
DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification

Shu Zhang Ran He Tieniu Tan
National Laboratory of Pattern Recognition, CASIA

Center for Research on Intelligent Perception and Computing, CASIA
{shu.zhang,rhe,tnt}@nlpr.ia.ac.cn

Abstract

MeshFace photos have been widely used in many Chi-
nese business organizations to protect ID face photos from
being misused. The occlusions incurred by random meshes
severely degenerate the performance of face verification
systems, which raises the MeshFace verification problem
between MeshFace and daily photos. Previous methods
cast this problem as a typical low-level vision problem, i.e.
blind inpainting. They recover perceptually pleasing clear
ID photos from MeshFaces by enforcing pixel level similar-
ity between the recovered ID images and the ground-truth
clear ID images and then perform face verification on them.

Essentially, face verification is conducted on a compact
feature space rather than the image pixel space. Therefore,
this paper argues that pixel level similarity and feature level
similarity jointly offer the key to improve the verification
performance. Based on this insight, we offer a novel feature
oriented blind face inpainting framework. Specifically, we
implement this by establishing a novel DeMeshNet, which
consists of three parts. The first part addresses blind in-
painting of the MeshFaces by implicitly exploiting extra su-
pervision from the occlusion position to enforce pixel level
similarity. The second part explicitly enforces a feature
level similarity in the compact feature space, which can
explore informative supervision from the feature space to
produce better inpainting results for verification. The last
part copes with face alignment within the net via a cus-
tomized spatial transformer module when extracting deep
facial features. All the three parts are implemented within
an end-to-end network that facilitates efficient optimization.
Extensive experiments on two MeshFace datasets demon-
strate the effectiveness of the proposed DeMeshNet as well
as the insight of this paper.

1. Introduction
Benefitting from recent advancements in deep repre-

sentation learning, there have been remarkable improve-
ments in deep face recognition (verification in particu-

Figure 1. MeshFaces (first row) refer to the ID photos corrupted
by randomly generated mesh-like lines or watermarks. The cor-
ruptions significantly degenerate the performance of facial land-
mark detection and facial feature extraction, thus leading to poor
verification accuracy.

lar) [28, 29, 31]. In real life applications, face verification
between ID photos and daily photos (FVBID) [37] is gain-
ing traction because it uses a face image from an ID photo
as gallery and thus does not require the probe to be registred
in advance.

When FVBID is applied to real-world scenarios, such as
automated custom control and VIP recognition in commer-
cial banks, the ID photo in an identity card may potentially
be misused or illegally distributed. Therefore, ID photos
are often deliberately corrupted by mesh-like lines or wa-
termarks for privacy protection when used by some busi-
ness organizations, e.g. banks and hotels. For convenience,
we denote this type of corrupted ID photo as MeshFace. As
shown in Fig. 1, MeshFaces incur catastrophic influence to
face recognition systems [2, 13]. Directly verifying Mesh-
Faces against daily photos leads to very poor accuracy [36].
Therefore, these corruptions raise a novel and challenging
problem called MeshFace verification which deals with face
verification between MeshFaces and daily photos.

Some efforts have been made to address this challeng-
ing problem. Zhang et al. [36] propose a multi-task resid-
ual learning CNN for this problem. They propose to learn
a non-linear transformation with SRCNN [7] based archi-
tecture to recover clear ID photos from MeshFaces. Then,
the recovered clear ID photos are used for face verifica-
tion. They treat the recovery of clear ID photos from Mesh-
Faces as blind face inpainting because the position of cor-
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Figure 2. Recovered ID with higher PSNR may be further away
from the ground-truth clear ID in the compact deep feature space.
For instance, the green and yellow sample. Best viewed in color.

ruptions is unknown during testing phase. In a related vein
of research, many contemporary works [22, 25, 26, 34]
have shown that CNN is very effective in solving hole fill-
ing (non-blind inpainting) problems [4] because this data-
driven learning method can exploit the structure of natural
images to predict occluded parts.

Improved verification performance is observed after
blind face inpainting in [36] because using an occlusion free
image will greatly improve the accuracy of face detection
and alignment. However, in their work, the performance
gap between using their inpainted ID and the clear ID is
still very large. On one hand, this is because SRCNN is
less powerful in modeling corruption distributions and re-
covering the exact image content. As a result, the difference
in image content between the recovered ID photos and the
ground-truth clear ID photos are too large (as illustrated by
the red and the purple sample in Fig.2).

On the other hand, existing works often assume that us-
ing recovered ID photos with higher PSNR are more likely
to achieve better verification performance [36]. But in
fact, face similarity is compared in a compact feature space
rather the image pixel space. Moreover, it has been shown
that CNN can be potentially ‘fooled’ by adding even a tiny
amount of noise to the original input [9, 23, 30]. That is,
when facial features are extracted by a CNN, two percep-
tually indistinguishable face images (e.g. the ground-truth
clear ID and its recovered version) may still have very large
feature level differences (as shown by the green and yellow
sample in Fig.2). It is a common belief that a large intra-
class feature distance will generally deteriorate face verifi-
cation performance. Therefore, this suggests that treating
blind face inpainting as a typical low-level vision problem
by only enforcing the pixel level similarity can hardly guar-
antee an improvement in verification performance.

To address the aforementioned problems, we present
DeMeshNet to take verification performance into account
when dealing with the blind face inpainting problem.
DeMeshNet is trained on a large scale dataset of Mesh-

Face/clear ID photo pairs to learn a non-linear transforma-
tion to recover clear ID photos from MeshFaces. Note that
DeMeshNet aims to improve the MeshFace verification per-
formance rather than simply to recover perceptually pleas-
ing clear ID photos. Therefore, we refer to DeMeshNet
as a feature oriented blind face inpainting framework. We
briefly introduce each part of the DeMeshNet and our con-
tributions in the following paragraphs.

In the first part, we enforce the pixel level similarity to
explore the structure of face images so as to recover un-
corrupted ID photos from MeshFaces. Specifically, we pro-
pose to adopt a fully convolutional network (FCN) [21] with
a weighted Euclidean loss to minimize the pixel differences
of the ground-truth clear ID/recovered ID photo pairs. Extra
supervision from corruption positions is further exploited to
accurately model the corruption distribution.

In the second part, we enforce a feature level similarity
between the ground-truth clear ID photo and the recovered
ID photo pairs in a compact deep feature space. This fea-
ture space is spanned by a pre-trained CNN, and distance in
it directly corresponds to a measure of face similarity. This
part will force the inpainted image to have a smaller dis-
tance to the ground-truth clear ID in the deep feature space,
which will in turn facilitate accurate verification. Moreover,
we propose to measure the feature level similarity with the
reverse Huber loss function so that the feature level similar-
ity can be more efficiently optimized when the differences
are very small.

In the third part, we employ a customized spatial trans-
former module [15] to align and crop the face region for ac-
curate feature extraction within the network. It is essential
to take alignment into account because the MeshFace which
is the input of DeMeshNet and the aligned face which is the
input of the feature extraction sub-net are different in sizes,
scales and orientations (as shown in Fig. 3).

All the three parts are implemented within an end-to-end
network that facilitates efficient optimization with gradient
back propagation. Extensive experimental results on two
MeshFace datasets demonstrate that DeMeshNet achieves
the best verification accuracy and outperforms previous
work by a large margin. Furthermore, we thoroughly eval-
uate different configurations of DeMeshNet to gain insight
into the factors for such significant improvements.

2. Approach

2.1. Overview

In this section, we present an overview of the proposed
DeMeshNet. We cast the proposed feature oriented blind
face inpainting problem as a dense regression problem,
which aims to regress a perceptually pleasing and verifi-
cation favorable clear ID photo from a MeshFace X . For
convenience, we refer to the ground-truth clear ID photo as



Figure 3. Conceptual diagram of DeMeshNet. Black solid lines stand for the training phase and red solid lines represent the testing phase.
Note that the corruption mask and clear ID are only used in the training phase to provide ground-truth for the pixel and feature level loss.
Feature extraction model is pre-trained and has fixed parameters during training. In the testing phase, DeMeshNet takes a MeshFace as
input and produce an inpainted photo with the learned deep FCN.

the target, termed as Y and the recovered ID photo from
our blind face inpainting model ψ as the prediction, termed
as ψ(X). The prediction will be used for face verification
against clear daily photos.

We model the highly non-linear function for dense re-
gression as a FCN as illustrated in part A of Fig. 3. Part
B shows the customized spatial transformer module. The
following part is a pre-trained CNN which is utilized to
compute the feature representation of the aligned face re-
gion. It should be noted that parameters in both the spa-
tial transformer module and the pre-trained CNN are fixed
during training. The learnable parameters in the FCN are
optimized through minimizing a unified loss function that
jointly models the pixel and feature level similarities be-
tween the prediction and the target pairs. No identity infor-
mation is needed to train such a blind inpainting network.

The pixel level loss helps to obtain perceptually pleasing
inpainting results and serves as a means to capture the distri-
bution difference between actual face texture and mesh-like
corruptions. And the feature level loss explores supervision
in a compact feature space to provide regularizations to the
network training. Thus, the network’s prediction will not
only have similar appearance but also have similar feature
representation to that of the target. Specifically, we develop
a weighted Euclidean loss to model the pixel level similar-
ity and employ a reverse Huber function [18] to characterize
the feature level loss on the spatial transformed face region.
Combining the pixel level loss and the spatial transformed
feature level loss, we define the unified loss function for
DeMeshNet as follows:

Li = lpixel + lfeature =

||ψ(Xi)− Yi||2F + λ1||Mi � (ψ(Xi)− Yi)||2F+

λ2

2∑
j=1

RH(φj(ψ(ST (Xi)))− φj(ST (Yi)) )
(1)

where ST denotes the spatial transformation implementa-
tion that samples an aligned 128 × 128 face region from
the original input solely based on the positions of facial s,
RH is the reverse Huber function, λ1 and λ2 are the bal-
ance parameters which are empirically set to 1 throughout
the paper. We postpone explanations of other symbols to
later sections when we meet them.

For simplicity, we omit the regularization term on the
parameters of FCN (weight decay) in Equation 1, which
is used to reduce overfitting when optimizing our network.
The objective function can be efficiently optimized by gra-
dient back propagation in an end-to-end manner. We will
elaborate each of the three parts in the following subsec-
tions.

2.2. Pixel Level Regression Network

2.2.1 Pixel Level Loss

Blind face inpainting is naturally characterized as a pixel-
wise regression problem. In the first part of DeMeshNet,
it learns a highly non-linear transformation by optimizing a
well-designed pixel level loss. For blind face inpainting, al-
though positions of the corruption are not provided during
the testing phase, we can still make use of this informa-
tion when training DeMeshNet. Specifically, we propose
to implicitly exploit this extra supervision by introducing a
weighted Euclidean loss function as below:

lpixel = ||ψ(Xi)− Yi||2F + λ||Mi � (ψ(Xi)− Yi)||2F (2)

where Xi, Yi and ψ(Xi) are a corrupted input, target
and prediction, respectively. Mi is the binary mask with
a value of 1 indicating the pixel is corrupted and a value
of 0 otherwise. � is the element-wise product operation.
Therefore, the second term in the loss function only mea-
sures the Euclidean loss on corrupted areas, emphasizing



losses on those areas with a weighting parameter λ. This
loss function helps the network to learn the distributions of
corrupted pixels better by exploiting extra supervision from
the corruption positions. Experimental results demonstrate
that it also helps to generate predictions with higher PSNR.

2.2.2 Network Architecture

Since FCN has achieved outstanding performance in dense
prediction tasks like depth prediction [8] and semantic seg-
mentation [21], it motivates us to use FCN as the non-linear
function to improve the blind face inpainting performance.

The main difference between FCN and the architec-
ture in [36] is the introduction of down-sampling and up-
sampling layers in FCN. This simple adjustment has en-
abled FCN to admit much deeper layers and to expand
the receptive fields with the same amount of computational
cost. The expanded receptive fields are critical to blind in-
painting as it can enclose more contextual information for
identifying the corrupted areas.

In this work, we use the network architecture of SegNet
as proposed in [1]. It is feasible to adopt other architectures
such as ResidualNet [12] and Deconvolution Network [24],
but this is beyond the scope of this paper. The input and
output to the network are MeshFaces and clear ID photos
respectively. Gray scale images of size 220 × 178 are used
for input and output throughout the paper.

2.3. Feature Level Regression Network

2.3.1 Feature Level Loss

As aforementioned in Section 1, images with very small Eu-
clidean distance may have large feature distance. This prob-
lem is raised in [30] and has been shown to severely dete-
riorate classification performance because of the enlarged
intra-class feature distance. In fact, the enlarged intra-class
feature distance can also influence the verification task at
hand. To improve the verification performance, it won’t be
enough to only enforce pixel level similarity. Therefore, in
the second part, we explicitly enforce the target and the pre-
diction to have a small distance in the compact feature space
computed by the pre-trained CNN φ.

Let φj(ψ(Xi)) be the activations of the jth layer of
the pre-trained face model φ. We intend to improve the
verification performance by minimizing the residual r =
φ(ψ(xi))− φ(yi) at each position of an image. To effi-
ciently back-propagate the errors when the residual is very
small, we employ the reverse Huber loss function [18] to
measure the feature level difference, its formulation is:

RH(r) =

{
|r| |r| > c
r2+c2

2c |r| ≤ c (3)

The reverse Huber loss is equivalent to L1 norm when
the residual r is in the interval of [−c, c] and equals to a

Figure 4. Schematic architecture for face feature extraction. It uses
Max-Feature-Map nonlinearities instead of ReLU.

transformed L2 norm otherwise. This loss experimentally
works better than L2 norm. Note that when c is smaller than
1, the derivative of the L1 norm is greater than that of the
L2 norm, which will speed up error back-propagation when
the residual is very tiny. Like in [18], we use a dynamic
threshold for c. That is, in each batch-minimization step, c
is set to be at 20% of maximum residual in that batch.

Since our objective is to improve verification perfor-
mance, we impose the reverse Huber loss on the output
of eltwise 6 in the pre-trained model φ, which is a 256-
dim feature vector used for similarity comparison. Draw-
ing inspirations from [17], where feature loss is used for
super-resolution, we also impose the reverse Huber loss on
the early layers (conv2 in our case) of the pre-trained face
model φ to include deeper supervision [20]. Therefore, our
final loss function for feature level regression is:

lfeature =

2∑
j=1

RH(φj(ψ(Xi))− φj(Yi) ) (4)

Feature loss has recently been considered in the litera-
ture of super-resolution and sketch inversion for better vi-
sual performance [10, 17, 19]. But it should be noted that
in this paper, the feature level loss is proposed from a to-
tally different perspective. Instead of pursing a perceptually
pleasing image transformation results, we want to deal with
the large intra-class feature distance problem and improve
verification performance.

2.3.2 Pre-trained CNN for Face Feature Extraction

Both training DeMeshNet and evaluate the verification per-
formance need a pre-trained CNN to compute the facial fea-
tures for face images. We use the architecture proposed
in [33] for facial feature extraction because it is computa-
tionally efficient in both time and space. Fig. 4 briefly illus-
trates its architecture, which uses Max-Feature-Map nonlin-
earities instead of ReLU and thus can generate dense fea-
tures at its output. The network takes aligned gray-scale
face images of size 128 × 128 as input and returns a 256-
dim feature (output of eltwise 6). Alignment is conducted
by transforming two facial landmarks (i.e., centers of two
eyes) to (32, 32) and (96, 32) with a similarity transforma-
tion.



Figure 5. The customized spatial transformer module used in our
model. It uses the locations of facial landmarks to calculate a
transformation matrix for face alignment.

We train a base model on the purified MS-Celeb-1M
dataset [11] (the original data is very noisy, we purify them
before use). One single base model achieves a verification
accuracy of 98.80% on the LFW [14] benchmark, which is
very competitive among already published works [6, 32].
We further finetune the base model with triple-let loss on a
large-scale ID-daily photo dataset collected from the web
and use the finetuned model φ to extract compact facial
features in DeMeshNet. Note that this model’s parameters
should stay fixed during the training of DeMeshNet because
we only use it for feature computation and no identity re-
lated supervision is adopted to finetune φ while learning the
blind inpainting FCN.

2.4. Spatial Transformer For Face Alignment

Face alignment is essential for feature extraction. It helps
to improve verification performance by providing a normal-
ized input. The pre-trained model φ admits 128 × 128
aligned face region to compute the 256-dim feature. But
DeMeshNet takes 220× 178 un-aligned MeshFace as input
and outputs a prediction with the same size. Therefore, in
order to compute the 256-dim feature in the fully connected
layer eltwise 6, we must implement face alignment within
the network.

Moreover, unlike the image classification models that
are trained with multi-scale natural images from Ima-
geNet [27], the pre-trained facial feature extraction model φ
only takes single-scale, well-aligned face regions for train-
ing. This means that even we only compute the features
from conv layers like in [10, 17, 19], we will still need to
align the MeshFaces first to acquire an accurate feature rep-
resentation.

We incorporate a customized spatial transformer mod-
ule [15] between the pixel level regression sub-net and
the feature level regression sub-net to sample an aligned
128×128 face region from the 220×178 prediction accord-
ing to the facial landmarks. This procedure is illustrated in
Fig. 3 and detailed in Fig. 5.

The spatial transformer module comprises of a localiza-
tion network, a grid generator and a sampler. Since the sim-
ilarity transformation τθ for face alignment is uniquely de-
termined by the coordinates of two eye centers, we do not

need to learn it through the localization network as in [15].
τθ is parameterized by θ = [a, b, 1;−b, a, 1] and can be de-
termined with the following equation: xl xr

yl yr
1 1

 =

[
a b 1
−b a 1

] −0.5 0.5
−0.5 −0.5
1 1

 (5)

where (xl, yl), (xr, yl) and (−0.5,−0.5), (0.5,−0.5) are
the normalized coordinates (normalized to [−1, 1]) of two
eye centers in the original image and the aligned face image
respectively.

In the forward pass, a sampling grid is firstly determined
with the given τθ. A sampling grid is a set of points with
continuous coordinates. Sampling an input image according
to this sampling grid will generate a transformed output. By
defining the output pixels to lie on a regular grid G = Gi of
pixels Gi = (xti, y

t
i), the sampling grid τθ(G) is given by

the point-wise transformation:(
xsi
ysi

)
= τθ(G) =

[
a b 1
−b a 1

](
xti
yti

)
(6)

where (xsi , y
s
i ) are the source coordinates in the input fea-

ture map, and (xti, y
t
i) are the target coordinates of the reg-

ular grid. Since the coordinates in the sampling grid are
continuous numbers, a bilinear kernel is applied to those
positions to produce the corresponding pixel values in the
output:

Q = max(0, 1− |xsi −m|)max(0, 1− |ysi − n|) (7)

P(xt
i,y

t
i)
=

H∑
n

W∑
m

P(xs
n,y

s
m)Q (8)

where H and W are the height and width of the input im-
age respectively and P(xt

i,y
t
i)

represents the pixel value of
(xti, y

t
i). To allow the feature loss defined in the last sub-

section to be back-propagated from the output of the spatial
transformer module to the input image, we give the gradi-
ents with respect to the input image as follows:

∂(P (xti, y
t
i))

∂(P (xsm, y
s
n))

=

H∑
n

W∑
m

Q (9)

The gradients of the feature loss defined earlier can be
easily flowed back to the input image using chain rule with
Equation 9. Note that the gradients with respect to the sam-
pling grid coordinates (xsi , y

s
i ) are not derived, because the

transformation parameters are not learned in the customized
spatial transformer module.

3. Experiments
In this section, we experimentally evaluate the proposed

framework. We begin by introducing the datasets for train-
ing and testing. Then we specify the baseline methods and



Figure 6. An image triplet sample from the training dataset [36].

Figure 7. Sample image pairs from SV1000. Note that this dataset
is very hard as the variations in illumination, pose and hair style
are very significant.

implementation details. At last, we present detailed algo-
rithmic evaluation, as well as comparison with other meth-
ods.

3.1. Datasets

All the compared models are trained on the dataset as
in [36] that contains over 500, 000 data triplets of 11, 648
individuals. Each data triplet consists of a MeshFace, its
clear version and a corruption mask (as illustrated in Fig. 6).
Facial landmarks (two eye centers) are detected using In-
traface [35] to aid the spatial transformer module. Data
triplets of 400 individuals are sampled for validation and
testing (200 each) and all the other individuals are used for
training.

Besides the SYN500 used in [36], we collect another
dataset with 1000 MeshFace/daily photo pairs from 1000
individuals named SV1000 to evaluate the MeshFace veri-
fication performance. Daily photos in SV1000 are captured
under surveillance cameras. As shown in Fig. 7, this dataset
not only contains more individuals but also presents more
variations in the daily photo, which makes it more challeng-
ing than SYN500 (shown in Fig. 8).

We develop a protocol for evaluation of verification per-
formance on these two datasets. Specifically, face compar-
ison is conducted between all the possible recovered clear
ID/daily photo pairs in the compact feature space (spanned
by model φ) with cosine distance. For a dataset with N
data pairs, N2 comparisons are conducted in total. To ex-
clude influences from metric learning methods, no super-
vised learning methods, e.g. joint bayesian [3], are em-
ployed on the extracted features.

3.2. Baselines and Implementation Details

Although many algorithms have been proposed for non-
blind inpainting, few have been developed to address the
blind inpainting problem, even less for the blind face in-
painting problem addressed in this paper. We implement the
multi-task CNN (MtNet) [36] as a baseline. This method
employs architecture that resembles the SRCNN [7] and use

Figure 8. Sample image pairs from SYN500. Images of some Chi-
nese celebrities are collected from the Internet.

multi-task learning to make use of the information of cor-
ruption position in the training phase.

To give a detailed evaluation of each part of the proposed
DeMeshNet, we also compare it with various configura-
tions. The compared configurations include FCN with Eu-
clidean pixel level loss (FCNE), FCN with weighted pixel
level loss (FCNW) and feature loss FCN without spatial
transformer module (FCNF). All three configurations use
FCN as the backbone for the blind face inpainting task.
Both FCNE and FCNW only adopts the pixel level loss dur-
ing training, but FCNW introduces an implicit supervision
from the corruption mask with a weighted loss in addition
to the Euclidean loss. FCNF takes both weighted pixel loss
and whole-image feature level loss into consideration. But
the feature level differences are only computed at the output
of conv2, using whole-image as input to the pre-trained fea-
ture extraction network φ. Like in [17], we don’t implement
face alignment within the network.

All the compared models are trained on the training set
with photo pairs of size 220 × 178, gray scale images are
used in all the experiments. For all the compared network
structure, training is carried out using Adam [5] with a batch
size of 30. The learning rate is set to 10−4 initially, and de-
creased by a factor of 10 each 40k iterations. The training
process takes approximately 160k iterations to converge.
For the proposed approach, feature level loss is computed
at layer conv2 and eltwise 6 of the pre-trained face model
φ. For FCNF, only conv2 is used for computing the feature
loss as the computation of fc layer eltwise 6 requires the
input to be of size 128×128. All the MeshFace verification
experiments use the pre-trained face model φ for facial fea-
ture extraction. All the experiments are conducted with the
Caffe framework [16] on a single GTX Titan X GPU.

3.3. Evaluation of Verification Results

In this section, we conduct MeshFace verification exper-
iments on two datasets, i.e., SYN500 and SV1000. Re-
covered ID photos are used for FVBID according to the
aforementioned protocol. We report ROC curves in Fig. 9.
TPR@FPR=1% (true positive rate when false positive rate
is %1), TPR@FPR=0.1% and TPR@FPR=0.01% are re-
ported in Table 1 for closer inspection. We also present the
face verification performances with ground-truth clear ID
photos and MeshFaces (denoted as Clear and Corrupted)
for fair comparison.

As expected, when using the MeshFaces for verification,



Table 1. Verification performance on SYN500/SV1000 and inpainting results on the testing set. RMSE illustrates the feature distance
between the recovered ID photos and the ground-truth clear ID photos, while PSNR indicates the pixel distance. Note that smaller RMSE
consistently indicates better verification performance, but higher PSNR doesn’t guarantee that.

Method TPR@FPR=1% TPR@FPR=0.1% TPR@FPR=0.01% PSNR RMSE
MtNet 83.60% / 78.80% 62.80% / 57.50% 36.80% / 35.40% 29.89 55.47
Clear 98.80% / 88.10% 89.40% / 74.30% 67.40% / 53.60% - 0

Corrupted 47.40% / 43.20% 33.80% / 28.50% 18.40% / 18.20% 20.69 112.63
FCNE 95.20% / 83.20% 79.80% / 63.90% 53.80% / 43.00% 35.11 49.52
FCNW 95.40% / 85.70% 78.40% / 64.90% 52.80% / 44.40% 35.31 48.22
FCNF 95.20% / 85.80% 82.80% / 66.40% 54.40% / 46.30% 25.26 38.19

DeMeshNet E 96.60% / 86.30% 83.90% / 70.00% 54.80% / 46.50% 29.28 35.77
DeMeshNet 97.40% / 86.70% 84.80% / 70.70% 55.20% / 47.00% 29.16 34.57

Figure 9. ROC curves for SYN500 and SV1000.

the accuracy suffers a severe drop on both datasets due to
large detection and alignment errors. After processing the
MeshFace with blind face inpainting models, face verifica-
tion performance with the recovered ID photos has seen a
great improvement. Owning to the deeper FCN architec-
ture and expanded receptive fields, all the FCN based mod-
els outperform the baseline model MtNet [36] by a large
margin on both datasets.

As shown in Fig. 9, feature loss based models (DeMesh-
Net, FCNF) perform better than the models that only seek a
visually pleasing inpainting results (FCNE, FCNW). This
suggests that by enforcing a feature level similarity dur-
ing training, predictions from DeMeshNet lie in a low-
dimensional feature space that is closer to the ground-truth
clear ID photos than predictions from pixel-level only net-
works. This is validated in the next section where we cal-
culate the RMSE (rooted mean square error) between the
features of ground-truth clear IDs and recovered IDs.

We further investigate the role of the spatial transformer
module in our model by comparing DeMeshNet with FCNF
which uses the image of original size (220 × 178) as input
to the feature loss component. We find that DeMeshNet
consistently performs better than FCNF. This is because
FCNF takes the whole image, which is different from the
aligned face region in both scale and orientation, for fea-

ture extraction. Unlike the ImageNet [27] models that are
trained with multi-scale natural images, the pre-trained face
model φ only takes single-scale, well-aligned face regions
for training. The scale and orientation differences have led
to the performance degeneration. Therefore, it is signifi-
cant to take face alignment into account when optimizing
the feature level loss as done in DeMeshNet.

It should be noted that for blind inpainting models, there
is an upper limit for their verification performance, which
is the verification performance with ground-truth clear ID
photos. From Table 1, we can observe that the gap between
DeMeshNet and clear ID at TPR@FPR=1% is very small
(1.4% for both datasets), validating the outstanding perfor-
mance of DeMeshNet.

3.4. Evaluation of Inpainting Results

In this section, we qualitatively and quantitatively eval-
uate the inpainting results on the testing set (200 individ-
uals, 10000 photos). Firstly, we qualitatively evaluate the
compared models by visual inspection of the inpainting re-
sults in Fig. 10. It is observed that MtNet fails to identify
and recover some portions of the corruptions in these cases
(cherry-picked to illustrate the point). In contrast, FCN
based models can handle all the corruption areas very well
because they can enclose more contextual information with
expanded receptive fields. This demonstrates the improved
capacity of FCN over SRCNN based architectures.

Regarding the details of the recovered ID photo, the
models trained with only pixel level loss (FCNE, FCNW,
MtNet) can better preserve the consistency of pixels and
thus provide a smooth and clear photo which is more similar
to the ground-truth. But the images recovered with models
trained on feature level loss (FCNF in particular) contain
many artifacts, making them visually less appealing. This
is because the high-level features are robust to pixel level
changes in the texture, shape and even color. However, im-
ages recovered from DeMeshNet looks much better than the
ones from FCNF due to the introduction of the spatial trans-
former module within DeMeshNet.

Next, we quantitatively evaluate the models by measur-



Figure 10. Visual inspection of the inpainting results. Although these inpainting results all look very well and are quite similar, they will
lead to entirely different verification rates because of the different RMSE in the feature space.

ing both pixel level and feature level (eltwise 6) differ-
ence. The ground-truth clear ID photo is used as a base-
line. Specifically, average PSNR and Euclidean distance
between features (or rooted mean square error, RMSE) are
shown in Table 1. Pixel level loss based models yield better
PSNR as they explicitly optimize PSNR in their loss func-
tion. We also observe that FCNW performs slightly better
than FCNF. This implies that exploiting extra supervision
from the corruption position in the training phase is benefi-
cial for acquiring visually pleasing inpainting results.

To validate the choice of the reverse Huber loss over the
Euclidean loss on the feature level difference, we also im-
plement a DeMeshNet E that use Euclidean loss for the fea-
ture level loss. From Table 1, we can see that RMSE for
DeMeshNet E is slightly larger than DeMeshNet. This in-
dicates that the reverse Huber loss is more effective at min-
imizing the feature level distance thanks to the imposed L1
norm when residuals are small.

Furthermore, from Table 1 we observe that smaller
RMSE often means better verification performance, but
higher PSNR doesn’t guarantee smaller RMSE. This re-
veals that the models trained with only pixel level loss
does suffer from the influence of the easily fooled nature of
CNN [9, 23, 30]. Moreover, visually appealing inpainting
results does not necessarily produce better verification re-

sults. By exploring supervision from the deep feature space,
DeMeshNet can capture a distribution that is more robust to
transformation in φ and thus provide a stable high-level rep-
resentation in the compact deep feature space.

4. Conclusions
This paper addresses the MeshFace verification problem

that verifies corrupted ID photos against clear daily photos.
Specifically, we have proposed DeMeshNet that consists of
three parts to blindly inpaint the MeshFace before conduct-
ing verification.The proposed DeMeshNet distinguishes it-
self from previous works by explicitly taking verification
performance into consideration while recovering a clear ID
photo. The training objective of DeMeshNet is motivated
by the fact that minimizing pixel level differences alone
cannot guarantee a small intra-class feature distance in the
compact deep feature space, which is crucial for accurate
face verification. By further incorporating a spatial trans-
former module, DeMeshNet can implement face alignment
within the network, resulting in an end-to-end network. For
optimizing DeMeshNet, a very well-performed facial fea-
ture extraction network has been trained in advance. Ex-
perimental results on two MeshFace datasets demonstrate
that the proposed DeMeshNet outperforms previous work
on verification performance.
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