning the uniqueness of the NE, the only casesimplies that, if7V¥ = 7,;,(P), the aforementioned restriction
which the states(P,0,T') and (P,min{7,,4, 7:n},I) can is optimal and(p¥’/,7V7) = (P, 7V¥) which proves the
both be NEs is when the provided utilities are identical, i.edirect implication of the second claim. The hypothesis of
@(P,0,T) = (P, min{Tmaz, 72 (P)},T) in addition to the the reverse implicationzi(p™”/, 77 0) = a(P,7VE T) is
constraint on the system parametdrst o2T' > V/20% P equivalent toa(p™”/,7V7,0) = a(P,7VF,0). From Ap-
(see Appendix B). However, we argue that such an equalitendix A, the functiorii(p., (), 7,0) has a unique maximizer
condition on the system parameters can only happen in vevy.t 7 € [0, 74 (P)] given by 7/ which results in that
special cases, otherwise stated, with zero probability on(p™”/, V7)) = (P, 7VE). [
continuous sample space).

Furthermore, whenever player L chooses a strategy of t&e
form (P,7;,(P)) at the NE, the jammer becomes indiffe- ) h } o
rent between all their possible transmit powers[onl'| (as After investigating the NE solution of the strategic inter-

per Remark 2). Hence, in such cases, the strategy proﬁ@ion in which the legitimate nodes and the jammer choose
(P, 7,(P),T) may not be the unique NE. their optimal strategies simultaneously, a natural risasge is
Theorem 2: If the legitimate nodes’ NE strategy inWhether the solution of the game changes assuming a higrarch

Theorem 1 is such that™F = 7,(P), the gamegG in the players’ choices [24], [26]_, [37]. To tackle this _issu
may have other solutions of the forf®, ., (P),7V¥) with We stu_dy t_he SE and compare it to the NE and th_e jammer
~vNE ¢ (0,T). More precisely, any strategy of the formneutralization (NJ) states in Sec. IlI-B and III—A_, resp@ly. .
(P, 7, (P),7NF) with vNE € (0,T) meeting the additional We assume thaF the Iead_er ?;‘Eth%]game. L is _pl_aylr?g first
condition arg max, (o1 @(P, T, YNEY = 1, (P) is also a by choosing their best actiofp”*, 7°*) while anticipating
NE of the game. All such NEs provide identical utility tdh€ response of player J. The follower, player J, observes th

Stackelberg Equilibrium

(P, 7, (P),T). choice of_ the leader and reacts optimally (or best-responds
The proof and the detailed system conditions under whi& choosingy®®. _ .

the game may have other NEs of the ty( 7., (P), To be specific, for an grbltrary_chmc_e of player(k, 1),

with /N2 ¢ (0,T) aside from (P, 7, (P),T) is provided the best-response of the jammer is defined as:

in Appendix B. These NEs may exist with non-zero proba- ~BR(p, 1) = arg min_a(p, T, ). (17)

bility since the additional condition depends on the vari- ’ ~elor]

NE
able ~ € (0,I") and not only on the system para-pe jeader, anticipating the jammer's reaction descrilbeve,
meters, as opposed to the condition entailing t¥@t0,I)  .on choose their optimal strategy as follows
and (P,min{7mq, 7tn}, ') are both NEs. It suffices that
SE _SE
T

arg max,¢o 1) W(P, 7,7V ¥) = 744, (P) holds for a single value (p°~, ) = arg max a(p, 7, YR (p, 7)). (18)
of vVF € (0,T) to entail the existence of such NEs. P

Apart from providing a complete NE analysis, the existencEne optimal strategy of the jammer is the best resparide=
of the NEs in Theorem 2 is not very relevant in practice. First 2% (p°F r5F) given the optimal leader’s strategy above. The
whenever they exist, the utility at such NEs is identicallte t solution is described in the next Theorem.
utility of the NE profile:(P, r,(P),T) in Theorem 1. Second, Theorem 3: Assuming the hierarchy described above, if
given Remark 2, the jammer can be assumed to restrict theif? < 7, (P) whererV¥ is given in Theorem 1, the SE of
strategy space frorf0, I'] to the discrete choicef),I'} with the gameg is unique (almost surely) and identical to the NE
no loss of optimality. Assumingd; = {0,T'}, the resulting (P,7V? T'). Otherwise, ifr* = 7, (P), both the NJ state
gameg has a unique pure-strategy NE (almost surely) whigh Proposition 1 and the NEP,7VZ T') are SE solutions
is given in Theorem 1. providing identical SKG utility.



The proof is included in Appendix C. Notice that in all Given the above model, an easy calculation reveals that the
possible cases™¥ < 7tn(P) (see Theorem 1). The aboveSKG capacity over theé-th subcarrier can be expressed as a
result shows that neutralizing the jammer is a rationaltsmiu function of p; and~; as:
when the strategic decisions are not taken simultaneously a PN
the legitimate nodes play first. However, since the NJ stat&' (P 7i) = 1(Yai: V.i)

cannot provide a strictly better utility than the NE statee(s 1 o2 p;
Proposition 2), the hierarchical play does not bring an alctu =glogy | 1+ vivss | (22
benefit to player L when compared with the NE. Nai+ Npi+ =525

Finally, we note that as opposed to the NE, the SE requires with Na; =1+ o4 Npi=1+ o2

the leader to be able to anticipate precisely the respondeof ] _
follower. For this reason, the leader cannot actually choos N order to evaluate the overall SKG capacity, we formalize

a strategy such that = p,, () which renders the follower the channel hopping vs. power sp_reading techniques slynilar
indifferent between all its actions € [0,T] (and may choose 0 [19], [21]. When channel hopping is employed, all of the

any jamming power in an unpredictable way). A simple Wa9vailable power is used to transmit on singlg_ randomly
to overcome this issue is for the leader to transmipat Chosen subcarrief. Therefore, when the legitimate nodes

pen(T) — € whenever it wants to silence the jammer (at th@Mploy channel hopping on subcarrigrthenp; = NP and
NJ), and to transmit ab = p;s(7) + ¢ whenever it wants Pk = 0 for k£ # ¢, while when the jammer hops on subcarrier
the jammer to transmit at full power (at the NE), with> 0 ¢ then~y; = NI and; = 0,k # 4. On the other hand,
ande < 1 chosen arbitrarily small, with little or no practicalWhen power spreading is used, the available power is equally
impact. Furthermore, this also the excludes other SE suigti distributed across all subcarriers so that= P and~; = I'

(e.g., the NEs in Theorem 2 cannot be SEs). Vi< N. o . .
When transmitting over the entire spectrum, the choice of

IV. CHANNEL HOPPING VS POWER SPREADING IN BF the uniform power allocation is motivated by the fact that th
AWGN CHANNELS nodes do not know their actual channel gains and that their

If the legitimate nodes do not have EH capabilities W@tatistics are identical across all frequency carrierstedeer,
investigate yet another way to defend against jamming BySUMINg that player L transmits with uniform power allo-
assuming that the legitimate nodes can employ channel h§gtion and from the convexity of the SKG function in (22)

ping or power spreading strategies over multiple orthogon‘%{-r-t_- 7i, it turns out that the uniform power allocation for
subcarriers. For this, we generalize the system model jammer is optimal and minimizes the overall SKG utility.

and (7) to anN-BF AWGN channel. Alice’s and Bob's MOre general power allocation policies can be considered in

observations on theth subcarrier — denoted b ; and¥y; [Uture mvest_lgatllons. _ 1t of view for th g
respectively — are expressed as: From an implementation point of view for the propose

channel hopping and power spreading strategies, we canside

Yai = il +7iGai+ Zag, (19) that an OFDM transmitter with a standard inverse fast Fourie
Voi = piHi+ 7iGpi+ Zp, (20) transform (IFFT) block is employed. In channel hopping

mode, all but a randomly chosen IFFT input are set to

where the fading coefficient in the link between Alice and Bobg, Ng coordination regarding the chosen channel hopping
on thei-th subcarrier is denoted bi;, in the link between o o eading options is required between transmitting and

Eve and Alice byGa,; and in the link between Eve and Bob by.o ceiying terminals. This is possible if wideband receptio

Gp,i. We as_sumethgt the fading cogﬁlments arei.i.d. Gguss'gnemployed by all parties, allowing transmitting termal
random variables W'QHHZ' - N (0’ UH)' Gai " N (0’_‘7%‘) to independently choose their strategies without cootitina
and G, ~ N (0,07%). Notice that the fading coefficients yin the receiving terminals. Such a wideband reception of
are assumed to have the same statistics. This assumptiog,iSx orthogonal subcarriers can be efficiently implemented
justified, since, broadly speaking, narrowband fading ddpe using a standard FFT based OFDM receiver.

on the bandwidth (which is the same for all subcarriers) andUsing this framework in the following, for Alice and
not on the central frequency (unlike wideband fading ordargy ;e probability of channel hopping on subcarrieis
scale fading) [38]. Furth_e_rmore, thg noise variatﬂ?@gi_and_ denoted byw; Vi < N, while any41 denotes the probability
Zp,; are assumed to be i.i.d. Gaussian zero mean unit variai¢& eading the available power uniformly over the whole
random variables. Finally, Alice and Bob exchange ConSta:gBectrum. Similarly, we defing; for the jammer. Since
probe signals [8] with power; and that Eve transmits constant, _ [a1,...,ans1] and B = [B1, ..., Bn41] are discrete

jamming signals [17] with powe; on thei-th subcarrier so oty distributions, we have the constraints > 0, V7,

tgit.the following average power constraints are satiéfi@, Zf\il a; =1, 8; >0, Vj, and Zf\il = 1.
[21]; LN | Given the above, the SKG capacity over tNeorthogonal
el . il _ subcarriers is given by:
N PSP gy m s (21) given by
i=1 i=1 N
7 = i{ (1 ; C(NP,0
2Using constant probe signals preserves the Gaussianitheofirtputs u(a, B) = N Z {@i(1 = fi = Bn+1)C(N P, 0)

VPiH;, 7iGa,; and \/7;G g ;, which is optimal for the legitimate nodes i=1
and the jammer in our AWGN setting. +a;8;C(NP,NT) + a;Sn+1C(NP,T)



+ant18i[(N —1)C(P,0) + C(P,NT)]} if) the pure actions that result in strictly smaller payoffs are

played with zero probability at the NE
+ani18n 1 NCO(P, F)}v (23)
where the normalizatios: accounts for measuring the SKG if a(a” ) < a(a’ser), i €Ly thenk € Ny,
capacity in bits/s/Hz. In (23), the first term correspondth® if a(e;, ") > (e, B"), i € Ir,thenk € N,
case in which Alice (resp. Bob) hops on subcariiend the
jammer hops on a different subcarrier; the second term to tfifiere the sets\,Z, C {1,...,N + 1} denote, respec-

case in which Alice (resp. Bob) and the jammer both hop qRjely, the indices of the pure actions that are not played at
subcarrier;; the third term to the case in which Alice (reSpthe NE and those that are p|ayed at the NE by p|ayer L:
Bob) hops on subcarrigrand the jammer spreads; the fourthy;, — {ilar = 0}, Zr, = {1,...,N + 1} \ Nz; similarly,
term to the case in which the Alice (resp. Bob) spreads and i@ sets\;,Z; C {1,...,N + 1} denote, respectively, the
jammer hops on subcarrierFinally, the last term correspondsset of indices of the pure actions that are not used or are

to the case in which they both spread their power. used by player J at the NEN; = {i|3f = 0}, and
Zy={1,...,N+1}\ N.
A. Game Formulation and Nash Equilibria At a first glance, Definition 1 provides a simple way to

We model the competitive interaction between player L arfi@mpute the NE of the gam@ by solving a system of linear
J as the following zero-sum ganm — {flL,/\z,ﬂ(a,ﬂ)}, equations and checking some conditions. Still, in orders® u
where the payoffi(a, 8) is given in (23). The action sets of Definition 1, one would have to know in advance the faces of

the players are the probabilities of channel hopping andspown® SimplexA x A; on which the NEs lie, i.e., one would
spreading: have to knowZ;,, Z; for all NEs. An exhaustive search has

Mot an exponential complexity (th& + 1-simplex ha2V+1 — 1

faces). Nevertheless, the NE of our gadiehave a special
Z X = 1}’ structure which allows us to exploit Definition 1 and fully
= characterize the set of NE in a simple manner.

N+1
Z Bi=15%. To characterize the set of NEs as function of the system’s
parameters we begin by examining the matrix structure of

. ’\D . . .
As we have argued in the previous section, the natural m)iuti.the discrete gamg™ given in Table I. We notice that there

in such a strategic interaction without cooperation amdrgg 'S r{f[li s;{rr;rrtlﬁtry bet;ve(;en tr:]etcdhannnedl hr? F:E - ?:iratlegl)?r?a "
opponents is the NE. particular, the payoff does not depend on the particulae

To derive the game’s NE, let us introduce a finite discref)ef the chosen subcarrier but only on whether both players hop

5 A . . . on the same subcarrier or not. This symmetry allows us to
ameGP = {&..€ with action sets defined as A )
(%L € gJ - {e{ L Jéz(i;m})} wheree; € {0,1}V+1 is show that the NE of the gamg@ have a particular structure
= - Ly y E(N+1) S 7 )

the canonical vector containingon thei-th position and0 specified _"_1 the following propositions. )

otherwise. Thei-th actione; represents channel hopping on Proposition3: At the NE(a*, 5*), a player uses either all

subcarrieri for all i < N and ey.1 represents spreadingCha””e|.h°Pp'”9 actions with non-zero probability or notie o

the power across the spectrum. Such finite discrete ganfa@Mm: eitheraj = 0, Vi < N or aj # 0, Vi < N, and

always have at least one NE in mixed stratégy, 5*) [37, Similarly, either5; =0, Vi < N or 7 # 0, Vi < N.

Sec. 1.3.1]. We observe that our gagheepresents the mixed ~Proposition4: If both players employ channel hopping with

strategy extension af” and thusG has at least one NE.  non-zero probability at the NE, i.ew; > 0 and 3} > 0 Vi <
Corollary 1: [37, Thm. 1.1]JGameG has at least one NE. N, then the players will hop uniformly across all channels and
To compute the NE, one possibility is to use the Minimashe NE will have the following structurer* = (a, ..., a, (1—

Theorem of von Neumann and Morgenstern [39] which allow¥a)), 3* = (b,...,b,(1 — Nb)) for some0 < a < 1/N,

us to compute mixed NE of any two-player zero-sum ganfe< b < 1/N.

via linear programming (i.e., by solving two dual linear Propositions 3 and 4 are proven in Appendices D and E.

optimization problems). In our case, we show that the NE camese results shape the special structure of the NE which,

be characterized in an analytical closed-form manner withcalongside Definition 1 and the strict convexity 6f(p,~)

the need of solving any optimization problem. To this aim, an.r.t. v, allows us to fully characterize the set of NEs in a

alternative characterization of the NE (see Definition 2 very simple and explicit manner as function of the system

A {Oz e [o, 1]N+1

-AAJ {6 € [07 1]N+1

i=1

[37, Sec.1.2.1]) is used: R . parameters.
Definition 1: A strategy profile(a”, 3%) € AL x Ay is @  Theorem4: The set of NE of the gan@is characterized
NE of the game; if the following hold: as follows:
i) both players are indifferent among the pure actions that. If C(NP,T') < NC(P,T), then the game has a unique
are played with positive probability at the NE pure-strategy NE: both players spread their powers, =
a(a”,e;) = a(a”ey), Vi,k,€ Iy, pr=eni

K . K : ‘ 2. IfC(NPT)> NC(P,T), then player L hops and player
i(e;, %) = alex,B"), Vi k, €Ly, J spreads at the NEa* = (a1, ..., an,0) and 8* = ey1.



TABLE | R
TwO PLAYER ZERO-SUM DESCRIPTION OFGy4

e, i <N ep, k S N,k #i EN+1
e i <N L C(NP,NT) +C(NP,0) +C(NP,T)
e, k< Nk#i | %C(NP,0) +~C(NP,NT) +~C(NPT)
eNt1 N-Lo(p0)+ +C(P,NT) | 2-LC(P,0)+ +C(P,NT) | C(P,T)

The NE strategies of player L are given by the (infinite numbkagitimate nodes assuming they have EH capabilities. Here,
of) solutions to the following system of linear inequatitie  we investigate whether this remains true in OFDM systems in
0<a <1 Vi<N which the players choose between channel hopping and power

N oy spreading strategies. The leader, player L, is assumedao pl
2= OC‘](N} 0)—C(NPT) first and to choosex®” anticipating the jammer’s response.
;< . . Vi < N. E
Qi < T(NP,0)—C(NP,NL)’ = The follower, player J, observes®” and best-responds by

In particular, the uniform probability over the channelsdse ChOOSiHQBSE_- . _
of the NE solutionsn* = (1/N,...,1/N,0). All NEs are More precisely, the best-response of the jammer for an arbi-

equivalent in terms of achieved utility. trary choice of« is defined asp”#(a) = argming i(«, §).
3. If C(NP,T) = NC(P,T'), player L employs all Thus, the leader chooses their optimal strategy as follows
their actions and player J spreads at the NB:*. = o5F = arg max i(a, B8R (a)) (24)
(a1,...,an,any1) and 8* = eys1. The NE strategies of !
player L are the (infinite number of) solutions to the follogi and the resulting best-response or SE strategy of the jammer
linear system of inequalities: is B5F = pBE(oSE),
a; >0, Vi < N, To characterize the SE in closed-form, we use a similar
S ey =1, approach as for the NE: we show first that the leader’s styateg
a;[C(NP,NT) — C(NP,0)] + an+1[(N — 1)C(P,0) at the SE has a special form described below. Then, we exploit
+C(P,NI') = C(NP,0) + C(NP,T) = NC(P,T)] this structure to provide the SE solution.

> C(NPT) — C(NP,0), Vi< N. Proposition5: At the SE, the legitimate player uses either

In this case, both players spreading (case 1) is an NE. Alsall hopping strategies with uniform probability or none of

player J spreading and player L hopping strategies (case #em, i.e.a”” = (a,...,a,1 — Na) for somea € [0,1/N].

are all NEs. All NEs are equivalent in terms of achievedtytili ~ The proof is provided in Appendix G. The above structure
The proof is provided in Appendix F. We remark that thef «°F allows us to analyze the optimal response of the

NE can be unique and in pure strategies(fNP,I") < jammerB3°F and to prove that, in all cases, the jammer’s best

NC(P,T') and the outcome of the game provides a utiktrategy is to spreaci®” = (0,...,0,1). On the other hand,

ity equal to u(a*,5*) = C(P,T'). On the contrary, if depending on the channel parameters, the leader will either

C(NP,T) > NC(P,T), there are an infinite number ofchannel hop or spread their powers, identically to the NE.

NEs which are generally in mixed strategies. All these NEs Theorem5: The set of SEs of the garﬁ:eis identical to

are equivalent in terms of achieved utility, which equalthe set of NEs.

a(a*, 8*) = C(NP,T). Hence, the outcome of the game The proof is provided in Appendix H. Therefore, the

can be predicted without the need for implementing iteeatiegitimate nodes do not gain in utility by choosing first thei

or learning procedures. strategy as opposed to the NE where both players choose their
Theorem 4 also shows that the optimal strategy for thgrategies simultaneously.

jammer is always spreading their power across the entire

spectrum. Intuitively, if the jammer were to use channel

hopping, player L would exploit this fact and would also hop; , . L .

thispscengrio is unfavorable for the jammer as the prolgbili In this Sectlon, severa_ll representa_tlve |Ilustrgtlonsc¢r&

that both players hop on the same subcarrier eqgalgdue sen allowing the deduction of generic cor_10|u5|ons thatycarr

to Proposition 3, when both players hop at the NE, th er most setups. The benchmark setting is chosen as follows

use uniform probabilities). Thus, the jammer’s payoff fro nitfg_ammingQ powgrr :21' “2“ variance Rayleigh channel
hopping cannot exceed that gained from spreading, assumfi@§iclentsoy = op = o” = oy = L.
that the legitimate nodes play their optimal strategy. Oa th

contrary, for player L the best strategy can be either cHane EH at the Legitimate nodes

hopping or power spreading depending on which providesye start by evaluating the SKG capacity at the NJ in

higher utility against a spreading jammer. Proposition 1 and NE in Theorem 1 as functions of the system
parameters for a harvesting efficien¢y= 0.7. In Fig. 2, the

V. NUMERICAL |ILLUSTRATIONS AND DISCUSSION

B. Stackelberg Equilibrium relative gain in utility obtained at the NE compared with the
In Sec. IlI-C, we have shown that the hierarchy of plaiJ, defined byE £ CC% is depicted as a function

among the adversaries does not bring an advantage to dfiehe signal to interference ratio (SIRp/T for different
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Fig. 2. Relative utility gain at the NE vs. N& = (CN® — CN/)/CNE  gig 3 Relative utility gain at the NE vs. no EHF = (CNF —
as a function ofP/T" > 0 for ¢ = 0.7. CcnoEH) /ONE as a function ofP/T > 0.

NE vs. no EH
values ofo? and ¢%. In the investigated settings, the NJ 100 |

strategy never outperforms the NE in terms of utility, whish
consistent with Proposition 2. When the SHRT is relatively
low, both the NE and the NJ provide identical utilities. lristh
case,pV/ = P and ™V’ = 7NE = 7, (P), the jammer is
indifferent between{0,I'} and both states are SE solutions.
With increasing SIRP/T, it is no longer optimal for the
legitimate nodes to harvest energy for a fraction of timg P)
in order to neutralize the jammer. Instead, by limiting the
duration of EH tor™¥ < 7, (P) the SKG capacity increases

in spite of the full power jammingy = I" and only the NE is
also a SE solution. Moreover, as the SIR increases, e.g., for
P/T > 1, the legitimate nodes should not harvest energy at
all as the jammer’s interference is relatively negligible.

Notice that Fig. 2 also illustrates the SE solution desctibe
in Theorem 3. Indeed, at low SIR, when both NE and Ndg. 4. Relative utility gain at the NE vs. no EHF = (CNF —
provide equal SKG capacity, they are both SE solutions. Af'>"")/C™* as afunction of?/T' > 0 for ¢ = 0.7 and different channel
high SIR, the SE is unique and identical to the NE. parameters.

Subsequently, we evaluate the impact of the EH capability

on the SKG capacity at the NE. The relative gain in utilityechnique is of particular interest in the low and medium SIR

obtained at the NE compared with the case in which thefggimes but, as expected, does not increase the utilityan th

is no EH capabilityC"*"" = C(P,0,T), defined asF” = hjgh SIR.

CNE_oNoEH . . . . .

“—&~e—, is depicted as a function @?/T" in Fig. 3. The

benchmark setup is considered and the different curves cor- , ,

respond to harvesting efficienciés= {0.1,0.3,0.5,0.7,0.9}. B Channel Hopping vs. Power Spreading

As expectedF increases with the harvesting efficiengyror First, we analyze the NE as function df and the ratiaP/T

P/T' =1 and( = 0.5 the gain in using EH is aroun2d % for the benchmark scenario in Fig. 5. There exist two regions

while it increases t®0 % for ¢ = 0.7. At low SIR P/T the delimited by the curveC(NP,T') = NC(P,T"): a region in

gain observed can readtd %, while at the high SIR it is which the NE is unique and both players spread their power,

negligible as expected. and a region in which the jammer spreads their power and the
Finally, the relative utility F' defined above is depicted inlegitimate nodes employ channel hopping.

Fig. 4 for ¢ = 0.7 and various channel parameters. For low Player L hops at the NE below the curve, when the SIR

SIR P/T, there is a significant gain in utility when employingP/T" is relatively small. This is intuitive since, in the low

EH. This gain becomes significantly large at very low SIRransmit power regime, the legitimate nodes should avoid as

exceeding)7.5 % when the legitimate nodes experience poanuch jamming interference as possible by transmitting on a

channel conditions as opposed to the jammer. When bailihgle subcarrier, which also means that their availabiegoo

parties experience similar channel conditions the gaimis is concentrated on a single channel. In Fig. 6, the NE regions

the range of60 % in the medium SIR. Overall, the numeri-are illustrated for different channel parameters. Whep

cal results demonstrate that using EH as a counter-jammingreases, the region in which player L should employ chianne

F [%]
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and different channel parameters.
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Fig. 6. NE regions as a function d?/T" > 0 and N > 2 for I’ = 1 and PIT

different channel parameters. . . . . .
Fig. 8. Relative utility gain between the NE vs. single chelm®KG: D; =

(uNE —ysingle) /yNE a5 a function of?/T forI' = 0%, = 0% = 0% =1
) i ) 5 and N € {2,4,8,16,32, 64}.
hopping at the NE shrinks down while whefi , 0% increase,

this region expands.
In Fig. 7, the relative gain obtained by player L whenion, also illustrate the SE solution, since the SE is idmdti
employing the NE strategy as opposed to a naive hoppittgthe NE as per Theorem 5.
strategy is depicted. The relative utility gaing = (uV¥ —
uHop,Sp'read)/uNE, WhereuHop,Sp'read — 1/NC(NP, F) is . ) )
relatively large (up t80%) in the high SIR regime, in which C- Discussion and Perspectives
case the optimal strategy for playéris to use the entire We discuss here the differences and similarities between
spectrum in spite of the jammer’s interference. the two approaches: a) EH at the legitimate nodes, and b)
Finally, in Fig. 8, the relative utility gain when using th&N employing channel hopping or power spreading techniques.
strategy overN subcarriers as opposed to a single subcarrierEH at the legitimate nodes enables them to completely
(usindle = C(P,T)) is investigated fol' = ¢% = 0% = neutralize the jammer. By harvesting the jamming power in
0% =1 as a function ofP/T for N € {2,4,8,16,32,64}. At a first phase and exploiting it for SKG in a second phase, the
low SIR, when the channel hopping strategy is optimal for tHammer’s attacks may increase the SKG capacity; in this,case
legitimate nodes, the higher the number of subcartiéyshe the jammer should not launch the attack, i.e., is neutrdlize
lower the jammer’s interference in each subcarrier, andéenHowever, it is not always optimal for the legitimate nodes to
the higher the SKG capacity. At last, in the high SIR regim@eutralize the jammer. Indeed, using EH can reduce the SKG
when spreading is optimal the SKG utility becon®@gEP,I"), capacity since, for a non-trivial fraction of time, thererie
which is identical to transmitting over a single channelhwituseful communication; when the jammer is neutralized the
powersP andT". penalty in terms of utility might become too high, depending
Remark that all figures illustrating the NE, in this subsemn the system parameters (e.g., high SIR regime). In such
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cases, the obtained utility at the NE is strictly higher thia® and the SEs in closed-form were provided in both cases. It
one at the NJ state. was demonstrated that either approach may offer significant

On the other hand, in the case of BF AWGN channefigins in utility, particularly in the low SIR regime, in wikic
(i.e., in systems with multiple orthogonal subcarriersg idea counteracting the jamming interference becomes crucial. A
is to use channel hopping in a random fashion and avdidresult, viable and low complexity alternatives for defiegd
most of the jammer’s interference as opposed to completéG systems may be developed by exploiting either novel
neutralizing it. Since potential jammers cannot predia thransceiver features or available spectral resources.
subcarrier used by the legitimate nodes, they will always
spread their powers over the entire spectrum: the larger the APPENDIX
number of subca_rriers, the smaller the jammer’s_ interﬁx—:eenA_ Proof of Proposition 1
on each subcarrier. However, channel hopping is not always - )
optimal since only a fraction of the entire spectrum is used L€t US assume that the legitimate nodes neutralize the
for SKG transmission. Depending on the system parameti#@mer by transmitting at powere [0, min{p.(7), P}]. The
(high SIR), it can be preferable for the legitimate nodes i§Mmer observes player L's choice and from Remark 2, de-
spread the available power across the entire spectrumrratfiges to stay silent. Notice that player L can force the jamme
than concentrate it on a single subcarrier. In this caseSk@ (0 remain silent by transmitting ate [0, min{p;n () —¢, P}]
capacity (measured in bits/s/Hz) is identical to that ofyin for an arbitrarily smalk > 0. For simplicity,e ~ 0 is assumed
channel with the same average power constraints. in the following. o _

In the critical cases of low and medium SIR regimes 1he remaining question is: how will player L chooses
(P/T" < 1), both approaches turn out to be advantageous fy 1) @ndp € [0, min{p.,(7), P}] to maximize the resulting
terms of SKG capacity compared to a single channel skeKG utility
system without EH capabilities; the gains in SKG capacity 1—r po2
depend on the harvesting duration or the number of subcsirrie a(p,7,0) = 5 log, <1 + 2%) , (25)

N. On the contrary, in the high SIR regimé&(l' > 1), + Py

the jammer’s impact and interference become relatively lowhile ensuring that the jammer stays silent and cannot de-
or even negligible and the cost of counter-jamming megrease the utility by transmitting with non-zero power. c®in
sures might not be justified compared to simply toleratingie feasible set of depends orr, we first have to find the

it. However, the interesting cases are indeed the formes oRgaximum ofa(p, ,0) W.rt. p for any fixedr. The function

in which the jamming power is higher or of the same ordey(p, , 0) is strictly increasing inp and, hence, the optimal
as the legitimate nodes’ transmit powers, in which setting®wer is given byj(7) = min{P, p;,(7)}. Now, we need to

overcoming the attack becomes critical. maximizea(p(r), 7,0) w.rt. 7 € [0, 1]:
For both approaches it turns out that a hierarchical datisio )

i inci iti . 1—7 2Co%T
model that in prlnmple could fayqr the legitimate node_su(pthmm 0) = log, [ 1+ 1€TH
compared to a simultaneous decision model does not bring 2 2+ 260—27)(1 —T)

H

an actual benefit. Indeed, the SKG utility obtained at the SE .
is identical to the SKG utility at the NE (even though the séit the extremesr = 0 and 7 — 1 the utility goes to zero.

of SEs is not necessarily identical to the set of NEs as in tRY investigating its second order derivatives w.r.f.which
EH approach). amounts to the following quadratic equation:

Several questions arise for future work. First, an inténgst (1—7)2 = 8052 =0, (26)
issue would be to study reactive vs. proactive jamming [40]
as well as the joint use of EH and multi-carrier transmissidh can be shown thati(p;x(7), 7,0) always has an inflexion
against jamming attacks. Second, in the EH case, the studyPfnt in betweer(0, 1) and starts as convex and then becomes
more realistic models accounting for finite storage cajtas| concave. Knowing that the the utility is always positive, we
asymmetries in the legitimate nodes’ parameters and Ereat &0 conclude thafi(p(7), 7,0) has a unique critical point
jammer’s side, are interesting future extensions. Moredhe that is the global maximizer* < (0,1) and which is the
study of multi-user and multi-jammer interactions as wall gsolution to 4“Z(0-m-0) — o This implies that, ifp., (7*) <
games of incomplete information are challenging open wssué’, then the optimal solution that neutralizes the jammer is
NS = 7 and pNY = pu(7%). If p(7*) > P, then the
optimal solution that neutralizes the jammenpi$’ = P and
NS = 7, (P) =

In this work, the adversarial interaction between a pair of
legitimate nodes and a malicious jammer in a wireless k& Proof of Theorem 1 and Theorem 2
generation framework was investigated. Two differentdetn  From Remark 1, we know that transmitting at maximum
jamming approaches were proposed and studied. First, EHpatver is a strictly dominant strategy for player L and, hence
the legitimate nodes, and, second, channel hopping vs.mpow&? = P. We first prove that at the NE, player L will not
spreading in BF AWGN channels. In either approach, a zeroperate in EH mode for longer than the threshg)d P). Let’s
sum game was introduced as the objectives of the two partggpose by absurdum that’® > 7, (P), then the jammer's
involved were opposed. Complete characterizations of the Nbest response would be to remain sileft? = 0 (as the

VI. CONCLUSIONS P
P+2C"
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energy harvested from the jammer in the EH phase is enougatyV ¥ € (0,T)). Such cases can only happen if the strategy
to overcome the interference inflicted by the jammer in th&f player L at the NE equal$P, 7, (P)) or equivalently if
SKG phase). Then, the optimal"® maximizing the utility (P, (P),T') is a NE of the game. Otherwise, whenever
@(P,,0) (which is decreasing im) would berV ¥ — 7, (P) 7NF < 7;,(P), the utility is strictly decreasing iy and the
obtaining the utilitya™* — (P, 7, (P),0). However, this only strategy of the jammer at the NE I3 (case discussed
state cannot be an NE. Indeed, if the jammer stays silgreviously).
vNE = 0, no energy is harvested during'? and player = Now, whenever the legitimate user chooses their strategy
L gains in utility by deviating tor = 0. This will also cause (P, 7, (P)), the jammer becomes totally indifferent between
the jammer to deviate t¢ =T all their strategies and, in particular, all jamming powars
The above implies that, player L can only choose an Ef,T") provide the same utility (see Remark 2). Hence, in this
strategy such that™¥ < r,;,(P) at the NE. This condition is case, there may be other NEs aside froRyr, (P),I') that
equivalent toP > py,(rVF), which means that the utility is provide identical utilities tai(P, 7y, (P),T').
either decreasing or simply a constantiyin(see Remark 2). In order to find all NE of the form(P, 7, (P), vV %), we
This further implies that if the jammer uses maximum powereed to find ally¥® < (0,T') such that the legitimate user
vNE = T, then it cannot benefit by deviating unilaterallycannot deviate fron{P, r,;,(P)) or it will lose in terms of
Hence, to find the NE of the for®, 7V T'), we only need utility. Stated otherwise, ay’¥ ¥ € (0,T) such thatr,(P) =
to find the optimal value or values af € [0,7,(P)] that argmax, (P, 7,vV¥) provide additional NE profiles of the

maximizes the functiom(P, r,T') given by: form (P, 7, (P), 7V ).
The analysis of the utilityi(P, 7,vV¥) as a function of
A(Pr.T) = 1—-7 log, [ 1+ (P +26(7)T) 0% 7 is very similar toa(P, 7,T') above. There are two cases in
s 1y - 2 (1+0'2F)2 9 :
2(1 + o2I') + PianteT function of the system parameters.

_ (7'02

- Case A:lf 1 4 o’ > V20%4P, for all yVF ¢
2
wherer (1) = 5% At 7 = 0, this function is strictly positive %,F), the functioni(P, 7,vV¥) has a unique in-
a(P,0,T) > 0 equal to the SKG capacity without EH andflexion point that lies in(0, 1) and starts as convex and then

when 7 — 1 the function goes td). By investigating the pecomes concave. Thus(P, 7,7V ) has a critical point that
second order derivative af(P, ,I') w.r.t. 7, which amounts s a local maximunt,,.. (v ?) € (0,1), which is a solution

to the analysis of the following quadratic equation of the equation‘w — 0. The additional conditions for
(1—7)2(140°T)? — 204 (P(1 — 7) +20%¢T'7)% = 0, (27) the strategy( P, 7., (P)) to be optimal for player L are:
two different cases arise: 7o (P) . < Tmaz (V") e (29)
- Case Allf 14 02T > /202 P, this function has a unique a(P,0,4™") < a(P,mn(P),ANF)

inflexion point that lies in(0,1) and the f~unction starts as  _ case B If 1 402 < V3oLP, for all ANE e
convex and then becomes concave. Thu@, r,I') has a VI P-1\ e f ioni( P.r. ~NE is al
critical point that is a local maximum,,.. € (0, 1), which is .(0, ) the unc.t|0nu( AN ) is aways concave
a solution of the equatioﬁﬂ(g’#r) — 0. Hence, the optimal IN 7 € (0, 1). If the function has a critical point if0, 1), then
strategy is given by either the maximal point.., or by one this critical point is a maximum point denoted By, o (7VE).
(or both) of the borders of the intervéll, ;,(P)] depending The additional condition for the strategy’, 7.,(F)) to be

o2

on the system parameters: optimal is 74 (P) = Tmaz (vF). Otherwise, the function is
NE . concave decreasing in and (P, 7, (P)) cannot be optimal
T = arg _ max a(P,7,T).  (28) for player L.
Te{ovmln{Tth(P)vaaw}}

- Case B:If 1+ o2I' < /202%P, then the function is C. Proof of Theorem 3
always concave (and it does not have an inflexion point)Let us first find the best-response of the jammer defined in
n (0,1). If the function has a critical point if0, 1), then (17). Given the second remark, it is easy to see that:
this critical point is a maximum point denoted by,
and 7VE = min{7,(P), Tmaz . Otherwise, the function is ;
concave decreaiintg(ar:ém :}L). 77 p.r) = €0.T] if p=pu(r) (30)
Remark that, at least in theory, Case A can lead to the exis- L, it p > pun(7)
tence of two NEs whenever the additional equality conditiophere p,, (7) = 12£_7; Notice that whenevep = p;,(7) the
is met: a(P,0,I') = a(P,min{7y(P), Timax},T), 1.6., When pest response of the jammer can be anything and cannot in
both borders of the intervel), min{7y,qz, 7:n(P)}] provide fact be predicted by player L. However, the obtained payoff
equal maximum utility. However, this can happen only in veng anticipated by player L as it does not depend on the actual
special cases of the system parameters or with zero pragabikhoice of the jammerii(py, (1), 7,7) = @(pen(7), 7,0), for
Since the statg P, 7;,(P),0) is not a NE, the game hasg| -,
(almost surely) a unique NE of the for®, 72, T') where  The SE action of the leader, anticipating that the jammer
7NE depends on the system parameters. Aside from the z@y@ pest respond to their own choice is given by:
probability case described above, this profile may not be the
unique NE of the gamé as there may exist other NEs such (p°F,75%) = aTgIax i(p, 7, 7" (p, 7)) (31)

0, if p < pen(r)
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From (30), we see that player L can either neutralize therite the expected payoff of player L assumifg= 0
jammer or allow it to transmit, knowing that the jammer will N
transmit with full powerI’. The situation that proves to be f ok o

2Nu(a*, = a; (1 — B; — C(NP,0
mostly advantageous to the legitimate player will be chosen (o7, 5%) ;{ (1= B = B )C( )

- Case A:Assume the legitimate player neutralizes the +iB;C(NP,NT) + a;fn+1C(NP,T)}
jammer by choosing a strategy such that p, (7). Player — +an+1(l — By+1)[(N = 1)C(P,0) + C(P,NT)]
L has to find the best paifp,7) that maximizesi(p, 7,0) +an 18N i NC(P,T)ai(1 - Bny1)(N — 1)C(NP,0).

knowing thatp € [0, min{P, p;,(7)}] and thatr < [0,1]; the SinceC(NP,0) > C(NP, NT) and there exists somg > 0
solution equalgp™¥”/,+~”) in Proposition 1. we have tha;t' 7 ,

- Case B:Assume now that the legitimate player does not
: ; - 1= Bn+1)(N = 1)C(NP,0) > 37,4 [BiC(NP,NT)
neutralize the jammer and > py, (7). Player L has to find ( + i#1
J nﬂ 2 DPth (T) y +(1 _ Bi _ 6N+1)C(NP,O)]

the best pair(p, 7) that maximizesu(p, 7,T') knowing that
p € [0,P] N [pin(1),00) and 7 € (0,1). By fixing 7 first This means that, if the jammer does not use channehe
and optimizing with respect tp, we have thatu(p,7,I") is legitimate ndes will only employ this channel and none of the
increasing inp and hence, the optimal power equélsand the other channel hopping strategies and the NE will be of the
value of r will be constrained by > py;(7) or equivalently form o* = (1 — an41,0,...,0,an+1). The utility becomes:

7 < 7n(P). This analysis is identical to the analysis of the .

NE and one possible SE solution is the NE in Theorem 1. 2Nu(e”, %) = (1 = an1)(1 = Bn41) (N = 1)O(N P, 0)

At the SE, the legitimate user will choose one of theiggii(glj\,ﬂﬁjgg*g(;v) HER L)
two possibilities which provides a higher SKG utility. From e
Proposition 2, we know that the NJ state cannot provideBut now, if the jammer uses all channel hopping probabditie
strictly higher utility than the NE state. Hence, whenevdrack in channel, he can strictly decrease the utility. Assume
NE < 7,(P), the utility of the unique NE is strictly that the jammer switches from the initiag* to 6 = (1 —
higher than that of the NJ state. This implies a unique S&v+1,0,...,0,5x+1). The payoff becomes:
o ) NE .
it (s N N which imples hat the utitee 2N 0(a”,) = (1= a11)(1 = 1) (N = 1)C(NP,NT)
p V) = (P,7V*) which implies that the utilities
at both states NJ and NE are identical. Both the NE (inJraNJrl(1 = Bn)[(N = 1)C(P,0) + C(P,NT)]
Theorem 1) and NJ (in Proposition 1) states are SE solutiond@N+1AN+1NC(P,T).

(P, 7, (P),T') and (P, 7, (P), 0). Since a(a*, 8*) > a(a*,d), the jammer has an incentive
The remaining question is whether there exist other st deviate from the NE which is a contradiction. Thus, the
lutions when player L chooses the strategy’”, r9%) = jammer uses either all or none of the channel hopping actions

(P, 7(P)). In this case, the jammer is rendered indiffereritor player L, the proof follows similarly.

between all of its actions < [0,I'], which means that it is N

also rendered unpredictable. As opposed to the NE, the 5g Proof of Proposition 4

requires the legitimate user to be able to anticipate pebcis Let us write the linear equations obtained when the players
the jammer’s response. To avoid this problem, the leader cam indifferent among their channel hopping actions. Theee
silence the jammer by transmitting with powgr= P — ¢ four very similar cases depending on whether the players use
or ensures that the jammer transmits with full power bypread with zero probability at the NE or not. We only detail
transmitting at powep = P + ¢, wheree could be made one case here below. If both players use spread at the NE, the
arbitrarily small and, hence, has no practical impact. Nohe following conditions must be met:

the other NE in Theorem 2 can be SEs, since the jammer’s

response cannot be predictable. o;C(NP,NT) + (1 — i — an4+1)C(NP,0)

N —1)C(P,0) + C(P,NTI)| = ca,
In conclusion, ifrV® < 1, (P), then the SE is unique and ;Og\(fﬁl[g( NT) J)r (5 N ﬁ)t ﬁz(v 1)0()}VPCO)
identical to the NE in Theorem 2. Otherwise, both the NE and JrLﬂNHCi(NP T) = CB'L " ’

the NJ states are SE solutions.
The equations i illustrate that player J becomes indifferent
among their pure channel hopping actions at the NE. Singjlarl
the equations ir8 make player L indifferent among their pure
D. Proof of Proposition 3 channel hopping actions at the NE. We remark that all these
equations are identical in the sense that their coefficidats
not depend on the indexof the« and variables. This means
#at their solutions are of the form; = a and 3; = b for
) any i < N. Therefore — irrespective of whether the players
(0, B2, ..., Bv+1) while other channels are uset} > 0 for employ or not spreading at the NE — if both players employ

sqme2 < i< N Exploiting_ this knowledge, player L the channel hopping strategy, then the NE takes on the $pecia
will only employ channel hopping on channel 1 and maybf%rm o = (a,...,a,(1 — Na)), B8* = (b,...,b,(1 — Nb))

spreading with non zero probability at the NE. To see this, YWEr some0 < a < 1/N,0<b<1/N

Assume by absurdum and WLOG that player J has
NE strategy such that the first channel is left unugéd=
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F. Proof of Theorem 4 whereaq is chosen such that player J is indifferent among their
If N = 1, the NE analysis is trivial and both players transmRUre strategies. The last inequality condition becomes:

at full powers(NP,NT). If N > 1 and given the strict _ o
convexity of C'(p,~) in +, we have the following inequality ao[NC(NP.T) = C(NP,NT) = (N = 1)C(NP, 0)] >

for all p, 71 # 2 and X € (0,1): (I =Na)[(N -1)C(P,0) + C(P,NI') = NC(P,T')]

Clp, A1+ (1=XNy) < ACO(p,y1)+ (1 —=X)C(p,v2). Wwhere the term on the LHS is a strictly negative value from
a > 0 and (33) and the RHS is a strictly positive value from
a < 1/N and (32). Thus, this case can never occur.
NC(P,T) < (N-1)C(P,0)+C(P,NT') (32) 6) Player L spreads and player J channel hops at the
o . B NE (i.e., a* = en41 and 8* = (B1,...,08n,0)), iff
Similarly, _by takingp = NP, 71 = 0,79 = NT, A = &, NC(P,T) > (N — 1)C(P,0) + C(P,NT), NC(NP,0) —
we obtain: N(N —1)C(P,0)— NC(P,NT) < C(NP,0)—C(NP,NT)
NC(NP,T) < (N —1)C(NP,0)+ C(NP,NT). (33) andg; meet some addition:_;ll constrgi_nts..Because of (32) this
N - case never occurs as the first condition is never satisfied.
From .Proposmon 3 and Proposition 4, the .NE can only 7) Player J spreads and player L channel hops at the NE
take nine forms which are not mutually exclusive. Each Cagle., B* = eny1 anda* = (aq,...,an,0)), iff C(NP,T) >
is studied using Definition 1 and for which necessary aWC(P, I') and NC(NP,0) — NC(NP,T) > C(NP,0) —
sufficient conditions are provided. Then, using (32) ano),(3SC(NR NT). The NE strategies of player L are given by the

we show that only three of the nine cases can occur. Thigfinite number) of solutions to the following system ofdiar
proof is rather long and tedious and only a sketch containifigequalities:

the main ideas is provided below. Bpth players spread at

By takingp = P, 1 = 0,72 = NI, A = =1, we obtain:

the NE (i.e., a* = 3* = eny1), iff C(NP,T') < NC(P,T") 0<a; <0, Vi,

and (N — 1)C(P,0) + C(P,NT) > NC(P,T'). The second N

condition is always true due to (32). Zaj =1

~2) Both players use only channel hopping at the NE =1 CNPOOWNPT) i <
(i.e., o = B* = (1/N,...,1/N,0)), iff C(NP,NT) + Qi < GINPO)—C(NPNT) Vi SV

(N —1)C(NP,0) > N(N — 1)C(P,0) + NC(P,NT) and
C(NP,NT)+ (N —1)C(NP,0) < NC(NP,T). This case
is impossible because of (33).

The second condition is always true (33). From (33), the abov
system of inequality always has the uniform probability rove

3) The game has a strictly mixed NEe., all actions th%cgglr;erlisolfet:dn ;él/g’é'r'j L/nqu’l(g' all their action
are used with non-zero probability, of the form* = ) Play sp S play ploys ! 1ons

(a,....a,(1— Na)), B* = (b,....b, (1— Nb)) iff there exist 2t he NE(Le., o™ =eny, 5 = (61, fyy)), iff (N —

0 <a<1/Nand0 < b < 1/N such that both players are1>C(P’ 0) + C(P,NT) = NC(P.T') and f;, vi meet some

indifferent among all their pure strategies. Let us write thaddltlonal constraints that are not detailed here. Theoreas

condition for(a,...,a,1 — Na) to be a NE and for which the that, given (32), the equality condition never holds anddes

jammer is indifferent among their pure strategies by Definit this case is impossible. . .
1. This yields the following linear equation: 9) Player J spreads and player L employs all their actions

at the NE(i.e., 8* = ey41 anda® = (a1,...,an,aN+1)),
a[NC(NP,T) — C(NP,NT') — (N —1)C(NP,0)] = iff C(NP,T') = NC(P,T") and the solutions to the following
(1= Na)[(N -1)C(P,0) + C(P,NI') = NC(P,I)], linear system of inequalities are NE strategies for player L

where the term on the LHS is a strictly negative value from ONS a; <1, Vi,
a > 0 and (33) and the RHS is a strictly positive value from Z“' _1q
a < 1/N and (32). Thus, this case can never occur. — 7

4) Player L only channel hops and player J uses both chan- é;[lc(NR NT) — C(NP,0)] + an41[(N — 1)C(P,0)

nel hopping and spreading at the N&* = (1/N,...,1/N,0) +C(P,NT) — C(NP,0)+ C(NP,T) — NC(P, F)j
and g* = (b,...,b,(1 — Nb)), iff C(NP,NT) + (N — > C(NP,T) - C(NP,0), Vi< N.
1)C(NP,0) = NC(NPI), 0 < b < 1/N, and

Notice that, by takingvy1 = 0, the above system of linear
equations is precisely the one in case 7 which has an infinite
number of solutions, and in particula; = 1/N, Vi < N.

Nb[(N — 1)C(P,0) + C(P,NT")] + (1 — Nb)NC(P,T) <

bC(NP,NT')+(N—-1)bC(NP,0)+(1-Nb)C(NP,T), where

b is chosen such that player L is indifferent among their pu@milarly a; = 0foralli <N anday.; = 1 (player L
’ T — = +1 —

strategies. Given (33), the above equality never holds. ; . . .
5) Player J only channel hops and player L uses both Chaﬁpreads) is also a solution, which follows directly from )32

nel hopping and spreading at the NEe.,a* = (a, ..., a, (1— .

Na)) and* = (1/N,...,1/N,0)), iff C(NP,NT) + (N — G- Proof of Proposition 5

1)C(NP,0) = N(N—-1)C(P,0)+C(P,NT),0 < a < 1/N, The best-response for the jammer is define@B88(a) =
and MaC(NP,T) + (1 — Na)NC(P,T) > aC(NP,NT) + argminga(a, ), where 35%(a) represents the best action
(N —-1)aC(NP,0)+ (1—Na)[(N-1)C(P,0)+C(P,NT)] the jammer can take knowing that the legitimate player chose
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a. The payoff is affine ing and can be rewritten it asUsing the fact thatC(p,v) is convex w.rt.~v for a

(e, B) = N4 Bici(a) + co(a), with the coefficients:

ci(@) = o[C(NP,NT)—C(NP,0)]
+ aN+1[C(P NT) — C(P,0)],i < N,
ensi(a) = Zaz (NP,T) — C(NP,0)
- NaNH[C(P, ) — C(P,0)],
cola) = iv:laiC(NP,O)—i—NaNHC(P,O). (34)

ﬁ(aSE, ﬂSE)

This implies that, ifC(NP,T') > NC(P,T') player L will
only channel hop with uniform probability:
C(NP,T) < NC(P,T) player L will only spreada = 0. If
C(NP,T) =

fixed p, we have the following inequalitiesNC(P,T") <
(N -
1)C(NP,0) + C(NP,NT) which imply that ¢;(aF
cn41(a%F). This means that the jammer’s strategy is to spread
always: 35F =

1)C(P,0) + C(P,NT) and NC(NP,T) < (N —
) <

(0,...,0,1). The SE utility becomes:

= aC(NP,T) + (1 — Na)C(P,T).  (35)

1/N. If

NC(P,T) then the legitimate user is indifferent

Thus, we observe that to find the best-response functigatween spreading and channel hopping and: al[0, 1/N]
BBE(a), the jammer has to solve a linear program under thge solutions.

constraints3; > 0, ¥ i andY"}" 8; = 1. The SE action of
the leader, anticipating that the jammer will best respand t

their own choice is given by: [1]

SE

a , 8% (a)) = argmax

= argmax 4(«
(e (03

{miney(@) + cla)} -,
Player L can anticipate the response of the jam-
mer, who seeks to minimize the coefficients(a). We [3]

remark that: cyi1() (1 — any+1)[C(NPT) —
C(NP,0)] + Nay1[C(P,T) — C(P,0)] andcp(ar) = (1 —
an+1)C(NP,0)+Nay4+1 do notdepend on the way in which
the loadl — a4 is spread over the channel hopping actions.
Therefore we can only focus an(«), 1 <i < N. 5
If player L uses channel hopping strategies with uniform
probability oV = (a,...,a,1 — Na), all coefficients will  [6]
be equalc;(a)) = a[C(NP,NT) — C(NP,0)] + (1 —
Na)[C(P,NT') — C(P,0)]. This means that the jammer is [7]
indifferent between the different channetsn; < ;< ¢; () =
al[C(NP,NT')—C(NP,0)]4+(1—Na)[C(P,NT)—C(P,0)]. i8]
Now, if player L has a preference for a certain chan-
nel, say for channel 1a® = (a + 61,0 — 62,...,a —
n,1— Na), with %, 6; = 6, > 0, the coefficients will
be: ¢;(a®) = (a + §)[C(NP,NT) — C(NP,0)] + (1 —
Na)[C(P,NT)~C(P,0)], ¢;(a®) = (a—§)[C(NP,NT)~
C(NP,0)] + (1 — Na)[C(P,NT') — C(P,0)]. In this case,
the jammer will profit from this information and will
put all their channel hopping load on channel 1 alonél]
BER(@®) = 1 - BRR (o), Bi(a®) = 0v2 <
N and min;<;j<y c;(a?) (a + §)[C(NP,NT) —
C(NP,0)]+ (1= Na)[C(P,NT) — C(P,0)]. But this means [12]
that min; <<y ¢;(@?) < min;<;<n ¢;(a!)), which further
implies thata(aV), B8R (aM)) < a(a®, pBR(a(?)). This [13]
means that player L will lose in utility by not assigning
uniform probability to the channel hopping strategies.

(4]

El

[10]

[14]
H. Proof of Theorem 5

Proposition 1 tells us that the SE strategy of player L is of
the form:aF = (a,...,a, (1 — Na)) for somea € [0,1/N],
which is to be determined. The coefficients in (34) become:

ci(@®P) = a[C(NP,NT) - C(NP,0)] [16]
+ (1—Na)|C(P,NT)—-C(P,0)],s <N
enp1(@¥F) = Na[C(NP,T) - C(NP,0)] [17]
+ N(1-Na)[C(PT)—C(P,0)].
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