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Abstract—Jamming attacks represent a critical vulnerability
for wireless secret key generation (SKG) systems. In the present
study, two counter-jamming approaches are investigated for SKG
systems: first, the employment of energy harvesting (EH) at the
legitimate nodes to turn part of the jamming power into useful
communication power, and, second, the use of channel hopping
or power spreading in block fading channels to reduce the impact
of jamming. In both cases, the adversarial interaction between
the pair of legitimate nodes and the jammer is formulated as
a two-player zero-sum game and the Nash and Stackelberg
equilibria (NE and SE) are characterized analytically and in
closed form. In particular, in the case of EH receivers, the
existence of a critical transmission power for the legitimate nodes
allows the full characterization of the game’s equilibria and also
enables the complete neutralization of the jammer. In the case
of channel hopping vs. power spreading techniques, it is shown
that the jammer’s optimal strategy is always power spreading
while the legitimate nodes should only use power spreading in
the high signal-to-interference ratio (SIR) regime. In the low
SIR regime, when avoiding the jammer’s interference becomes
critical, channel hopping is optimal for the legitimate nodes.
Numerical results demonstrate the efficiency of both counter-
jamming measures.

Index Terms—Secret key generation, jamming, energy harvest-
ing, channel hopping, zero-sum game.

I. I NTRODUCTION

Secret key generation (SKG) from shared randomness at
two remote locations has been extensively studied [3]–[12]
and has recently been extended to unauthenticated channels
[13], [14]. SKG techniques have also been be incorporated in
protocols that are resilient to spoofing, tampering and man-in-
the-middle active attacks [15], [16]. Still, such key generation
techniques are not entirely robust against active adversaries,
particularly during the advantage distillation phase. Denial
of service attacks in the form of jamming are a known
vulnerability of SKG systems; in [17], it was demonstrated
that when increasing the jamming power, the reconciliation
rate normalized to the rate of the SKG increases sharply and
the SKG process can in essence be brought to a halt. As SKG
techniques are currently being considered for applications such
as the Internet of things (IoT) [18], the study of appropriate
counter-jamming approaches is timely.

Preliminary results have been accepted for publication in Proc. IEEE Int.
Conf. Commun. (ICC) 2017 [1], [2]. This research has been supported in
part by ENSEA, Cergy-Pontoise, France. E.V. Belmega is withENSEA/ETIS
- Université de Cergy-Pontoise - CNRS, Cergy-Pontoise, France and Inria
(email: belmega@ensea.fr). A. Chorti is with the School of Computer Science
and Electronic Engineering (CSEE), University of Essex, Colchester, United
Kingdom (email: achorti@essex.ac.uk).

Typically, jamming in wireless communication systems has
been investigated using game theoretic tools [19]–[27]. Con-
trary to our work, these earlier studies focus on performance
metrics that are either based on the legitimate nodes’ signal-
to-interference-plus-noise ratio (SINR) [19]–[25] and donot
incorporate physical-layer security constraints at all, or are
based on the secrecy capacity [26], [27]. The secrecy capacity
is inherently different than the SKG capacity considered inthis
work; the former measures the maximum rate at which both
confidential and reliable communication is possible, while, the
latter represents the maximum rate at which a common secret
key that can be extracted from the observation of correlated
sequences at two remote locations [28].

In the past, two main counter-jamming approaches have
been commonly considered: direct sequence spread spectrum
(DSSS) and frequency hopping spread spectrum (FHSS) [29],
[30]. In either approach, the impact of power constrained
jammers can be limited because their optimal strategy has
been proved to be spreading of their available power over the
entire bandwidth (and thus jam with potentially low power).
However, DSSS and FHSS systems require a pre-shared secret
to establish the spreading sequence or the hopping pattern at
Alice and Bob; as such, they are not directly applicable to
SKG systems that on the contraryseek to establisha secret
key. Attempting to resolve this contradiction and reconcile
DSSS and FHSS with SKG, uncoordinated frequency hopping
and spreading techniques have recently been investigated in
[31], [32]. The main idea behind the proposed approaches was
the randomization of the selection of the hopping/spreading
sequences, at the cost of reduction of the achievable rates for
secret key establishment.

However, in uncoordinated hopping/spreading techniques
there are minimum requirements regarding the length of the
pseudorandom sequences employed. As a result, accounting
for the strict bandwidth specifications of fourth and fifth
generation networks, the use of long pseudorandom sequences
can be a limiting factor. Thus, investigating alternative counter-
jamming approaches based on the use of channel hopping
or power spreading over multiple orthogonal subcarriers, e.g.,
orthogonal frequency division multiplexing (OFDM) systems)
[19], [21], is timely and offer an interesting alternative to [31],
[32] as in OFDM systems there is no need for coordination
of the remote nodes. Furthermore, although in [31], [32]
the numerical investigations focused on the throughput, a
Media Access Control (MAC) layer quantity, when analyzing
physical layer security SKG systems the standard approach is
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to utilize the SKG capacity (a physical layer quantity).
On a different note, next generation terminals are likely to

be enhanced with many new features that could prove pivotal
in protecting against jamming. For example, greater energy
autonomy exploiting energy harvesting (EH) approaches [33],
[34] is being researched for systems such as wireless sen-
sor networks for IoT applications. Thus, it is interesting
to investigate whether EH could be utilized as a counter-
jamming technique by exploiting the harvested jamming power
to enhance the quality of the legitimate communication.

Motivated by the above, in the present work we propose
two novel approaches for alleviating the impact of jamming in
SKG systems. In both approaches, we model the interaction
between the legitimate nodes and the adversarial jammer as
a two-player zero-sum game in which the SKG capacity
plays the role of the utility function. We investigate two non-
cooperative solutions: the Nash equilibria (NE), when both
players make their decision simultaneously and the Stack-
elberg equilibria (SE), when the legitimate nodes hold an
advantage and choose their strategy first while anticipating
the jammer’s response.

In the first part of this contribution, we study systems in
which the legitimate nodes are equipped with EH capabilities
and examine whether this added functionality is useful in
preempting jamming attacks. We focus on time switching EH
protocols [34]: for a fraction of time the legitimate nodes
operate in EH mode and switch to the SKG procedure for
the rest. To the best of our knowledge, this is among the first
works to investigate EH as a counter-jamming approach with
the exception of [25].1

Our analysis reveals the existence of a critical power thresh-
old pth for the legitimate nodes and of an associated threshold
harvesting durationτth. When the legitimate nodes employ
EH for longer thanτth, the attacker’s optimal strategy is not to
jam at all, i.e., the jammer is effectively neutralized. However,
neutralizing the jammer is not a stable solution to unilateral
deviations (if the strategic decisions are taken simultaneously)
and is therefore not a Nash equilibrium (NE) of the game.
At the NE, it is found that both the legitimate nodes and the
jammer transmit with full power and that the EH duration does
not correspond always to the above threshold. At low signal
to interference ratio (SIR) (e.g., relatively low transmitpower
or high jamming power), the EH optimal duration equals
τth. Although the attacker jams with full power, the power
collected from EH cancels out the impact of the attack and
the SKG capacity is equivalent to the case of using EH for the
same duration in absence of a jammer. At medium to high SIR,
the EH optimal duration is lower thanτth and the legitimate
nodes may even not harvest energy at all.

On the other hand, when moving to a hierarchical game
formulation, the SE analysis reveals that the legitimate nodes
should play the NE strategy. Whenever the legitimate nodes’

1The recent work [25] proposes to harvest energy from the jamming
interference in a multi-user interference channel in whichthe jammer is not
a strategic decision maker. In terms of formulation, a global optimization
problem is investigated (as opposed to an adversarial game). Furthermore, the
global performance metric in [25] does not incorporate security constraints
and the harvested energy is not directly exploited in the communication phase,
appearing only as an additional term in the utility function.
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Fig. 1. SKG system model with two legitimate nodes and a single adversary.

harvest energy for a durationτth (at the NE), the jammer
neutralization strategy is also a SE solution. This means that,
in a hierarchical game, the jammer can potentially be deterred
from launching the attack.

In the second part of this investigation, extending the studies
in [19], [21] to SKG systems, counter-jamming policies are
investigated forN block (subcarriers) fading additive white
Gaussian noise (BF AWGN) channels. At the NE, the jammer
always spreads its power over all subcarriers, while for the
legitimate nodes the optimality of channel hopping or power
spreading depends on the channel parameters. In the high SIR
regime, the legitimate nodes should use power spreading to
exploit the entire available spectrum given the relativelylow
jamming interference. On the other hand, at low SIR, the
legitimate nodes should use channel hopping and transmit over
a single subcarrier to avoid most of the jammer’s interference.
Furthermore, in characterizing the game’s SE we find that the
optimal SE strategies reduce to the NE ones, demonstrating
that there is no extra payoff to be earned from the advantage
of playing first.

Preliminary results of this work have been presented in
[1] and [2]. The major contributions and improvements of
this journal paper as compared with [1] and [2] consist in:
providing complete proofs of all the results regarding the
NE analysis and the jammer neutralization state; relaxing the
action set of the jammer, in the energy harvesting case, from
the discrete choice between remaining silent and transmitting
at full power into the continuous interval of all possible
powers, which has brought to light the existence of additional
NEs; providing the additional analysis of the Stackelberg
equilibrium; providing a comparative discussion between the
two counter-jamming methods in Sec. V-C.

The paper is organized as follows. In Sec. II, the SKG
baseline system model is introduced. In Sec. III, the adversarial
interaction between the EH legitimate nodes and the jammer
is formulated and analyzed using a zero-sum non-cooperative
game framework, while in Sec. IV this setting is used to
study channel hopping vs. power spreading in BF AWGN
systems. Numerical illustrations and a detailed discussion of
these counter-jamming strategies are provided in Sec. V, while
the conclusions are given in Sec. VI.

II. SKG SYSTEM MODEL IN THE PRESENCE OF AJAMMER

The baseline SKG system model with two legitimate nodes,
denoted by Alice and Bob and a single adversary, denoted
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by Eve, is depicted in Fig. 1. Typically, the SKG process
consists of three phases [4], [6]. In the first phase, referred
ro asshared randomness distillation, Alice and Bob observe
dependent random variables denoted byYA, YB while an
eavesdropper, referred to as Eve, observesYE . In wireless
channels, a readily available source of shared randomness is
the multipath fading due to the reciprocity of the wireless
medium during the channel’s coherence time [10]–[12]. Here,
we focus exclusively on shared randomness extraction from
Rayleigh fading coefficients.

In the next two phases, known asinformation reconciliation
and privacy amplification, side informationV is exchanged
between Alice and Bob, generated by corresponding encoders
fA, fB. At the end of the SKG process, a common keyK ∈ K
is extracted at Alice and Bob such that, for anyǫ > 0, the
following statements hold [8]:

Pr (K = fA (YA, V ) = fB (YB, V )) ≥ 1− ǫ, (1)

I(K;V ) ≤ ǫ, (2)

H(K) ≥ log |K| − ǫ, (3)

whereH(K) denotes the entropy of the keyK andI(K;V )
denotes the mutual information betweenK andV .

The first inequality demonstrates that the SKG process can
be made error free; (2) ensures that the exchange of side infor-
mation through public discussion does not leak any informa-
tion to eavesdroppers; while (3) establishes that the generated
keys attain maximum entropy (i.e., are uniform). Under the
three conditions, an upper bound on the rate for the generation
of secret keys is given bymin {I(YA;YB), I(YA;YB |YE)} [3],
[4]. Assuming rich multipath environments, the decorrelation
properties of the wireless channel over short distances canbe
exploited to ensure that Eve’s observationYE is uncorrelated
with YA and YB [7]–[11]; in this case, the SKG capacity is
given by [3, Sec. II]

C = I(YA;YB). (4)

We assume that this holds true in the rest of this study and
consider the SKG capacity above to be the focal performance
metric.

SKG in Rayleigh fading channels has been extensively
analyzed, e.g., [7], [8]. In these works, it was assumed that
Alice and Bob exchange unit probe signals to excite the fading
channel and obtain respective observationsYA andYB with

YA = H0 + ZA, YB = H0 + ZB,

whereH0 denotes the fading coefficient in the link between the
legitimate nodes, modeled as a zero mean Gaussian random
variableH0 ∼ N (0, σ2

H), and,ZA andZB model the effect
of AWGN and denote independent and identically distributed
(i.i.d.) Gaussian random variablesZA ∼ N (0, NA), ZB ∼
N (0, NB). Using this notation, the SKG capacity has been
expressed as [8]:

C = I(YA;YB) =
1

2
log2

(

1 +
σ2
H

NA +NB + NANB

σ2

H

)

. (5)

In this work, we assume that Eve is no longer a passive
eavesdropper but a malicious jammer. To include jamming at-
tacks in the above model, we consider the following extension:

YA =
√
pH0 +

√
γGA + ZA, (6)

YB =
√
pH0 +

√
γGB + ZB, (7)

assuming that Alice and Bob exchange constant probe signals
[8] with powerp ≤ P and that Eve transmits constant jamming
signals [17] with powerγ ≤ Γ. The fading coefficient in the
link between Eve and Alice is denoted byGA ∼ N

(

0, σ2
A

)

and in the link between Eve and Bob byGB ∼ N
(

0, σ2
B

)

. For
simplicity and without loss of generality, the noise variables
ZA andZB are assumed to have unit variance, i.e., are mod-
eled as i.i.d. Gaussian random variablesZA, ZB ∼ N (0, 1).

Under these assumptions, a simple calculation reveals that
the SKG capacity can be expressed as a function ofp andγ:

C(p, γ) =
1

2
log2

Ñ

1 +
σ2
Hp

2 + (σ2
A + σ2

B)γ +
(1+σ2

A
γ)(1+σ2

B
γ)

σ2

H
p

é

.

(8)

By inspecting the first-order derivatives of (8), we conclude
thatC(p, γ) is a strictly increasing function ofp for any fixed
γ, and a strictly decreasing function ofγ for any fixedp. This
implies that the legitimate nodes will transmit at full power P
to maximize the SKG capacity, whereas the jammer will also
transmit with full powerΓ to minimize the SKG capacity.
Also, it is a strictly convex function with respect to (w.r.t.) γ
for any fixedp > 0 as its second derivative w.r.t.γ is strictly
positive.

III. E NERGY HARVESTING AGAINST JAMMING

In order to study EH as a counter-jamming measure, we
focus on a time-switching EH scheme [34], i.e., we assume
that each transmission symbol of durationT is divided in two
parts. In the first period of durationτT (0 < τ ≤ 1 being the
fraction ofT dedicated to EH), both Alice and Bob operate in
EH mode with efficiency0 < ζ ≤ 1; in the second period of
duration(1− τ)T , the legitimate nodes operate in SKG mode
using the overall available power (including harvested power).
For simplicity, we assume that the energy harvested can be
stored in a battery without any overflowing issues (unlimited
storage) [35].

Furthermore, for simplicity of the mathematical derivation
and to ensure symmetry in the energy harvested at Alice and
Bob we assume thatσ2

A = σ2
B = σ2 (the Eve-Alice and Eve-

Bob links have equal variance). Given the above considerations
and assuming that the energy harvested by Alice and Bob is
linear in the received RF power [34], [36]:

E = ζτTγσ2, (9)

the harvested power for each legitimate node per communica-
tion cycle can be expressed as

pEH =
E

(1 − τ)T
= κγ, (10)

whereκ = ζτσ2

1−τ
is a convex increasing function ofτ . Since

the SKG procedure encompasses two cycles (from Alice to
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Bob and from Bob to Alice), each legitimate node harvests
2κγ overall power that can be used in the SKG mode. Thus,
the SKG capacity is given by:

ũ(p, τ, γ) =
1− τ

2
log2

Ñ

1 +
(p+ 2κγ)σ2

H

2(1 + σ2γ) + (1+σ2γ)2

(p+2κγ)σ2

H

é

,

(11)

with power constraintsp ≤ P , γ ≤ Γ.
A simple inspection of (11) reveals that this scenario is

a generalization of the standard SKG setting. Indeed, if the
legitimate nodes decide not to harvest energy, i.e.,τ = 0, (8)
is obtained forσ2

A = σ2
B = σ2, NA = NB = 1. In the model

with EH, the legitimate nodes can maximizeũ by tuning the
additional variableτ . However, it is no longer straightforward
that the jammer should transmit with the maximum available
power asũ(p, γ, τ) is no longer monotonically decreasing in
γ.

Non-cooperative game theory provides the natural frame-
work to study the adversarial interaction between the legiti-
mate nodes and the jammer. Although game theory has already
been exploited in physical layer security problems, e.g. [26],
[27], to the best of our knowledge, this work is among the
first to investigate EH as an effective means to counteract on
jamming attacks.

A. Jammer Neutralization

Before introducing the game framework, we make two
important observations regarding the SKG utility in (11) and
discuss their implications.
Remark 1:For any fixedτ andγ, ũ(p, τ, γ) is monotonically
increasing inp and

arg max
p∈[0,P ]

ũ(p, τ, γ) = P. (12)

Remark 2:For any fixedp and τ , ũ(p, τ, γ) is monotone in
γ. In particular, it is monotonically decreasing inγ if p >
pth(τ) ,

2ζτ
1−τ

, a constant ifp = pth(τ), and monotonically
increasing ifp < pth(τ). This implies that:

arg min
γ∈[0,Γ]

ũ (p, τ, γ) = 0, if p < pth(τ) (13)

arg min
γ∈[0,Γ]

ũ (p, τ, γ) ∈ [0,Γ], if p = pth(τ) (14)

arg min
γ∈[0,Γ]

ũ (p, τ, γ) = Γ, if p > pth(τ). (15)

Remark 1 shows that, to maximize the utility, the legitimate
nodes should transmit at maximum powerP . On the contrary,
Remark 2 shows that the jammer should practically switch in
between staying silent, i.e.,γ = 0, and jamming at full power,
i.e., γ = Γ, depending on the choice(p, τ) of the legitimate
nodes.

Remark 2 reveals that the legitimate nodes can neutralize the
jammer by transmitting at a relatively low powerp < pth(τ).
Although this result may seem counter-intuitive at first, this
condition is equivalent toτ > τth(P ) , P

P+2ζ , which means
that the legitimate nodes spend a relatively large proportion

of time harvesting the jamming interference before actually
transmitting. In other words, the jammer is forced to stay silent
since the harm it can cause by interfering in the SKG phase
is overcome by the harvested energy in the EH phase. This
novel result shows that the jamming interference, which is
commonly thought as being harmful to the legitimate commu-
nication, can be exploited and transformed into useful power
via EH. If Alice and Bob transmit with exactlypth(τ), the
jammer becomes indifferent between all its choicesγ ∈ [0,Γ]
and has no interest in actively jamming the transmission.

The necessary conditions for the jammer neutralization are
formalized below.

Proposition1: The optimal strategy for the legitimate nodes
that maximizes the SKG utility while ensuring that the jammer
has no interest in actively jamming the transmission is given
by:

pNJ = min{P, pth(τ∗)} and τNJ = min{τth(P ), τ∗},
(16)

whereτ∗ ∈ (0, 1) is the unique maximizer of̃u(pth(τ), τ, 0)
w.r.t. τ .

For the detailed proof the reader is referred to Appendix
A. Notice that, if the jammer stays silentγ = 0, there is
no actual energy harvested during the EH phase of duration
τNJ . Rather, the legitimate nodes’ choice to use EH for a
fraction of timeτNJ acts as an effective threat to ensure the
jammer has no interest in actively jamming the transmission.
However, neutralizing the jammer may not be the overall
optimal strategy for the legitimate nodes. A hint for this is
that wheneverτNJ = τ∗ < τth(P ), the transmit power is
pNJ < P , which we know is not optimal from Remark 1.

B. Game Formulation and Nash Equilibria

The interaction between the legitimate nodes and the jam-
mer is formalized as a two-player zero-sum game, defined as
the tupleG̃ = {ÃL, ÃJ , ũ (p, τ, γ)} in which the players are:
player L representing the legitimate nodes (Alice and Bob act
as a single player) on one side, and player J, the jammer,
on the other. The action(p, τ) of player L lies in the set
ÃL = [0, P ] × [0, 1], and the actionγ of player J lies in
the setÃJ = [0,Γ]. The objective of player L is to maximize
the SKG utility ũ(p, τ, γ) given in (11), whereas player J aims
at minimizing it.

The two players are adversaries and the optimal strategy of
one player depends on the choice of their opponent and cannot
be determined unilaterally. In such interactive situations, the
NE [37] is the natural solution concept. Intuitively, a profile
(pNE , τNE , γNE) ∈ ÃL × ÃJ is a NE if none of the players
can benefit by deviating from this profile knowing that their
opponent plays accordingly. Hence, NEs are system states that
are stable to unilateral deviations.

We can easily check that the state(pNJ , τNJ , 0) is not a NE
since the legitimate nodes gain by deviating from it. Knowing
that the jammer stays silent, player L can increase the SKG
utility by deviating toτ = 0. Using the whole symbol period
in SKG mode increases the utility when no energy is harvested
in the EH phase. This, in turn, will cause also the jammer to
deviate fromγ = 0 and actively jam the transmission.
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Theorem 1 shows that the gamẽG has at least one NE at
which both players transmit with maximum power. This NE
may be unique or not, depending on the system parameters.

Theorem1: The gameG̃ has at least one NE. Moreover,
the profile (P, τNE ,Γ) is a NE solution such that the EH
strategy is eitherτNE = 0 or τNE = min{τth(P ), τmax}
with τth(P ) = P

P+2ζ and τmax ∈ (0, 1) representing the
critical maximum point ofũ(P, τ,Γ) w.r.t. τ , depending on
the system parameters. IfτNE < τth(P ), then the profile
(P, τNE ,Γ) is the unique NE of the game almost surely.

The proof is detailed in Appendix B. We observe that,
at the NE above(P, τNE ,Γ) and depending on the system
parameters, player L may harvest energy for a fraction of time
τNE ≤ τNJ or not at allτNE = 0. Intuitively, not using the
SKG mode for the entire transmission symbol (for example to
neutralize the jammer) becomes too costly at high SIR when
the jamming interference is relatively low or negligible.

Concerning the uniqueness of the NE, the only cases in
which the states(P, 0,Γ) and (P,min{τmax, τth},Γ) can
both be NEs is when the provided utilities are identical, i.e.,
ũ(P, 0,Γ) = ũ(P,min{τmax, τth(P )},Γ) in addition to the
constraint on the system parameters1 + σ2Γ ≥

√
2σ2

HP
(see Appendix B). However, we argue that such an equality
condition on the system parameters can only happen in very
special cases, otherwise stated, with zero probability (ona
continuous sample space).

Furthermore, whenever player L chooses a strategy of the
form (P, τth(P )) at the NE, the jammer becomes indiffe-
rent between all their possible transmit powers in[0,Γ] (as
per Remark 2). Hence, in such cases, the strategy profile
(P, τth(P ),Γ) may not be the unique NE.

Theorem 2: If the legitimate nodes’ NE strategy in
Theorem 1 is such thatτNE = τth(P ), the game G̃
may have other solutions of the form(P, τth(P ), γNE) with
γNE ∈ (0,Γ). More precisely, any strategy of the form
(P, τth(P ), γNE) with γNE ∈ (0,Γ) meeting the additional
condition argmaxτ∈[0,1] ũ(P, τ, γ

NE) = τth(P ) is also a
NE of the game. All such NEs provide identical utility to
ũ(P, τth(P ),Γ).

The proof and the detailed system conditions under which
the game may have other NEs of the type(P, τth(P ), γNE)
with γNE ∈ (0,Γ) aside from (P, τth(P ),Γ) is provided
in Appendix B. These NEs may exist with non-zero proba-
bility since the additional condition depends on the vari-
able γNE ∈ (0,Γ) and not only on the system para-
meters, as opposed to the condition entailing that(P, 0,Γ)
and (P,min{τmax, τth},Γ) are both NEs. It suffices that
argmaxτ∈[0,1] ũ(P, τ, γ

NE) = τth(P ) holds for a single value
of γNE ∈ (0,Γ) to entail the existence of such NEs.

Apart from providing a complete NE analysis, the existence
of the NEs in Theorem 2 is not very relevant in practice. First,
whenever they exist, the utility at such NEs is identical to the
utility of the NE profile:(P, τth(P ),Γ) in Theorem 1. Second,
given Remark 2, the jammer can be assumed to restrict their
strategy space from[0,Γ] to the discrete choices{0,Γ} with
no loss of optimality. AssumingÃJ = {0,Γ}, the resulting
gameG̃ has a unique pure-strategy NE (almost surely) which
is given in Theorem 1.

As a last result, it turns out that neutralizing the jammer
(NJ) in Proposition 1 incurs a non-trivial cost and the obtained
utility is lower or equal to the NE utility.

Proposition2: The SKG utility obtained when neutralizing
the jammer (NJ) can never be greater that the utility at the
NE. Both utilities are equal, if and only ifτNE = τth(P ).

Proof: Since (P, τNE) = argmaxp,τ ũ(p, τ,Γ),
from the NE’s best-response property, we have that
ũ(pNJ , τNJ ,Γ) ≤ ũ(P, τNE ,Γ). From Remark 2, we
have that ũ(pNJ , τNJ ,Γ) = ũ(pNJ , τNJ , 0) (the jammer
is indifferent between all its choices) and we obtain that
ũ(P, τNE ,Γ) ≥ ũ(pNJ , τNJ , 0). Intuitively, when searching
for the NJ state in Proposition 1 the additional condition
that the jammer has to be neutralized (i.e.,p = pth(τ))
restricts the feasible set of all pairs(p, τ) which results
in an optimality loss compared to the NE. Notice that
maxτ ũ(pth(τ), τ, 0) ≡ maxτ ũ(pth(τ), τ,Γ). This further
implies that, ifτNE = τth(P ), the aforementioned restriction
is optimal and(pNJ , τNJ ) = (P, τNE) which proves the
direct implication of the second claim. The hypothesis of
the reverse implication:̃u(pNJ , τNJ , 0) = ũ(P, τNE ,Γ) is
equivalent to ũ(pNJ , τNJ , 0) = ũ(P, τNE , 0). From Ap-
pendix A, the functioñu(pth(τ), τ, 0) has a unique maximizer
w.r.t τ ∈ [0, τth(P )] given by τNJ which results in that
(pNJ , τNJ ) = (P, τNE).

C. Stackelberg Equilibrium

After investigating the NE solution of the strategic inter-
action in which the legitimate nodes and the jammer choose
their optimal strategies simultaneously, a natural risingissue is
whether the solution of the game changes assuming a hierarchy
in the players’ choices [24], [26], [37]. To tackle this issue,
we study the SE and compare it to the NE and the jammer
neutralization (NJ) states in Sec. III-B and III-A, respectively.
We assume that the leader of the game L is playing first
by choosing their best action(pSE , τSE) while anticipating
the response of player J. The follower, player J, observes the
choice of the leader and reacts optimally (or best-responds)
by choosingγSE.

To be specific, for an arbitrary choice of player L(p, τ),
the best-response of the jammer is defined as:

γBR(p, τ) = arg min
γ∈[0,Γ]

ũ(p, τ, γ). (17)

The leader, anticipating the jammer’s reaction described above,
can choose their optimal strategy as follows

(pSE , τSE) = argmax
p,τ

ũ(p, τ, γBR(p, τ)). (18)

The optimal strategy of the jammer is the best responseγSE =
γBR(pSE , τSE) given the optimal leader’s strategy above. The
solution is described in the next Theorem.

Theorem 3: Assuming the hierarchy described above, if
τNE < τth(P ) whereτNE is given in Theorem 1, the SE of
the gameG̃ is unique (almost surely) and identical to the NE
(P, τNE ,Γ). Otherwise, ifτNE = τth(P ), both the NJ state
in Proposition 1 and the NE(P, τNE ,Γ) are SE solutions
providing identical SKG utility.
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The proof is included in Appendix C. Notice that in all
possible casesτNE ≤ τth(P ) (see Theorem 1). The above
result shows that neutralizing the jammer is a rational solution
when the strategic decisions are not taken simultaneously and
the legitimate nodes play first. However, since the NJ state
cannot provide a strictly better utility than the NE state (see
Proposition 2), the hierarchical play does not bring an actual
benefit to player L when compared with the NE.

Finally, we note that as opposed to the NE, the SE requires
the leader to be able to anticipate precisely the response ofthe
follower. For this reason, the leader cannot actually choose
a strategy such thatp = pth(τ) which renders the follower
indifferent between all its actionsγ ∈ [0,Γ] (and may choose
any jamming power in an unpredictable way). A simple way
to overcome this issue is for the leader to transmit atp =
pth(τ) − ε whenever it wants to silence the jammer (at the
NJ), and to transmit atp = pth(τ) + ε whenever it wants
the jammer to transmit at full power (at the NE), withε > 0
andε ≪ 1 chosen arbitrarily small, with little or no practical
impact. Furthermore, this also the excludes other SE solutions
(e.g., the NEs in Theorem 2 cannot be SEs).

IV. CHANNEL HOPPING VS. POWER SPREADING IN BF
AWGN CHANNELS

If the legitimate nodes do not have EH capabilities, we
investigate yet another way to defend against jamming by
assuming that the legitimate nodes can employ channel hop-
ping or power spreading strategies over multiple orthogonal
subcarriers. For this, we generalize the system model (6)
and (7) to anN -BF AWGN channel. Alice’s and Bob’s
observations on thei-th subcarrier – denoted bŷYA,i andŶB,i

respectively – are expressed as:

ŶA,i =
√
piHi +

√
γiGA,i + ZA,i, (19)

ŶB,i =
√
piHi +

√
γiGB,i + ZB,i, (20)

where the fading coefficient in the link between Alice and Bob
on the i-th subcarrier is denoted byHi, in the link between
Eve and Alice byGA,i and in the link between Eve and Bob by
GB,i. We assume that the fading coefficients are i.i.d. Gaussian
random variables withHi ∼ N

(

0, σ2
H

)

, GA,i ∼ N
(

0, σ2
A

)

and GB,i ∼ N
(

0, σ2
B

)

. Notice that the fading coefficients
are assumed to have the same statistics. This assumption is
justified, since, broadly speaking, narrowband fading depends
on the bandwidth (which is the same for all subcarriers) and
not on the central frequency (unlike wideband fading or large
scale fading) [38]. Furthermore, the noise variablesZA,i and
ZB,i are assumed to be i.i.d. Gaussian zero mean unit variance
random variables. Finally, Alice and Bob exchange constant
probe signals [8] with powerpi and that Eve transmits constant
jamming signals [17] with powerγi on thei-th subcarrier so
that the following average power constraints are satisfied2 [19],
[21]:

1

N

N
∑

i=1

pi ≤ P,
1

N

N
∑

i=1

γi ≤ Γ. (21)

2Using constant probe signals preserves the Gaussianity of the inputs√
piHi,

√
γiGA,i and

√
γiGB,i, which is optimal for the legitimate nodes

and the jammer in our AWGN setting.

Given the above model, an easy calculation reveals that the
SKG capacity over thei-th subcarrier can be expressed as a
function of pi andγi as:

C(pi, γi) = I(ŶA,i; ŶB,i)

=
1

2
log2

Ñ

1 +
σ2
Hpi

NA,i +NB,i +
NA,iNB,i

σ2

H
pi

é

, (22)

with NA,i = 1 + σ2
Aγi, NB,i = 1 + σ2

Bγi.

In order to evaluate the overall SKG capacity, we formalize
the channel hopping vs. power spreading techniques similarly
to [19], [21]. When channel hopping is employed, all of the
available power is used to transmit on asingle randomly
chosen subcarrieri. Therefore, when the legitimate nodes
employ channel hopping on subcarrieri, thenpi = NP and
pk = 0 for k 6= i, while when the jammer hops on subcarrier
i then γi = NΓ and γk = 0, k 6= i. On the other hand,
when power spreading is used, the available power is equally
distributed across all subcarriers so thatpi = P and γi = Γ
∀i ≤ N .

When transmitting over the entire spectrum, the choice of
the uniform power allocation is motivated by the fact that the
nodes do not know their actual channel gains and that their
statistics are identical across all frequency carriers. Moreover,
assuming that player L transmits with uniform power allo-
cation and from the convexity of the SKG function in (22)
w.r.t. γi, it turns out that the uniform power allocation for
the jammer is optimal and minimizes the overall SKG utility.
More general power allocation policies can be considered in
future investigations.

From an implementation point of view for the proposed
channel hopping and power spreading strategies, we consider
that an OFDM transmitter with a standard inverse fast Fourier
transform (IFFT) block is employed. In channel hopping
mode, all but a randomly chosen IFFT input are set to
zero. No coordination regarding the chosen channel hopping
or spreading options is required between transmitting and
receiving terminals. This is possible if wideband reception
is employed by all parties, allowing transmitting terminals
to independently choose their strategies without coordination
with the receiving terminals. Such a wideband reception of
the N orthogonal subcarriers can be efficiently implemented
using a standard FFT based OFDM receiver.

Using this framework in the following, for Alice and
Bob the probability of channel hopping on subcarrieri is
denoted byαi ∀i ≤ N , while αN+1 denotes the probability
of spreading the available power uniformly over the whole
spectrum. Similarly, we defineβi for the jammer. Since
α = [α1, . . . , αN+1] and β = [β1, . . . , βN+1] are discrete
probability distributions, we have the constraintsαj ≥ 0, ∀j,
∑N+1

i=1 αi = 1, βj ≥ 0, ∀j, and
∑N+1

i=1 βi = 1.
Given the above, the SKG capacity over theN orthogonal

subcarriers is given by:

û(α, β) =
1

N

ß N
∑

i=1

{αi(1− βi − βN+1)C(NP, 0)

+αiβiC(NP,NΓ) + αiβN+1C(NP,Γ)
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+αN+1βi[(N − 1)C(P, 0) + C(P,NΓ)]}

+αN+1βN+1NC(P,Γ)

™

, (23)

where the normalization1
N

accounts for measuring the SKG
capacity in bits/s/Hz. In (23), the first term corresponds tothe
case in which Alice (resp. Bob) hops on subcarrieri and the
jammer hops on a different subcarrier; the second term to the
case in which Alice (resp. Bob) and the jammer both hop on
subcarrieri; the third term to the case in which Alice (resp.
Bob) hops on subcarrieri and the jammer spreads; the fourth
term to the case in which the Alice (resp. Bob) spreads and the
jammer hops on subcarrieri. Finally, the last term corresponds
to the case in which they both spread their power.

A. Game Formulation and Nash Equilibria

We model the competitive interaction between player L and
J as the following zero-sum gamêG = {ÂL, ÂJ , û(α, β)},
where the payoff̂u(α, β) is given in (23). The action sets of
the players are the probabilities of channel hopping and power
spreading:

ÂL =

{

α ∈ [0, 1]N+1

∣

∣

∣

∣

∣

N+1
∑

i=1

αi = 1

}

,

ÂJ =

{

β ∈ [0, 1]N+1

∣

∣

∣

∣

∣

N+1
∑

i=1

βi = 1

}

.

As we have argued in the previous section, the natural solution
in such a strategic interaction without cooperation among the
opponents is the NE.

To derive the game’s NE, let us introduce a finite discrete
game ĜD = {ÊL, ÊJ , û(α, β)} with action sets defined as
ÊL ≡ ÊJ = {e1, . . . , eN , e(N+1)}, whereei ∈ {0, 1}N+1 is
the canonical vector containing1 on the i-th position and0
otherwise. Thei-th actionei represents channel hopping on
subcarrieri for all i ≤ N and eN+1 represents spreading
the power across the spectrum. Such finite discrete games
always have at least one NE in mixed strategy(α∗, β∗) [37,
Sec. 1.3.1]. We observe that our gameĜ represents the mixed
strategy extension of̂GD and thusĜ has at least one NE.

Corollary 1: [37, Thm. 1.1]GameĜ has at least one NE.
To compute the NE, one possibility is to use the Minimax

Theorem of von Neumann and Morgenstern [39] which allows
us to compute mixed NE of any two-player zero-sum game
via linear programming (i.e., by solving two dual linear
optimization problems). In our case, we show that the NE can
be characterized in an analytical closed-form manner without
the need of solving any optimization problem. To this aim, an
alternative characterization of the NE (see Definition 1.2 in
[37, Sec.1.2.1]) is used:

Definition 1: A strategy profile(α∗, β∗) ∈ ÂL × ÂJ is a
NE of the gamêG if the following hold:

i) both players are indifferent among the pure actions that
are played with positive probability at the NE

û(α∗, ei) = û(α∗, ek), ∀i, k,∈ IJ ,
û(ei, β

∗) = û(ek, β
∗), ∀i, k,∈ IL,

ii) the pure actions that result in strictly smaller payoffs are
played with zero probability at the NE

if û(α∗, ei) < û(α∗, ek), i ∈ IJ , thenk ∈ NJ ,

if û(ei, β
∗) > û(ek, β

∗), i ∈ IL, thenk ∈ NL,

where the setsNL, IL ⊆ {1, . . . , N + 1} denote, respec-
tively, the indices of the pure actions that are not played at
the NE and those that are played at the NE by player L:
NL = {i|α∗

i = 0}, IL = {1, . . . , N + 1} \ NL; similarly,
the setsNJ , IJ ⊆ {1, . . . , N + 1} denote, respectively, the
set of indices of the pure actions that are not used or are
used by player J at the NE:NJ = {i|β∗

i = 0}, and
IJ = {1, . . . , N + 1} \ NJ .

At a first glance, Definition 1 provides a simple way to
compute the NE of the gamêG by solving a system of linear
equations and checking some conditions. Still, in order to use
Definition 1, one would have to know in advance the faces of
the simplexÂL × ÂJ on which the NEs lie, i.e., one would
have to knowIL, IJ for all NEs. An exhaustive search has
an exponential complexity (theN + 1-simplex has2N+1 − 1
faces). Nevertheless, the NE of our gameĜ have a special
structure which allows us to exploit Definition 1 and fully
characterize the set of NE in a simple manner.

To characterize the set of NEs as function of the system’s
parameters we begin by examining the matrix structure of
the discrete gamêGD given in Table I. We notice that there
is a symmetry between the channel hopping strategies. In
particular, the payoff does not depend on the particular index
of the chosen subcarrier but only on whether both players hop
on the same subcarrier or not. This symmetry allows us to
show that the NE of the gamêG have a particular structure
specified in the following propositions.

Proposition3: At the NE(α∗, β∗), a player uses either all
channel hopping actions with non-zero probability or none of
them: eitherα∗

i = 0, ∀i ≤ N or α∗
i 6= 0, ∀i ≤ N , and

similarly, eitherβ∗
i = 0, ∀i ≤ N or β∗

i 6= 0, ∀i ≤ N .

Proposition4: If both players employ channel hopping with
non-zero probability at the NE, i.e.,α∗

i > 0 andβ∗
i > 0 ∀i ≤

N , then the players will hop uniformly across all channels and
the NE will have the following structure:α∗ = (a, . . . , a, (1−
Na)), β∗ = (b, . . . , b, (1 − Nb)) for some0 ≤ a ≤ 1/N ,
0 ≤ b ≤ 1/N .

Propositions 3 and 4 are proven in Appendices D and E.
These results shape the special structure of the NE ofĜ, which,
alongside Definition 1 and the strict convexity ofC(p, γ)
w.r.t. γ, allows us to fully characterize the set of NEs in a
very simple and explicit manner as function of the system
parameters.

Theorem4: The set of NE of the gamêG is characterized
as follows:
1. If C(NP,Γ) < NC(P,Γ), then the game has a unique
pure-strategy NE: both players spread their powers,α∗ =
β∗ = eN+1.
2. If C(NP,Γ) > NC(P,Γ), then player L hops and player
J spreads at the NE:α∗ = (α1, . . . , αN , 0) and β∗ = eN+1.
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TABLE I
TWO PLAYER ZERO-SUM DESCRIPTION OFĜd

ei, i ≤ N ek, k ≤ N, k 6= i eN+1

ei, i ≤ N 1

N
C(NP,NΓ) 1

N
C(NP, 0) 1

N
C(NP,Γ)

ek, k ≤ N, k 6= i 1

N
C(NP, 0) 1

N
C(NP,NΓ) 1

N
C(NP,Γ)

eN+1
N−1

N
C(P, 0) + 1

N
C(P,NΓ) N−1

N
C(P, 0) + 1

N
C(P,NΓ) C(P,Γ)

The NE strategies of player L are given by the (infinite number
of) solutions to the following system of linear inequalities:











0 ≤ αi ≤ 1, ∀i ≤ N,
∑N

j=1 αj = 1,

αi <
C(NP,0)−C(NP,Γ)

C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

In particular, the uniform probability over the channels isone
of the NE solutions:α∗ = (1/N, . . . , 1/N, 0). All NEs are
equivalent in terms of achieved utility.
3. If C(NP,Γ) = NC(P,Γ), player L employs all
their actions and player J spreads at the NE:α∗ =
(α1, . . . , αN , αN+1) and β∗ = eN+1. The NE strategies of
player L are the (infinite number of) solutions to the following
linear system of inequalities:














αi ≥ 0, ∀i ≤ N,
∑N

j=1
αj = 1,

αi[C(NP,NΓ)− C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ) − C(NP, 0) +C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)− C(NP, 0), ∀i ≤ N.

In this case, both players spreading (case 1) is an NE. Also,
player J spreading and player L hopping strategies (case 2)
are all NEs. All NEs are equivalent in terms of achieved utility.

The proof is provided in Appendix F. We remark that the
NE can be unique and in pure strategies ifC(NP,Γ) <
NC(P,Γ) and the outcome of the game provides a util-
ity equal to û(α∗, β∗) = C(P,Γ). On the contrary, if
C(NP,Γ) ≥ NC(P,Γ), there are an infinite number of
NEs which are generally in mixed strategies. All these NEs
are equivalent in terms of achieved utility, which equals
û(α∗, β∗) = 1

N
C(NP,Γ). Hence, the outcome of the game

can be predicted without the need for implementing iterative
or learning procedures.

Theorem 4 also shows that the optimal strategy for the
jammer is always spreading their power across the entire
spectrum. Intuitively, if the jammer were to use channel
hopping, player L would exploit this fact and would also hop;
this scenario is unfavorable for the jammer as the probability
that both players hop on the same subcarrier equals1

N2 (due
to Proposition 3, when both players hop at the NE, they
use uniform probabilities). Thus, the jammer’s payoff from
hopping cannot exceed that gained from spreading, assuming
that the legitimate nodes play their optimal strategy. On the
contrary, for player L the best strategy can be either channel
hopping or power spreading depending on which provides
higher utility against a spreading jammer.

B. Stackelberg Equilibrium

In Sec. III-C, we have shown that the hierarchy of play
among the adversaries does not bring an advantage to the

legitimate nodes assuming they have EH capabilities. Here,
we investigate whether this remains true in OFDM systems in
which the players choose between channel hopping and power
spreading strategies. The leader, player L, is assumed to play
first and to chooseαSE anticipating the jammer’s response.
The follower, player J, observesαSE and best-responds by
choosingβSE .

More precisely, the best-response of the jammer for an arbi-
trary choice ofα is defined as:βBR(α) = argminβ û(α, β).
Thus, the leader chooses their optimal strategy as follows

αSE = argmax
α

û(α, βBR(α)) (24)

and the resulting best-response or SE strategy of the jammer
is βSE = βBR(αSE).

To characterize the SE in closed-form, we use a similar
approach as for the NE: we show first that the leader’s strategy
at the SE has a special form described below. Then, we exploit
this structure to provide the SE solution.

Proposition5: At the SE, the legitimate player uses either
all hopping strategies with uniform probability or none of
them, i.e.,αSE = (a, . . . , a, 1−Na) for somea ∈ [0, 1/N ].

The proof is provided in Appendix G. The above structure
of αSE allows us to analyze the optimal response of the
jammerβSE and to prove that, in all cases, the jammer’s best
strategy is to spread:βSE = (0, . . . , 0, 1). On the other hand,
depending on the channel parameters, the leader will either
channel hop or spread their powers, identically to the NE.

Theorem5: The set of SEs of the gamêG is identical to
the set of NEs.

The proof is provided in Appendix H. Therefore, the
legitimate nodes do not gain in utility by choosing first their
strategy as opposed to the NE where both players choose their
strategies simultaneously.

V. NUMERICAL ILLUSTRATIONS AND DISCUSSION

In this Section, several representative illustrations arecho-
sen allowing the deduction of generic conclusions that carry
over most setups. The benchmark setting is chosen as follows:
unit jamming powerΓ = 1, unit variance Rayleigh channel
coefficientsσ2

A = σ2
B = σ2 = σ2

H = 1.

A. EH at the Legitimate nodes

We start by evaluating the SKG capacity at the NJ in
Proposition 1 and NE in Theorem 1 as functions of the system
parameters for a harvesting efficiencyζ = 0.7. In Fig. 2, the
relative gain in utility obtained at the NE compared with the
NJ, defined byE , CNE−CNJ

CNE , is depicted as a function
of the signal to interference ratio (SIR)P/Γ for different
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Fig. 2. Relative utility gain at the NE vs. NJE = (CNE − CNJ )/CNE

as a function ofP/Γ ≥ 0 for ζ = 0.7.

values of σ2 and σ2
H . In the investigated settings, the NJ

strategy never outperforms the NE in terms of utility, whichis
consistent with Proposition 2. When the SIRP/Γ is relatively
low, both the NE and the NJ provide identical utilities. In this
case,pNJ = P and τNJ = τNE = τth(P ), the jammer is
indifferent between{0,Γ} and both states are SE solutions.
With increasing SIRP/Γ, it is no longer optimal for the
legitimate nodes to harvest energy for a fraction of timeτth(P )
in order to neutralize the jammer. Instead, by limiting the
duration of EH toτNE < τth(P ) the SKG capacity increases
in spite of the full power jammingγ = Γ and only the NE is
also a SE solution. Moreover, as the SIR increases, e.g., for
P/Γ ≫ 1, the legitimate nodes should not harvest energy at
all as the jammer’s interference is relatively negligible.

Notice that Fig. 2 also illustrates the SE solution described
in Theorem 3. Indeed, at low SIR, when both NE and NJ
provide equal SKG capacity, they are both SE solutions. At
high SIR, the SE is unique and identical to the NE.

Subsequently, we evaluate the impact of the EH capability
on the SKG capacity at the NE. The relative gain in utility
obtained at the NE compared with the case in which there
is no EH capabilityCNoEH = C(P, 0,Γ), defined asF ,
CNE−CNoEH

CNE , is depicted as a function ofP/Γ in Fig. 3. The
benchmark setup is considered and the different curves cor-
respond to harvesting efficienciesζ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
As expected,F increases with the harvesting efficiencyζ. For
P/Γ = 1 and ζ = 0.5 the gain in using EH is around20 %
while it increases to30 % for ζ = 0.7. At low SIR P/Γ the
gain observed can reach60 %, while at the high SIR it is
negligible as expected.

Finally, the relative utilityF defined above is depicted in
Fig. 4 for ζ = 0.7 and various channel parameters. For low
SIRP/Γ, there is a significant gain in utility when employing
EH. This gain becomes significantly large at very low SIR,
exceeding97.5 % when the legitimate nodes experience poor
channel conditions as opposed to the jammer. When both
parties experience similar channel conditions the gain is in
the range of60 % in the medium SIR. Overall, the numeri-
cal results demonstrate that using EH as a counter-jamming

Fig. 3. Relative utility gain at the NE vs. no EH:F = (CNE −
CnoEH)/CNE as a function ofP/Γ ≥ 0.

Fig. 4. Relative utility gain at the NE vs. no EH:F = (CNE −
CnoEH)/CNE as a function ofP/Γ ≥ 0 for ζ = 0.7 and different channel
parameters.

technique is of particular interest in the low and medium SIR
regimes but, as expected, does not increase the utility in the
high SIR.

B. Channel Hopping vs. Power Spreading

First, we analyze the NE as function ofN and the ratioP/Γ
for the benchmark scenario in Fig. 5. There exist two regions
delimited by the curveC(NP,Γ) = NC(P,Γ): a region in
which the NE is unique and both players spread their power,
and a region in which the jammer spreads their power and the
legitimate nodes employ channel hopping.

Player L hops at the NE below the curve, when the SIR
P/Γ is relatively small. This is intuitive since, in the low
transmit power regime, the legitimate nodes should avoid as
much jamming interference as possible by transmitting on a
single subcarrier, which also means that their available power
is concentrated on a single channel. In Fig. 6, the NE regions
are illustrated for different channel parameters. Whenσ2

H

increases, the region in which player L should employ channel
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Fig. 5. NE regions as a function ofP/Γ ≥ 0 andN ≥ 2 for Γ = σ2
A

=
σ2
B

= σ2
H

= 1.

Fig. 6. NE regions as a function ofP/Γ ≥ 0 andN ≥ 2 for Γ = 1 and
different channel parameters.

hopping at the NE shrinks down while whenσ2
A, σ

2
B increase,

this region expands.
In Fig. 7, the relative gain obtained by player L when

employing the NE strategy as opposed to a naive hopping
strategy is depicted. The relative utility gainDH = (uNE −
uHop,Spread)/uNE, whereuHop,Spread = 1/NC(NP,Γ) is
relatively large (up to80%) in the high SIR regime, in which
case the optimal strategy for playerL is to use the entire
spectrum in spite of the jammer’s interference.

Finally, in Fig. 8, the relative utility gain when using the NE
strategy overN subcarriers as opposed to a single subcarrier
(usingle = C(P,Γ)) is investigated forΓ = σ2

H = σ2
A =

σ2
B = 1 as a function ofP/Γ for N ∈ {2, 4, 8, 16, 32, 64}. At

low SIR, when the channel hopping strategy is optimal for the
legitimate nodes, the higher the number of subcarriersN , the
lower the jammer’s interference in each subcarrier, and hence,
the higher the SKG capacity. At last, in the high SIR regime,
when spreading is optimal the SKG utility becomesC(P,Γ),
which is identical to transmitting over a single channel with
powersP andΓ.

Remark that all figures illustrating the NE, in this subsec-

Fig. 7. Relative utility gain between the NE vs. always hopping: DH =
(uNE − uHop,Spread)/uNE as a function ofP/Γ for N = 32, Γ = 1
and different channel parameters.

Fig. 8. Relative utility gain between the NE vs. single channel SKG:D1 =
(uNE−usingle)/uNE as a function ofP/Γ for Γ = σ2

H
= σ2

A
= σ2

B
= 1

andN ∈ {2, 4, 8, 16, 32, 64}.

tion, also illustrate the SE solution, since the SE is identical
to the NE as per Theorem 5.

C. Discussion and Perspectives

We discuss here the differences and similarities between
the two approaches: a) EH at the legitimate nodes, and b)
employing channel hopping or power spreading techniques.

EH at the legitimate nodes enables them to completely
neutralize the jammer. By harvesting the jamming power in
a first phase and exploiting it for SKG in a second phase, the
jammer’s attacks may increase the SKG capacity; in this case,
the jammer should not launch the attack, i.e., is neutralized.
However, it is not always optimal for the legitimate nodes to
neutralize the jammer. Indeed, using EH can reduce the SKG
capacity since, for a non-trivial fraction of time, there isno
useful communication; when the jammer is neutralized the
penalty in terms of utility might become too high, depending
on the system parameters (e.g., high SIR regime). In such
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cases, the obtained utility at the NE is strictly higher thanthe
one at the NJ state.

On the other hand, in the case of BF AWGN channels
(i.e., in systems with multiple orthogonal subcarriers), the idea
is to use channel hopping in a random fashion and avoid
most of the jammer’s interference as opposed to completely
neutralizing it. Since potential jammers cannot predict the
subcarrier used by the legitimate nodes, they will always
spread their powers over the entire spectrum: the larger the
number of subcarriers, the smaller the jammer’s interference
on each subcarrier. However, channel hopping is not always
optimal since only a fraction of the entire spectrum is used
for SKG transmission. Depending on the system parameters
(high SIR), it can be preferable for the legitimate nodes to
spread the available power across the entire spectrum rather
than concentrate it on a single subcarrier. In this case, theSKG
capacity (measured in bits/s/Hz) is identical to that of single
channel with the same average power constraints.

In the critical cases of low and medium SIR regimes
(P/Γ < 1), both approaches turn out to be advantageous in
terms of SKG capacity compared to a single channel SKG
system without EH capabilities; the gains in SKG capacity
depend on the harvesting duration or the number of subcarriers
N . On the contrary, in the high SIR regime (P/Γ ≫ 1),
the jammer’s impact and interference become relatively low
or even negligible and the cost of counter-jamming mea-
sures might not be justified compared to simply tolerating
it. However, the interesting cases are indeed the former ones
in which the jamming power is higher or of the same order
as the legitimate nodes’ transmit powers, in which settings
overcoming the attack becomes critical.

For both approaches it turns out that a hierarchical decision
model that in principle could favor the legitimate nodes
compared to a simultaneous decision model does not bring
an actual benefit. Indeed, the SKG utility obtained at the SE
is identical to the SKG utility at the NE (even though the set
of SEs is not necessarily identical to the set of NEs as in the
EH approach).

Several questions arise for future work. First, an interesting
issue would be to study reactive vs. proactive jamming [40]
as well as the joint use of EH and multi-carrier transmission
against jamming attacks. Second, in the EH case, the study of
more realistic models accounting for finite storage capabilities,
asymmetries in the legitimate nodes’ parameters and EH at the
jammer’s side, are interesting future extensions. Moreover, the
study of multi-user and multi-jammer interactions as well as
games of incomplete information are challenging open issues.

VI. CONCLUSIONS

In this work, the adversarial interaction between a pair of
legitimate nodes and a malicious jammer in a wireless key
generation framework was investigated. Two different counter-
jamming approaches were proposed and studied. First, EH at
the legitimate nodes, and, second, channel hopping vs. power
spreading in BF AWGN channels. In either approach, a zero-
sum game was introduced as the objectives of the two parties
involved were opposed. Complete characterizations of the NEs

and the SEs in closed-form were provided in both cases. It
was demonstrated that either approach may offer significant
gains in utility, particularly in the low SIR regime, in which
counteracting the jamming interference becomes crucial. As
a result, viable and low complexity alternatives for defending
SKG systems may be developed by exploiting either novel
transceiver features or available spectral resources.

APPENDIX

A. Proof of Proposition 1

Let us assume that the legitimate nodes neutralize the
jammer by transmitting at powerp ∈ [0,min{pth(τ), P}]. The
jammer observes player L’s choice and from Remark 2, de-
cides to stay silent. Notice that player L can force the jammer
to remain silent by transmitting atp ∈ [0,min{pth(τ)−ε, P}]
for an arbitrarily smallε > 0. For simplicity,ε ≃ 0 is assumed
in the following.

The remaining question is: how will player L chooseτ ∈
[0, 1) and p ∈ [0,min{pth(τ), P}] to maximize the resulting
SKG utility

ũ(p, τ, 0) =
1− τ

2
log2

(

1 +
pσ2

H

2 + 1
pσ2

H

)

, (25)

while ensuring that the jammer stays silent and cannot de-
crease the utility by transmitting with non-zero power. Since
the feasible set ofp depends onτ , we first have to find the
maximum of ũ(p, τ, 0) w.r.t. p for any fixedτ . The function
ũ(p, τ, 0) is strictly increasing inp and, hence, the optimal
power is given byp̃(τ) = min{P, pth(τ)}. Now, we need to
maximizeũ(p̃(τ), τ, 0) w.r.t. τ ∈ [0, 1]:

ũ(pth(τ), τ, 0) =
1− τ

2
log2

(

1 +
2ζσ2

Hτ

(2 + 1−τ
2ζσ2

H
τ
)(1− τ)

)

.

At the extremesτ = 0 and τ → 1 the utility goes to zero.
By investigating its second order derivatives w.r.t.τ , which
amounts to the following quadratic equation:

(1− τ)2 − 8σ4
Hζ2τ2 = 0, (26)

it can be shown that̃u(pth(τ), τ, 0) always has an inflexion
point in between(0, 1) and starts as convex and then becomes
concave. Knowing that the the utility is always positive, we
can conclude that̃u(pth(τ), τ, 0) has a unique critical point
that is the global maximizerτ∗ ∈ (0, 1) and which is the
solution to dũ(pth(τ),τ,0)

dτ
= 0. This implies that, ifpth(τ∗) ≤

P , then the optimal solution that neutralizes the jammer is
τNJ = τ∗ and pNJ = pth(τ

∗). If pth(τ
∗) > P , then the

optimal solution that neutralizes the jammer ispNJ = P and
τNJ = τth(P ) = P

P+2ζ .

B. Proof of Theorem 1 and Theorem 2

From Remark 1, we know that transmitting at maximum
power is a strictly dominant strategy for player L and, hence,
pNE = P . We first prove that at the NE, player L will not
operate in EH mode for longer than the thresholdτth(P ). Let’s
suppose by absurdum thatτNE > τth(P ), then the jammer’s
best response would be to remain silentγNE = 0 (as the
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energy harvested from the jammer in the EH phase is enough
to overcome the interference inflicted by the jammer in the
SKG phase). Then, the optimalτNE maximizing the utility
ũ(P, τ, 0) (which is decreasing inτ ) would beτNE → τth(P )
obtaining the utility ũNE → ũ(P, τth(P ), 0). However, this
state cannot be an NE. Indeed, if the jammer stays silent
γNE = 0, no energy is harvested duringτNE and player
L gains in utility by deviating toτ = 0. This will also cause
the jammer to deviate toγ = Γ.

The above implies that, player L can only choose an EH
strategy such thatτNE ≤ τth(P ) at the NE. This condition is
equivalent toP ≥ pth(τ

NE), which means that the utility is
either decreasing or simply a constant inγ (see Remark 2).
This further implies that if the jammer uses maximum power
γNE = Γ, then it cannot benefit by deviating unilaterally.
Hence, to find the NE of the form(P, τNE ,Γ), we only need
to find the optimal value or values ofτ ∈ [0, τth(P )] that
maximizes the functioñu(P, τ,Γ) given by:

ũ(P, τ,Γ) =
1− τ

2
log2

Ñ

1 +
(P + 2κ(τ)Γ) σ2

H

2(1 + σ2Γ) + (1+σ2Γ)2

(P+2κ(τ)Γ)σ2

H

é

,

whereκ(τ) = ζτσ2

1−τ
. At τ = 0, this function is strictly positive

ũ(P, 0,Γ) > 0 equal to the SKG capacity without EH and,
when τ → 1 the function goes to0. By investigating the
second order derivative of̃u(P, τ,Γ) w.r.t. τ , which amounts
to the analysis of the following quadratic equation

(1− τ)2(1 + σ2Γ)2 − 2σ4
H(P (1− τ) + 2σ2ζΓτ)2 = 0, (27)

two different cases arise:
- Case A:If 1+σ2Γ ≥

√
2σ2

HP , this function has a unique
inflexion point that lies in(0, 1) and the function starts as
convex and then becomes concave. Thus,ũ(P, τ,Γ) has a
critical point that is a local maximumτmax ∈ (0, 1), which is
a solution of the equationdũ(P,τ,Γ)

dτ
= 0. Hence, the optimal

strategy is given by either the maximal pointτmax or by one
(or both) of the borders of the interval[0, τth(P )] depending
on the system parameters:

τNE = arg max
τ∈{0,min{τth(P ),τmax}}

ũ(P, τ,Γ). (28)

- Case B: If 1 + σ2Γ <
√
2σ2

HP , then the function is
always concave (and it does not have an inflexion point)
in (0, 1). If the function has a critical point in(0, 1), then
this critical point is a maximum point denoted byτmax

and τNE = min{τth(P ), τmax}. Otherwise, the function is
concave decreasing andτNE = 0.

Remark that, at least in theory, Case A can lead to the exis-
tence of two NEs whenever the additional equality condition
is met: ũ(P, 0,Γ) = ũ(P,min{τth(P ), τmax},Γ), i.e., when
both borders of the interval[0,min{τmax, τth(P )}] provide
equal maximum utility. However, this can happen only in very
special cases of the system parameters or with zero probability.

Since the state(P, τth(P ), 0) is not a NE, the game has
(almost surely) a unique NE of the form(P, τNE ,Γ) where
τNE depends on the system parameters. Aside from the zero
probability case described above, this profile may not be the
unique NE of the gamẽG as there may exist other NEs such

thatγNE ∈ (0,Γ). Such cases can only happen if the strategy
of player L at the NE equals(P, τth(P )) or equivalently if
(P, τth(P ),Γ) is a NE of the game. Otherwise, whenever
τNE < τth(P ), the utility is strictly decreasing inγ and the
only strategy of the jammer at the NE isΓ (case discussed
previously).

Now, whenever the legitimate user chooses their strategy
(P, τth(P )), the jammer becomes totally indifferent between
all their strategies and, in particular, all jamming powersin
(0,Γ) provide the same utility (see Remark 2). Hence, in this
case, there may be other NEs aside from(P, τth(P ),Γ) that
provide identical utilities tõu(P, τth(P ),Γ).

In order to find all NE of the form(P, τth(P ), γNE), we
need to find allγNE ∈ (0,Γ) such that the legitimate user
cannot deviate from(P, τth(P )) or it will lose in terms of
utility. Stated otherwise, allγNE ∈ (0,Γ) such thatτth(P ) =
argmaxτ ũ(P, τ, γ

NE) provide additional NE profiles of the
form (P, τth(P ), γNE).

The analysis of the utilitỹu(P, τ, γNE) as a function of
τ is very similar toũ(P, τ,Γ) above. There are two cases in
function of the system parameters.

- Case A: If 1 + σ2Γ ≥
√
2σ2

HP , for all γNE ∈
[√

2σ2

HP−1
σ2 ,Γ

)

, the functionũ(P, τ, γNE) has a unique in-

flexion point that lies in(0, 1) and starts as convex and then
becomes concave. Thus,ũ(P, τ, γNE) has a critical point that
is a local maximumτmax(γ

NE) ∈ (0, 1), which is a solution
of the equationdũ(P,τ,γNE)

dτ
= 0. The additional conditions for

the strategy(P, τth(P )) to be optimal for player L are:

τth(P ) ≤ τmax(γ
NE)

ũ(P, 0, γNE) ≤ ũ(P, τth(P ), γNE)
(29)

- Case B: If 1 + σ2Γ <
√
2σ2

HP , for all γNE ∈
(

0,
√
2σ2

HP−1
σ2

)

, the functionũ(P, τ, γNE) is always concave

in τ ∈ (0, 1). If the function has a critical point in(0, 1), then
this critical point is a maximum point denoted byτmax(γ

NE).
The additional condition for the strategy(P, τth(P )) to be
optimal is τth(P ) = τmax(γ

NE). Otherwise, the function is
concave decreasing inτ and (P, τth(P )) cannot be optimal
for player L.

C. Proof of Theorem 3

Let us first find the best-response of the jammer defined in
(17). Given the second remark, it is easy to see that:

γBR(p, τ) =







0, if p < pth(τ)
∈ [0,Γ], if p = pth(τ)
Γ, if p > pth(τ)

, (30)

wherepth(τ) = 2ζτ
1−τ

. Notice that wheneverp = pth(τ) the
best response of the jammer can be anything and cannot in
fact be predicted by player L. However, the obtained payoff
is anticipated by player L as it does not depend on the actual
choice of the jammer:̃u(pth(τ), τ, γ) = ũ(pth(τ), τ, 0), for
all γ.

The SE action of the leader, anticipating that the jammer
will best respond to their own choice is given by:

(pSE , τSE) = argmax
p,τ

ũ(p, τ, γBR(p, τ)) (31)
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From (30), we see that player L can either neutralize the
jammer or allow it to transmit, knowing that the jammer will
transmit with full powerΓ. The situation that proves to be
mostly advantageous to the legitimate player will be chosen.

- Case A: Assume the legitimate player neutralizes the
jammer by choosing a strategy such thatp ≤ pth(τ). Player
L has to find the best pair(p, τ) that maximizesũ(p, τ, 0)
knowing thatp ∈ [0,min{P, pth(τ)}] and thatτ ∈ [0, 1]; the
solution equals(pNJ , γNJ) in Proposition 1.

- Case B:Assume now that the legitimate player does not
neutralize the jammer andp ≥ pth(τ). Player L has to find
the best pair(p, τ) that maximizesũ(p, τ,Γ) knowing that
p ∈ [0, P ] ∩ [pth(τ),∞) and τ ∈ (0, 1). By fixing τ first
and optimizing with respect top, we have thatu(p, τ,Γ) is
increasing inp and hence, the optimal power equalsP and the
value ofτ will be constrained byP ≥ pth(τ) or equivalently
τ ≤ τth(P ). This analysis is identical to the analysis of the
NE and one possible SE solution is the NE in Theorem 1.

At the SE, the legitimate user will choose one of the
two possibilities which provides a higher SKG utility. From
Proposition 2, we know that the NJ state cannot provide a
strictly higher utility than the NE state. Hence, whenever
τNE < τth(P ), the utility of the unique NE is strictly
higher than that of the NJ state. This implies a unique SE
that is identical to the NE. IfτNE = τth(P ), this means
that (pNJ , τNJ ) = (P, τNE) which implies that the utilities
at both states NJ and NE are identical. Both the NE (in
Theorem 1) and NJ (in Proposition 1) states are SE solutions:
(P, τth(P ),Γ) and (P, τth(P ), 0).

The remaining question is whether there exist other so-
lutions when player L chooses the strategy(pSE , τSE) =
(P, τth(P )). In this case, the jammer is rendered indifferent
between all of its actionsγ ∈ [0,Γ], which means that it is
also rendered unpredictable. As opposed to the NE, the SE
requires the legitimate user to be able to anticipate precisely
the jammer’s response. To avoid this problem, the leader can
silence the jammer by transmitting with powerp = P − ε
or ensures that the jammer transmits with full power by
transmitting at powerp = P + ε, where ε could be made
arbitrarily small and, hence, has no practical impact. Noneof
the other NE in Theorem 2 can be SEs, since the jammer’s
response cannot be predictable.

In conclusion, ifτNE < τth(P ), then the SE is unique and
identical to the NE in Theorem 2. Otherwise, both the NE and
the NJ states are SE solutions.

D. Proof of Proposition 3

Assume by absurdum and WLOG that player J has an
NE strategy such that the first channel is left unusedβ∗ =
(0, β2, . . . , βN+1) while other channels are usedβi > 0 for
some 2 ≤ i ≤ N . Exploiting this knowledge, player L
will only employ channel hopping on channel 1 and maybe
spreading with non zero probability at the NE. To see this, we

write the expected payoff of player L assumingβ1 = 0

2Nû(α∗, β∗) =
N
∑

i=2

{αi(1− βi − βN+1)C(NP, 0)

+αiβiC(NP,NΓ) + αiβN+1C(NP,Γ)}
+αN+1(1 − βN+1)[(N − 1)C(P, 0) + C(P,NΓ)]
+αN+1βN+1NC(P,Γ)α1(1− βN+1)(N − 1)C(NP, 0).

SinceC(NP, 0) > C(NP,NΓ) and there exists someβi > 0,
we have that:

(1− βN+1)(N − 1)C(NP, 0) >
∑

i6=1[βiC(NP,NΓ)
+(1− βi − βN+1)C(NP, 0)].

This means that, if the jammer does not use channel1, the
legitimate ndes will only employ this channel and none of the
other channel hopping strategies and the NE will be of the
form α∗ = (1− αN+1, 0, . . . , 0, αN+1). The utility becomes:

2Nû(α∗, β∗) = (1− αN+1)(1 − βN+1)(N − 1)C(NP, 0)
+αN+1(1 − βN+1)[(N − 1)C(P, 0) + C(P,NΓ)]
+αN+1βN+1NC(P,Γ).

But now, if the jammer uses all channel hopping probabilities
back in channel1, he can strictly decrease the utility. Assume
that the jammer switches from the initialβ∗ to δ = (1 −
βN+1, 0, . . . , 0, βN+1). The payoff becomes:

2Nû(α∗, δ) = (1− αN+1)(1 − βN+1)(N − 1)C(NP,NΓ)
+αN+1(1− βN+1)[(N − 1)C(P, 0) + C(P,NΓ)]
+αN+1βN+1NC(P,Γ).

Since û(α∗, β∗) > û(α∗, δ), the jammer has an incentive
to deviate from the NE which is a contradiction. Thus, the
jammer uses either all or none of the channel hopping actions.
For player L, the proof follows similarly.

E. Proof of Proposition 4

Let us write the linear equations obtained when the players
are indifferent among their channel hopping actions. Thereare
four very similar cases depending on whether the players use
spread with zero probability at the NE or not. We only detail
one case here below. If both players use spread at the NE, the
following conditions must be met:

αiC(NP,NΓ) + (1− αi − αN+1)C(NP, 0)
+αN+1[(N − 1)C(P, 0) + C(P,NΓ)] = cα,
βiC(NP,NΓ) + (1− βi − βN+1)C(NP, 0)
+βN+1C(NP,Γ) = cβ .

The equations inα illustrate that player J becomes indifferent
among their pure channel hopping actions at the NE. Similarly,
the equations inβ make player L indifferent among their pure
channel hopping actions at the NE. We remark that all these
equations are identical in the sense that their coefficientsdo
not depend on the indexi of theα andβ variables. This means
that their solutions are of the form:αi = a and βi = b for
any i ≤ N . Therefore – irrespective of whether the players
employ or not spreading at the NE – if both players employ
the channel hopping strategy, then the NE takes on the special
form α∗ = (a, . . . , a, (1 − Na)), β∗ = (b, . . . , b, (1 − Nb))
for some0 ≤ a ≤ 1/N , 0 ≤ b ≤ 1/N .
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F. Proof of Theorem 4

If N = 1, the NE analysis is trivial and both players transmit
at full powers (NP,NΓ). If N > 1 and given the strict
convexity ofC(p, γ) in γ, we have the following inequality
for all p, γ1 6= γ2 andλ ∈ (0, 1):

C(p, λγ1 + (1− λ)γ2) < λC(p, γ1) + (1 − λ)C(p, γ2).

By taking p = P , γ1 = 0, γ2 = NΓ, λ = N−1
N

, we obtain:

NC(P,Γ) < (N − 1)C(P, 0) + C(P,NΓ) (32)

Similarly, by takingp = NP , γ1 = 0, γ2 = NΓ, λ = N−1
N

,
we obtain:

NC(NP,Γ) < (N − 1)C(NP, 0) + C(NP,NΓ). (33)

From Proposition 3 and Proposition 4, the NE can only
take nine forms which are not mutually exclusive. Each case
is studied using Definition 1 and for which necessary and
sufficient conditions are provided. Then, using (32) and (33),
we show that only three of the nine cases can occur. The
proof is rather long and tedious and only a sketch containing
the main ideas is provided below. 1)Both players spread at
the NE (i.e., α∗ = β∗ = eN+1), iff C(NP,Γ) < NC(P,Γ)
and (N − 1)C(P, 0) + C(P,NΓ) > NC(P,Γ). The second
condition is always true due to (32).

2) Both players use only channel hopping at the NE
(i.e., α∗ = β∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) +
(N − 1)C(NP, 0) > N(N − 1)C(P, 0) + NC(P,NΓ) and
C(NP,NΓ) + (N − 1)C(NP, 0) < NC(NP,Γ). This case
is impossible because of (33).

3) The game has a strictly mixed NE, i.e., all actions
are used with non-zero probability, of the formα∗ =
(a, . . . , a, (1−Na)), β∗ = (b, . . . , b, (1−Nb)) iff there exist
0 < a < 1/N and 0 < b < 1/N such that both players are
indifferent among all their pure strategies. Let us write the
condition for(a, . . . , a, 1−Na) to be a NE and for which the
jammer is indifferent among their pure strategies by Definition
1. This yields the following linear equation:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] =

(1−Na)[(N − 1)C(P, 0) + C(P,NΓ)−NC(P,Γ)],

where the term on the LHS is a strictly negative value from
a > 0 and (33) and the RHS is a strictly positive value from
a < 1/N and (32). Thus, this case can never occur.

4) Player L only channel hops and player J uses both chan-
nel hopping and spreading at the NE: α∗ = (1/N, . . . , 1/N, 0)
and β∗ = (b, . . . , b, (1 − Nb)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = NC(NP,Γ), 0 < b < 1/N , and
Nb[(N − 1)C(P, 0) + C(P,NΓ)] + (1 − Nb)NC(P,Γ) <
bC(NP,NΓ)+(N−1)bC(NP, 0)+(1−Nb)C(NP,Γ), where
b is chosen such that player L is indifferent among their pure
strategies. Given (33), the above equality never holds.

5) Player J only channel hops and player L uses both chan-
nel hopping and spreading at the NE(i.e.,α∗ = (a, . . . , a, (1−
Na)) andβ∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = N(N−1)C(P, 0)+C(P,NΓ), 0 < a < 1/N ,
andMaC(NP,Γ) + (1 − Na)NC(P,Γ) > aC(NP,NΓ) +
(N − 1)aC(NP, 0)+ (1−Na)[(N− 1)C(P, 0)+C(P,NΓ)]

wherea is chosen such that player J is indifferent among their
pure strategies. The last inequality condition becomes:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] >

(1 −Na)[(N − 1)C(P, 0) + C(P,NΓ) −NC(P,Γ)]

where the term on the LHS is a strictly negative value from
a > 0 and (33) and the RHS is a strictly positive value from
a < 1/N and (32). Thus, this case can never occur.

6) Player L spreads and player J channel hops at the
NE (i.e., α∗ = eN+1 and β∗ = (β1, . . . , βN , 0)), iff
NC(P,Γ) > (N − 1)C(P, 0) + C(P,NΓ), NC(NP, 0) −
N(N − 1)C(P, 0)−NC(P,NΓ) < C(NP, 0)−C(NP,NΓ)
andβi meet some additional constraints. Because of (32) this
case never occurs as the first condition is never satisfied.

7) Player J spreads and player L channel hops at the NE
(i.e., β∗ = eN+1 andα∗ = (α1, . . . , αN , 0)), iff C(NP,Γ) >
NC(P,Γ) and NC(NP, 0) − NC(NP,Γ) > C(NP, 0) −
C(NP,NΓ). The NE strategies of player L are given by the
(infinite number) of solutions to the following system of linear
inequalities:























0 ≤ αi ≤ 0, ∀i,
N
∑

j=1

αj = 1

αi <
C(NP,0)−C(NP,Γ)

C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

The second condition is always true (33). From (33), the above
system of inequality always has the uniform probability over
the channels solutionα∗ = (1/N, . . . , 1/N, 0).

8) Player L spreads and player J employs all their actions
at the NE(i.e., α∗ = eN+1, β∗ = (β1, . . . , βN+1)), iff (N −
1)C(P, 0) + C(P,NΓ) = NC(P,Γ) and βi, ∀i meet some
additional constraints that are not detailed here. The reason is
that, given (32), the equality condition never holds and, hence,
this case is impossible.

9) Player J spreads and player L employs all their actions
at the NE(i.e., β∗ = eN+1 andα∗ = (α1, . . . , αN , αN+1)),
iff C(NP,Γ) = NC(P,Γ) and the solutions to the following
linear system of inequalities are NE strategies for player L:






























0 ≤ αi ≤ 1, ∀i,
N
∑

j=1

αj = 1

αi[C(NP,NΓ)− C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ) −C(NP, 0) + C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)− C(NP, 0), ∀i ≤ N.

Notice that, by takingαN+1 = 0, the above system of linear
equations is precisely the one in case 7 which has an infinite
number of solutions, and in particularαi = 1/N, ∀i ≤ N .
Similarly, αi = 0 for all i ≤ N and αN+1 = 1 (player L
spreads) is also a solution, which follows directly from (32).

G. Proof of Proposition 5

The best-response for the jammer is defined asβBR(α) =
argminβ û(α, β), where βBR(α) represents the best action
the jammer can take knowing that the legitimate player choses
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α. The payoff is affine inβ and can be rewritten it as
û(α, β) =

∑N+1
i=1 βici(α) + c0(α), with the coefficients:

ci(α) = αi[C(NP,NΓ)− C(NP, 0)]

+ αN+1[C(P,NΓ) − C(P, 0)], i ≤ N,

cN+1(α) =

N
∑

j=1

αi[C(NP,Γ) − C(NP, 0)]

+ NαN+1[C(P,Γ) − C(P, 0)],

c0(α) =
N
∑

j=1

αiC(NP, 0) +NαN+1C(P, 0). (34)

Thus, we observe that to find the best-response function
βBR(α), the jammer has to solve a linear program under the
constraints:βi ≥ 0, ∀ i and

∑N+1
j=1 βj = 1. The SE action of

the leader, anticipating that the jammer will best respond to
their own choice is given by:

αSE = argmax
α

û(α, βBR(α)) = argmax
α

ß

min
j>0

cj(α) + c0(α)

™

.

Player L can anticipate the response of the jam-
mer, who seeks to minimize the coefficientscj(α). We
remark that: cN+1(α) = (1 − αN+1)[C(NP,Γ) −
C(NP, 0)] + NαN+1[C(P,Γ) − C(P, 0)] and c0(α) = (1 −
αN+1)C(NP, 0)+NαN+1 do not depend on the way in which
the load1−αN+1 is spread over the channel hopping actions.
Therefore we can only focus onci(α), 1 ≤ i ≤ N .

If player L uses channel hopping strategies with uniform
probability α(1) = (a, . . . , a, 1 − Na), all coefficients will
be equalci(α(1)) = a[C(NP,NΓ) − C(NP, 0)] + (1 −
Na)[C(P,NΓ) − C(P, 0)]. This means that the jammer is
indifferent between the different channelsmin1≤j≤N cj(α) =
a[C(NP,NΓ)−C(NP, 0)]+(1−Na)[C(P,NΓ)−C(P, 0)].

Now, if player L has a preference for a certain chan-
nel, say for channel 1:α(2) = (a + δ1, a − δ2, . . . , a −
δN , 1 − Na), with

∑N
j=2 δj = δ1 > 0, the coefficients will

be: c1(α(2)) = (a + δ)[C(NP,NΓ) − C(NP, 0)] + (1 −
Na)[C(P,NΓ)−C(P, 0)], ci(α(2)) = (a−δi)[C(NP,NΓ)−
C(NP, 0)] + (1 − Na)[C(P,NΓ) − C(P, 0)]. In this case,
the jammer will profit from this information and will
put all their channel hopping load on channel 1 alone:
βBR
1 (α(2)) = 1 − βBR

N+1(α
(2)), βi(α

(2)) = 0, ∀2 ≤
N and min1≤j≤N cj(α

(2)) = (a + δ)[C(NP,NΓ) −
C(NP, 0)] + (1−Na)[C(P,NΓ)−C(P, 0)]. But this means
thatmin1≤j≤N cj(α

(2)) < min1≤j≤N cj(α
(1)), which further

implies that û(α(1), βBR(α(1))) < û(α(2), βBR(α(2))). This
means that player L will lose in utility by not assigning
uniform probability to the channel hopping strategies.

H. Proof of Theorem 5

Proposition 1 tells us that the SE strategy of player L is of
the form:αSE = (a, . . . , a, (1−Na)) for somea ∈ [0, 1/N ],
which is to be determined. The coefficients in (34) become:

ci(α
SE) = a[C(NP,NΓ)− C(NP, 0)]

+ (1−Na)[C(P,NΓ)− C(P, 0)], i ≤ N

cN+1(α
SE) = Na[C(NP,Γ)− C(NP, 0)]

+ N(1−Na)[C(P,Γ)− C(P, 0)].

Using the fact thatC(p, γ) is convex w.r.t. γ for a
fixed p, we have the following inequalities:NC(P,Γ) <
(N − 1)C(P, 0) + C(P,NΓ) and NC(NP,Γ) < (N −
1)C(NP, 0) + C(NP,NΓ) which imply that ci(αSE) <
cN+1(α

SE). This means that the jammer’s strategy is to spread
always:βSE = (0, . . . , 0, 1). The SE utility becomes:

û(αSE , βSE) = aC(NP,Γ) + (1 −Na)C(P,Γ). (35)

This implies that, ifC(NP,Γ) > NC(P,Γ) player L will
only channel hop with uniform probabilitya = 1/N . If
C(NP,Γ) < NC(P,Γ) player L will only spreada = 0. If
C(NP,Γ) = NC(P,Γ) then the legitimate user is indifferent
between spreading and channel hopping and alla ∈ [0, 1/N ]
are solutions.
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