arXiv:1711.07520v1 [cs.CV] 20 Nov 2017

Dropping Activation Outputs with Localized First-layer Deep
Network for Enhancing User Privacy and Data Security

Hao Dong, Chao Wu, Zhen Wei, Yike Guo
Department of Computing, Imperial College London
{hao.dongl1, chao.wu, zhen.weil 1, y.guo}@imperial.ac.uk

Abstract—Deep learning methods can play a crucial role in
anomaly detection, prediction, and supporting decision making
for applications like personal health-care, pervasive body sensing,
etc. However, current architecture of deep networks suffers the
privacy issue that users need to give out their data to the
model (typically hosted in a server or a cluster on Cloud) for
training or prediction. This problem is getting more severe for
those sensitive health-care or medical data (e.g fMRI or body
sensors measures like EEG signals). In addition to this, there
is also a security risk of leaking these data during the data
transmission from user to the model (especially when it’s through
Internet). Targeting at these issues, in this paper we proposed a
new architecture for deep network in which users don’t reveal
their original data to the model. In our method, feed-forward
propagation and data encryption are combined into one process:
we migrate the first layer of deep network to users’ local devices,
and apply the activation functions locally, and then use ‘“dropping
activation output” method to make the output non-invertible.
The resulting approach is able to make model prediction without
accessing users’ sensitive raw data. Experiment conducted in this
paper showed that our approach achieves the desirable privacy
protection requirement, and demonstrated several advantages
over the traditional approach with encryption / decryption.

1. INTRODUCTION

Deep learning, also known as deep neural networks [1], has
been proved to be successful for classification and regression
tasks. Once well established, deep learning models exhibited
promising performance, which is desired by many real-time
prediction / decision-making applications [2], like automatic
speech recognition, image recognition, natural language pro-
cessing, etc.

For these applications, due to hardware limitations (i.e.
the computation capability due to the power consumption
limitation), it is very expensive to implement deep learning
algorithms entirely on users’ local devices (sensors, mobiles,
and even laptops). As a result, the typical approach is to
collect data locally at first and then transmit the data to a
remote server / cluster, and then apply the deep networks
for training / prediction. However, such approach suffers an
important privacy issue, especially for those sensitive data,
e.g. patients clinical data (like fMRI images) and sensitive
environment data (like video monitoring in public space).
While these kind of data are becoming more important for big
data analytics (e.g. for personalized health-care), it brings the
privacy concern when sending these data directly to a remote
model. For example, it would cause severe consequence if a
company as a model provider with a lot of users’ health-care
data like DNA, EHR, fMRI, etc. was invaded by malicious
hackers. It also causes another security risk of leaking data

during the transmission from user to the model (especially
when it’s through Internet). It is problematic if we transfer the
users’ sensitive data directly to a deep learning model hosted
on the remote server.

There have been some researches on conducting neural
network prediction on encrypted data rather than the original
data in the situation so that users / sensors won’t share them
with remote servers [6], [7]. However, their approach bring in
extra computation cost, and it would not be safe once the key
for encryption was hacked.

Targeting at this issue, we proposed a novel deep network
architecture, in which users don’t need to reveal their original
data to the model. Instead of the tradition approach shown in
Fig 1, we split the layers between local device and the server,
and migrate the first layer to local device (as shown in Fig.
2). We apply the activation functions for the first layer locally
and then transfer the outputs from the first layer to the server.
We then use “dropping activation output” method to make the
output non-invertible, which randomly drop some outputs from
activation function. In this method, feed-forward propagation
and data encryption are combined into one process.

We investigated both invertible and non-invertible activa-
tions and their performance in privacy protection. We proved
this method can make sure the original data cannot be
recovered from the transmitted data. Concretely, the main
contributions of this paper are listed as follow:

« We introduced a new deep network architecture that com-
bines neural network and data encryption to solve privacy
and data security problem. With privacy preserving feed-
forward propagation, server (model provider) can serve
for user without directly accessing the user’s data.

o« We proved and evaluated that dropping few activation
outputs can encrypt data for invertible activation function.
We also evaluated that ramp function is better than
rectifier in term of encryption.

o We proposed privacy preserving error-back propagation,
by which server can train a neural network for user
without accessing user’s data.

o With our method, data compression for data transmission
is available when the number of neurons is less than the
size of input data.

The paper is organized as follows: Section II firstly intro-
duces the new architecture of deep network and then discusses
invertible and non-invertible activation functions, mainly fo-
cusing on invertible activation function to encrypt the data. We
then give the details of “dropping activation output” method

and how it works during feed-forward propagation without
any additional computation. Section III provides mathematics
proven and explanation for our method. Section IV presents
our experiment and its result. We conclude our work in Section
V.

II. METHOD: DROPPING ACTIVATION OUTPUTS WITH
LOCALIZED FIRST-LAYER DEEP NETWORK

We firstly introduce our new architecture of localized first-
layer deep network, then we introduce the proposed encrypt
methods for both invertible activation (like sigmoid) and non-
invertible activation (like rectifier). The main content will
focus on a method for encrypting data for invertible activation
function.

A. Localized First-layer Deep Network

Fig. 1 illustrates the traditional deep network’s architecture,
which sends the data from local device to server with encryp-
tion / decryption processes, then server uses the original data
to compute the result.

The general equation of a single layer can be written as

a=f(xxW+0D) (1)

where z is a row vector of original input data, IV is the weight
matrix, b is the row vector of biases, a is a row vector of
activation outputs and f reflects the activation function such
as sigmoid, hyperbolic tangent, softplus, rectifier [9], max-out
[18], etc.

From security aspect, the activation outputs a can be cap-
tured by the network sniffer, the weight matrix W and bias b
can be acquired by hacking the software. As a result, given
a, W, b and f, the input data = can be fully reconstructed by
Equation (2) ! , where W ™! is inverse matrix of W and f~!
is the inverse activation function. Therefore, encrypting the
activation outputs « is desired for data privacy and security.

r=(f"a)—b)x W)

| Encryption

_ Local /)

| Decryption |

Server

Fig. 1. Implement feed-forward propagation in server; x is the input data, y
is the output value, P(y|z) is the probability of y given .

Our new architecture decomposes layers of a neural network
between local device and server, as shown in Fig. 2. The
local device transfers the activation outputs of first hidden

UIf the number of activation outputs equals or greater than the number of
input data

=
10[0]6]0)
LTS

Fig. 2. Spliting neuron network during feed-forward propagation.

layer to the server, and server can only use the activation
outputs to compute the result. We will now discuss how
this architecture can enable privacy protection in both non-
invertible and invertible activation functions.

B. Non-invertible Activation Functions

Several up-to-date activation functions are non-invertible
[9], [18], for example, rectifier is commonly used in deep
neural network, which is able to reach network’s best per-
formance without any unsupervised pre-training on unlabeled
data [9]. Its output is a linear function of the inputs, so the
vanishing gradient problem can be reduced. The rectifier is
shown on Equation (3), where z = x « W + b. It sets all
negative activation outputs to zero.

o= 1) ={

Non-invertible activation functions naturally can encrypt the
activation outputs in some degree. For non-invertible activation
functions, the best way to reconstruct input data is to use
an approximated inverse activation function f~1 and the
transposed weight matrix W7 (instead of W 1), as Equation
(4) describes. The mathematical explanation can be found in
Section III.

0 ,when z2<0
z ,otherwise

3

&= (f"Ya)=b)xWT 4)

However, due to the linearity of rectifier, the activation
outputs is highly related to the scale of feature patterns
from inputs. The general features of original data can be
decrypted by Equation (4). To alleviate this problem, we
introduce ramp activation function, as Equation (5) shows,
where z = x * W + b, and v reflects a small value. Smaller v
will cut more scale information, so that the activation outputs
will contain lesser scale information but more information of
features combination (i.e. a set of small feature identifiers).
The rectifier and ramp functions will be evaluated in Section
IV-A.

0 ,when z<0
a=f(z)=<¢z ,when0<=z<v 5)
v ,when z >=wv

In the view of information, the non-invertible outputs will
result in information loss, so the original data cannot be fully

reconstructed. However, from a neural network perspective, the
non-invertible function selects features, therefore, information
is not lost, and its accuracy can even be improved [9]. Based on
this principle, in the rectifying layer even if just one activation
output is turned to zero from negative value, the original input
data cannot be reconstructed completely. In practice, due to the
sparse property of rectifying layer, there will be a large portion
of rectifying outputs being zero - therefore, the reconstructed
data will be distorted completely.

Hence, data encryption and privacy are realized through
non-invertible activation functions, as the input of each hidden
layer cannot be reconstructed. Even if all parameters of the
model are known, the original inputs still cannot be recon-
structed by the server. Hence, privacy is preserved for users.
Apart from the rectifier and ramp functions, other activation
function such as binary step and max-out [18] are all non-
invertible.

C. Invertible Activation Functions

Different from non-invertible activation functions, recon-
struction is solvable when activation function is invertible, e.g.
sigmoid, hyperbolic tangent, softplus, etc. The sigmoid and
inverse sigmoid is shown in Equation 6 and 7.

1
a= 1+ e~ (zxW+b) (©6)
T = (—ln(% —1)=b)xw! @)

Therefore, the only ways to encrypt x are modifying a, W
or b. The modification will bring uncertainty to neural network.
Therefore, the key is to find a modification method which does
not affect the final predicting result.

Due to the sparse behavior of state-of-the-art neural net-
work, accuracy will not be affected by slightly changing
activation outputs and weights. First of all, during training, the
proposed method would not compromise the learning results,
because both Dropout and Dropconnect are the state-of-the-
art way to avoid overfitting. For testing / inferencing, non-
invertible activation would not affect the result at all. For
invertible activation, dropping a few of activation outputs also
would not harm the final result, that is because:

1) In theory point of view, Dropout training can be consid-
ered as training many sub-networks to do the same job, the
result is the averaged of all sub-networks, which is one sort
of ensemble learning and recently be proved as a gaussian
process [11], [15]. On the other hand, reasonable uncertainty
of neural network during testing would not affect the testing
result if the network have uncertainty during training [15],
[14], [16], [17].

2) In experience point of view, the Dropping probability
required by the method (0.5%) is quite low, compared with
the Dropping probability during training (usually 20 to 50%),
and would not affect the final averaged result of all sub-
networks. TABLE I and II show the effect with different
dropping probabilities using sigmoid function, as expect, our

method would not lead to noticeable performance decreases,
as a small dropping probabilities is enough for encryption.

The sparse behavior of neural network can be achieved
by the methods of Dropout, Dropconnect, and Autoencoder
([101, [11], [12], [13]). In this paper, we proposed the idea
of Dropping activation outputs and Dropping connections.
The definitions of Dropping activation outputs and Dropping
connections are different from Dropout and Dropconnect.
They are applied in the feed-forward propagation, whereas
Dropout and Dropconnect are applied in the error-back propa-
gation. A figure of Dropping activation outputs and Dropping
connections can be shown in Fig. 3.

Dropping activation outputs during feed-forward process:
For encrypting the data during feed-forward propagation pro-
cess, we purposed a method called Dropping activation output.
Mathematically the modified activation output ¢ is written as

a=do f(z+W +D) ®)

where, the element-wise multiplication (hadamard product) is
denoted by ®, and d is a binary vector randomly, setting some
activation outputs to zero.

Setting an activation output to zero is equivalent to removing
all connections between a neuron and all input data. We will
describe more detail in Section III.

Equation (2) and (4) can be used to reconstruct the data, and
we found that similar with non-invertible activation, Equation
(4) can better reconstruct the data.

Dropping connections during feed-forward process:
Another purposed method is called Dropping connections. In
dropping connections, some elements of weight matrix W are
set to zero. The modified weight matrix W and the modified
activation output @ are written as

W=WwoD ©)

a=f(zxW+1b) (10)

where, D is a binary matrix with some elements are

zero. However, the experiment shows that this method is not
effective enough to encrypt the data.

III. MATHEMATICAL EXPLANATION

If the activation is linear, we have:

a=xz*xW +b an

r=(a—bxW! (12)

We now discuss why dropping connections won’t encrypt as
good as dropping activation.

\ Local /

%o ke ar
X, a,
Xs a
7 X a
YA -
=)
.//‘. LS oo
Server / _ Local J

Fig. 3. Dropping activation output (Left) and Dropping connection (Right) during feed-forward propagation.

A. Dropping connections

Assume AW is the different between W and W, ie. AW =
W — W, replace a in Equation (12) by Equation (11), let a
represent the new a that is calculated through the changed W,
then the new Z can be written as

F=(@a-bw!
=@«WoD+b-bW!
=z(WoD)W™!
=2(W - AW)W !
=l - AWW™)

(13)

Note in AW, only a few entries are non-zero, hence the
product of AWW ! is very small, which means it can be
neglected. The reason behind it is the product of WW 1 is
an identity matrix, which means the sum of the product of
entries in row W and their corresponding entries in column
W1 is 1 when the sum position is diagonal, but the sum is 0
elsewhere. Then (I — AWW ~1) approximates to an identity
matrix. This means the input data is nearly the same as the
dropping connection result, written as £ ~ z, therefore the
encrypt performance is poor. Mathematically, it corresponds to
the Affine transformation with no change circumstances [28].
This result applies to any c-by-d matrix W, where ¢ < d. As
AW,.xq is a c-by-d matrix with a few entries change, which
means only a few terms are affected in the summation of d
terms, therefore, AW,y dWC;ld ~ 0, hence I, — AW,y dWC;ld
approximate to identity matrix /., which means Z1x. ~ 1xc.

Give an example when W is a 3-by-5 matrix, and * represent

1 3 1 7 2
entries that are not zero, let W = (2 2 7 5 3
2 5 3 1 1

« When the changing entry/entries are on the same row
in AW, then it is the same row that is non-zero in
AWW 1L

03000 03070
if AW=10 0 0 0 Ojlor|0 O O 0 0O
00000 00000

ko ok Xk
S AWWt=10 0 0 (14)

000

0000 0 00 00 0
ifAW =12 0 0 0 0lor|0 O 7 5 0
0000 0 00000
000
SAWW =[x % % (15)
000
00000 00000
ifAW =10 0 0 0 0lor|{0 0 0 0 0
00 3 00 05 311
000
S AWW =10 0 0 (16)
ko ok ok

« When changing entries are at different row, then those
corresponding rows in AW W 1 have non-zero entries.

000 00
ifAW=10 2 0 0 0
00 300
000
SAWW L= % % « (17)
* *
00070
ifAW =10 2 0 0 0| —
00 300
% *
S AWW™L = * % (18)
* *
W~ is the inverse of W, therefore WW ! = I5 (i.e.
Wi W A W Wo M Wi W P W W+ Wi Wt =1
Wi WL+ WiaWo + WisWa + WiaW R+ Wis Wyt = 0
W11W1731 + W12W251 +W13W:;§1 +W14W4T31 +Wis W531 =0
Wor Wi+ Waa Woi 4+ Was Wa M+ Way W+ Wos Wa b = 0
Wo1 Wﬁl +W22W251 +WQ3W§21 +W24W451 +Was W551 =1
Wor Wit 4+ Waa W' + Was Wiz + Woy Wit +Wos Wes' = 0
War Wit + Wao W+ Waa W P+ Way Wi+ Was Wa' = 0

Wy Wit -+ Waa Wy + Was Wy + Wiy W +Was Wayt = 0

War Wi+ Waa Wogt + Was W+ Way Wt + Was Way' = 1

). However, AW represents change of only a few entries in W,
which means only a few terms are affected in the summation
of five terms, therefore, AWW ~1 = 0, hence Is — AWW 1
approximate to identity matrix I3, which means Z;x3 = =1 «3.

B. Dropping activation outputs

In Dropping activation outputs, linear activation is also used
in explanation, let the modified activation output be a and its
corresponding modified input data be Z, then it can be written
as

&= (a—-bWw !
=(a—Aa—-b)W!
=(a—b)W —AaW !

=z —AaW™!

AaW—1)

x

Hence for any activation output vector a in size 1-by-d and
weight matrix W that has size c-by-d, where ¢ < d. If a
few entries of a change, then the modified vector & can be
written as a product of 1-by-c original input data x and a
. A Wi . .
matrix (I — %), where all diagonal entries are not
necessary to be 1. Then x % Z. Therefore it won’t necessary
to be no change circumstance in the Affine transformation.

For example, let a = (a1, az,a3), Aa = (Aay, Aaz, Aaz),

(19)

=z(I

w11 W12

-1
and W3><2 = |W21 W22
w31 W32

Then x can be written as:

. w11 W12
= (x1,22) = aWy o = (a1,a2,a3) |wa1 w22 (20)
w31 W32

= (arw11 + aowa1 + azwsi, G w12 + AaWa2 + azwsz)

Z can be written as:

A P arrr—1
T = (21,22) = aW5 5 21)
w11 Wi2
= (a1 — Aar,a2 — Aag, a3 — Aagz) |war wa
w31 W32

= (a1w11 — Aaiwii + aswa — Aagwar + azws; — Aazwsy,
a1wi2 — Aaiwiz + aswas — Aagwas + azwss — Aazwsz)

Which means
(xla 11,‘2)
AajwyyfAagwyy +Aagwgy
£
0 1—

1— 0

AajwigtAagwoyfAagwgy
EP)

= (z1,22)

(22)

Aaywii+Aaswa +Aazwsy

In this case, and

Aajwiz+Aaswaa+Aazwss

T
- are unknown and there is no
restriction on them, which means they can be any number,
hence it is not an identity matrix.

IV. EXPERIMENTAL STUDIES

We used MNIST dataset to evaluate our methods, which
has a training set of 50k, a validation set of 10k and a test
set of 10k. Each image is a 28 x 28 grey-scale digit, with
10 classes in total. We adopted accuracy of classification task
to evaluate our model, which is a standard way of evaluating
machine learning algorithms. For classification, the definition
of accuracy is the percentage of correct prediction on test set.

We further evaluated dropping activation outputs on CI-
FARI10 dataset, which is a more challenging dataset compared
with MNIST and has 50k training images and 10k test images.
Each image is a 32 x 32 RGB image, with 10 classes in total
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck).

A. Non-invertible Activation Functions

Rectifier Our experimental network has three rectifying
hidden layers, and each layer has 800 neurons, so the model
can be represented as (784-800-800-800-10) from input layer
to output layer.

Dropout has been applied during training to prevent overfit-
ting. The Dropout probability from the input layer to the first
layer is 20%, and the probabilities of other layers are 40%. No
weights decay were used. All neural networks were trained
by using Adam gradient descent [25] with mini-batches of
size 500 and 2000 of epochs. Accuracy of 98.87% was found
(under the null hypothesis of the pairwise test with p = 0.05).

To evaluate the rectifier, Equation (23) and (24) are used
to reconstruct the approximate input data. Fig. 4 shows the
original input data and the reconstructed input data from the
activation outputs of first hidden layer by using Equation (23).
It is clear that the reconstruction was failed.

(23)

24

Fig. 4. Reconstructed input data from rectifying output by using & ~ (a—b)*
W1 (Right); Original input data x (Left); Activation output a = maz (0, z*
W +b). The KL Divergence between x and £ for digit 2 and 6 are 1.91 and
1.88.

The input data can be better reconstructed by Equation (24).
As the middle column of Fig. 5 demonstrated, even when the

reconstructed data were totally distorted, the outline of original
input data can still be recognized from the reconstructed data.

Further encryption can be applied by transferring the acti-
vation outputs of the second hidden layer, i.e. encrypting the
data twice. Right hand side of Fig. 5 shows the reconstructed
input data by Equation (24), where the outline of digit cannot
be recognized. However, applying more local rectifying layers
will lead to higher local computation.

()

Fig. 5. Reconstructed input data from rectifying outputs by & ~ (a—b)*W 7"
Original input data = (Left); Reconstruct from outputs of first hidden layer
(Middle, the KL Divergence between = and Z (1 st layer) are 2.32, 1.49, 1.51
for digit 1, 2, 6); Reconstruct from outputs of second hidden layer (Right, the
KL Divergence between x and #(2nd layer) are 2.63, 1.58, 1.56 which are
higher than & (1st layer)).

Ramp To let the activation outputs of first hidden layer
contain lesser scale information, ramp activation function can
be applied. The two testing networks are the same with the
previous rectifier network, except for the activation function of
first layer, which are ramp with v of 0.2 and 0.05 respectively.
The accuracies of these two networks are both 98.87%, which
are approximately the same as the previous pure rectifier
neural network.

According to Fig. 6, smaller v can better encrypt the input
data, and the topology of input data cannot be recognized from
the reconstructed data.

The above experiments can be summarized as below:

o With the purposed architecture, no matter what kind of
activation function is used, without knowing the model
parameters in local device, the original input data cannot
be reconstructed from the activation output.

« Even knowing the model parameters in local device,
a single rectifying layer is able to encrypt the input
data. Better encryption can be done by applying more
rectifying layers before transferring the activation outputs.

« Further encryption to the data can be done through Ramp
activation function as it reduces the scale of feature
pattern.

Fig. 6. Reconstructed input data from ramp activation outputs by using & ~
(a—b)*WT (Middle and Right) and Original input data = with v = 0.2(Left);
The KL Divergence between = and & (v = 0.2), which are 2.35, 1.54, 1.55
for digit 1, 2, 6, is smaller than that between « and (v = 0.05), which are
242, 1.63, 1.62.

B. Invertible Activation Functions - Dropping Activation Out-
puts

For invertible activation function, the first experiment is
about Dropping activation outputs. We consider a networks
of 3 hidden layers of 800 units each, the activation function is
sigmoid, which is invertible. All hyper-parameters and training
methods are set to be the same as the previous rectifier neural
network.

As a few of activation outputs are set to zero, the inverse
sigmoid at Equation (7) becomes insolvable, since a number
can not be divided by zero. An approximate reconstruction
can be achieved by Equation (25) and (4), i.e. when a is out

of range, the approximate inverse number is set to zero '.

_ 0 ,when a > 0,a <0
i ={

—In(: —1) ,otherwise 25)

Fig. 7 shows the reconstructed input data under dropping
probabilities p of 0.5%, 1% and 2%. It is clear that the recon-
structed input data were distorted, and no further distortion
was found as the dropping probability increase.

Therefore, dropping a few activation outputs is enough
to encrypt the input data, and does not lead to noticeable
performance decreases as Table. I shows. In addition, adding
some noise to a few activation outputs can also lead to the
same result. If we choose Equation (2) for reconstruction, the
reconstructed input data will be show in Fig. 8, which is worse
than Fig. 7.

For CIFAR10, we used a convolutional neural network
(CNN) for this task. The network architecture is as follows:

'Expect zero, the following constants have been explored:
{-10,-1,-0.5,0,0.5,1,10}, we found them all giving similar results as
Fig 7 shows.

TABLE 1
RANDOMLY SETTING ACTIVATION OUTPUTS TO ZERO IN FIRST HIDDEN
LAYER DURING FEED-FORWARD PROPAGATION OVER 100 TRAILS

p Accuracy(%) Standard Max/Min Accuracy (%)
Derivation

0% 98.7900 NA NA

0.5% 98.8026 0.000221 98.86 / 98.74

1% 98.8081 0.000294 98.88 / 98.73

2% 98.8093 0.000356 98.92 /98.73

3% 98.7978 0.000373 98.89 / 98.69

5% 98.7721 0.000419 98.87 / 98.65

10% 98.6991 0.000500 98.87 / 98.57
TABLE II

RANDOMLY SETTING ACTIVATION OUTPUTS TO ZERO IN FIRST
CONVOLUTIONAL LAYER DURING FEED-FORWARD PROPAGATION OVER

100 TRAILS

p Accuracy(%) Standard Max/Min Accuracy (%)
Derivation

0% 84.5640 NA NA

0.1% 84.5641 0.000409 84.68 / 84.51

0.5% 84.5535 0.000635 84.78 / 84.48

1% 84.5313 0.000787 84.70 / 84.35

2% 84.4696 0.001037 84.71 / 84.16

3% 84.4180 0.000859 84.23 / 84.75

5% 84.3613 0.001230 84.68 / 84.09

N64F5S1> Sigmoid> F3S2> LRN> N64F5S1> ReLU>
LRN> F3S2> D384> ReLU> D192> ReLU> D10> Soft-
max, where N64F5S1 represents a CNN with 64 filters of size
5 and of stride 1, F3S2 represents Maxpooling with size of
3, stride of 2, and D10 represents fully-connective layer with
unit of 10, LRN represents local response normalization. The
model is trained by 50000 epochs with learning rate of 0.0001
and Adam gradient descent. We randomly dropped activation
outputs on the 1st convolutional layer. The result can be seen
in Table. II.

The experiments can be summarized as follow:

« For invertible activation function, dropping a few activa-
tion outputs during feed-forward propagation can provide
data encryption and privacy.

o To make the function insolvable, the activation value
needs to be set out of its reasonable range, for example,
setting the value out of (0,1) for sigmoid, and (—1,1)
for hyperbolic tangent.

« Instead of setting activation outputs out of its reasonable
range, adding small noise values to few activation output
can have similar impact.

C. Invertible Activation Functions - Dropping Connections

Randomly setting a part of weight values to zero can indi-
rectly modify the activation outputs. However, according to our
experiment by using MNIST dataset, when combining sigmoid
function and dropping activation outputs during feed-forward
process, encryption does not appear and the reconstructed data
is almost the same with the original input data.

D. Autoencoder

Small number of activation output can reduce both compu-
tation and communication cost for local device. In that case,
Autoencoder can be applied.

Even for invertible activation function, when the number of
activation outputs is smaller than the number of input data,
the original input data cannot be reconstructed correctly from
its activation outputs, as it uses smaller dimension to repre-
sent the original data. The input data can be approximately
reconstructed by Equation (7).

Fig. 9 shows the input data which is reconstructed from
Autoencoder with sigmoid activation function. In this case,
the number of the neuron is half of the number of input data.
In other words, half of the information of original input data
can be reconstructed, noting the shape of digit image can
still be identified clearly. Therefore, an Autoencoder with non-
invertible activation function or dropping activation output are
recommended, so as to provide both data encryption and data
compression.

E. Privacy preserving

Here we analyze the privacy preserving property of our
method, by discussing how it works in bruteforce attack and
honest-but-curious model.

Assume we drop M neurons, as we discussed before, the
computation raised exponentially, the attackers have to pre-
compute possible activation results. Take sigmoid function as
an example, as the outputs of neurons are continuous values,
assume attacker pre-define N possible output values, and the
algorithm drop M neurons of the outputs, the number of
possible combinations is N*. In our sigmoid experiment
when dropping probability is 0.5%, M is 4, if define N to
100, the number of possible combinations is 100 millions, after
reconstructing 100 millions images, the attacker also need an
algorithm to recognize the good image. If we used rectifier,
the attacker would not know where and how many neurons are
dropped by our method, which mean the number of possible
combinations will become significantly larger.

We illustrate this by conducting a bruteforce experiment
on MNIST classifier with sigmoid function. There are 800
outputs, M is 4 (0.5%). We separated [0, 1] to 101 gaps, i.e.
from 0, 0.01, 0.02 to 1. Therefore, there is 104060401 possible
inputs, it takes 5083 hours to compute all possibilities on a
Titan X Pascal GPU. Note that, the attacker needs an extra
algorithm to select one data from 104060401 data, but as the
attacker do not know the content of data, it is difficult to define
the criteria.

In honest-but-curious model, for invertible activation func-
tion, the intact activation outputs can be obtained if local de-
vice inputs the same data into the network for multiple times,
and the dropping positions do not overlap. The probability of
the dropping position do not overlap on second time with the
first time is CY_,,/CM. As M is relatively smaller than N,
so the original input data has high probability to be decrypted
if the data is input to the network twice.

Fig. 7. Equation (25) and (4) are used to reconstruct input data from first sigmoid hidden layer after dropping activation outputs. The first column is the
original input data x; the dropping probabilities increase from 0.5% to 2% from second to forth column. Note that 0.5% is only 4 neurons in the layer of
800 neurons. The KL Divergence between = and &(p = 0.5%) are 2.03, 1.34, 1.35 which are similar with Z(p = 1%) (2.02, 1.35, 1.35) and Z(p = 2%)

(2.04, 1.35, 1.36).

Fig. 8. Reconstructed input data from first sigmoid hidden layer after
drop activation outputs by using Equation (25) and (2). Original input
data x (The first column); From second to third columns, the dropping
probabilities increase from 0.25% to 0.5%. The KL Divergence between x
and Z(p = 0.25%) are 2.34, 1.51, 1.45, and Z(p = 0.5%) are 2.49, 1.52,
1.46, which are higher than Fig.7

As a result, in practice, to prevent such situation, we drop
the same position for the same data. We used the max value
in the data as the random seed to select the dropping position.

We need to mention that, for non-invertible activation
function, as the activation outputs are dropped inherently,
even without using dropping activation outputs, the honest-

(z)

Fig. 9. Reconstructed input data from sigmoid outputs by using Equation (7)
(Right); Original input data = (Left). The number of neuron is the half of the
number of input data.

but-curious model can not work.

F Speed

To verify the impact of implementing Sigmoid function on
user local devices, we did a system test to measure it. We used
Metal framework ! to develop the Sigmoid function on GPU
(in Swift language):

kernel void sigmoid(const device float
*inVector [[buffer(0) 1],
device float =*outVector [[buffer(l) 1],
uint id [[thread_position_in_grid 11]1) {
outVector[id] = 1.0 /
(1.0 + exp(—inVector[id]));
}

The device we used is iPhone 6 with iOS 10. N.SDate()
was used to measured the time lapse of computing the first
layer activations. The input we used is a vector x where
|| = 40000 (200x200 pixels grayscale images), and we

Thttps://developer.apple.com/metal/

applied Sigmoid(W i + b) with W (size 40000x1000) and
b (size 1000) for 1000 neurons. Below is a sample output of
time lapses measured, 1300ms is calculated to be the average
latency induced.

D/Sigmoid (601) :
D/Sigmoid (601) :
D/Sigmoid (601) :

onActivation:
onActivation:
onActivation:

begin
1311 ms
end, 1311 ms

V. CONCLUSION

In this paper, we proposed a new architecture for deep
network, with the localized first layer of the network. We
investigate how this architecture can support better privacy
protection in model prediction. Invertible activation function
through Dropping activation outputs during feed-forward prop-
agation are proved to be able to encrypt the original input
data and preserving privacy. The whole encryption process can
be improved through combining feed-forward propagation and
data encryption into one process, which means no need for a
specialized data encryption process on the local device, nor
data decryption process on the server.

During the encryption process, both invertible and non-
invertible activation functions have been discussed and math-
ematically proved possible to do encryption. In error-back
propagation, splitting the neural network into local device and
server can provide data privacy during training. In other words,
the server is able to provide model learning service by using
error-back propagation, without accessing the original input
data from the local device.

ACKNOWLEDGMENT

The authors would like to thank Charles R. Johnson from
William and Mary College and Xinman Ye from University of
Cambridge, for their helpful comments and suggestions on the
manuscript. Hao Dong is supported by the OPTIMISE Portal.

REFERENCES

[1] L. Deng and D. Yu. Deep Learning: Methods and Applications. Now
Publishers Inc. Jan, 2014.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. [YOLO] You only
look once: Unified, real-time object detection. CVPR, 2016.

[3] Yuan, J., & Yu, S. Privacy Preserving Back-Propagation Neural Network
Learning Made Practical with Cloud Computing. IEEE transactions on
Parallel and Distributed Systems, 25(1), 212221, 2014

[4] Bonde, D. J., Akib, S., and etc. Review Techniques of Data Privacy in
Cloud Using Back Propagation Neural Network. International Journal of
Emerging Technology and Advanced Engineering, 4(2), 15, 2014.

[5] Bansal, A., Chen, T., & Zhong, S. Privacy preserving Back-propagation
neural network learning over arbitrarily partitioned data. Neural Comput-
ing and Applications, 20(1), 143150, 2010.

[6] Bost, R., Popa, R., Tu, S., & Goldwasser, S. Machine learning classifi-
cation over encrypted data. Crypto ePrint Archive, 2014.

[7] Graepel, Thore, and etc. ML confidential: Machine learning on encrypted
data. ICISC, pp. 121. Springer, 2013.

[8] Khalid Sayood. Introduction to Data Compression, 4th Edition, Elsevier,
2012.

[9] Glorot, X., Bordes, A., & Bengio, Y. Deep Sparse Rectifier Neural
Networks. Aistats, 2011.

[10] Hinton, G., and etc. Improving neural networks by preventing co-
adaptation of feature detectors, 2012.

[11] Srivastava Nitish, Hinton, G., and etc: Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. JMLR, 2014.

[12] Wan, L., Zeiler, M and etc, R. Regularization of neural networks using
dropconnect. ICML, 2013.

[13] Vincent, P, and etc. Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion.
JMLR, 2010.

[14] Gal, Y., & Ghahramani, Z. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. ICML, 2016.

[15] Gal, Yarin. Uncertainty in Deep Learning. University of Cambridge.
2016.

[16] Giryes, R., Sapiro, G., & Bronstein, A. M: Deep Neural Networks with
Random Gaussian Weights: A Universal Classification Strategy? IEEE
Transactions on Signal Processing, 64(13), 34443457. 2016.

[17] Blundell, C., Cornebise, J., and etc: Weight Uncertainty in Neural
Networks. ICML, 2015.

[18] Goodfellow, I. J., and etc: Maxout Networks. JMLR, 2013.

[19] Hochreiter, S., Hochreiter, S., and etc: Long short-term memory. Neural
Computation, 9(8), 1735-80, 1997.

[20] Bengio, Y: Learing Long-Term Dependencies with Gradient Descant is
Difficult. IEEE Transaction on Neural Networks, 5, 1994.

[21] Gers, F. a, Schraudolph, N. N., & Schmidhuber, J: Learning Precise
Timing with LSTM Recurrent Networks. JMLR. 2002.

[22] Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmid-
huber, J. LSTM: A Search Space Odyssey. NIPS. 2015.

[23] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. NIPS, 2014.

[24] Krizhevsky, A., & Hinton, G. E. Imagenet Classification With Deep
Convolutional Neural Networks. NIPS, 2012.

[25] Kingma, Diederik, and Jimmy Ba. Adam: A Method for Stochastic
Optimization. ICLR, 2014.

[26] F. Bastien, P. Lamblin and etc. Theano: new features and speed improve-
ments. NIPS, 2012.

[27] J. Bergstra, and etc. Theano: A CPU and GPU Math Expression
Compiler. Proceedings of the Python for Scientific Computing Conference
(SciPy), 2010.

[28] Hazewinkel, Michiel, ed. “Affine transformation”, Encyclopedia of
Mathematics, Springer, ISBN 978-1-55608-010-4, 2001

