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Optimal Differentially Private Mechanisms
for Randomised Response

Naoise Holohan, Douglas J. Leith, Senior Member, IEEE, and Oliver Mason

Abstract— We examine a generalised randomised res-
ponse (RR) technique in the context of differential privacy
and examine the optimality of such mechanisms. Strict and
relaxed differential privacy are considered for binary outputs.
By examining the error of a statistical estimator, we present
closed solutions for the optimal mechanism(s) in both cases.
The optimal mechanism is also given for the specific case of
the original RR technique as introduced by Warner in 1965.

Index Terms— Randomized response, differential privacy, local
privacy, optimality.

I. INTRODUCTION

A. Background

STANLEY L. WARNER first proposed the Randomised
Response (RR) technique as a means to eliminate bias

in surveying in 1965 [1]. The central idea is the following.
Respondents are handed a spinner by the surveyor; they then
spin the spinner in private to decide which of two questions to
answer. Respondents then answer the given question truthfully
with a ‘yes’ or ‘no’. For example, depending on the outcome
of the random spin a respondent may answer one of the two
questions:

1) Have you ever cheated on your spouse/partner?
2) Have you always been faithful to your spouse/partner?
The motivation for RR is that respondents are afforded

plausible deniability as the surveyor would not know the
question to which the answer refers. This should encourage
respondents to engage with the survey and to answer the
question truthfully. Of course, the spinner can be replaced
by any appropriate randomisation device, such as coin flips,
rolling dice or drawing from a pack of cards.

RR is actively used in surveying when asking questions of a
sensitive nature. Examples include surveys on doping and drug
use in elite athletes [2], cognitive-enhancing drug use among
university students [3], faking on a CV [4], corruption [5],
sexual behaviour [6], and child molestation [7].
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Since its introduction, many researchers have considered the
properties of the basic RR model and its extensions, and a rich
body of literature now exists on RR. In particular, inefficien-
cies in Warner’s original RR model have been examined by
a number of authors and many new RR models have been
proposed. These include the unrelated question model [8],
the forced response model [9], Moor’s procedure [10] and two-
stage RR models [11], [12]. More comprehensive lists of RR
models can be found in [13] and [14].

Researchers remain divided on the effectiveness of RR.
While some works have shown RR to be an improvement
on different survey techniques, including direct question-
ing (where no randomisation is involved), [15]–[19], others
remain sceptical on its advantages [20]–[22]. Public trust in
RR has also been shown to be lacking in some instances [23].
When considering the effectiveness of RR and public trust
in its adoption, there are two key questions to address. First,
we need to understand how accurately RR approaches estimate
the statistical parameters of interest. The second issue concerns
characterising formally and precisely the privacy protections
provided by the RR mechanism. The work of this paper
is concerned with the fundamental trade-off between the
performance of RR estimation mechanisms and the privacy
protections they offer.

Differential privacy (DP) has emerged as a leading frame-
work in privacy-preserving data publishing since being intro-
duced in 2006 [24]. Mechanisms for achieving differential
privacy are randomised algorithms that provide probabilistic
guarantees on the privacy of individual records (corresponding
to users) in a database. The core idea underlying these mecha-
nisms is to randomly perturb the correct response to a query so
that if one individual changes their record in the database, this
has little effect on the (distribution of) the response from the
mechanism. Succinctly put: DP mechanisms make it hard to
draw inferences about individuals. In its simplest form, when
parametrised by a single non-negative ε, differential privacy
is satisfied when the likelihood of any particular output from
a query on two similar datasets does not vary by more than a
factor of eε .

Randomised response is essentially a randomised algorithm
for data release and, as such, it fits within the framework of
differential privacy. In particular, it is natural to quantify the
privacy guarantees of RR mechanisms in terms of differential
privacy. On the other hand, given that the aim of RR is to
estimate unknown population parameters, the performance of
RR mechanisms should be characterised in terms of how
accurate the estimators built upon them are. The primary
contributions of this paper are explicit characterisations of
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optimal RR mechanisms subject to formal differential privacy
constraints. These results allow us to enforce formal pri-
vacy guarantees when choosing parameters for a randomised
response technique. When applied to randomised response,
where the output from a single individual is binary, differential
privacy requires the output from any two individuals to be
statistically indistinguishable, to a specified degree.

B. Our Results

In this paper we examine a generalisation of Warner’s
original RR technique, and establish conditions on the para-
meters of this model which ensure that the RR mechanism
satisfies differential privacy. This defines a feasibility region
for differentially private RR mechanisms. We explicitly char-
acterise the minimal variance estimator for RR mechanisms
in terms of the model parameters and, using this, deter-
mine the optimal differentially private RR mechanism. Our
notion of optimality is based on minimising the variance of
the minimal variance estimator over the differential privacy
feasibility region. We examine strict ε-differential privacy
and relaxed (ε,δ)-differential privacy. Complete solutions for
the optimal mechanisms are presented for both cases. The
optimal mechanism is also given for Warner’s RR model
satisfying (ε, δ)-differential privacy. It should be noted that
other authors sometimes use alternative terminology such as
pure and approximate differential privacy instead of the terms
strict and relaxed. We have chosen the terms ‘strict’ and
‘relaxed’ in line with [25] in which the δ > 0 case is referred
to as a relaxation of ε-differential privacy.

C. Related Work

The application of differential privacy to randomised
response has been limited to date. [26] examined using
randomised response to differentially privately collect data,
although their analysis only considered strict ε-differential
privacy and a comparison of its efficiency with respect to the
Laplace mechanism, a mechanism popular in the differential
privacy literature. In a recent revision of a paper posted to
the arXiv repository [27], the authors have shown how to
use RR to define optimal differentially private mechanisms
for a broad class of private multi-party computation problems.
Specifically, [27, Th. 5.1] demonstrates that an RR mechanism
using a larger output space (4 values rather than 2) for each
party in the computation (loosely corresponding to respondents
in our setting) maximises accuracy for arbitrary accuracy
functions and local and central computation. The primary
focus of that paper was on the behaviour of differentially
private mechanisms under composition and RR is considered
as an approach to differentially private multi-party compu-
tation. In contrast, our focus is on the characterising the
privacy protections offered by RR as a survey and estimation
methodology and on describing optimal differentially private
RR estimators.

Randomised response has been used in conjunction with
differential privacy in a more general context in the form of
local privacy, also known as input perturbation. For example,
extreme mechanisms for local differential privacy have been

studied in [28] and [29], while differential privacy was applied
to social network data in the form of graphs with randomised
response in [30]. Outside the settings of randomised response
and local privacy, optimal mechanisms in differential privacy
have received some attention, including work on strict differ-
ential privacy [31] and relaxed differential privacy [32]. The
work of [33] introduces staircase mechanisms which define
optimal differentially private mechanisms for cost functions
based on the l1 norm and real-valued data, rather than the
discrete, binary-valued data considered here. This latter result
applies to strict differential privacy (δ = 0) and is shown
rigorously for queries taking values in R

2; a generalisation
to arbitrary dimensions is also demonstrated but is contingent
on a technical conjecture being true.

D. Structure of Paper

We begin in Section II with an introduction to the
Randomised Response (RR) technique, and derive the
statistical estimator and associated bias and error;
we also present Warner’s original RR model. We
introduce differential privacy in Section III and present
a number of preliminary results for later use in
Section IV.

The main results are given in Sections V, VI and VII, relat-
ing to strict differential privacy, relaxed differential privacy and
Warner’s model respectively. Concluding remarks are given in
Section VIII.

II. RANDOMISED RESPONSE

A. Introduction

We are looking to determine the proportion π of people in
the population possessing a particular sensitive attribute, where
possession of the attribute is binary. We conduct a survey on
n individuals of the population by uniform random sampling
with replacement.

A single respondent’s answer Xi ∈ {0, 1} is a randomised
version of their truthful answer xi ∈ {0, 1}, in order to protect
their privacy. The randomised response will therefore not
definitively reveal a respondent’s truthful answer. By conven-
tion, a value of 1 denotes possession of the sensitive attribute,
while 0 denotes that the respondent does not possess the
attribute. We denote by N the number of randomised responses
that return 1, hence N = ∑

i∈[n] Xi where [n] = [1, n] ∩ Z.
We are therefore looking to estimate π from N

n .

B. Generalised RR Model

We denote by (�,F , P) the usual probability space. Xi :
� → {0, 1} is then a random variable for each i ∈ [n],
dependent on the truthful value xi . We define the randomised
response mechanism by

P(Xi = k | xi = j) = p jk, (1)

which leads us to defining the design matrix of the mechanism
as follows.
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Definition 1 (Design Matrix): A randomised response
mechanism as defined in (1) is uniquely determined by its
design matrix,

P =
(

p00 p01
p10 p11

)

.

For the probability mass functions of each Xi to sum to 1,
we require p00 + p01 = 1 and p10 + p11 = 1. The design
matrix therefore simplifies to

P =
(

p00 1 − p00
1 − p11 p11

)

, (2)

where p00, p11 ∈ [0, 1].
As π is the true proportion of individuals in the population

possessing the sensitive attribute, we can calculate the proba-
bility mass function of each Xi :

P(Xi = 0) = (1 − π)p00 + π(1 − p11)

= p00 − π(p00 + p11 − 1), (3a)

P(Xi = 1) = πp11 + (1 − π)(1 − p00)

= 1 − p00 + π(p00 + p11 − 1). (3b)

Remark: Direct questioning corresponds to the case where
p00 = p11 = 1.

C. Estimator, Bias and Error

Having presented the RR mechanism previously, we now
need to establish an estimator of π from the parameters
of the mechanism, p00 and p11, and from the distribution
of randomised responses, namely N

n . We first describe a
maximum likelihood estimator (MLE) for the mechanism and
then examine its bias and error. While the proofs of the
following two results are relatively straightforward, we include
them here in the interests of completeness and to make the
paper as self-contained as possible.

Theorem 1: Let p00 + p11 �= 1. Then the MLE for π of the
randomised response mechanism given by (2) is

�̂(p00, p11) = p00 − 1

p00 + p11 − 1
+ N

(p00 + p11 − 1)n
. (4)

Proof: Let us first index the sample so that Xi = 1 for
each i ≤ N , and Xi = 0 for each i > N . Then the likelihood
L of the sample is

L = P(Xi = 1)N
P(Xi = 0)n−N .

The log-likelihood is

log(L) = N log P(Xi = 1) + (n − N) log P(Xi = 0),

whose derivatives are
∂ log(L)

∂π
= N

P(Xi = 1)

∂P(Xi = 1)

∂π

+ n − N

P(Xi = 0)

∂P(Xi = 0)

∂π
,

∂2 log(L)

∂π2 = − N

P(Xi = 1)2

(
∂P(Xi = 1)

∂π

)2

− n − N

P(Xi = 0)2

(
∂P(Xi = 0)

∂π

)2

.

We note that ∂2 log(L)
∂π2 < 0, hence the maximum of log(L)

occurs when ∂ log(L)
∂π = 0. Solving for π completes the

proof. �
We note the following standard identity in probability and

statistics,
Var(Y ) = E[Y 2] − E[Y ]2, (5)

for any random variable Y . We now calculate the bias and error
of �̂. We use the variance of the estimator to characterise error
in line with conventional practice. Similarly by convention,
we characterise the bias of an estimator as its expected
deviation from the quantity it is estimating (i. e. E[�̂ − π]).
We remind the reader of the dependence of Var(π̂) on π by
writing Var(�̂|π).

Corollary 1: The MLE �̂ constructed in Theorem 1 is
unbiased and has error

Var(�̂(p00, p11)|π) =
1
4 − (

p00 − 1
2 − π(p00 + p11 − 1)

)2

(p00 + p11 − 1)2n
.

(6)
Proof: Since the survey we are conducting is by uniform

random sampling with replacement, N is a sum of indepen-
dent and identically distributed random variables. Therefore,
E[N] = nE[Xi ] and Var(N) = n Var(Xi ).

Since Xi ∈ {0, 1}, it can be shown that E[Xi ] = E[X2
i ] =

P(Xi = 1) = 1 − p00 + π(p00 + p11 − 1). Hence,

E[�̂] = p00 − 1

p00 + p11 − 1
+ E[N]

(p00 + p11 − 1)n

= p00 − 1

p00 + p11 − 1
+ E[Xi ]

p00 + p11 − 1
= π,

and so �̂ is unbiased as claimed.
Secondly,

Var(�̂|π) = Var(N)

(p00 + p11 − 1)2 n2

= Var(Xi )

(p00 + p11 − 1)2 n

= E[X2
i ] − E[Xi ]2

(p00 + p11 − 1)2 n

= P(Xi = 1)P(Xi = 0)

(p00 + p11 − 1)2 n
,

which can be simplified to (6). �
When conducting a survey on a population, it may be

necessary to calculate the margin of error of the estimate. For
a confidence level c ∈ [0, 1], the margin of error of a sample
is given by ω ≥ 0, where

P(|�̂ − π | ≤ ω) ≥ c. (7a)

In practical applications, a 95% confidence interval is typically
used [34]. Using Chebyshev’s inequality, we can calculate the
margin of error of a sample to be 4.5σ , where the standard

deviation σ is given by
√

Var(�̂|π), since

P

(

|�̂ − π | ≤ 4.5
√

Var(�̂|π)

)

≥ 0.95. (7b)
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In many practical situations, the central limit theorem is
invoked to determine heuristically a margin of error. For a
random variable G that is normally distributed with mean μ
and variance σ 2, we have

P(|G − μ| ≤ 1.96σ) ≥ 0.95, (7c)

hence 1.96σ is typically taken as the margin of error in such
scenarios [34]. However, this non-rigorous approach only gives
a loose representation of the margin of error, given that the
guarantee of the central limit theorem only applies in the limit
as the sample size n approaches infinity.

Due to this variability in defining the margin of error of
a sample, we only focus on determining the error of the
estimator, Var(�̂|π), in this paper. This error can be used
to calculate the margin of error for a particular application,
as outlined above.

D. Warner’s RR Model

Warner’s model [1] is a specific case of the generalised
model introduced in Section II-B. Warner proposed that sur-
veyors would present respondents with a spinner which they
would spin in private to decide which one of two questions
to answer. The spinner would point to a question (e. g. “Have
you ever cheated on your spouse/partner?”) with probability
pw, and to the complement of that question (e. g. “Have you
always been faithful to your spouse/partner?”) with probability
1− pw. Respondents would then be asked to answer the chosen
question truthfully, but without revealing which question they
were answering.

Warner’s model corresponds to the case where
p00 = p11 = pw. We denote by Pw the design matrix
of Warner’s model, which is given by

Pw =
(

pw 1 − pw

1 − pw pw

)

,

while the probability mass function of each Xi is defined as

P(Xi = 0) = pw − π(2 pw − 1),

P(Xi = 1) = 1 − pw + π(2 pw − 1).

Using the same unbiased MLE in (4), we denote by �̂w the
estimator for Warner’s model and, by (6), find its error to be

Var(�̂w(pw)|π) =
1
4 − (

pw − 1
2 − π(2 pw − 1)

)2

(2 pw − 1)2n
. (8)

III. DIFFERENTIAL PRIVACY

Differential privacy was first proposed by Dwork in
2006 [24] as a means of quantifying the level of pri-
vacy achieved when publishing data via randomised algo-
rithms or mechanisms. Using the same notation as in [35],
we denote by Dm the space of all m-row datasets (let D be
the space of each row) and by d ∈ Dm a dataset in this space.
We then denote by Xd : � → Dm a randomised version of d.

If D is assumed to be discrete, the mechanism Xd is said
to satisfy (ε,δ)-differential privacy if

P(Xd ∈ A) ≤ eε
P(Xd′ ∈ A) + δ, (9)

for each d, d′ ∈ Dm that differ in exactly one row (i.e. ∃! j ∈
[m] : d j �= d ′

j ) and for each subset A ⊂ Dm .
This set-up simplifies in the case of randomised response

introduced in Section II. Firstly, the datasets contain only one
row (m = 1) (corresponding to a single respondent), and the
row-space is {0, 1}. We are therefore only required to show
that (9) holds for d �= d′ ∈ {0, 1} and for A = {0}, {1}.
Formally, (ε,δ)-differential privacy is satisfied if

P(Xi = j) ≤ eε
P(Xk = j) + δ, (10)

for any i, k ∈ [n] and j ∈ {0, 1}.
For the RR mechanism given by (2) to satisfy

(ε, δ)-differential privacy, we require the following to hold:

p11 ≤ eε(1 − p00) + δ, (11a)

p00 ≤ eε(1 − p11) + δ,

1 − p00 ≤ eε p11 + δ,

1 − p11 ≤ eε p00 + δ. (11b)

We can now define the set of pairs (p00, p11) that corre-
spond to a RR mechanism which satisfies (ε, δ)-differential
privacy.

Definition 2 (Region of Feasibility): A RR mechanism,
given by (2), satisfies (ε,δ)-differential privacy if
(p00, p11) ∈ R, where R ⊂ R

2 is defined as

R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(p00, p11) ∈ R
2 :

p00, p11 ∈ [0, 1],
p00 ≤ eε(1 − p11) + δ,
p11 ≤ eε(1 − p00) + δ,
1 − p11 ≤ eε p00 + δ,
1 − p00 ≤ eε p11 + δ.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (12)

We consider the case where p00 + p11 > 1. Note that the
estimator error, and hence the optimal mechanism, is undefined
when p00 + p11 = 1. If p00 + p11 < 1, we permute all
responses such that X ′

i = 1 − Xi . This corresponds to the
columns of the design matrix being swapped, giving p′

00 =
1−p00 and p′

11 = 1−p11, hence p′
00+p′

11 = 2−p00−p11 > 1.
We can therefore assume p00 + p11 > 1 without loss of
generality.

When p00 + p11 > 1, we note that (i) 1 − p11 < p00 ≤
eε (1 − p11) + δ < eε p00 + δ and (ii) 1 − p00 < p11 ≤
eε (1 − p00) + δ < eε p11 + δ. Hence, the region of feasibility
simplifies to R′ as follows:

R′ = {(p00, p11) ∈ R : p00 + p11 > 1}

=

⎧
⎪⎪⎨

⎪⎪⎩
(p00, p11) ∈ R

2 :
p00, p11 ≤ 1,
p00 + p11 > 1,
p00 ≤ eε(1 − p11) + δ,
p11 ≤ eε(1 − p00) + δ.

⎫
⎪⎪⎬

⎪⎪⎭
.

Remark: In [27] an operational view on differential
privacy in the context of hypothesis testing was presented.
In particular, in Theorem 2.1 of this reference two inequalities
characterising differentially private mechanisms in terms of
type I and type II errors are derived. Kairouz et al. [27]
state their result in terms of probabilities of false alarm and
missed detection, denoted by PF A and PM D respectively.
If we identify p01 with PF A and p10 with PM D , then we see
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Fig. 1. The problem being considered in this paper is outlined in the above plots. We are seeking to minimise the estimator error, Var(�̂) on the region
of feasibility R′, shown in (a). The estimator error is shown to be decreasing on the diagonal centerline, p00 = p11, in (b). However, on the boundary
p11 = eε (1 − p00) + δ (which is shown later in Lemma 2 to contain the optimum), (c) shows that the optimal mechanism depends on π .

that the region R′ given above is identical to the feasibility
region described in [27].

Furthermore, we denote by R′′ the boundary of R′ which
satisfies at least one of inequalities (11):

R′′ = R′ \
{

(p00, p11) ∈ R
2 : p00 < eε(1 − p11) + δ,

p11 < eε(1 − p00) + δ.

}

.

The set R′′ therefore consists of the union of two line segments
in the unit square, where (11a) and (11b) are tight.

We are therefore looking to find the RR mechanism which
minimises estimator error, while still being (ε, δ)-differentially
private. Hence, we seek to find

arg min
(p00,p11)∈R′

Var
(
�̂(p00, p11)

∣
∣
∣π

)
. (13)

Figure 1 gives a graphical illustration of the central question
being considered in this paper.

IV. PRELIMINARY RESULTS

We begin by presenting two results which will be of use
later in the paper. The first result concerns the non-negativity
of a non-linear function on the unit square.

Lemma 1: Let f : R × R → R be defined by

f (x, y) = 2xy − x − y + 1.

Then, f (x, y) ≥ 0 for all x, y ∈ [0, 1].
Furthermore,

arg min
x,y∈[0,1]

f (x, y) = {(0, 1), (1, 0)}.
Proof: Let’s first consider minx∈[0,1] f (x, y):

min
x∈[0,1] f (x, y) = min

x∈[0,1](2xy − x) − y + 1

= min
x∈[0,1] ((2y − 1)x) − y + 1

=
{

y if y ≤ 1
2 ,

1 − y if y > 1
2 .

(14)

It follows that

min
y∈[0,1]

(

min
x∈[0,1] f (x, y)

)

= 0.

By symmetry of f , it also follows that

min
x∈[0,1]

(

min
y∈[0,1] f (x, y)

)

= 0,

hence f (x, y) ≥ 0 for all x, y ∈ [0, 1].
We note that f (1, 0) = f (0, 1) = 0, and by (14)

we see that these values uniquely minimise f (x, y) for all
x, y ∈ [0, 1]. �

In the second result of this section we prove that an optimal
mechanism exists on R′′ (i. e. on the boundary of R′ where
at least one of inequalities (11) is tight), and additionaly that
when π ∈ (0, 1), optimal mechanisms only occur on R′′.

Lemma 2: Let p00+ p11 > 1. Then there exists (p∗
00, p∗

11) ∈
arg minR′ Var(�̂|π) such that (p∗

00, p∗
11) ∈ R′′.

Furthermore, when 0 < π < 1, arg minR′ Var(�̂|π) ⊆ R′′.
Proof: Let’s consider ∂ Var(�̂|π)

∂p00
and ∂ Var(�̂|π)

∂p11
.

Firstly, after some rearranging/manipulation,

∂ Var(�̂|π)

∂p11

= −2 p00(1 − p00)(1 − π) + π(2 p00 p11 − p00 − p11 + 1)

(p00 + p11 − 1)3n
.

By Lemma 1, we know that 2p00 p11 − p00 − p11 + 1 ≥ 0,
and since p00 + p11 − 1 > 0 by hypothesis, we conclude that
∂ Var(�̂|π)

∂p11
≤ 0.

We further note that 2 p00 p11 − p00 − p11 + 1 > 0 by
Lemma 1, since the assumption that p00 + p11 > 1 means

p00, p11 > 0. Hence ∂ Var(�̂|π)
∂p11

= 0 only when π = 0 and
p00 = 1. Equivalently,

∂ Var(�̂|π)

∂p11
< 0 when π > 0 or p00 < 1. (15)

Secondly, after some rearranging/manipulation,

∂ Var(�̂|π)

∂p00

= − (2 p00 p11 − p00 − p11 + 1)(1 − π) + 2 p11π(1 − p11)

(p00 + p11 − 1)3 n
.

Since, by assumption, we have 2 p00 p11 − p00 − p11 + 1 ≥ 0

and since p11 ∈ [0, 1], we see that ∂ Var(�̂|π)
∂p00

≤ 0.
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Similar to the reasoning above, since 2 p00 p11− p00− p11+
1 > 0 and p11 > 0, ∂ Var(�̂|π)

∂p00
= 0 only when π = 1 and

p11 = 1. Equivalently,

∂ Var(�̂|π)

∂p00
< 0 when π < 1 or p11 < 1. (16)

Since ∂ Var(�̂|π)
∂p00

≤ 0 and ∂ Var(�̂|π)
∂p11

≤ 0, there exists
a mechanism on the boundary of R′ which minimises the
estimator error, i. e.

∂R′ ∩
(

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π)

)

�= ∅. (17)

However, if 0 < π < 1, we see from (15) and (16) that
∂ Var(�̂|π)

∂p00
< 0 and ∂ Var(�̂|π)

∂p11
< 0. Hence,

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π) ⊆ ∂R′, (18)

i. e. the optimal mechanisms only occur on the boundary of
R′.

Finally, suppose (p00, p11) ∈ ∂R′, but neither inequali-
ties (11) are tight. Then there exist 
0,
1 ≥ 0, 
0 +
1 > 0

where (p00 +
0, p11 +
1) ∈ ∂R′, but because ∂ Var(�̂|π)
∂p00

≤ 0

and ∂ Var(�̂|π)
∂p11

≤ 0, then Var(�̂(p00, p11)|π) ≥ Var(�̂(p00 +

0, p11 + 
1)|π). Hence minimal error is achieved when at
least one of the inequalities (11) is tight, i. e.

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π) ⊆ R′′. �

For the remainder of this paper, we assume π ∈ (0, 1).
Note that the results on optimal mechanisms still hold for
π ∈ [0, 1], however these optima may not be unique.

V. OPTIMAL MECHANISM FOR ε- DIFFERENTIAL PRIVACY

Using the results of Section IV, we can now establish
results on the optimal randomised response mechanism for
differential privacy. We begin in this section by examining
strict ε-differential privacy, where δ = 0. In Section VI
we consider relaxed (ε,δ > 0)-differential privacy. We then
briefly consider the Warner RR mechanism, where p00 = p11,
in Section VII.

Using Lemma 2 of the previous section, we establish
the optimal RR mechanism for ε-differential privacy in the
following result.

Theorem 2: Let π ∈ (0, 1), p00 + p11 > 1 and ε > 0.
The ε-differentially private RR mechanism which minimises
estimator error is given by the design matrix

Pε =
(

eε

eε+1
1

eε+1
1

eε+1
eε

eε+1

)

.

Proof: By Lemma 2, we know that the parameters
(p00, p11) of the optimal mechanism exist on the boundary
of R′, with at least one of the inequalities (11) tight. We now
separately consider the cases where (11a) and (11b) are tight.
By hypothesis, δ = 0 and ε �= 0.

1) (11a) tight: p11 = eε(1 − p00), constrained by p11 ≥ 0
and p00 ≤ eε(1 − p11). By (11b) and since p00 = 1 −
e−ε p11, we have

eε p11 ≤ eε − p00

= eε − (1 − e−ε p11)

= eε − 1 + e−ε p11,

which we rewrite as

p11(e
ε − e−ε) ≤ eε − 1,

and noting that e2ε − 1 = (eε − 1)(eε + 1), we see that

p11 ≤ eε − 1

e−ε(e2ε − 1)

= eε

eε + 1
.

We are therefore considering Var(�̂(p00, p11)|π) on the
line p00 = 1 − e−ε p11 for 0 ≤ p11 ≤ eε

eε+1 . We
parametrise this line as follows, where 0 < t ≤ 1,
p00 = r(t) and p11 = s(t) (we require t > 0 since
p00 + p11 > 1):

r(t) = (1 − t) + eε

1 + eε
t = 1 − e−εs(t),

s(t) = eε

1 + eε
t . (19)

For simplicity, we let �̂(r(t), s(t)) = �̂1(t). After some
manipulation, we see that

∂ Var(�̂1(t)|π)

∂ t
= − (1 + eε)(1 + π(eε − 1)

(eε − 1)2t2n
,

and noting that eε > 1, we see that ∂ Var(�̂1(t)|π)
∂t < 0.

Hence,
arg min
t∈(0,1]

Var(�̂1(t)|π) = {1}. (20)

2) (11b) tight: By symmetry of the equations (11), we sim-
ply let p00 = s(t) and p11 = r(t). By examining (3)
and (6), we see that

Var(�̂(p00, p11)|1 − π) = Var(�̂(p11, p00)|π),

and by letting �̂(s(t), r(t)) = �̂2(t), we get

∂ Var(�̂2(t)|π)

∂ t
= − (1 + eε)(1 + (1 − π)(eε − 1)

(eε − 1)2t2n
.

Again it follows that ∂ Var(�̂2(t)|π)
∂t < 0, and so

arg min
t∈(0,1]

Var(�̂2(t)|π) = {1}. (21)

By (18), (20) and (21), we can now conclude that

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π) =
{(

eε

eε + 1
,

eε

eε + 1

)}

,

and so the result follows. �
Remark: When ε = 0, all rows of the design matrix must

be identical, i. e. p00 = 1 − p11 and p11 = 1 − p00. This gives
p00 + p11 = 1, leading to an unbounded estimator error (6). In
practical terms, 0-differential privacy enforces the same output
distribution for every respondent, hence nothing meaningful
can be learned.
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VI. OPTIMAL MECHANISM FOR (ε , δ)- DIFFERENTIAL

PRIVACY

We have now established the optimal mechanism for
ε-differential privacy. Now, let’s consider the case of
(ε, δ)-differential privacy, where δ ∈ (0, 1] is non-zero.

As before, we first parametrise R′′. If we let

rδ(t) = (
1 + e−εδ

)
(1 − t) + eε + δ

eε + 1
t,

= 1 − e−ε(sδ(t) − δ),

sδ(t) = eε + δ

eε + 1
t, (22)

for t ∈ [0, 1], then the boundary where (11a) holds is
parametrised by p00 = rδ(t) and p11 = sδ(t); by symmetry,
the boundary where (11b) holds is parametrised by p00 = sδ(t)
and p11 = rδ(t).

We note that t = 1 corresponds to an extreme point of
R′ (and R′′), the point at which both inequalities (11) are
tight. Here p00 = p11 = rδ(1) = sδ(1) = eε+δ

eε+1 .

A. Preliminary Lemmas

Before proceeding to the main result of this section, we first
present a collection of lemmas for later use. The first result
states that the minimal variance of �̂ on R′′ will occur at one
of its extreme points (i. e. at one of the endpoints of the two
line segments which comprise R′′).

Lemma 3: Let rδ and sδ be given by (22), let δ > 0 and let
a ≤ b ∈ [0, 1]. Then,

arg min
t∈[a,b]

Var(�̂(rδ(t), sδ(t))|π) ⊆ {a, b}.
Proof: For simplicity, we denote �̂(rδ(t), sδ(t)) by

�̂1,δ(t).
By some manipulation, it can be shown that the numerator

of ∂ Var(�̂1,δ (t)|π)
∂t is linear in t , hence it has at most one root

at

t = δ(1 + eε)(2eε + 2δ − 1 − π(eε + 2δ − 1))

(eε + δ)(eε + 2δ − 1)(1 + (eε − 1)π)
.

By substitution, we find that

∂2 Var(�̂1,δ(t)|π)

∂ t2

= − (eε + δ)2(eε + 2δ − 1)4(1 + (eε − 1)π)4

8e2εδ3(eε + δ − 1)3(1 + eε)2n
,

when ∂ Var(�̂1,δ (t)|π)
∂t = 0. By inspection, and since δ > 0,

we see that ∂2 Var(�̂1,δ (t)|π)

∂t2 < 0 when ∂ Var(�̂1,δ (t)|π)
∂t = 0,

and so this point is the maximum of Var(�̂1,δ(t)|π). Hence,
the minimum of Var(�̂1,δ(t)|π) cannot occur at an interior
point of an interval. The result follows. �

We next show that the error of �̂ along the boundary
constrained by (11a) is uniformly greater than along the
boundary constrained by (11b) when π ≤ 1

2 .
Lemma 4: Let rδ and sδ be given by (22) and let δ > 0.

Then, when π ≤ 1
2 ,

Var(�̂(rδ(t), sδ(t))|π) ≤ Var(�̂(sδ(t), rδ(t))|π),

for t ∈ [0, 1].
Conversely, if π ≥ 1

2 , then

Var(�̂(rδ(t), sδ(t))|π) ≥ Var(�̂(sδ(t), rδ(t))|π),

for t ∈ [0, 1].
Proof: After manipulation of the terms, we can show that

Var(�̂(rδ(t), sδ(t))|π) − Var(�̂(sδ(t), rδ(t))|π)

= − (eε + 1)(eε + δ)(1 − 2π)(1 − t)

(eε(eε − 1)t + δ(1 − t + eε(1 + t)))n
.

We see that 1 − 2π ≥ 0 when π ≤ 1
2 , and 1 − 2π ≤ 0 when

π ≥ 1
2 , and, since t ∈ [0, 1] and δ > 0, the result follows. �

Finally, we present t0(ε, δ) as the t-value which gives the
endpoints of the line segments of R′′ at the boundary of the
unit square.

Lemma 5: Define t0 : R × R → [0, 1] by

t0(ε, δ) = δ(eε + 1)

eε + δ
,

then,

(rδ(t0(ε, δ)), sδ (t0(ε, δ))) ∈ ∂R′.
Proof: By explicit calculation,

rδ(t0(ε, δ)) = 1,

sδ(t0(ε, δ)) = δ.

By definition, it follows that (1, δ) ∈ R′ ∪ ∂R′, and since
p00 ≤ 1 is a boundary of {(p00, p11) ∈ R′}, it follows that
(1, δ) ∈ ∂R′. �

Remark: When δ = 0, (rδ(t0(ε, δ)), sδ(t0(ε, δ))) /∈ R′, since
we require rδ + sδ > 1.

Remark: By linearity, it follows that (rδ(t), sδ(t)) ∈ R′
for all t0(ε, δ) < t ≤ 1, and that (rδ(t), sδ(t)) /∈ R′ when
t < t0(ε, δ).

B. Main Result

We now present the main results of this paper, which
establishes the optimal (ε, δ)-differentially private RR mech-
anism(s). The following results assume δ > 0; the optimal
mechanism when δ = 0 was presented in Theorem 2. Note
that we continue to assume π ∈ (0, 1) to ensure uniqueness
of the optima.

The following theorem establishes the optimal RR mecha-
nism(s) when π ≤ 1

2 .
Theorem 3: Let δ > 0 and 0 < π ≤ 1

2 , and define g :
R × R → R by

g(ε, δ) = δ(eε + δ)

(eε + 2δ − 1)2 . (23)

Then, for rδ and sδ given by (22),

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π)

=

⎧
⎪⎨

⎪⎩

{(rδ(t0), sδ(t0))}, if g(ε, δ) > π,

{(rδ(1), sδ(1))}, if g(ε, δ) < π,

{(rδ(t0), sδ(t0)), (rδ(1), sδ(1))}, if g(ε, δ) = π.

where t0 = t0(ε, δ).
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Proof: By Lemmas 2, 3 and 4, we know that when 0 <
π ≤ 1

2 and δ > 0,

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π)

⊆ {(rδ(t0), sδ(t0)), (rδ(1), sδ(1))}.
We are therefore considering two candidate points, which

can be shown to resolve to

rδ(t0) = 1, sδ(t0) = δ,

rδ(1) = eε + δ

eε + 1
, sδ(1) = eε + δ

eε + 1
.

We are therefore seeking to determine the sign of

Var(�̂(1, δ)|π) − Var

(

�̂

(
eε + δ

eε + 1
,

eε + δ

eε + 1

)∣
∣
∣
∣ π

)

. (24)

After some manipulation, we can show that (24) simplifies
to

(1 − δ)(π(eε + 2δ − 1) − δ(eε + δ))

δ(eε + 2δ − 1)2n
,

and we note that its denominator is strictly
positive since δ > 0. Note additionally that (24)
simplifies to zero when δ = 1, which is trivial since
r1(t0) = s1(t0) = r1(1) = s1(1) = 1.

The sign of (24) is therefore determined by the sign of
π(eε +2δ−1)−δ(eε+δ), which gives g(ε, δ) when solved for
π . Hence, Var(�̂(rδ(t0), sδ(t0))|π) < Var(�̂(rδ(1), sδ(1))|π)
when g(ε, δ) > π . The other results follow similarly. �

Remark: When g(ε, δ) ≤ π , the optimal mechanism corre-
sponds with that established for ε-differential privacy on RR
(with an added dependence for δ) and also with the optimal
mechanism established in [36, Th. 10] for mechanisms on
categorical data. However, when g(ε, δ) > π , the optimal
mechanism is one which we have not encountered previously.

The next corollary establishes the optimal mechanism(s)
when π ≥ 1

2 , and follows from Theorem 3 by the symmetry
of Var(�̂(p00, p11)|π) in p00 and p11.

Corollary 2: Let δ > 0 and 1
2 ≤ π < 1. Then, for rδ and

sδ given by (22) and g given by (23),

arg min
(p00,p11)∈R′

Var(�̂(p00, p11)|π)

=

⎧
⎪⎨

⎪⎩

{(sδ(t0), rδ(t0))}, if g(ε, δ) > 1 − π,

{(sδ(1), rδ(1))}, if g(ε, δ) < 1 − π,

{(sδ(t0), rδ(t0)), (sδ(1), rδ(1))}, if g(ε, δ) = 1 − π,

where t0 = t0(ε, δ).
Proof: The result follows from Theorem 3 since

Var(�̂(p00, p11)|π) = Var(�̂(p11, p00)|1 − π). �

C. Discussion

We note that the result of Theorem 3 depends on knowing
the true value of π to determine the optimal mechanism
to estimate π . Clearly, this has the potential to limit the
applicability of the result and appears to involve circularity.
However, in many practical scenarios, an approximate range
for π is likely to be known in advance and this will often

be sufficient to allow us to determine the optimal mechanism
using Theorem 3, given ε and δ.

The approximate range for π will impact on how Theorem 3
is used in practice. To see how this would work, suppose
we know a lower bound l and an upper bound u for π
so that l ≤ π ≤ u. The theorem describes explicitly the
optimal mechanisms for all values of the privacy parameters
ε, δ satisfying g(ε, δ) > u and g(ε, δ) < l. One way of
viewing the result is thus the following. Once bounds l, u are
known for π , we can select a desired privacy level (specified
by ε, δ) satisfying either g(ε, δ) > u or g(ε, δ) < l and then
determine the optimal mechanism for this level of privacy. For
example, if δ is small, i. e. 10−5, then the optimal mechanism
will be the ε-differential privacy optimal mechanism.

Alternatively, the privacy parameters ε, δ may be fixed
independently of π and its bounds l, u (e. g. if specified by
law). In such circumstances, when g(ε, δ) < l or g(ε, δ) > u,
the optimal mechanism can easily be determined. If g(ε, δ) ∈
[l, u], we cannot be certain of the optimal mechanism using
Theorem 3. One heuristic approach which could be applied
in this scenario is to approximate π , using the midpoint l+u

2
for instance, to select the optimal mechanism according to the
theorem. Determining precisely the performance gap resulting
from an incorrect decision made in this way is an interesting
topic for future work.

Example 1 and Figure 2 illustrate the conclusion of
Theorem 3.

Example 1: Consider Theorem 3 and Corollary 2 for various
values of ε, δ and π . For simplicity, in each of these examples
we set n = 1.

1) ε = 1
2 , δ = 1

10 , π = 1
4 : In this case, we have g(ε, δ) =

0.243 < π . Hence, the design matrix of the optimal
mechanism is denoted by

(
eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

)

.

This can be verified by noting that
Var(�̂(rδ(1), sδ(1))|π) = 2.372 and Var(�̂(rδ(t0),
sδ(t0))|π) = 2.438.

2) ε = 1, δ = 2
5 , π = 1

10 : In this case, g(ε, δ) = 0.197 >
π . Hence, the design matrix of the optimal mechanism
is denoted by

(
1 0

1 − δ δ

)

.

Again, this can be verified by noting
that Var(�̂(rδ(1), sδ(1))|π) = 0.385 and
Var(�̂(rδ(t0), sδ(t0))|π) = 0.24.

3) ε = 1
2 , δ = 1

3 , π = 9
10 : Since π ≥ 1

2 , we use Corollary 2
for this example. We note that g(ε, δ) = 0.382 > 1−π .
Hence, the design matrix of the optimal mechanism is
denoted by

(
δ 1 − δ
0 1

)

.

We see that Var(�̂(sδ(1), rδ(1))|π) = 0.854 and
Var(�̂(sδ(t0), rδ(t0))|π) = 0.143. Note also that
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Fig. 2. Linear and log contour plots of various level sets of g(ε, δ) for various ranges of ε and δ. Given π , ε and δ, these level sets can be used to determine
the optimal (ε, δ)-differentially private RR mechanism. (a) ε ∈ [0, 2], δ ∈ [0, 1]; (b) ε ∈

[
0, 1

2

]
, δ ∈

[
10−6, 10−1

]
.

Var(�̂(rδ(0), sδ(0))|π) = 1.911, corresponding with the
conclusion of Lemma 4

4) ε = ln(2), δ = 1
4 , π = 1

4 : In this case, we have g(ε, δ) =
1
4 = π , hence there are two optimal mechanisms,

(
eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

)

,

(
1 0

1 − δ δ

)

.

This can be verified by noting that
Var(�̂(rδ(1), sδ(1))|π) = Var(�̂(rδ(t0), sδ(t0))|π) =
15
16 .

VII. OPTIMAL WARNER MECHANISM FOR (ε , δ)
DIFFERENTIAL PRIVACY

In the final result of this paper, we examine the opti-
mal mechanism for Warner’s RR mechanism. We recall that
Warner’s mechanism imposed the additional constraint that
p00 = p11 = pw, so the design matrix becomes

(
pw 1 − pw

1 − pw pw

)

.

The error of such a mechanism is only a function of pw and
the population proportion π , as shown in (8).

As before, we require 2 pw > 1. Our region of feasibility is
therefore

Rw =
(

1

2
,

eε + δ

eε + 1

]

.

Theorem 4: Consider Warner’s RR mechanism as presented
in Section II-D. Then,

arg min
pw∈Rw

Var(�̂w(pw)|π) =
{

eε + δ

eε + 1

}

.

Proof: By (8), we note that

∂ Var(�̂w(pw)|π)

∂pw
= 1

(1 − 2 pw)3 n
,

hence ∂ Var(�̂w(pw)|π)
∂pw

< 0 when pw > 1
2 . Therefore,

arg min
pw∈Rw

Var(�̂w(pw)|π) = max (Rw),

and the result follows. �

VIII. CONCLUSION

We have presented the optimal differentially private RR
mechanisms with respect to a maximum likelihood estimator,
where both strict and relaxed differential privacy were consid-
ered. For a given desired level of privacy, as determined by ε
and δ, we presented a method to quickly determine the optimal
mechanism. This will allow for the optimal implementation
of differential privacy in any randomised response survey.
The results here all concern the simple RR model in which
responses are binary-valued. For numerous practical applica-
tions, an extension to the case of multi-valued responses will
be needed. Such an extension would first require a characteri-
sation of the minimal variance estimator for such mechanisms.
Results such as those presented in [35] for discrete, categorical
data are then likely to be useful in developing appropriate
extensions of the work here. This is an ongoing line of work
and the authors hope to be able to report more general results
in the near future.
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