
1

Robust Smartphone App Identification Via
Encrypted Network Traffic Analysis

Vincent F. Taylor, Riccardo Spolaor, Mauro Conti and Ivan Martinovic

Abstract—The apps installed on a smartphone can reveal
much information about a user, such as their medical conditions,
sexual orientation, or religious beliefs. Additionally, the presence
or absence of particular apps on a smartphone can inform
an adversary who is intent on attacking the device. In this
paper, we show that a passive eavesdropper can feasibly identify
smartphone apps by fingerprinting the network traffic that they
send. Although SSL/TLS hides the payload of packets, side-
channel data such as packet size and direction is still leaked from
encrypted connections. We use machine learning techniques to
identify smartphone apps from this side-channel data. In addition
to merely fingerprinting and identifying smartphone apps, we
investigate how app fingerprints change over time, across devices
and across different versions of apps. Additionally, we introduce
strategies that enable our app classification system to identify and
mitigate the effect of ambiguous traffic, i.e., traffic in common
among apps such as advertisement traffic. We fully implemented
a framework to fingerprint apps and ran a thorough set of
experiments to assess its performance. We fingerprinted 110 of
the most popular apps in the Google Play Store and were able
to identify them six months later with up to 96% accuracy.
Additionally, we show that app fingerprints persist to varying
extents across devices and app versions.

I. INTRODUCTION

Smartphone usage continues to grow explosively, with Gart-
ner reporting consumer purchases of smartphones as exceeding
one billion units in 2014, up 28.4% over 2013 [1]. Mobile
analytics company, Flurry, reports that app usage in 2014 grew
by 76% [2]. Nielson reports that for Q4 2014, U.S. smartphone
users accessed 26.7 apps per month, spending more than 37
hours using them [3]. The Guardian reports that smartphones
are now the most popular way to access the internet in the
UK [4]. Additionally, The Telegraph reports that smartphone-
generated mobile traffic is roughly twice as much as PCs,
tablets, and mobile routers combined [5]. This combination
of increased app usage and significant amounts of app traffic
places the smartphone in the spotlight for anyone looking to
understand the usage of specific apps by the general public.

Smartphone users typically install and use apps that are in
line with their interests. Apps cover a broad spectrum of func-
tionality such as medical, finance, entertainment, and lifestyle.
As a result, the apps installed on typical smartphones may
reveal sensitive information about a user’s medical conditions,
hobbies, and sexual/religious preferences [6]. An adversary

V. F. Taylor and I. Martinovic are with the Department of Com-
puter Science, University of Oxford, Oxford, United Kingdom. E-mail:
vincent.taylor@cs.ox.ac.uk ; ivan.martinovic@cs.ox.ac.uk.

R. Spolaor and M. Conti are with the Dipartimento di Matematica,
Universit di Padova, Padua 35122, Italy. E-mail: conti@math.unipd.it ;
rspolaor@math.unipd.it.

could also infer who a user banks with, what airline they
usually fly on, and which company provides them insurance.
This information may be particularly useful in “spear phishing
attacks”. In addition to uncovering the aforementioned high-
level information, an adversary can also use app identification
to enumerate and exploit potentially vulnerable apps in an
attempt to gain privileges on a smartphone.

Network traffic fingerprinting is not a new area of research,
and indeed the literature exemplifies techniques for network
traffic classification on traditional computers [7]. On smart-
phones, however, app fingerprinting and identification is frus-
trated in several ways. Port-based fingerprinting fails because
apps deliver their data predominantly using HTTP/HTTPS.
Typical web page fingerprinting fails since apps usually send
data back and forth using text formats such as XML and JSON,
thus removing rich information (such as the number of files
and file sizes) that aid web page classification. Additionally,
many apps use content delivery networks (CDNs) and third-
party services, thus eliminating hostname resolution or IP
address lookup as a viable strategy. Observing (DNS) address
resolution or TLS handshakes also proves less useful due to
the use of CDNs. Moreover, DNS and TLS exchanges may
not be observed at all due to the use of client-side caching, or
simply due to the mobile nature (i.e., transient connectivity)
of smartphones.

In this paper, we focus on understanding the extent to which
smartphone apps can be fingerprinted and later identified by
analysing the encrypted network traffic coming from them. We
exploit the fact that while SSL/TLS protects the payload of a
packet, it fails to hide other coarse information revealed by
network traffic patterns, such as packet lengths and direction.
Additionally, we evaluate the robustness of our app fingerprint-
ing framework by measuring how it is affected by different
devices, different app versions, or the mere passage of time.
In what follows, we motivate the utility of app fingerprinting
and identification by outlining four concrete scenarios where
it may be useful.

Attackers targeting specific apps. An adversary in pos-
session of exploits (perhaps zero-day exploits) for particular
apps may use app fingerprinting to identify these vulnerable
apps on a network. The adversary can build a fingerprint of
a vulnerable app (or vulnerable version of an app) “offline”
and then later use it to identify these apps in the wild.
Once a vulnerable app has been identified, the adversary may
then exploit whatever vulnerabilities it contains for their own
benefit. It is particularly worrying to consider an adversary
fingerprinting vulnerable mobile banking apps as a precursor
to launching an attack. By performing app fingerprinting, the

ar
X

iv
:1

70
4.

06
09

9v
1

 [
cs

.C
R

]
 2

0
A

pr
 2

01
7

2

adversary increases their accuracy when targeting victims, and
becomes more discreet when attacking, by having the ability
to launch their attack only against vulnerable devices.

Attackers targeting specific users. Within the wireless
network a victim is connected to, an adversary could surrep-
titiously monitor the victim’s network traffic to identify what
apps they were using or had installed on their device. The
disclosure of such private information by an adversary may
considerably harm some high-profile victims. For example,
a competing political candidate may gain an advantage by
revealing to the public that a married opponent was using
a dating/flirting app on his/her device. The gravity of this
problem is highlighted when one considers the advanced
persistent threat (APT) context where high-profile persons are
specifically targeted.

Network management. App fingerprinting provides valu-
able data about the types of apps and usage patterns of these
apps within an organisation. In the current era of bring-your-
own-device (BYOD), this information would be invaluable to
network administrators wanting to optimize their networks.
For example, knowing the most popular apps and their
throughput and latency requirements for good user experience,
administrators could then configure quality of service on their
network such that particular apps performed more efficiently.
Additionally, app fingerprinting may be used to determine
whether disallowed apps were being used on an enterprise
network. The administrator could then take appropriate action
against the offender.

Advertising and market research. Companies can rely
on app fingerprinting techniques as a source of information
to aid market research. Suppose an analytics company wants
to know the popularity of apps in a particular location or
during a particular event (e.g., during a music concert). This
company could potentially fingerprint apps and then go into
their location of interest to identify app usage from within
a crowd of users. By fingerprinting app usage within their
target population, advertisers may be able to build better
profiles of their target market and consequently be better able
to deploy targeted advertising.

In this paper we extend AppScanner, first presented by
the authors in [8], along several important dimensions.
AppScanner is a highly-scalable and extensible framework
for the fingerprinting and identification of apps from their
network traffic. The framework is encryption-agnostic, and
only analyses side-channel data, thus making it perform
the same whether network traffic is encrypted. AppScanner
was tested with Android apps and devices, but due to the
similarity in app network communication across platforms, we
believe that it can be easily ported to work with other mobile
operating systems. We make the following contributions to
the state-of-the-art beyond the original paper:

1) Implementation of a novel machine learning strategy that
can be used to identify ambiguous network traffic that
is similar between apps. Ambiguous network traffic in-
cludes advertisement traffic, third-party library traffic, and
other common web-API traffic. Such traffic would hinder

classification performance in the system described in our
earlier paper, because training data would sometimes have
conflicting labels. With the improved system, ambiguous
traffic can be identified and handled accordingly.

2) An analysis of the robustness of app fingerprinting across
different devices and app versions. We also analyse the
time invariability of app fingerprints, my measuring how
performance is affected when attempting to identify apps
using fingerprints generated six months earlier.

3) Evidence that app fingerprints (are in many cases) time,
app version, and device invariant. This lends support
to the idea of being able to use app classification in
real-world settings, since it suggests that fingerprints
persist to varying extents.

The rest of the paper is organised as follows: Section II
surveys related work and positions our contribution within the
literature; Section III overviews how our system works at a
high-level and explains key terminology; Section IV outlines
our approach to identifying ambiguous network flows that
reduce system performance; Section V overviews the various
datasets that were collected; Section VI evaluates performance
under a variety of scenarios; Section VII discusses ways of
improving classifier accuracy using post-processing strategies;
Section VIII discusses our observations throughout this work;
and finally Section IX concludes the paper.

II. RELATED WORK

Much work has been done on analysing traffic from work-
stations and web browsers [9]. At first glance, fingerprinting
smartphone apps may seem to be a simple translation of
existing work. While there are some similarities, such as
end-to-end communication using IP addresses/ports, there are
nuances in the type of traffic sent by smartphones and the
way in which it is sent that makes traffic analysis in the
realm of smartphones distinct from traffic analysis on tradi-
tional workstations [10]–[13]. With this in mind, we outline
related work by first enumerating traffic analysis approaches
on workstations (Section II-A), and then focusing on traffic
analysis on smartphones (Section II-B).

A. Traditional Traffic Analysis on Workstations

Traditional analysis approaches have relied on artefacts of
the HTTP protocol to make fingerprinting easier. For example,
when requesting a web page, a browser will usually fetch the
HTML document and all corresponding resources identified by
the HTML code such as images, JavaScript and style-sheets.
This simplifies the task of fingerprinting a web page since the
attacker has a corpus of information (IP addresses, sizes of
files, number of files) about the various resources attached to
an individual document.

Many apps, for scalability, build their APIs on top of
content delivery networks (CDNs) such as Akamai or Amazon
AWS [14]. This reduces (on average) the number of endpoints
that apps communicate with. In the past, it may have been
useful to look at the destination IP address of some traffic and
infer the app that was sending the traffic. Presently, requests to

3

graph.facebook.com, for example, may possibly be from the
Facebook app, but they may also be from a wide range of
apps that query the Facebook Graph API. With the advent of
CDNs and standard web service APIs, more and more apps
are sending their traffic to similar endpoints and this frustrates
attempts to fingerprint app traffic based on destination IP
address only.

In the literature, several works considered strong adversaries
(e.g., governments) that may leverage traffic analysis. Those
adversaries are able to capture the network traffic flowing
through communication links [15]. Liberatore et al. [16]
showed the effectiveness of proposals aiming to identify
web-pages via encrypted HTTP traffic analysis. Subsequently,
Herman et al. [17] outperformed Liberatore et al. by presenting
a method that relies on common text mining techniques to
the normalized frequency distribution of observable IP packet
sizes. This method correctly classified some 97% of HTTP
requests. Similar work was proposed by Panchenko et al. [18].
Their proposal correctly identified web pages despite the use of
onion routing anonymisation such as Tor. More recently, Cai et
al. [19] presented a web page fingerprinting attack and showed
its effectiveness despite traffic analysis countermeasures (e.g.,
HTTPOS).

Unfortunately, the aforementioned work was not designed
for smartphone traffic analysis. Indeed, the authors focused
on identifying web pages on traditional desktop computers
and leverage the fact that the HTTP traffic can be very
unique depending on the structure of the web page. Despite
smartphone apps communicating using HTTP as well, they
usually rely on text-based APIs, the usage of which removes
rich traffic features that would otherwise be present in typical
HTTP traffic. For this reason, fingerprinting network traffic on
smartphones is a more complicated process.

B. Traffic Analysis on Smartphones

In early work on the topic, Dai et al. [20] propose Net-
workProfiler, an automated approach to profiling and identi-
fying Android apps using dynamic methods. They use user-
interface fuzzing (UI fuzzing) to automatically explore dif-
ferent activities and functions within an app, while capturing
and logging the resulting network traffic. The authors inspect
HTTP payloads in their analysis and thus this technique
only works with unencrypted traffic. Given the overall trend
towards encrypting network communications, this approach
will become less useful over time. Dai et al. did not have
the full ground truth of the traffic traces they were analysing,
so it is difficult to systematically quantify how accurate
NetworkProfiler was in terms of precision, recall, and overall
accuracy.

Stöber et al. [21] propose a scheme for identifying entire
devices using characteristic traffic patterns coming from the
devices. They contend that 70% of smartphone traffic belongs
to background activities happening on the device and that
this can be leveraged to create a fingerprint. The authors
posit that 3G transmissions can be realistically intercepted and
demodulated to obtain side channel information such as the
amount of data and timing information. The authors leverage

‘bursts’ of data from which to generate their identification
since they cannot analyse the TCP payload directly. Using
supervised learning algorithms, the authors build a model
of the background traffic coming from devices. This model
is then capable of identifying data from similar background
traffic at a later time. The authors conclude that using ap-
proximately 15 minutes of captured traffic can result in a
classification accuracy of over 90%. A major drawback with
this work is that the system needs six hours of training
and 15 minutes of monitoring to achieve reliable fingerprint
matching.

Wang et al. [22] propose a system for identifying smart-
phone apps from encrypted 802.11 frames. They collect data
from target apps by running them dynamically and training
classifiers with features from the Layer 2 frames that were
observed. This work shows promise, but suffers from the fact
that the authors only test 13 arbitrarily chosen apps from eight
distinct app store categories and collect network traces for only
five minutes. Indeed, the authors discover that longer training
times have an adverse effect on accuracy when classifying
some apps with their system. Moreover, the authors use an
insufficient sample size (i.e., only 13 apps) to validate their
results. By taking into account a large set of apps in our
earlier work [8], we show how increasing the number of apps
negatively influences classifier accuracy. It is problematic to
quantify Wang et al.’s results, in general, since they have no
way to collect accurate ground truth, i.e., a labelled dataset
that is free of noise from other apps. Indeed, our methodology
minimises noise by running a single app at a time, and we
still had to filter 13% of the traffic collected because it was
background traffic from other apps. AppScanner solves the
aforementioned problems by using a larger sample of apps
from a wider set of categories and collecting network traffic
for substantially more time.

Conti et al. [23] and Saltaformaggio et al. [24] identify
specific actions that users are performing within their smart-
phone apps. Due to similarity, we briefly describe the approach
of Conti et al. The authors identify specific actions through
flow classification and supervised machine learning. Their
system works in the presence of encrypted connections since
the authors only leverage coarse flow information such as
packet direction and size. The authors achieved more than 95%
accuracy for most of the considered actions. This work suffers
from its specificity in identifying discrete actions. By choosing
specific actions within a limited group apps, Conti et al. may
benefit from the more distinctive flows that are generated.
Their system also does not scale well since a manual approach
was taken when choosing and fingerprinting actions. Indeed,
the authors chose a small set of apps and a subset of actions
within those apps to analyse.

Our prior work [8] improves on the weaknesses of the sys-
tems described above. First, by leveraging only side-channel
information, we are able to classify apps in the face of
encrypted network traffic. Additionally, our system is trained
and tested on 110 apps with traffic collected from each app
for 30 minutes. Due to the nature of our framework, apps can
also be trained automatically, removing the need for human
intervention.

4

Our prior work is however limited in its handling of am-
biguous traffic. Ambiguous traffic, i.e., traffic that is common
among more than one apps, would frustrate our previous
system and cause poorer performance. Our prior work also
does not provide an understanding of the variability and
longevity of app fingerprints. In this work, we measure how
different devices, app versions, or the passage of time affects
app fingerprinting.

III. SYSTEM OVERVIEW

As an overview, AppScanner fingerprints smartphone apps
by using machine learning to understand the network traffic
that has been generated by them. Patterns in app generated
traffic, when later seen, are used to identify the app.

Unfortunately, apps sometimes have traffic patterns in com-
mon because they share libraries, such as ad libraries, that
generate similar traffic1 across distinct apps. This can frustrate
attempts at app classification using traffic analysis, since it
may generate false positives. Thus, a strategy is needed to
first identify traffic that is shared among apps, so that it can
be appropriately labelled before being passed to classifiers.
We call traffic shared among apps ambiguous traffic and the
remaining traffic distinctive traffic.

Central to our fingerprinting methodology is the concept of
a burst and a flow. We define these important terms below:

Burst: A burst is the group of all network packets (irre-
spective of source or destination address) occurring together
that satisfies the condition that the most recent packet occurs
within a threshold of time, the burst threshold, of the previous
packet. In other words, packets are grouped temporally and a
new group is created only when no new packets have arrived
within the amount of time set as the burst threshold. This is
visually depicted in the Traffic Burstification section of Fig. 1,
where we can see Burst A and Burst B separated by the burst
threshold. We use the concept of a burst to logically divide
the network traffic into discrete, manageable portions, which
can then be further processed.

Flow: A flow is a sequence of packets (within a burst) with
the same destination IP address and port number. That is,
within a flow, all packets will either be going to (or coming
from) the same destination IP address/port. Flows are not to
be confused with TCP sessions. A flow ends at the end of a
burst, while a TCP session can span multiple bursts. Thus,
flows typically last for a few seconds, while TCP sessions
can continue indefinitely. AppScanner leverages flows
instead of TCP sessions to achieve real-time/near-to-real-time
classification. From the Flow Separation section of Fig. 1,
it can be seen that a burst may contain one or more flows.
Flows may overlap in a burst if a single app, App X, initiates
TCP sessions in quick succession or if another app, App
Y, happens to initiate a TCP session at the same time as App X.

Our app identification framework first elicits network traffic
from an app, generates features from that traffic, trains classi-

1Traffic generated by libraries will typically be common among apps using
that particular library.

N
et

w
o

rk
 T

ra
ce

 C
ap

tu
re

Time

Bytes Received

Bytes Transmitted

Tr
af

fi
c

B
ur

st
ifi

ca
ti

on
Fl

o
w

 S
ep

ar
at

io
n

C
la

ss
ifi

er
 T

ra
in

in
g

Tr
ai

n
ed

 C
la

ss
if

ie
rs

Burst Threshold

Burst A Burst B

Eq
ui

pm
en

t
Se

tu
p

Wi-Fi AP

Scripts to simulate user input

Internet

ADB commands sent via USB

App X

App Y

Time

Bytes Received

Bytes Transmitted

Feature Space X

Fe
a

tu
re

 S
pa

ce
 Y

Class Boundary

Feature
Extraction Classifier Training

Set

Flow B1

Flow A3 Flow B2Flow A2

Flow A1

A
m

bi
gu

it
y

D
et

ec
ti

o
n

App X

App X

App X

App Y

App Y

Ambiguity
Detection

Distinctive Flows

Ambiguous Flows

App X

Ambiguous

App X

Ambiguous

App Y

App X

App Y

Ambiguous

Fig. 1. High-level representation of classifier training, and a visualisation of
bursts and flows within network traffic.

5

fiers using these features, and finally identifies apps when the
classifiers are later presented with unknown traffic.

A. Equipment Setup

The setup used to collect network traces from apps is shown
in the Equipment Setup section of Fig. 1. The workstation was
configured to forward traffic between the Wi-Fi access point
(AP) and the Internet. To generate traffic from which to capture
our training data, we used scripts that communicated with the
target smartphone via USB using the Android Debug Bridge
(ADB). These scripts were used to simulate user actions
within apps and thus elicit network flows from the apps. This
technique is called UI fuzzing.

The traffic generated by the smartphone was captured and
exported as network traffic dumps containing details of cap-
tured packets. We collected packet details such as time, source
address, destination address, ports, packet size, protocol and
TCP/IP flags. The payload for each packet was also collected
but was not used to provide features since it may or may not be
encrypted. Although physical hardware was used for network
traffic generation and capturing, this process can be massively
automated and parallelized by running apps within Android
emulators on virtual machines.

B. Fingerprint Making

There are several stages in the fingerprint making process
as follows:

Network Trace Capture: During traffic capture, we per-
formed UI fuzzing on one app at a time to minimise ‘noise’
(i.e., traffic generated simultaneously by other apps) in the
network traces. Traffic from other apps or the Android operat-
ing system itself could interfere with and taint the fingerprint
making process. To combat the problem of noise, the Network
Log tool [25] was used to identify the app responsible for each
network flow. Using data from Network Log combined with a
‘demultiplexing’ script, all traffic that did not originate from
the target app was removed from the traffic dump for that
app. In this way, and in contrast to related work, we obtained
perfect ground truth of what flows came from what app.

After data collection, the network traffic dumps were
filtered to include only TCP traffic that was error free. For
example, we filtered to remove packet retransmissions that
were as a result of network errors.

Traffic Burstification and Flow Separation: The next step
was to parse the network dumps to obtain network traf-
fic bursts. Traffic was first discretized into bursts to obtain
ephemeral chunks of network traffic that could be sent imme-
diately to the next stage of AppScanner for processing. This
allows us to meet the design objective of real-time or near
real-time classification of network traffic. Falaki et al. [26]
observed that 95% of packets on smartphones “are received
or transmitted within 4.5 seconds of the previous packet”.
During our tests, we observed that setting the burst threshold to
one second instead of 4.5 seconds only slightly increased the
number of bursts seen in the network traces. This suggests that

network performance (in terms of bandwidth and latency) has
improved since the original study. For this reason, we opted
to use a burst threshold of one second to favour more over-
all bursts and nearer-to-real-time performance. Bursts were
separated into individual flows (as defined at the beginning
of this section and depicted in Fig. 2) using destination IP
address/port information. We enforced a maximum flow length
that would be considered by the system. This is simply to
ensure that abnormal traffic can be safely ignored in the real-
world.

It is important to note that while destination IP addresses
were used for flow separation, they were not leveraged
to assist with app identification. We also opted to not
use information gleaned from DNS queries or flows with
unencrypted payloads. We took this design decision to avoid
the reliance on domain-specific knowledge that frequently
changes, thus making our framework useful in the long term.
Concretely, it is ill-advised to rely on the aforementioned
additional sources of information for the following reasons:

• IP addresses - Destination IP addresses contacted by
an app can change if DNS-based load-balancing/high-
availability is used. Additionally, many apps communi-
cate with similar IP addresses because they utilise the
same CDN or belong to the same developer.

• DNS queries - DNS queries are not always sent/observed
due to the use of client-side DNS caching. Also, multiple
apps may send the same DNS queries, for example, to
resolve advertisement server domain names.

• Packet payloads - Many app developers are becoming
more privacy-aware and are opting to use SSL/TLS to
encrypt packet payloads. Thus features extracted from
TCP payloads will become less useful over time.

Ambiguity Detection: As mentioned at the beginning of
this section, many apps have third-party libraries in common
(especially ad libraries) and these libraries themselves
generate network traffic. Unfortunately, it is not possible
to discriminate traffic coming from libraries (as opposed
to the app that embeds the library) in a scalable way, i.e.,
without an intrusive approach such as reverse-engineering
or modifying apps. Indeed, as far as the operating system
is concerned, apps and their bundled libraries are one entity
within the same process. Since network traffic generated by
libraries in common across apps is similar, this will frustrate
the fingerprinting process because classifiers will be given
contradictory training examples. This problem of so-called
ambiguous flows poses a challenge to naive machine learning
approaches. To mitigate negative effects, we introduce
Ambiguity Detection as detailed in Section IV. Ambiguity
detection uses simple reinforcement learning techniques to
identify similar flows coming from different apps. In the
training phase, ambiguous flows are detected and relabelled
as belonging to the “ambiguous” class, so that the system is
later able to properly identify and handle them.

Classifier Training: Statistical features were generated from

6

SOURCE_IP DEST_IP PROTO LEN

192.168.137.2 23.23.162.140 TCP 74

23.23.162.140 192.168.137.2 TCP 74

192.168.137.2 23.23.162.140 TCP 66

192.168.137.2 23.23.162.140 TLSv1 287

23.23.162.140 192.168.137.2 TCP 66

23.23.162.140 192.168.137.2 TLSv1 1078

23.23.162.140 192.168.137.2 TCP 1078

23.23.162.140 192.168.137.2 TCP 1078

23.23.162.140 192.168.137.2 TCP 1078

23.23.162.140 192.168.137.2 TCP 114

23.23.162.140 192.168.137.2 TCP 1078

23.23.162.140 192.168.137.2 TLSv1 796

Vectors comprised
of statistical

features
generated from

flows

Flow Pre-processor

Statistical Feature
Extraction

Feature Scaler [0, 1]

Feature Selection
[0.12, 0.76, 0.32, 0.1, 0.39, … , 0.88]

Variable Length Feature Vectors

Constant Length Feature Vectors

[74, -74, 66, 287, -66, -1078, … , -796]

Fig. 2. Generating features from flows for classifier training.

flows and used to train classifiers. Statistical feature extraction
involves deriving 54 statistical features from each flow as
shown in Figure 2. For each flow, three packet series are
considered: incoming packets only, outgoing packets only, and
bi-directional traffic (i.e. both incoming and outgoing packets).
For each series (3 in total), the following values were com-
puted: minimum, maximum, mean, median absolute deviation,
standard deviation, variance, skew, kurtosis, percentiles (from
10% to 90%) and the number of elements in the series (18 in
total). These statistical features are computed using the Python
pandas [27] libraries.

These features are then passed through the Feature Scaler
function, which is a min-max scaler (i.e., the minimum and
the maximum value for a specific feature in the training set
corresponds to 0 and 1 respectively). In order to avoid the
curse of dimensionality, the Feature Selection function is
used to choose the best features. Feature Selection relies on
the significance score given to each feature by the estimators
of a Random Forest classifier that was run on the training set.
At this point, we selected only those features with a score
higher than 1%, for a total of 40 features of the original 54.

C. App Identification

Unknown flows are passed to the trained classifiers. Am-
biguous flows are identified and labelled as such, since the
classifiers were trained to understand ambiguous flows. Flows
that are not labelled by the classifiers as ambiguous next go
through classification validation as described in Section VII-B.
The classification validation stage is crucial for one primary
reason. Machine learning algorithms will always attempt to
place an unlabelled example into the class it most closely
resembles, even if the match is not very good. Given that
our classifiers will never be trained with the universe of flows
from apps, it follows that there will be some flows presented
to AppScanner which are simply unknown or never-before-
seen. If left unchecked, this can cause an undesirable increase
in the false positive (FP) rate.

To counteract these problems, we leverage the prediction
probability metric (available in many classifiers) to understand
how certain the classifier is about each of its classifications.
For example, if the classifier labelled an unknown sample as
com.facebook.katana, we would check its prediction proba-
bility value for that classification to determine the classifier’s

confidence. If this value is below the classification validation
threshold, AppScanner will not make a pronouncement. How-
ever, if this value exceeds the threshold, AppScanner would
report it as a match for that particular app. In Section VII,
we discuss how varying this threshold impacts the precision,
recall, and overall accuracy of AppScanner, as well as how
this affects the percentage of total flows that the classifiers are
confident enough to classify.

IV. AMBIGUITY DETECTION

The ambiguity detection phase aims to identify and relabel
ambiguous flows. This phase involves a reinforcement learning
strategy that is leveraged during classifier training. As outlined
in Fig. 3, classifier training is divided in two stages: the
preliminary classifier stage, and the reinforced classifier stage.

The main training set considered in the analysis is first
randomly shuffled and divided into halves: the preliminary
training set and the preliminary testing set. The preliminary
training set is used to train the preliminary classifier. The
preliminary testing set is used to measure the accuracy of
the preliminary classifier, and as a basis for generating the
training set for the reinforced classifier. In this way, we
can first identify which flows are incorrectly classified by
the preliminary classifier. We validated that these incorrectly
labelled flows are to a large extent library traffic, as expected.

The Relabel Engine leverages feedback on the accuracy of
the preliminary classifier to identify ambiguous flows. Flows in
the preliminary testing set that are incorrectly classified are re-
labelled as “ambiguous” by the Relabel Engine. On the other
hand, flows that are correctly classified by the preliminary
classifier keep their original label (i.e., the app that generated
them). This relabelled dataset is now used as the reinforced
training set and is passed to the reinforced classifier. The
reinforced classifier is thus equipped to identify ambiguous
flows since it is trained with examples of ambiguous flows.

We emphasise to the reader that no flows from the pre-
liminary training set are used in the reinforced training set.
The preliminary classifier and the preliminary training set
are only used as a means of identifying ambiguous flows so
that additional knowledge can be provided to the reinforced
classifier.

V. DATASET COLLECTION

To test the performance of AppScanner, we considered a
random 110 of the 200 most popular free apps as listed by the

7

Preliminary
classifier

Accuracy

Dataset 1

Dataset 2

Preliminary Train ing
Set

Preliminary Testing
Set

Accuracy
Reinforced
classifier

Relabel
Engine

Feedback

Reinforced Train ing Set Reinforced Testing Set

Fig. 3. Using reinforcement learning to obtain robustness against ambiguous flows.

Google Play Store. We chose the most popular apps because
they form a large part of the install-base of apps across the
world. Additionally, we chose free apps because free apps tend
to be ad-supported and thus use ad libraries. There is a small
set of major ad libraries and thus ad libraries tend to be shared
across apps. This suggests that free apps will be more likely
to generate ambiguous flows than paid apps. Being able to
properly fingerprint and identify free apps thus implies that
AppScanner is robust enough to handle paid apps as well.

Smartphones in our testbed were connected to the internet
via a Linksys E1700 Wi-Fi router/AP that had its internet
connection routed through a workstation. UI fuzzing was per-
formed on each app for 30 minutes. UI fuzzing simulated user
actions by invoking UI events such as touches, swipes, and
button presses. These UI events were generated randomly and
sent to apps. It is worth noting that some apps presented login
screens upon first launch. In those cases, we first manually
created accounts for those apps before logging in. We did
this to ensure that traffic generation using UI fuzzing was
not hindered by a login screen. Greater coverage of all the
network flows in an app may theoretically be obtained by
using advanced UI fuzzing techniques provided by frameworks
such as Dynodroid [28], or by recruiting human participants.
However, we consider these approaches to be out of the scope
of our research.

A. Dataset Collection

A major contribution of this work is to understand how
app fingerprinting is affected by time, the device used, app
versions, and combinations of these variables. For this reason,
we collected several datasets as outlined in Table I. In what
follows, we describe these datasets in detail.

The dataset we consider as our baseline is Dataset-1,
which was collected using Device-A, a Motorola XT1039 with
Android version 4.4.4 as the operating system. This dataset
contains network traffic from 110 apps that were the latest
versions of each app at the time of initial data collection. We
refer to this time of initial data collection as T0. All other
datasets (Dataset-2 to Dataset-5) were collected six
months after T0, i.e., at time T0 + 6 months.
Dataset-2 differs from Dataset-1 only by the time

of data collection. Dataset-2 contains data from only 65
apps (instead of 110), because the remaining 45 apps refused
to run without being updated. We hereafter refer to the 65
apps in Dataset-2 that ran without being updated as the
run-without-update subset.

Dataset-3 was collected using Device-B, an LG
E960 with Android version 5.1.1 as the operating system.
Dataset-3 also used the run-without-update subset.
Dataset-4 and Dataset-5 were obtained by collecting

network traffic from the latest versions (at the time of data
collection six months after initial data collection) of the
original 110 apps and were collected using Device-A and
Device-B respectively.

Additionally, we consider variants of the aforemen-
tioned datasets, which consider only apps in the run-
without-update subset. We denote these dataset variants
as Dataset-1a, Dataset-4a, and Dataset-5a for
Dataset-1, Dataset-4 and Dataset-5, respectively.
These datasets were generated in order to offer a balanced
analysis in the presence of datasets with different numbers of
apps (i.e., Dataset-2 and Dataset-3).

VI. EVALUATION

In evaluating our system, we followed a number of steps.
First, we report the results of a baseline evaluation of system
performance using training and testing sets derived from single
datasets. Second, to obtain a more representative measurement
of system performance, we performed a comprehensive suite
of tests (as outlined in Table III) using completely independent
training and testing sets. Measurements were taken to under-
stand how factors such as time, device (including operating
system), app version, and a combination of device and app
version affected performance.

We leveraged the scikit-learn [29] machine learning libraries
to implement the classifiers in our framework. Random Forest
classifiers were chosen since they gave superior performance
in our previous work. All classifiers were set to use default
parameters.

We highlight to the reader that any results reported in
this section should be considered as lower bounds of system
performance. Indeed, the results presented in this section
show the performance of the system before any performance-
enhancers, such as ambiguity detection and classification val-
idation (Section VII), have been applied. The tests performed
in this section are merely to assess default system performance
before post-processing is applied.

For our baseline results, we split each dataset into a training
set (75% of examples) and a testing set (25% of examples) and
used them to train classifiers as detailed in Section III. The
performance of these classifiers is shown in Table II. Accuracy
within datasets fell between 66.4% and 73.5%. We underscore

8

TABLE I
DESCRIPTIONS OF THE DEVICES, OPERATING SYSTEMS, NUMBER OF APPS, APP VERSIONS, AND TIME OF DATA COLLECTION FOR EACH DATASET USED.

Name Device Operating System Number of apps App versions Time of data collection
Dataset-1 Motorola XT1039 Android 4.4.4 110 Latest versions as at T0 T0

Dataset-1a Motorola XT1039 Android 4.4.4 65 Latest versions as at T0 T0

Dataset-2 Motorola XT1039 Android 4.4.4 65 Latest versions as at T0 T0 + 6 months

Dataset-3 LG E960 Android 5.1.1 65 Latest versions as at T0 T0 + 6 months

Dataset-4 Motorola XT1039 Android 4.4.4 110 Latest versions as at T0 + 6 months T0 + 6 months

Dataset-4a Motorola XT1039 Android 4.4.4 65 Latest versions as at T0 + 6 months T0 + 6 months

Dataset-5 LG E960 Android 5.1.1 110 Latest versions as at T0 + 6 months T0 + 6 months

Dataset-5a LG E960 Android 5.1.1 65 Latest versions as at T0 + 6 months T0 + 6 months

that these results are obtained without applying any post-
processing. These results are fairly good but may overestimate
the performance of the system. This is because the training
and testing sets in each case were generated from one original
dataset. In what follows, we do more robust measurements by
using completely independent datasets for training and testing
to make a more real-world assessment of system performance.

A. Effect of Time

To measure the effect of time on classification performance,
we trained a classifier with Dataset-1a and tested with
Dataset-2. This combination of training and testing sets as-
sessed the effect of keeping device and app versions constant,
but causing six months to pass between collection of data for
training and testing. The overall accuracy for this test, called
the TIME test, was 40.5% and had the highest performance
of our tests that used completely separate training and testing
sets.

The fact that this test gave the highest performance of
tests with completely independent training and testing sets
is expected, since the app versions and device (including
operating system) were constant. That is, the logic (app and
operating system) that generates traffic seems to generate the
same traffic even after some amount of time (in this case
six months) has elapsed. Since the underlying logic does not
change, it would be reasonable to expect app fingerprints to
also remain constant.

B. Effect of a Different Device

To assess the impact of a different device on app classifica-
tion we did three tests: D-110, D-110A, and D-65. D-110
used Dataset-4 as a training set and Dataset-5 as a
testing set. That is, we trained with 110 apps on one device
and tested with the same 110 apps on a different device. The
overall accuracy was 37.2%. D-110A used the run-without-
update subsets of the datasets used in D-110 and had an
overall accuracy of 37.5%. D-65 consisted of a training set
of Dataset-2 and testing set of Dataset-3. That is, we
trained with 65 apps on one device and tested with 65 apps on
another device. The overall accuracy for this test was 39.0%.
We note that this test, with 65 apps, gives similar performance
to the TIME test, which also had 65 apps. This insight suggests
that device model and operating system version does not have
a major effect on app fingerprinting performance.

TABLE II
BASELINE PERFORMANCE OF APP CLASSIFICATION FOR EACH DATASET

WITHOUT ANY POST-PROCESSING TECHNIQUES APPLIED.

Dataset Precision(%) Recall(%) F1(%) Accuracy (%)
Dataset-1 74.0 71.6 72.0 72.5

Dataset-1a 74.0 72.9 72.9 73.5

Dataset-2 68.3 68.1 67.7 66.4

Dataset-3 71.3 68.8 69.5 69.7

Dataset-4 68.1 66.3 66.5 67.3

Dataset-4a 68.2 66.7 66.9 66.7

Dataset-5 69.5 68.2 68.3 69.6

Dataset-5a 70.2 67.0 67.6 68.2

C. Effect of Different App Versions

We carried out two tests to understand the impact that dif-
ferent app versions had on app fingerprinting. V-LG involved
training with Dataset-3 and testing with Dataset-5a.
For this test, the same device was used but with different
versions of the same apps. The overall accuracy of this test was
30.4%. V-MG used a training set of Dataset-2 and testing
set of Dataset-4a. The overall accuracy for this test was
32.8%. We note that the accuracy for both of these tests were
fairly similar but markedly lower than the TIME, D-110 or
D-110A or D-65 tests. This insight suggests that changes in
app versions affects the reliability of app fingerprinting. We
believe that this phenomenon could be due to changes in app
code or logic that has direct consequences on the way that an
app generates network flows. Thus there is a need to keep app
fingerprint databases up-to-date as app developers release new
app versions.

D. Effect of a Different Device and Different App Versions

A final two tests were conducted to measure the impact
of changing both device and app versions. The first test,
DV-110, used a training set of Dataset-1 and a testing
set of Dataset-5, i.e., using a total of 110 apps. The
second test, DV-65, used a training set of Dataset-1a
and testing set of Dataset-5a. These tests yielded overall
accuracies of 19.4% and 19.0% respectively. As expected from
the results of our previous tests, changing both device and
app versions together more severely impacted classification
performance. It is interesting to note, however, that the number
of apps in training and testing sets did not seem to impact

9

TABLE III
SUMMARY OF THE COMPREHENSIVE SUITE OF TESTS USED TO MEASURE THE PERFORMANCE OF THE APP CLASSIFICATION SYSTEM. ALL TRAINING AND

TESTING SETS WERE COMPLETELY INDEPENDENT OF EACH OTHER. THE INDEPENDENT VARIABLES FOR EACH TEST ARE IDENTIFIED.

Test Name Training Set Testing Set Precision (%) Recall (%) F1 (%) Accuracy (%) Independent Variable Apps
TIME Dataset-1a Dataset-2 44.2 43.0 42.3 40.5 Time 65

D-110 Dataset-4 Dataset-5 40.3 36.0 35.7 37.2 Device 110

D-110A Dataset-4a Dataset-5a 38.7 34.9 35.0 37.6 Device 65

D-65 Dataset-2 Dataset-3 43.5 38.0 38.7 39.0 Device 65

V-LG Dataset-3 Dataset-5a 32.8 31.2 30.2 30.4 App versions 65

V-MG Dataset-2 Dataset-4a 34.8 32.1 32.3 32.8 App versions 65

DV-110 Dataset-1 Dataset-5 23.7 19.5 19.5 19.4 Device & App versions 110

DV-65 Dataset-1a Dataset-5a 20.4 19.3 18.4 19.0 Device & App versions 65

overall classification accuracy in a negative way under these
adverse conditions. This lends support to the idea that app
fingerprinting can be a scalable process. We note that despite
DV-110 and DV-65 having approximately half the accuracy
of the TIME test, they still perform approximately 20 times
better than pure random guessing.

VII. IMPROVING ACCURACY

Our results so far show the performance of AppScanner
without any post-processing applied. In this section, we look
at two post-processing strategies that have proven effective
in improving the accuracy of the system: ambiguity detection
and classification validation. Ambiguity detection is detailed
in Section VII-A and classification validation is discussed in
Section VII-B. In general, both of these strategies aim to iden-
tify network flows that are not reliable for app fingerprinting.

A. Ambiguity Detection

As mentioned in Section IV, many apps have traffic in com-
mon and this can hinder app classification if left unhandled.
Our reinforcement learning approach identifies and relabels
ambiguous flows so that the classifiers have a model to identify
them. When measuring performance with ambiguity detection
in use, unknown flows that are labelled as ambiguous are
omitted from calculations of classifier performance. That is,
ambiguous flows are identified and ignored, and thus do not
affect the measurement of the performance of our system. This
was done to ensure that measurements of system performance
were not artificially inflated when the classifiers correctly
identified ambiguous flows.

In what follows, we report on the improvements that can be
made by using our reinforcement learning approach to identify
ambiguous traffic flows. Table IV shows the improvement
in performance obtained by applying ambiguity detection as
outlined in Figure 3. Each test uses the same training and
testing sets as described in Table III, with the only change
being that reinforced classifiers are used instead. Ambiguity
detection was applied to the training sets of these reinforced
classifiers as detailed in Section IV.

Reinforced classifiers received a boost in overall accuracy of
approximately 1.5-2.1 times. Precision, recall, and F-1 score
saw similar increases. The most challenging tests, DV-110

and DV-65 (using different physical devices, Android ver-
sions, and app versions between training and testing sets),
had the greatest percentage increases in performance and
saw accuracy approximately double when using reinforced
classifiers. For example, in DV-110, accuracy was increased
from 19.4% to 41.0% using ambiguity detection. Improving
performance using reinforced classifiers highlights the preva-
lence of ambiguous flows in app traffic and reiterates the need
for systems that can address them.

B. Classification Validation

Classification validation is another effective strategy that
can be leveraged to improve app classification performance.
Classifiers can be made to output their confidence when
labelling and unknown example. In simple terms, a classifier
may be very confident about a classification if the class
boundaries within its models are distinct, i.e., with sufficient
separation between classes. In other cases, this distinction may
be less clear.

By assessing the confidence that a classifier reports with
its classification, a judgement can be made as to whether the
classification will be considered as valid by the system. We
call the cut-off for what is considered a valid classification
the prediction probability threshold. A higher prediction prob-
ability threshold will lead to more conservative predictions,
and thus higher accuracy, at the expense of the number of
flows whose classification is considered as valid. On the other
hand, a lower threshold reduces accuracy but maximises the
number of flows whose classification is considered as valid.
For app classification, false positives are usually undesirable
and thus higher prediction probability thresholds are likely to
be suitable.

Classification validation reduces the number of flows that
are considered as being “correctly” classified, but it is im-
portant to note that there is no inherent requirement to label
all unknown flows. Apps typically send tens or hundreds
of flows per minute when they are being used, so there
remains significant opportunity to identify apps from their
more distinctive flows. Thus, classification validation can be
an effective technique for improving app classification perfor-
mance while incurring negligible drawback. In what follows,
we report on the improvements provided by classification
validation to reinforced classifiers.

10

TABLE IV
HOW THE REINFORCEMENT LEARNING STRATEGY IMPROVED CLASSIFIER PERFORMANCE FOR EACH OF THE TESTS THAT WERE CONDUCTED.

Test Name
Preliminary Classifier Reinforced Classifier

Precision (%) Recall (%) F-1 (%) Accuracy (%) Precision (%) Recall(%) F-1 (%) Accuracy (%)
TIME 44.2 43.0 42.3 40.5 66.9 65.7 65.2 72.2

D-110 40.3 36.0 35.7 37.2 59.9 56.2 55.8 66.3

D-110A 38.7 34.9 35.0 37.6 57.6 52.4 52.6 62.6

D-65 43.5 38.0 38.7 39.0 62.4 58.5 57.8 65.5

V-LG 32.8 31.2 30.2 30.4 46.5 44.3 42.9 51.1

V-MG 34.8 32.1 32.3 32.8 50.9 49.4 48.4 57.2

DV-110 23.7 19.5 19.5 19.4 38.0 35.4 33.9 41.0

DV-65 20.4 19.3 18.4 19.0 36.2 33.8 31.7 37.2

Figure 4 shows the improvement provided by classification
validation for the TIME, D-110, D-110A, and D-65 tests.
We highlight some results by considering a prediction proba-
bility threshold of 0.9. Figure 4a shows that the TIME test had
a preliminary accuracy of 72% which was improved to 96%
using classification validation. The results for the D-110 and
D110-A tests are shown in Figures 4b and 4c respectively.
Overall accuracy was improved from 66% to 88% for test
D-110 and from 63% to 92% for D-110A. It is interesting
to note that D-110A had a higher peak accuracy than D-110
after using classification validation, although D-110 had a
higher baseline accuracy. The final test in this group, D-65
saw accuracy go from 66% to 93% when using classification
validation.

Figure 5 shows the improvement provided by classification
validation for the V-LG, V-MG, DV-110, and DV-65 tests.
Once again, we report our results assuming a prediction
probability threshold of 0.9 is chosen. Figure 5a shows that
classification validation improved accuracy for the V-LG test
from 51% to 84%. Figure 5b shows the results for the V-MG
test, which is similar to V-LG but with a different device.
Classification validation improved accuracy from 57% to 79%
in this case.

Figures 5c and 5d show the results for our most challenging
tests: DV-110 and DV-65. Classification validation was able
to increase the accuracy of DV-110 from 41% to 73%.
Likewise, for test DV-65, accuracy was increased from 37%
to 76%. This demonstrates that classification validation can be
a useful tool to improve system performance under difficult
conditions.

VIII. DISCUSSION

Smartphone app fingerprinting is challenging because of a
variety of variables that are likely to change between finger-
print building and final deployment. Such variables include
device, operating system version, app version, and time. Any
mismatch between variables during app fingerprinting and app
identification has the potential to reduce the performance of
our app classification system. To this end, we assessed how the
aforementioned variables affected system performance. Apps
were fingerprinted and later re-identified under a thorough
suite of experimental settings.

In Table II, we report app classification performance when
classifiers are trained and tested using datasets generated from

the same dataset. In the other tests, we used completely inde-
pendent datasets for training and testing. System performance
when using independent sets was seen to be notably lower
than the baseline experiments. This highlights the need for
completely independent training and testing sets if one wants
to get a more accurate estimate of the performance of an app
fingerprinting system.

Training with specific app versions and device with six
months between the collection of training and testing data
had the highest baseline accuracy. This suggests that time
(at the six month timescale) introduces the least variance
in app fingerprints. This insight suggests that although the
content returned by the app’s servers may have changed, our
models are fairly resilient to those changes and still give
good performance. Our analysis on datasets collected using
different devices (and operating system version) gave perfor-
mance slightly lower than the previous test. This suggests that
device or operating system characteristics of different devices
can introduce some additional noise that affects classification
performance to a small extent. Such reduction in performance
is expected, since apps are known to change their behaviour
depending on the version of Android operating system that
they are run on. Additionally, differences in the operating
system itself may also contribute additional noise that affects
classifier performance.

Fingerprinting a set of apps and identifying new versions
of the same apps incurred a further performance penalty.
This phenomenon is not unexpected, since apps routinely
receive changes to their logic during updates [30], which may
cause changes in their network traffic flows. However, our
classification system shows that it is able to cope with such
changes. This, however, motivates the need to re-fingerprint
apps whenever they are updated, but suggests that old fin-
gerprints may be useful, although presumably less so as the
app receives more updates. Changing both device and app
versions (and time) provided the greatest performance penalty
for our classification system. This is an expected penalty since
time, device, operating system version, and app versions have
all changed between training and testing. Even under these
most severe of constraints, our classifier was able to achieve a
baseline performance 20 times that of pure random guessing.

The majority of the performance hit appears to come from
so-called ambiguous flows. These flows are traffic that is

11

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(a) Performance for the TIME test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(b) Performance for the D-110 test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(c) Performance for the D-110A test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(d) Performance for the D-65 test.

Fig. 4. Performance of our reinforced classifiers on the TIME, D-110, D-110A, and D-65 tests.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(a) Performance for the V-LG test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

)

Precision
Recall
Accuracy
Flows classified

(b) Performance for the V-MG test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

) Precision
Recall
Accuracy
Flows classified

(c) Performance for the DV-110 test.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction Probability Threshold

0

20

40

60

80

100

C
la

ss
if
ie

r
P
e
rf

o
rm

a
n
ce

 (
%

) Precision
Recall
Accuracy
Flows classified

(d) Performance for the DV-65 test.

Fig. 5. Performance of our reinforced classifiers on the V-LG, V-MG, DV-110, and DV-65 tests.

12

similar across apps that typically comes from third-party
libraries that are in common among apps. Such ambiguous
traffic frustrates naive machine learning approaches, since the
classifiers are given effectively the same training examples
with different labels. Using a novel two-stage classification
strategy with reinforcement learning, we were able to approx-
imately double the baseline performance of our classifiers.
Using the additional post-processing technique of classifica-
tion validation, further accuracy could be extracted from the
system, but at the expense of the number of flows that the
classifiers were able to give a confident enough prediction.
We remind the reader here that in app classification there is
no inherent requirement to label all network flows.

IX. CONCLUSION

In this paper, we extended AppScanner, a robust and scal-
able framework for the identification of smartphone apps from
their network traffic. We thoroughly evaluated the feasibility of
fingerprinting smartphone apps along several dimensions. We
collected several datasets of app-generated traffic at different
times (six months apart) using different devices (and Android
operating systems) and different app versions. We demon-
strated that the passage of time is the variable that affects app
fingerprinting the least. We also showed that app fingerprints
are not significantly more affected by the device that the app is
installed on. Our results show that updates to apps will reduce
the accuracy of fingerprints. This is unsurprising since new app
versions will likely have additional features, which can affect
the fingerprint recognition process. We showed that even if
app fingerprints are generated on a particular device, they can
be identified six months later on a different device running
different versions of the same apps with a baseline accuracy
that is 20 times better than random guessing. Using the
techniques of ambiguity detection and classification validation,
we obtained noteworthy increases in system performance. We
were able to fingerprint and later re-identify apps with up to
96% accuracy in the best case, and up to 73% accuracy in
the worst case. These results suggest that app fingerprinting
and identification is indeed feasible in the real-world. App
fingerprinting unlocks a variety of new challenges as it relates
to user security and privacy. By continuing research in this
area, we aim to better understand these challenges, so that
appropriate responses can be engineered to keep users safe
now and into the future.

REFERENCES

[1] Gartner. (2015, March) Gartner says smartphone sales surpassed one
billion units in 2014. [Online]. Available: http://www.gartner.com/
newsroom/id/2996817

[2] Flurry. (2015, January) Shopping, productivity and messaging
give mobile another stunning growth year. [Online]. Available:
http://www.flurry.com/blog/flurry-insights/shopping-productivity-and-
messaging-give-mobile-another-stunning-growth-year#.VT-U35OJiHs

[3] Nielson. (2015, June) So Many Apps, So Much More Time for En-
tertainment. [Online]. Available: http://www.nielsen.com/us/en/insights/
news/2015/so-many-apps-so-much-more-time-for-entertainment.html

[4] Alex Hern. (2015, August) Smartphone now most pop-
ular way to browse internet Ofcom report. [On-
line]. Available: http://www.theguardian.com/technology/2015/aug/06/
smartphones-most-popular-way-to-browse-internet-ofcom

[5] Sophie Curtis. (2014, November) Smartphone traf-
fic ’to increase eightfold by 2020’. [Online]. Avail-
able: http://www.telegraph.co.uk/technology/mobile-phones/11240359/
Smartphone-traffic-to-increase-eightfold-by-2020.html

[6] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Predict-
ing user traits from a snapshot of apps installed on a smartphone,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 18,
no. 2, pp. 1–8, 2014.

[7] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[8] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner:
Automatic Fingerprinting of Smartphone Apps from Encrypted Network
Traffic,” in IEEE European Symposium on Security and Privacy (Euro
S&P), March 2016, pp. 439–454.

[9] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy
Enhancing Technologies. Springer, 2003, pp. 171–178.

[10] H.-S. Ham and M.-J. Choi, “Applicaion-level traffic analysis of smart-
phone users using embedded agents,” in Network Operations and
Management Symposium (APNOMS), 2012 14th Asia-Pacific, Sept 2012,
pp. 1–4.

[11] J. Yang, S. Zhang, X. Zhang, J. Liu, and G. Cheng, “Analysis of smart-
phone traffic with mapreduce,” in Wireless and Optical Communication
Conference (WOCC), 2013 22nd, May 2013, pp. 394–398.

[12] S.-W. Lee, J.-S. Park, H.-S. Lee, and M.-S. Kim, “A study on smart-
phone traffic analysis,” in Network Operations and Management Sym-
posium (APNOMS), 2011 13th Asia-Pacific, Sept 2011, pp. 1–7.

[13] S. Feghhi and D. J. Leith, “A Web Traffic Analysis Attack Using Only
Timing Information,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1747–1759, 2016. [Online]. Available:
http://dx.doi.org/10.1109/TIFS.2016.2551203

[14] H. Bacic. (2015, March) Are You Using A Content Delivery
Network For Your Website Yet? You Should Be. [Online].
Available: http://www.forbes.com/sites/allbusiness/2015/03/16/are-you-
using-a-content-delivery-network-for-your-website-yet-you-should-be/

[15] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues,
and open problems,” in Designing Privacy Enhancing Technologies.
Springer, 2001.

[16] M. Liberatore and B. N. Levine, “Inferring the Source of Encrypted
HTTP Connections,” in Proceedings of ACM CCS, 2006.

[17] D. Herrmann, R. Wendolsky, and H. Federrath, “Website Fingerprinting:
Attacking Popular Privacy Enhancing Technologies with the Multino-
mial Naive-bayes Classifier,” in Proceedings of ACM CCSW, 2009.

[18] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of ACM WPES, 2011.

[19] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 605–616.

[20] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“NetworkProfiler: Towards automatic fingerprinting of Android
apps,” 2013 Proceedings IEEE INFOCOM, pp. 809–817, Apr.
2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6566868

[21] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync
you are?” in Proceedings of the sixth ACM conference on Security and
privacy in wireless and mobile networks - WiSec ’13. New York,
New York, USA: ACM Press, Apr. 2013, p. 7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2462096.2462099

[22] Q. Wang, A. Yahyavi, M. Kemme, and W. He, “I Know What You
Did On Your Smartphone: Inferring App Usage Over Encrypted Data
Traffic,” in 2015 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2015.

[23] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you hear
me knocking: Identification of user actions on android apps via traffic
analysis,” ACM CODASPY, 2015.

[24] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang,
X. Zhang, D. Xu, and J. Qian, “Eavesdropping on Fine-
Grained User Activities Within Smartphone Apps Over Encrypted
Network Traffic,” in 10th USENIX Workshop on Offensive
Technologies (WOOT 16). Austin, TX: USENIX Association, Aug.
2016. [Online]. Available: https://www.usenix.org/conference/woot16/
workshop-program/presentation/saltaformaggio

[25] Pragmatic Software, “Network Log,” April 2014.
[Online]. Available: https://play.google.com/store/apps/details?id=
com.googlecode.networklog

http://www.gartner.com/newsroom/id/2996817
http://www.gartner.com/newsroom/id/2996817
http://www.flurry.com/blog/flurry-insights/shopping-productivity-and-messaging-give-mobile-another-stunning-growth-year#.VT-U35OJiHs
http://www.flurry.com/blog/flurry-insights/shopping-productivity-and-messaging-give-mobile-another-stunning-growth-year#.VT-U35OJiHs
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom
http://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom
http://www.telegraph.co.uk/technology/mobile-phones/11240359/Smartphone-traffic-to-increase-eightfold-by-2020.html
http://www.telegraph.co.uk/technology/mobile-phones/11240359/Smartphone-traffic-to-increase-eightfold-by-2020.html
http://dx.doi.org/10.1109/TIFS.2016.2551203
http://www.forbes.com/sites/allbusiness/2015/03/16/are-you-using-a-content-delivery-network-for-your-website-yet-you-should-be/
http://www.forbes.com/sites/allbusiness/2015/03/16/are-you-using-a-content-delivery-network-for-your-website-yet-you-should-be/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6566868
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6566868
http://dl.acm.org/citation.cfm?id=2462096.2462099
https://www.usenix.org/conference/woot16/workshop-program/presentation/saltaformaggio
https://www.usenix.org/conference/woot16/workshop-program/presentation/saltaformaggio
https://play.google.com/store/apps/details?id=com.googlecode.networklog
https://play.google.com/store/apps/details?id=com.googlecode.networklog

13

[26] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp. 281–
287.

[27] W. McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 – 56.

[28] A. MacHiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 224–234.

[29] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[30] V. F. Taylor and I. Martinovic, “To Update or Not to Update:
Insights From a Two-Year Study of Android App Evolution,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 45–57. [Online]. Available:
http://doi.acm.org/10.1145/3052973.3052990

http://doi.acm.org/10.1145/3052973.3052990

	I Introduction
	II Related Work
	II-A Traditional Traffic Analysis on Workstations
	II-B Traffic Analysis on Smartphones

	III System Overview
	III-A Equipment Setup
	III-B Fingerprint Making
	III-C App Identification

	IV Ambiguity Detection
	V Dataset Collection
	V-A Dataset Collection

	VI Evaluation
	VI-A Effect of Time
	VI-B Effect of a Different Device
	VI-C Effect of Different App Versions
	VI-D Effect of a Different Device and Different App Versions

	VII Improving Accuracy
	VII-A Ambiguity Detection
	VII-B Classification Validation

	VIII Discussion
	IX Conclusion
	References

