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Covert Communication with Channel-State

Information at the Transmitter
Si-Hyeon Lee, Ligong Wang, Ashish Khisti, and Gregory W. Wornell

Abstract

We consider the problem of covert communication over a state-dependent channel, where the trans-

mitter has causal or noncausal knowledge of the channel states. Here, “covert” means that a warden on

the channel should observe similar statistics when the transmitter is sending a message and when it is

not. When a sufficiently long secret key is shared between the transmitter and the receiver, we derive

closed-form formulas for the maximum achievable covert communication rate (“covert capacity”) for

discrete memoryless channels and, when the transmitter’s channel-state information (CSI) is noncausal,

for additive white Gaussian noise (AWGN) channels. For certain channel models, including the AWGN

channel, we show that the covert capacity is positive with CSI at the transmitter, but is zero without

CSI. We also derive lower bounds on the rate of the secret key that is needed for the transmitter and the

receiver to achieve the covert capacity.

I. INTRODUCTION

Covert communication [1]–[4] refers to scenarios where the transmitter and the receiver must keep

the warden (eavesdropper) from discovering the fact that they are using the channel to communicate.

Specifically, the signals observed by the warden must be statistically close to the signals when the

transmitter is switched off. For additive white Gaussian noise (AWGN) channels, the transmitter being

switched off is usually modeled by it always sending zero; for discrete memoryless channels (DMCs),

this is modeled by it sending a specially designated “no input” symbol x0. For a DMC, if the output

distribution at the warden generated by x0 is a convex combination of the output distributions generated by
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the other input symbols, then a positive covert communication rate is achievable; otherwise the maximum

amount of information that can be covertly communicated scales like the square root of the total number

of channel uses [3]. For the AWGN channel, the latter situation applies [1], [3].

The role played by channel uncertainties in covert communications has been studied in some recent

works. In particular, [5]–[7] consider the situation where the noise level (or cross-over probability) of

the channel is random, remains constant throughout the entire communication duration, and is unknown

to the warden. In this case, it is difficult for the warden to tell whether what it observes is signal or

noise. As a consequence, positive covert communication rates are achievable on certain channel models

(binary symmetric channels are considered in [5] and AWGN channels in [6], [7]) which, without the

unknown-noise-level assumption, only allow square-root scaling for covert communication.

The current work studies the benefit of channel uncertainties for covert communications in a different

context. We consider channels with a random state that is independent and identically distributed (IID)

across different channel uses. Clearly, if a channel state sequence is not known to any terminal, then it

can be treated as part of the channel statistics, reducing the problem to the one studied in previous works.

Hence, in general, an IID unknown parameter cannot help the communicating parties to communicate

covertly. In the current work, we assume that the state sequence is known to the transmitter, either causally

or noncausally, as channel-state information (CSI), but unknown to the receiver and the warden. As one

motivating application consider a scenario where a noise source or jammer continuously emits IID random

noise. If the jammer is friendly and reveals the predetermined noise symbols to the transmitter, then the

transmitter can use this knowledge as CSI. Another scenario is when the path delay from the jammer to

the receiver and the warden is larger than the total path delay from the jammer to the transmitter and

from the transmitter to the receiver and the warden so that the transmitter knows the jammer’s signal in

advance and utilizes it as CSI. In the literature, such difference in path delays has motivated the study

of lookahead relay channels [8], [9], [10, Chapter 16.9].

We study the maximum achievable rate for covert communication, which we call the “covert capacity,”

in this case. We derive closed-form formulas for the covert capacity, when the transmitter and the receiver

share a sufficiently long secret key. We also derive upper bounds on the minimum length of the secret key

needed to achieve the covert capacity. We do not have a good lower bound on this minimum secret-key

length; we briefly comment on this in the concluding section. Our converse proofs are based on classical

techniques, while covertness is accounted for with help of continuity properties of certain information

quantities. Our achievability proof for the noncausal case is based on “likelihood encoding” employed

in [11] rather than standard Gelfand-Pinsker coding [12], because the former admits easier covertness

analysis. For the binary symmetric channel (BSC) and the AWGN channel, in certain parameter ranges,
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Figure 1. State-dependent discrete memoryless channel

we show the covert capacity to be positive with CSI at the transmitter. (Recall that, without channel state,

the covert capacity is zero for both channels in all parameter ranges.)

Our work is closely related to some works in steganography [13]–[15]. In steganography, the transmitter

is given some data, called the “cover text,” and attempts to embed its message by modifying the cover text.

As pointed out in [15], the cover text can be seen as CSI that is noncausally known to the transmitter. The

main difference between such problems and our setting is the following. In steganography it is normally

assumed that no noise is imposed on the “stegotext”—the data after modification by the transmitter,

hence, conditional on the states (i.e., the cover text), the channel is noiseless. In our setting, the channel

has both states and noise.

The rest of this paper is arranged as follows: Section II formally defines the covert communication

problem; Section III states the main results for DMCs; Sections IV and V prove the converse and

achievability parts of the main results, respectively; Section VI applies the results to BSCs and AWGN

channels; and Section VII concludes the paper with some remarks.

II. PROBLEM FORMULATION

A state-dependent DMC in Fig. 1

(X ,S,Y,Z, PS , PY,Z|S,X) (1)

consists of channel input alphabet X , state alphabet S, channel output alphabets Y and Z at the receiver

and the warden, respectively, state probability mass function (PMF) PS , and channel law PY,Z|S,X . All

alphabets are finite. Let x0 ∈ X be a “no input” symbol that is sent when no communication takes place.

Define Q0(·) =
∑

s∈S PS(s)PZ|S,X(·|s, x0) and let Q×n0 (·) denote the n-fold product of Q0. The state

sequence Sn is assumed to be IID, hence the warden observes Zn distributed according to Q×n0 (·) if

no communication takes place over n channel uses. We define a nonnegative cost b(x) for each input

symbol x ∈ X . The average input cost of xn ∈ X n is defined as b(xn) = 1
n

∑n
i=1 b(xi).

The transmitter and the receiver are assumed to share a secret key K uniformly distributed over a set

K. The state sequence is assumed to be unknown to the receiver and the warden, but available to the
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transmitter. We consider two cases, where the state sequence is known to the transmitter causally and

noncausally, respectively. For causal CSI, an (|M|, |K|, n) code consists of an encoder at the transmitter

that maps (M,K,Si) to Xi ∈ X for i ∈ [1 : n], and a decoder at the receiver that maps (Y n,K) to

M̂ ∈ M. For noncausal CSI, an (|M|, |K|, n) code consists of an encoder at the transmitter that maps

(M,K,Sn) to Xn ∈ X n, and a decoder at the receiver that maps (Y n,K) to M̂ ∈M.

The transmitter and the receiver aim at constructing a code that is both reliable and covert. As usual,

their code is reliable if the probability of error P (n)
e = P (M̂ 6= M) is negligible. Their code is covert if it

is hard for the warden to determine whether the transmitter is sending a message (hypothesis H1) or not

(hypothesis H0). Let α and β denote the probabilities of false alarm (accepting H1 when the transmitter is

not sending a message) and missed detection (accepting H0 when the transmitter is sending a message),

respectively. Note that a blind test satisfies α + β = 1. Let P̂Zn denote the distribution observed by

the warden when the transmitter is sending a message.1 The warden’s optimal hypothesis test satisfies

α+β ≥ 1−
√
D(P̂Zn‖Q×n0 ) (see [16]). Hence, covertness is guaranteed if D(P̂Zn‖Q×n0 ) is negligible. At

this point, note that an input symbol x with supp(PZ(·|x)) /∈ supp(Q0), where supp denotes the support

set of a distribution, should not be transmitted with nonzero probability because otherwise D(P̂Zn‖Q×n0 )

becomes infinity. Hence, by dropping such input symbols, we assume that

supp(Q0) = Z. (2)

Let K = [1 : 2nRK ] and M = [1 : 2nR] for RK ≥ 0 and R ≥ 0. For given RK ≥ 0 and B ≥ 0,

a covert rate of R is said to be achievable if there exists a sequence of (2nR, 2nRK , n) codes that

simultaneously satisfies the input cost constraint lim supn→∞ EM,K,Sn [b(Xn)] ≤ B, reliability constraint

limn→∞ P
(n)
e = 0, and covertness constraint limn→∞D(P̂Zn‖Q×n0 ) = 0. The covert capacity is defined

as the supremum of all achievable covert rates and denoted by Cc and Cnc for the cases with causal CSI

and with noncausal CSI, respectively.

III. MAIN RESULTS FOR DMCS

In this section, we present upper and lower bounds on the covert capacity of DMCs with causal and

with noncausal CSI at the transmitter. The proofs of the upper and lower bounds are provided in Sections

IV and V, respectively.

1Note that P̂Zn depends on the code used for the communication and is in general not IID.
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A. Causal CSI at the Transmitter

Theorem 1. For RK ≥ 0 and B ≥ 0, the covert capacity with causal CSI at the transmitter is upper-

bounded as

Cc ≤ max I(V ;Y ) (3)

where the maximum is over PMF PV and function x(v, s) such that |V| ≤ min{|X |+|Y|+|Z|−2, (|X |−

1) · |S|+ 1}, PZ = Q0 and E[b(X)] ≤ B.

Theorem 2. For RK ≥ 0 and B ≥ 0, the covert capacity with causal CSI at the transmitter is lower-

bounded as

Cc ≥ max I(V ;Y ) (4)

where the maximum is over PMF PV and function x(v, s) such that |V| ≤ min{|X |+|Y|+|Z|−1, (|X |−

1) · |S|+ 2}, PZ = Q0, E[b(X)] ≤ B, and

I(V ;Z)− I(V ;Y ) < RK . (5)

B. Noncausal CSI at the Transmitter

Theorem 3. For RK ≥ 0 and B ≥ 0, the covert capacity with noncausal CSI at the transmitter is

upper-bounded as

Cnc ≤ max(I(U ;Y )− I(U ;S)) (6)

where the maximum is over conditional PMF PU |S and function x(u, s) such that |U| ≤ min{|X |+ |Y|+

|Z|+ |S| − 3, |X | · |S|}, PZ = Q0 and E[b(X)] ≤ B.

Theorem 4. For RK ≥ 0 and B ≥ 0, the covert capacity with noncausal CSI at the transmitter is

lower-bounded as

Cnc ≥ max(I(U ;Y )− I(U ;S)) (7)

where the maximum is over conditional PMF PU |S and function x(u, s) such that |U| ≤ min{|X |+ |Y|+

|Z|+ |S| − 2, |X | · |S|+ 1}, PZ = Q0, E[b(X)] ≤ B, and

I(U ;Z)− I(U ;Y ) < RK . (8)

Remark 1. If we restrict U and S to be independent in Theorems 3 and 4, the bounds fall back to those

in Theorems 1 and 2.

Remark 2. For the case with causal CSI (resp. noncausal CSI), if RK is large enough so that (5) (resp.

(8)) holds under the joint distribution that achieves the maximum on the right-hand side of (3) (resp. (6)),

then Theorems 1 and 2 (resp. Theorems 3 and 4) establish the covert capacity as the right-hand side of (3)
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(resp. (6)). Furthermore, if under this joint distribution I(V ;Z) < I(V ;Y ) (resp. I(U ;Z) < I(U ;Y )),

then no secret key is needed to achieve the covert capacity.

Remark 3. Let us consider the special case of Y = Z as in [3]. Then, in the absence of CSI, the covert

capacity can be positive if and only if x0 is redundant [3], i.e., PZ|X(·|x0) ∈ conv{PZ|X(·|x′) : x′ ∈

X , x′ 6= x0} where conv denotes the convex hull. In the presence of CSI, the covert capacity can be positive

even though x0 is not redundant. Examples include channels with additive state where some fraction of

state can be subtracted through appropriate precoding so that the transmitter can send message symbol

(corresponding to V for the causal case and to U for the noncausal case) generated by taking into

account the effect of subtracted state. In Section VI, we show such examples.

IV. PROOF OF UPPER BOUNDS

In this section, we prove the converse part of our main results, i.e., Theorems 1 and 3. Let us first

define the following functions of nonnegative A and B:

Cc(A,B) = max
PV , x(v,s) :

E[b(X)]≤B, D(PZ‖Q0)≤A

I(V ;Y )

Cnc(A,B) = max
PU|S , PX|U,S :

E[b(X)]≤B, D(PZ‖Q0)≤A

(I(U ;Y )− I(U ;S)).

In the proof of Theorems 1 and 3, we use the following lemma, which is proven at the end of this section.

Lemma 5. The functions Cc(A,B) and Cnc(A,B) are non-decreasing in each of A and B, and concave

and continuous in (A,B).

Now we are ready to prove Theorems 1 and 3.

Proof of Theorem 1. For RK ≥ 0 and B ≥ 0, consider any sequence of (2nR, 2nRK , n) codes that

simultaneously satisfies the input cost constraint lim supn→∞ EM,K,Sn [b(Xn)] ≤ B, reliability constraint

limn→∞ P
(n)
e = 0, and covertness constraint limn→∞D(P̂Zn‖Q×n0 ) = 0.

Let us start with the proof steps used for channels with causal CSI [10] without a covertness constraint:

nR
(a)

≤ I(M ;Y n|K) + nεn (9)

=

n∑
i=1

I(M ;Yi|K,Y i−1) + nεn (10)

≤
n∑
i=1

I(M,K, Y i−1;Yi) + nεn (11)

≤
n∑
i=1

I(M,K, Y i−1, Si−1;Yi) + nεn (12)
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(b)
=

n∑
i=1

I(M,K, Y i−1, Si−1, Xi−1;Yi) + nεn (13)

(c)
=

n∑
i=1

I(M,K,Si−1, Xi−1;Yi) + nεn (14)

(d)
=

n∑
i=1

I(Vi;Yi) + nεn (15)

for εn → 0 and Vi := (M,K,Si−1). Here, (a) follows by applying Fano’s inequality from the re-

liability constraint; (b) and (d) because Xi−1 is a function of (M,K,Si−1); and (c) since Y i−1 −

(M,K,Si−1, Xi−1)− Yi forms a Markov chain.

Now we utilize the definition and the property of Cc(A,B) to further bound the right-hand side of (15):

nR ≤
n∑
i=1

I(Vi;Yi) + nεn (16)

(a)

≤
n∑
i=1

Cc(D(P̂Zi
‖Q0),E[b(Xi)]) + nεn (17)

(b)

≤ nCc

(
1

n

n∑
i=1

D(P̂Zi
‖Q0),

1

n

n∑
i=1

E[b(Xi)]

)
+ nεn (18)

where (a) is because Xi is a function of Vi and Si and the Markov chain Vi−(Xi, Si)−(Yi, Zi) holds and

(b) is due to the concavity of Cc(A,B). Recall from Lemma 5 that Cc(A,B) is non-decreasing in each of

A and B. According to the input cost constraint, there exists δn → 0 such that 1
n

∑n
i=1 E[b(Xi)] ≤ B+δn.

On the other hand, from the covertness constraint, there exists δ′n → 0 such that D(P̂Zn‖Q×n0 ) ≤ δ′n,

while as in [3] we have

D(P̂Zn‖Q×n0 )

= −H(Zn) + EP̂Zn

[
log

1

Q×n0 (Zn)

]
(19)

= −
n∑
i=1

H(Zi|Zi−1) + EP̂Zn

[
log

1

Q0(Zi)

]
(20)

= −
n∑
i=1

H(Zi|Zi−1) + EP̂Zi

[
log

1

Q0(Zi)

]
(21)

≥ −
n∑
i=1

H(Zi) + EP̂Zi

[
log

1

Q0(Zi)

]
(22)

=

n∑
i=1

D(P̂Zi
‖Q0). (23)

Hence, (18) implies

R ≤ Cc

(
δ′n
n
,B + δn

)
+ εn. (24)

Note that the right-hand side of (24) approaches Cc(0, B) as n tends to infinity due to the continuity of

August 9, 2017 DRAFT
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Cc(A,B), from which follows the condition PZ = Q0. Finally, the cardinality bound on U follows by

applying the support lemma [10].

Proof of Theorem 3. For RK ≥ 0 and B ≥ 0, consider any sequence of (2nR, 2nRK , n) codes that

simultaneously satisfies the input cost constraint lim supn→∞ EM,K,Sn [b(Xn)] ≤ B, reliability constraint

limn→∞ P
(n)
e = 0, and covertness constraint limn→∞D(P̂Zn‖Q×n0 ) = 0.

We start with the proof steps used for channels with noncausal CSI [12] without a covertness constraint:

nR
(a)

≤ I(M ;Y n|K) + nεn (25)

=

n∑
i=1

I(M ;Yi|K,Y i−1) + nεn (26)

≤
n∑
i=1

I(M,K, Y i−1;Yi) + nεn (27)

=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(Yi;S
n
i+1|M,K, Y i−1) + nεn (28)

(b)
=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(Y i−1;Si|M,K,Sni+1) + nεn (29)

(c)
=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(M,K, Y i−1, Sni+1;Si) + nεn (30)

=

n∑
i=1

(I(Ui;Yi)− I(Ui;Si)) + nεn (31)

for εn → 0 and Ui := (M,K, Y i−1, Sni+1). Here, (a) follows by applying Fano’s inequality from the

reliability constraint; (b) by Csiszár’s sum identity; and (c) because Si and (M,K,Sni+1) are independent.

Now we utilize the definition and the property of Cnc(A,B) to further bound the right-hand side of

(31):

nR ≤
n∑
i=1

(I(Ui;Yi)− I(Ui;Si)) + nεn (32)

≤
n∑
i=1

Cnc(D(P̂Zi
‖Q0),E[b(Xi)]) + nεn (33)
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(a)

≤ nCnc

(
1

n

n∑
i=1

D(P̂Zi
‖Q0),

1

n

n∑
i=1

E[b(Xi)]

)
+ nεn (34)

where (a) is due to the concavity of Cnc(A,B). Recall from Lemma 5 that Cnc(A,B) is non-decreasing in

each of A and B. According to the input cost constraint, there exists δn → 0 such that 1
n

∑n
i=1 E[b(Xi)] ≤

B+δn. On the other hand, due to the chain of inequalities (19)-(23) from the covertness constraint, there

exists δ′n → 0 such that
∑n

i=1D(P̂Zi
‖Q0) ≤ δ′n. Hence, (34) implies

R ≤ Cnc

(
δ′n
n
,B + δn

)
+ εn. (35)

Note that the right-hand side of (35) approaches C(0, B) as n tends to infinity due to the continuity of

Cnc(A,B), from which follows the condition PZ = Q0. Further, because I(U ;Y ) − I(U ;S) is convex

in the conditional distribution PX|U,S , it suffices to maximize it over functions x(u, s) instead of PX|S,U .

Finally, the cardinality bound on U follows by applying the support lemma [10].

Proof of Lemma 5. Let us show that Cnc(A,B) is non-decreasing in each of A and B, and concave and

continuous in (A,B). It can be proved in a similar manner that the same statement holds for Cc(A,B).

First, Cnc(A,B) is non-decreasing in each of A and B since increasing A or B can only enlarge the

set of feasible PU |SPX|U,S .

Second, to show the concavity, fix arbitrary (A1, B1) and (A2, B2) and let PU1|SPX1|U1,S and PU2|S

PX2|U2,S denote the corresponding conditional PMFs that achieve the maxima of Cnc(A1, B1) and

Cnc(A2, B2), respectively. Let Y1 and Z1 (resp. Y2 and Z2) denote the channel outputs at the receiver and

the warden, respectively, corresponding to PU1|SPX1|U1,S (resp. PU2|SPX2|U2,S). Let Q denote a random

variable independent of U1, U2, and S, which takes value 1 with probability λ and value 2 with probability

1− λ.

Define U ′ = (Q,UQ). Let X ′, Y ′, and Z ′ denote the channel input at the transmitter and the channel

outputs at the receiver and the warden, respectively, corresponding to PX′|U ′,S = PXQ|UQ,S . Note that

PX′ = λPX1
+ (1− λ)PX2

and PZ′ = λPZ1
+ (1− λ)PZ2

. Then,

E[b(X ′)] =
∑
x∈X

PX′(x)b(x)

= λ
∑
x∈X

PX1
(x)b(x) + (1− λ)

∑
x∈X

PX2
(x)b(x)

≤ λB1 + (1− λ)B2 (36)

and

D(PZ′‖Q0) ≤ λD(PZ1
‖Q0) + (1− λ)D(PZ2

‖Q0)

≤ λA1 + (1− λ)A2 (37)
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because the relative entropy is convex in the first argument. Hence, it follows that

Cnc(λ(A1, B1) + (1− λ)(A2, B2)) ≥ I(U ′;Y ′)− I(U ′;S) (38)

≥ I(UQ, Q;Y ′)− I(UQ, Q;S) (39)

(a)

≥ I(UQ;Y ′|Q)− I(UQ;S|Q) (40)

= λI(U1;Y1) + (1− λ)I(U2;Y2)

− λI(U1;S)− (1− λ)I(U2;S) (41)

= λCnc(A1, B1) + (1− λ)Cnc(A2, B2), (42)

where (a) is because Q and S are independent. Hence, we conclude that Cnc(A,B) is concave.

Lastly, Cnc(A,B) is continuous in (A,B) since both the objective function I(U ;Y )−I(U ;S) and the

constraint functions E[b(X)] and D(PZ‖Q0) are continuous in PU |SPX|U,S as long as (2) is satisfied.

V. PROOF OF LOWER BOUNDS

In this section, we prove the achievability parts of our main results, i.e., Theorems 2 and 4. To prove the

achievability part for the case with causal CSI at the transmitter, we employ the Shannon’s strategy [17]

and use the soft covering theorem [18, Theorem 4], [19, Corollary VII.4] for the covertness analysis. For

the case with noncausal CSI at the transmitter, our scheme is based on multicoding [10], [12], but instead

of performing the joint-typicality check to find a codeword that seemingly follows a joint distribution

with the state sequence, we use likelihood encoding employed in [11] since it admits easier covertness

analysis.

Proof of Theorem 2. Fix ε > 0. Further fix PV and x(v, s) such that PZ = Q0 and E[b(X)] ≤ B
1+ε .

1) Codebook generation: For each k ∈ [1 : 2nRK ] and m ∈ [1 : 2nR], randomly and independently

generate a vn(k,m) according to
∏n
i=1 PV (vi). These constitute the codebook C.

2) Encoding at the transmitter: Given state sequence sn, secret key k, and message m, the encoder

transmits xn where xi = x(vi(k,m), si).

3) Decoding at the receiver: Upon receiving yn, with access to the secret key k, the decoder declares

that m̂ is sent if it is the unique message such that

(vn(k, m̂), yn) ∈ T (n)
ε . (43)

Otherwise it declares an error. Here T (n)
ε denotes the (strongly) typical set [20].

4) Covertness analysis: By the soft covering theorem [18, Theorem 4], [19, Corollary VII.4], we have

EC [D(P̂Zn‖Q×n0 )]
n→∞−→ 0 if

R+RK > I(V ;Z). (44)
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5) Reliability and input cost analysis: By the standard error analysis, it can be shown that the

probability of error averaged over the random codebook C tends to zero as n tends to infinity if

R < I(V ;Y ). (45)

Furthermore, by the typical average lemma [10],

EC,M,K,Sn [b(Xn)] = P (Xn /∈ T (n)
ε ) EC,M,K,Sn

[
b(Xn)|Xn /∈ T (n)

ε

]
+ P (Xn ∈ T (n)

ε ) EC,M,K,Sn

[
b(Xn)|Xn ∈ T (n)

ε

]
(46)

≤ P (Xn /∈ T (n)
ε )Bmax +B, (47)

where Bmax := maxx∈X b(x). Note that P (Xn /∈ T (n)
ε )→ 0 as n tends to infinity. Hence, we have

lim sup
n→∞

EC,M,K,Sn [b(Xn)] ≤ B. (48)

In summary, if (44) and (45) are satisfied, then there must exist a sequence of codes such that

limn→∞ P
(n)
e = 0, limn→∞ EM,K,Sn [b(Xn)] ≤ B, and limn→∞D(PZn‖Q×n0 ) = 0. By applying the

Fourier-Mozkin elimination [10] to (44) and (45), we complete the proof.

Proof of Theorem 4. Fix ε > ε′ > 0. Further fix PU |S and x(u, s) such that PZ = Q0 and E[b(X)] ≤ B
1+ε′ .

1) Codebook generation: For each k ∈ [1 : 2nRK ] and m ∈ [1 : 2nR], randomly and independently

generate 2nR
′

codewords un(k,m, l), l ∈ [1 : 2nR
′
] according to

∏n
i=1 PU (ui). These constitute the

codebook C.

2) Encoding at the transmitter: Given state sequence sn, secret key k, and message m, evaluate the

likelihood

g(l|sn, k,m) =
P×nS|U (sn|un(k,m, l))∑

l′∈[1:2nR′ ] P
×n
S|U (sn|un(k,m, l′))

. (49)

The encoder randomly generates l according to (49) and transmits xn where xi = x(ui(k,m, l), si).

3) Decoding at the receiver: Upon receiving yn, with access to the secret key k, the decoder declares

that m̂ is sent if it is the unique message such that

(un(k, m̂, l), yn) ∈ T (n)
ε (50)

for some l ∈ [1 : 2nR
′
]; if no such unique m̂ can be found, it declares an error.

4) Covertness analysis: For covertness analysis, we use the following lemma, which is proven at the

end of this section.

Lemma 6. For the codebook generation and encoding procedure described above, if R′ > I(U ;S) and

R+RK +R′ > I(U ;Z), then

EC

[
D(P̂Zn‖P×nZ )

]
n→∞−→ 0. (51)

Now, let

R′ > I(U ;S) (52)
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R+RK +R′ > I(U ;Z). (53)

Because PU |S and x(u, s) are chosen to satisfy PZ = Q0, Lemma 6 implies that

EC [D(P̂Zn‖Q×n0 )]
n→∞−→ 0. (54)

5) Reliability analysis: Consider the probability of error averaged over the randomly generated code-

book C. Let M and M̂ denote the transmitted and decoded messages, respectively, and let L denote the

index generated according to (49) at the encoder. The error event {M̂ 6= M} occurs only if at least one

of the following events occurs:

E1 := {(Un(K,M,L), Sn) /∈ T (n)
ε′ } (55)

E2 := {(Un(K,M,L), Y n) /∈ T (n)
ε } (56)

E3 := {(Un(K,m, l), Y n) ∈ T (n)
ε for some m 6= M and l ∈ [1 : 2nR

′
]}. (57)

Hence, the probability of error is bounded as

P (M̂ 6= M) ≤ P (E1) + P (Ec1 ∩ E2) + P (E3). (58)

Now we bound each term on the right-hand side of (58). The first term P (E1) tends to zero as n tends

to infinity due to [11, Lemma 2], as long as (52) is satisfied. Next, note that

Ec1 = {(Un(K,M,L), Sn) ∈ T (n)
ε′ }. (59)

By the conditional typicality lemma [10], P (Ec1 ∩ E2) tends to zero as n tends to infinity. Lastly, P (E3)

tends to zero as n tends to infinity by the packing lemma [10] provided

R+R′ < I(U ;Y ). (60)

In summary, the probability of error averaged over the random codebook C tends to zero as n tends to

infinity if (52), (53), and (60) are satisfied.

6) Input cost analysis: In the reliability analysis, it is shown that

P (E1) = P{(Un(K,M,L), Sn) /∈ T (n)
ε′ } (61)

= P ((Un(K,M,L), Xn, Sn) /∈ T (n)
ε′ )

n→∞−→ 0. (62)

Note that if xn ∈ T (n)
ε′ , then b(xn) ≤ B by the typical average lemma [10]. Hence,

EC,M,K,Sn [b(Xn)]

= P (E1) EC,M,K,Sn [b(Xn)|E1]

+ P (Ec1) EC,M,K,Sn [b(Xn)|Ec1] (63)

≤ P (E1)Bmax + P (Ec1)B, (64)
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where Bmax := maxx∈X b(x). By (62), the right-hand side of (64) approaches B as n tends to infinity.

Hence, we have

lim sup
n→∞

EC,M,K,Sn [b(Xn)] ≤ B. (65)

In summary, if (52), (53), and (60) are satisfied, then there must exist a sequence of codes such that

limn→∞ P
(n)
e = 0, limn→∞ EM,K,Sn [b(Xn)] ≤ B, and limn→∞D(PZn‖Q×n0 ) = 0. By applying the

Fourier-Mozkin elimination [10] to (52), (53), and (60), we complete the proof.

Remark 4. We note that our scheme for the case with noncausal CSI at the transmitter is similar to

that in [21] for wiretap channels with noncausal CSI at the transmitter under the semantic-security

metric requiring negligible information leakage for all message distributions. The coding scheme in [21]

incorporates superposition coding; the inner codebook is for a random index and the outer codebook is

for the message and another random index. To compare that scheme with ours, let us consider the special

case of the scheme in [21] where the rate of the inner codebook is set to zero and let R and R′ denote

the rates of the message and the random index in the outer codebook. For our scheme, let us consider

the special case of RK = 0 and sufficiently large B, i.e., no secret key and no input cost constraint.

Then the codebook generation and the encoding procedure of the scheme [21] become the same as our

scheme. As shown in the proof of Theorem 4, reliability at the receiver is satisfied if R′ > I(U ;S) and

R + R′ < I(U ;Y ), but covertness requires R + R′ > I(U ;Z) and PZ = Q0 while semantic security

requires R′ > I(U ;Z).

Proof of Lemma 6: The proof follows similar lines to [11, Section VII-A]. As in [11, Section

VII-A], it can be checked that, to prove (51), it suffices to show that the total variation (TV) distance

approaches zero:

EC ‖P̂Zn − P×nZ ‖TV
n→∞−→ 0. (66)

To evaluate the TV distance, define the ideal PMF for codebook C as follows:

Γ(C)(k,m, l, un, sn, zn) =

2−n(RK+R+R′)
1un(k,m,l)=unP×nS|U (sn|un)P×nZ|U,S(zn|un, sn).

Using the triangle inequality for the TV distance, we upper-bound the left-hand side of (66) as

EC ‖P̂Zn − P×nZ ‖TV ≤ EC ‖P̂Zn − Γ
(C)
Zn‖TV + EC ‖Γ(C)

Zn − P×nZ ‖TV. (67)

From the soft covering theorem [18, Theorem 4], [19, Corollary VII.4], the second term on the right-hand

side of (67) decays to zero as n→∞ if RK + R + R′ > I(U ;Z). For the first term on the right-hand

side of (67), note that

EC ‖P̂Zn − Γ
(C)
Zn‖TV ≤ EC ‖P̂Sn,Zn − Γ

(C)
Sn,Zn‖TV. (68)
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Y = ZX

S ∼ Bern(p)

Figure 2. Binary symmetric channel with CSI at the transmitter

By applying the same analysis as in [11, Section VII-A], the right-hand side of (68) decays to zero as

n→∞ if R′ > I(U ;S).

VI. EXAMPLES

In this section, we show two examples where the covert capacity of a channel is zero in the absence

of CSI at the transmitter, but is positive with CSI.

A. The Binary Symmetric Channel

Consider a channel in Fig. 2 where X , Y , Z , and S are all binary, and where PS is the Bernoulli

distribution of parameter p ∈ (0, 0.5). The channel law is

Y = Z = X ⊕ S. (69)

Assume that x0 = 0 and RK > 0.

Using Theorems 1 and 2 one can check that, with causal CSI, the optimal choice is V = Y = Z

having the Bernoulli distribution of parameter p. This gives

Cc = Hb(p) = p log
1

p
+ (1− p) log

1

1− p
. (70)

Furthermore, it can be checked that Cnc = Cc. Note that, without CSI, covert communication cannot

have a positive rate [2], [3] on this channel.

B. The AWGN Channel

Consider an AWGN channel in Fig. 3 where the channel outputs at the receiver and the warden are

given as

Y = X + S +NY (71)

Z = X + S +NZ , (72)

respectively, where X is the channel input from the transmitter, S ∼ N (0, T ) is the external interference

that is known to the transmitter causally or noncausally but unknown to the receiver and the warden, and

NY ∼ N (0, 1) and NZ ∼ N (0, σ2), σ2 > 0, are additive Gaussian noises. Let P denote the input power

constraint at the transmitter, so the input must satisfy E[X2] ≤ P . The “no input” symbol is 0, hence the

warden observes Zn distributed according to Q×n0 , where Q0 = N (0, T + σ2), when no communication
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Y

Z

X

NY ∼ N (0, 1)

NZ ∼ N (0, σ2)

S ∼ N (0, T )

E[X2] ≤ P

Figure 3. AWGN channel with CSI at the transmitter

takes place over n channel uses. The transmitter and the receiver are assumed to share a secret key of

rate RK . The covertness constraint is again given by limn→∞D(P̂Zn‖Q×n0 ) = 0. The covert capacity

of this channel is defined in the same way as in Section II and denoted by Cc and Cnc for causal and

noncausal CSI cases, respectively.

The following theorems show that the covert capacity can be positive for the AWGN channel both

with causal CSI and with noncausal CSI at the transmitter. In the following, we define

γ∗ := min

{
1,
P

2T

}
(73a)

T ∗ := (1− γ∗)2T (73b)

P ∗ := T − T ∗. (73c)

Theorem 7. If

RK >
1

2
log

(
1 +

P ∗

T ∗ + σ2

)
− 1

2
log

(
1 +

P ∗

T ∗ + 1

)
, (74)

the covert capacity with causal CSI at the transmitter is lower-bounded as

Cc ≥
1

2
log

(
1 +

P ∗

T ∗ + 1

)
. (75)

Theorem 8. If

RK >
1

2
log

(
1 +

(P ∗ + P ∗

P ∗+1T
∗)2

(P ∗ + ( P ∗

P ∗+1)2T ∗)(P ∗ + T ∗ + σ2)− (P ∗ + P ∗

P ∗+1T
∗)2

)

− 1

2
log

(
1 +

(P ∗ + P ∗

P ∗+1T
∗)2

(P ∗ + ( P ∗

P ∗+1)2T ∗)(P ∗ + T ∗ + 1)− (P ∗ + P ∗

P ∗+1T
∗)2

)
, (76)

the covert capacity is given by

Cnc =
1

2
log (1 + P ∗) . (77)

Remark 5. If the warden’s channel is degraded, i.e., σ2 > 1, a secret key is not needed to achieve the

rates (75) and (77) for the cases with causal CSI and with noncausal CSI at the transmitter, respectively.
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Remark 6. Let us assume that RK is sufficiently large so that (74) and (76) are satisfied. If T ∗ = 0,

i.e., T ≤ P
2 , then Cc = Cnc. On the other hand, if T → ∞, it follows P ∗ → P . Then, Cnc approaches

1
2 log(1+P ), which is the capacity of the channel (71) with noncausal CSI at the transmitter and without

a covertness constraint.

We prove Theorems 7 and 8 by adapting our DMC results in Theorems 2, 3, and 4. In the achievability

proofs of Theorems 7 and 8, we reduce the interference power to make room for message transmission.

We set the channel input to have the form of X = X∗ − γ∗S where X∗ is independent of S, so that

γ∗S is subtracted from S when X is sent. Then, we regard X∗ as the input for the channel with reduced

interference power of (1 − γ∗)2T , i.e., T ∗. To satisfy the covertness constraint, X∗ must have power

T − T ∗ = P ∗. Note that the choice of γ∗ in (73a) ensures that the power constraint of X is satisfied,

i.e.,

E[X2] = E[X∗2] + γ∗2T = T − (1− γ∗)2T + γ∗2T = 2γ∗T ≤ P. (78)

For the case with causal CSI, the right-hand side of (75) is achieved by letting V = X∗ and treating

interference as noise at the receiver. For the case with noncausal CSI, the right-hand side of (77) is

achieved by choosing U as in “dirty paper coding” [22].

In the following we first prove Theorem 8.

Achievability proof of Theorem 8. We modify the proof of Theorem 4 so that it applies to the Gaussian

case with a power constraint. Roughly speaking, our idea is to “quantize” at the decoder but not at the

encoder. We choose a conditional probability density function (PDF) of U given S and a mapping from

(U, S) to X via the following:

X∗ ∼ N (0, P ∗), independent of S (79)

U = X∗ +
P ∗

P ∗ + 1
(1− γ∗)S (80)

X = U − P ∗ + γ∗

P ∗ + 1
S = X∗ − γ∗S. (81)

We then employ the same encoding procedure as in Theorem 4, except that PMFs are now replaced by

PDFs. Next, as an additional step for the encoder, we fix some small positive ε and check whether the

resulting input sequence xn satisfies the power constraint
n∑
i=1

x2i ≤ n(P + ε) (82)

or not. Denote by E4 the event that (82) is not satisfied. When E4 occurs, we replace xn by the all-zero

sequence. By similar analysis as in [11] one can show that the probability of E4 tends to zero as n tends

to infinity for all positive ε. Clearly, in the limit where ε approaches zero, our encoding scheme above

satisfies the given power constraint.
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For covertness analysis, we adapt the proof for the DMC case as follows. Let P̂Zn denote the distribution

at the warden generated by the above coding scheme, and let P̄Zn denote the distribution generated by this

scheme but without the additional step of replacing those codewords not satisfying (82) with the all-zero

sequence. It is clear from the proof of Lemma 6 that it can be applied to PDFs without a maximum-cost

constraint, so we can write, similarly to (66), that

EC ‖P̄Zn −Q×n0 ‖TV
n→∞−→ 0. (83)

Next fix a codebook C and let P1 denote the distribution resulting from conditioning the corresponding

P̄Zn on the event Ē4, and P2 that on E4. Then P̄Zn = (1 − P (E4|C))P1 + P (E4|C)P2 and P̂Zn =

(1− P (E4|C))P1 + P (E4|C)Q×n0 . We have

‖P̂Zn −Q×n0 ‖TV = (1− P (E4|C))‖P1 −Q×n0 ‖TV (84)

≤ ‖P1 −Q×n0 ‖TV. (85)

On the other hand

‖P̄Zn −Q×n0 ‖TV ≥ (1− P (E4|C))‖P1 −Q×n0 ‖TV − P (E4|C)‖P2 −Q×n0 ‖TV (86)

≥ ‖P1 −Q×n0 ‖TV − 2P (E4|C). (87)

Combining (85) and (87) we obtain

EC ‖P̂Zn −Q×n0 ‖TV ≤ EC ‖P̄Zn −Q×n0 ‖TV + 2P (E4). (88)

By (83), (88), and the fact that P (E4) tends to zero as n→∞, we know that the left-hand side of (88)

tends to zero as n→∞. Because P̂Zn is absolutely continuous with respect to Q×n0 , this further implies

that (see [11, Section VII-A])

D
(
P̂Zn

∥∥∥Q×n0

)
n→∞−→ 0. (89)

We next describe the decoder and analyze its probability of making an error. To this end, we first

quantize the random variables S, U , and Y . A partition P of U is a finite collection of disjoint sets Pi

such that ∪iPi = U . The quantization of U by P is denoted as [U ]P and defined by

P

[U ]P =

supPi if supPi <∞

inf Pi otherwise

 = P (U ∈ Pi). (90)

Similarly, S (resp. Y ) is quantized by partition P̃ (resp. P ′) and its quantization is denoted by [S]P̃ (resp.

[Y ]P ′). The decoder considers the above quantizations of the received sequence yn and every un in the

codebook, and performs typicality decoding as in the proof of Theorem 4. The event E4 defined above,

which has vanishing probability as n→∞, can be taken into account as an additional error event. Then

the conditions (52) and (60) become

R′ > I([U ]P ; [S]P̃) (91)
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R+R′ < I([U ]P ; [Y ]P ′). (92)

As we refine the partitions P , P̃ , and P ′, I([U ]P ; [S]P̃) approaches I(U ;S) and I([U ]P ; [Y ]P ′) ap-

proaches I(U ;Y ) according to [23, Section 8.6].

We thus conclude that our coding scheme will succeed if (7) and (8) hold for the chosen PDFs.

Computing these expressions explicitly completes the achievability proof of Theorem 8.

Converse proof of Theorem 8. First, by examining the proof of Theorem 3, we see that it also applies

to the Gaussian channel. Fix the conditional distribution PU |S and the mapping x(u, s) that achieve the

maximum in (6). Recall that they satisfy PZ = Q0 and E[X2] ≤ P . Let P̃ := Var(X) and Λ := E[XS].

It follows that

I(U ;Y )− I(U ;S) ≤ I(U ;Y, S)− I(U ;S) (93)

= I(U ;Y |S) (94)

≤ I(X,U ;Y |S) (95)

(a)
= I(X;Y |S) (96)

= h(X +NY |S)− h(NY ) (97)

(b)

≤ 1

2
log

(
1 + P̃ − Λ2

T

)
, (98)

where (a) is due to the Markov chain U − (X,S) − Y and (b) is from [10, Problem 2.7]. Recall the

condition PZ = Q0, which implies

T + σ2 = Var(X + S +NZ) (99)

= P̃ + T + 2Λ + σ2, (100)

therefore we must have Λ = − P̃
2 . Hence (98) implies

I(U ;Y )− I(U ;S) ≤ 1

2
log

(
1 + P̃ − P̃ 2

4T

)
. (101)

Note that P̃ ≤ P and

arg max
0≤P̃≤P

(
P̃ − P̃ 2

4T

)
= min{P, 2T}. (102)

Thus, we have

C ≤ 1

2
log

(
1 + min{P, 2T} − (min{P, 2T})2

4T

)
, (103)

which concludes the proof.

Proof of Theorem 7. We can adapt Theorem 2 to the Gaussian case with a power constraint through

a quantization argument that is similar to the one in the achievability proof of Theorem 8. By letting

V ∼ N (0, P ∗) and X = V − γ∗S in Theorem 2, Theorem 7 is proved.
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VII. CONCLUDING REMARKS

We have shown that causal and noncausal CSI at the transmitter can sometimes help it to communicate

covertly at a postive rate over channels which, without CSI, obey the “square-root law” for covert

communications. Computable single-letter formulas for the maximum achievable covert-communication

rate (assuming that a sufficiently long key is available) have been derived. This work, from a different

perspective to that of recent works [5]–[7], shows that channel statistics unknown to the warden can help

the communicating parties to communicate covertly.

There are many channels over which, even with the help of CSI, covert communication cannot have a

positive rate (Remark 3 contains simple examples). For some of these channels, CSI may help to improve

the scaling constant of the maximum amount of information that can be covertly communicated with

respect to the square root of the total number of channel uses. We have not investigated this possibility

in the current paper.

So far, we have not been able to prove upper bounds on the minimum secret-key length required to

achieve the covert capacity that match the lower bounds (5) and (8), except when the warden has a weaker

channel than the intended receiver, in which case this length is zero. This key-length problem may be

related to the secrecy capacity of the wiretap channel with causal or noncausal CSI at the transmitter

[21], [24], which, to the best of our knowledge, is not yet completely solved.

REFERENCES

[1] B. A. Bash, D. Goekel, and D. Towsley, “Limits of reliable communication with low probability of detection on AWGN

channels,” IEEE J. Select. Areas Commun., vol. 31, no. 9, pp. 1921–1930, Sept. 2013.

[2] P. H. Che, M. Bakshi, and S. Jaggi, “Reliable deniable communication: Hiding messages in noise,” in Proc. IEEE Int.

Symp. Inform. Theory, Istanbul, Turkey, July 10–15 2013.

[3] L. Wang, G. W. Wornell, and L. Zheng, “Fundamental limits of communication with low probability of detection,” IEEE

Trans. Inform. Theory, vol. 62, no. 6, pp. 3493–3503, June 2016.

[4] M. Bloch, “Covert communication over noisy channels: A resolvability perspective,” IEEE Trans. Inform. Theory, vol. 62,

no. 5, pp. 2334–2354, May 2016.

[5] P. H. Che, M. Bakshi, C. Chan, and S. Jaggi, “Reliable deniable communication with channel uncertainty,” in Proc. Inform.

Theory Workshop (ITW), Hobart, Australia, Nov. 2–5, 2014.

[6] S. Lee, R. J. Baxley, M. A. Weitnauer, and B. Walkenhorst, “Achieving undetectable communication,” IEEE Journal of

Selected Topics in Signal Processing, vol. 9, no. 7, pp. 1195–1205, Oct 2015.

[7] T. V. Sobers, B. A. Bash, D. Goeckel, S. Guha, and D. Towsley, “Covert communication in the presence of an uninformed

jammer,” [Online]. Available: http://arxiv.org/abs/1608.00698.

[8] A. El Gamal, N. Hassanpour, and J. Mammen, “Relay networks with delays,” IEEE Transactions on Information Theory,

vol. 53, no. 10, pp. 3413–3431, Oct 2007.

[9] H. Chang, S. Y. Chung, and S. Kim, “Interference channel with a causal relay under strong and very strong interference,”

IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 859–865, Feb 2014.

August 9, 2017 DRAFT

http://arxiv.org/abs/1608.00698


20

[10] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[11] Z. Goldfeld, G. Kramer, H. H. Permuter, and P. Cuff, “Strong secrecy for cooperative broadcast channels,” IEEE

Transactions on Information Theory, vol. 63, no. 1, pp. 469–495, Jan 2017.

[12] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random parameters,” Probl. Control Inf. Theory, vol. 9, pp.

19–31, 1980.

[13] J. Fridrich, Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, 2009.

[14] Y. Wang and P. Moulin, “Perfectly secure steganography: Capacity, error exponents, and code constructions,,” IEEE Trans.

Inform. Theory, vol. 54, no. 6, pp. 2706–2722, June 2008.

[15] I. Ezzeddine and P. Moulin, “Achievable rates for queue-based timing stegocodes,” in Proc. Inform. Theory Workshop

(ITW), 2009.

[16] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses. New York: Springer Verlag., 2005.

[17] C. E. Shannon, “Channels with side information at the transmitter,” IBM J. Res. Develop., vol. 2, pp. 289–293, 1958.
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