
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 1, JANUARY 2019 141

Secure Distributed Computing With Straggling
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Abstract— In this paper, we consider a secure distributed
computing scenario in which a master wants to perform matrix
multiplication of confidential inputs with multiple workers in
parallel. In such a setting, a master does not want to reveal
information about the two input matrices to the workers in
an information-theoretic sense. We propose a secure distributed
computing scheme that can efficiently cope with straggling effects
by applying polynomial codes on sub-tasks assigned to workers.
The achievable recovery threshold, i.e., the number of workers
that a master needs to wait for to get the final product, of our
proposed scheme is revealed to be order-optimal to the number of
workers. Moreover, we derive the achievable recovery threshold
of the proposed scheme is within a constant multiplicative
factor from information-theoretic lower bound. As a byproduct,
we extend our strategy to secure distributed computing for
convolution tasks on confidential data.

Index Terms— Distributed computing, data security,
polynomial codes.

I. INTRODUCTION

RECENTLY, there has been much interest in machine
learning and big data analytics, along with their appli-

cations to image processing, collaborative filtering, and so
on. To cope with a large computation load and memory
requirement to process massive datasets, distributed computing
frameworks have been developed to complete whole tasks with
multiple servers (workers) in parallel, which can leverage a
large number of servers to speed up processing a big task.
However, in a distributed computing scenario, it has been
reported a major bottleneck to increase computation time is
waiting time for slowest or even unresponsive workers, which
is referred to as stragglers [1]. One simple solution to alleviate
the impact of stragglers, i.e., straggling effect, is to allow
redundancies when assigning tasks to the workers [2]. Fur-
thermore, coding techniques may be exploited to mitigate the
straggling effect for various distributed computing scenarios
such as distributed matrix multiplication [3]–[8], distributed
convolution [9], and distributed gradient descent [10], [11].
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In this work, we consider data security in distributed com-
puting frameworks. Preserving security of input data in a
distributed computing model could be a critical issue when
1) there could exist an eavesdropper with access to the link
between a master and workers, 2) a master needs to exploit
suspicious but useful workers, and 3) information of input data
to be computed must be protected from workers, e.g., personal
location information and medical data. There have been signif-
icant studies on data security in a distributed computing model.
Numerous papers have considered private multi-party compu-
tation model in which data security is guaranteed for workers
to privately own their local data, and not to reveal them
to other workers [12]–[14]. Recently, Mcmahan et al. [15],
Smith et al. [16] have studied the computing model of securely
outsourcing data in which each party has own confidential
data, and the master wants to perform computations on con-
fidential data without requesting for disclosing the data to
the parties. In this work, we consider a secure distributed
computing problem in which a master wants to perform
a matrix multiplication task on confidential data with non-
colluding workers in parallel, while not revealing information
about confidential data to workers in an information-theoretic
sense. In a secure distributed computing scenario, straggling
effects must be controlled to quickly finish entire tasks as in
a conventional distributed computing scenario.

In this paper, we raise fundamental questions on the secure
distributed computing problem regarding the minimum num-
ber of workers the master needs to wait for to obtain the final
product for the worst-case scenario (will be defined as recovery
threshold). We also discuss how to design a secure distributed
computing scheme that can achieve the optimum recovery
threshold. The contributions of this work are threefold.

• We first derive the upper bound on the recovery threshold
of the secure distributed computing problem, i.e., the
minimum number of arbitrary workers that can guarantee
decodability of the final output at the master.

• Secondly, we prove a lower bound on the recovery
threshold of the secure distributed computing.

• As a consequence, we claim that optimal recovery thresh-
old can be characterized within a factor of 2.

We reveal the upper bound on the recovery threshold by
proposing an achievable secure distributed computing scheme
for matrix multiplication using polynomial codes [17]. The
polynomial code in the proposed secure distributed computing
scheme is carefully designed to preserve security of input data
from workers, and to address straggling effects effectively as
well, by modifying existing polynomial code for (security-
free) distributed computing scheme that can achieve optimal
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recovery threshold [8]. Achievable recovery threshold of our
proposed scheme is order-optimal to the number of workers,
i.e., it does not scale with the number of workers, that is
believed to the first result on the secure distributed computing
problem in literature.

We extend our approach to the secure distributed computing
scenario for convolution tasks. Beyond extending polynomial
codes for distributed matrix multiplication, we decrease the
achievable recovery threshold of the secure distributed con-
volution by leveraging inherent property of convolution tasks,
where the sums of the convolutions of sub-vectors are needed
to get the overall convolution result. The proposed scheme
can achieve order-optimality to the number of workers on the
recovery threshold. With the proposed scheme we demonstrate
that optimal recovery threshold for convolution tasks can
be characterized within a factor of 3. To the best of our
knowledge, this is the first result to use coding techniques to
perform distributed convolution while preserving data security
from workers.

From results on achievable recovery threshold, we ana-
lyze overall runtime distribution of the proposed scheme,
by focusing on the waiting time of returning sub-products
from workers at the master. We estimate the mean waiting
time under the assumption that the computing time at workers
follows exponential distribution [25]. In particular, compared
with an uncoded scheme that allocates whole tasks to workers
as much as possible without considering straggling effects,
we demonstrate that our scheme can reduce the overall runtime
by efficiently mitigating straggling effects.

A. Related Work

There are a large body of work on the secure distributed
computing problem in the computer science and machine
learning literature. Several works have proposed securely out-
sourcing computation schemes with expensive homomorphic
encryption [18], [19] or secret key generation [20]. Secure
distributed computing schemes that address straggling effects
have been proposed using secret sharing [21], [22] or staircase
codes [7], [23] ensuring information-theoretic security on input
data. However, these schemes assume that only one input of
two matrices for multiplication is regarded as confidential data
that must be preserved from workers, while our scheme using
polynomial codes regards the two inputs as confidential data.
Atallah and Frikken [24] considered secure distributed matrix
multiplication on confidential inputs, yet did not consider
straggling effects. To the best of our knowledge, our paper is
the first in proposing a secure distributed computing scheme
for matrix multiplication and convolution tasks preserving
data security of two inputs from the workers and efficiently
mitigating the straggler effects as well.

B. Organization

The remainder of this paper is organized as follows.
In Section II, we introduce the system model and formulate a
secure distributed computing problem on recovery threshold.
In Section III, we state our main results and implications.
In Section IV, we propose a new secure distributed computing
scheme using polynomial codes. In Section V, we extend the

Fig. 1. System model of secure distributed computing for matrix multipli-
cation of two confidential data A and B with N workers.

proposed scheme to a secure distributed computing problem
for convolution. In Section VI, we estimate and analyze
overall runtime distribution of the proposed scheme. Finally,
in Section VII, we conclude this paper.

C. Notation

For a, b ∈ Z, [a : b] denotes {a, a + 1, . . . , b}.
II. SYSTEM MODEL & PROBLEM FORMULATION

We consider a secure distributed computing scenario in
which a master wants to perform a matrix multiplication task
C = AT B on confidential data A ∈ F

s×r
q and B ∈ F

s×t
q for

a sufficiently large finite field Fq . We assume that either of
the two inputs A and B is a tall matrix, i.e., s ≥ r or s ≥ t ,
to ensure that the final product C is a full-rank matrix. The
master divides this multiplication task into smaller computa-
tion tasks and assigns to N non-colluding workers {Wi }N

i=1,
each of which can store 1

m times the size of A and 1
n times

the size of B . A master encodes A and B into N sub-matrices
{ Ãi}N

i=1 and {B̃i}N
i=1, where Ãi ∈ F

s× r
m

q and B̃i ∈ F
s× t

n
q ,

respectively, and sends Ãi and B̃i to Wi for all i ∈ [1 : N].
Workers obtain no information about A and B from their
assigned sub-matrices in an information-theoretic sense [29],
i.e.,

I ( Ãi ; A) = 0,

I (B̃i ; B) = 0, ∀i ∈ [1 : N]. (1)

Each worker Wi computes a sub-product C̃i = ÃT
i B̃i

and returns it to the master. A master waits only for sub-
products from a subset of workers to cope with the straggling
effect, and recovers the final product C given these sub-
products. We illustrate the system model of a secure distributed
computing for matrix multiplication with N workers in Fig. 1.

We formally define the secure distributed computing prob-
lem of matrix multiplication. First, we denote the sets of
encoded sub-matrices of A and B as

Ã � { Ã1, Ã2, . . . , ÃN },
B̃ � {B̃1, B̃2, . . . , B̃N }. (2)

We say matrices A and B are securely encoded for distributed
computing using N workers if each of the elements in Ã and B̃
has zero information about A and B , respectively (1). Each of
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the sub-matrices Ãi and B̃i for all i ∈ [1 : N] should satisfy

the storage constraint at the workers, i.e., Ãi ∈ F
s× r

m
q and

B̃i ∈ F
s× t

n
q for all i ∈ [1 : N]. Using this terminology, as in [8]

we define the recovery threshold k(Ã, B̃) of securely encoded
sets as the minimum number of workers k where the master
can recover C given the sub-products C̃i = ÃT

i B̃i from any k
workers. The goal of the secure distributed computing problem
of matrix multiplication is to find the optimum recovery
threshold K ∗, that can be denoted by

K ∗ � min
Ã,B̃

k(Ã, B̃), (3)

and to find securely encoded sets Ã and B̃ that can achieve
optimum recovery threshold.

III. MAIN RESULTS

In this section, we introduce our main results on the
recovery threshold of secure distributed computing problem.
We also reveal notable implications of our work.

The first theorem presents a recovery threshold that can
be achieved by the proposed distributed computing scheme
using polynomial codes, yielding an upper bound on optimal
recovery threshold.

Theorem 1: For secure distributed computing of matrix
multiplication task C = AT B using N workers, where each
worker can store 1

m fraction of A and 1
n fraction of B without

information about A and B, optimum recovery threshold K ∗
is upper bounded by

K ∗ ≤ mn + m + n. (4)
Proof: The achievable scheme will be given in Section IV.

Remark 1: Without security constraint, the optimum recov-
ery threshold K ∗ for a distributed matrix multiplication task
C = AT B , where each worker can store 1

m fraction of A and
1
n fraction of B , is given by

K ∗ = mn. (5)

Optimum recovery threshold can be achieved by distributed
computing strategy using polynomial codes [8]. In a secure
distributed computing scenario, we reveal that the recovery
threshold mn+m +n can be achieved in Theorem 1, implying
that the master should wait for extra m+n workers to preserve
information about two confidential data from workers with our
scheme. Additional m + n workers for the master to wait for
can be regarded as the price of security in our scheme for a
secure distributed computing scenario.

We also provide an information-theoretic lower bound on
optimal achievable recovery.

Theorem 2: For secure distributed computing of matrix
multiplication task C = AT B using N workers, where each
worker can store 1

m fraction of A and 1
n fraction of B without

information about A and B, optimum recovery threshold K ∗
is lower bounded by

K ∗ ≥ mn + 1. (6)
Proof: See Appendix.

The proof of Theorem 2 is that the master cannot obtain
any information about the final product from each of the sub-
products, i.e.,

I
(

C; C̃i

)
= 0, ∀i ∈ [1 : N], (7)

since each of the sub-matrices assigned to the workers has
zero information about two inputs A and B (1). Theorem 2
reveals that the master should wait for at least one more worker
for a secure distributed computing compared to a non-secure
distributed computing scenario. However, this lower bound
does not match with the derived upper bound, thus we state
that optimal recovery threshold can be characterized within a
constant factor by comparing two bounds.

Theorem 3: For secure distributed computing of matrix
multiplication task C = AT B using N workers, where each
worker can store 1

m fraction of A and 1
n fraction of B without

information about A and B, optimum recovery threshold K ∗
is characterized within a factor of 2, i.e.,

1

2
Kpolynomial < K ∗ ≤ Kpolynomial, (8)

where Kpolynomial = mn + m + n is the upper bound on the
recovery threshold K ∗, that can be achieved by polynomial
codes.

Proof: See Appendix.
Remark 2: From results on the recovery threshold in Theo-

rems 1 and 2, we provide a fundamental trade-off between
recovery threshold and computation load at each worker,
by assuming that there is no storage constraint at the workers,
and A and B can be divided into 1

m fraction and 1
n fraction,

respectively, i.e., r � m and t � n. We define the computation
load L at each worker as computational complexity of C̃i =
ÃT

i B̃i , normalized by computational complexity of C = AT B ,
i.e., L � 1

mn . Recovery threshold of a distributed computing
with the computation load L at each worker is denoted as
K (L). By considering the assumption of m, n ∈ N, achievable
recovery threshold in Theorem 1 is converted to the upper
bound on K (L) as

K (L) ≤
⎧⎨
⎩

min mn + m + n

s.t.
1

L
≤ mn ≤ N, m, n ∈ N

(9)

Meanwhile, the proof of Theorem 2 can be easily extended to
the case of 1

L = mn ∈ R, thus the lower bound on K (L) is
given by

K (L) ≥ 1

L
+ 1. (10)

For example, Fig. 2 shows a tradeoff between computation
load and recovery threshold for a secure distributed computing
using N = 20 workers.

To validate the novelty of our proposed scheme using
polynomial codes for matrix multiplication of two confidential
inputs, we introduce a comparable secure distributed comput-
ing scheme using secret sharing.

We can generalize a secure distributed computing scheme
using secret sharing scheme for matrix multiplication of two
confidential inputs. By using (1, m + 1,

√
N) and (1, n + 1,
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Fig. 2. Tradeoff between computation load and recovery threshold for a
secure distributed computing scenario using N = 20 workers.

√
N ) secret sharing schemes in [22], respectively, a master

encodes A and B into
√

N secret shares {S A
i }

√
N

i=1 and {SB
j }

√
N

j=1,
each of which has 1

m times the size of A and 1
n times the

size of B to meet the information-theoretic bound on the
size of the secret shares. To extend the secret sharing scheme
from a single confidential input to two confidential inputs for
multiplication, we assume that workers are divided into

√
N

groups, each of which consists of
√

N workers. The workers
in the j th group are assigned to compute (S A

i )T SB
j for all

i ∈ [1 : √
N ]. The master can recover the sub-product AT SB

j
if m + 1 workers in the j th group finish their tasks, and it can
recover the final product C = AT B from the sub-products
of n + 1 groups. In this case, we can demonstrate that secret
sharing achieves a recovery threshold of

Ksecret-sharing = √
Nn + m(

√
N − n) + 1 = �(

√
N ). (11)

Remark 3: According to Theorem 1, achievable recovery
threshold of secure distributed matrix multiplication task using
polynomial codes is order-optimal to the number of workers,
i.e., it does not scale with the number of workers N .

Kpolynomial = mn + m + n = �(1). (12)

Existing secure distributed computing schemes using secret
sharing scheme or staircase codes [7] regard only one of
the two input matrices as confidential data. Thus, simple
extensions of these schemes for the scenario wherein the two
inputs are confidential cannot achieve order-optimality of the
recovery threshold to the number of workers, due to the worst-
case scenario. To the contrary, secure distributed computing
scheme using polynomial codes can achieve order-optimality
by carefully encoding the two confidential inputs, which is not
influenced by the worst-case scenario.

IV. SECURE DISTRIBUTED COMPUTING

USING POLYNOMIAL CODES FOR

MATRIX MULTIPLICATION

We now prove Theorem 1 by presenting our secure distrib-
uted computing scheme using polynomial codes. In a proposed
scheme, a master assigns sub-tasks of matrix multiplication
to workers, but the master does not reveal information about
two input matrices to workers. Let us introduce a motivating
example to provide intuition, and reveal the general description
of our proposed scheme.

A. Motivating Example

We first provide a motivating example of m = n = 1 case
to reveal the main idea of our secure distributed computing

scheme using polynomial codes. Consider a secure distributed
matrix multiplication C = AT B on confidential data A and B
using N = 5 workers. Each worker Wi , ∀i ∈ [1 : 5] stores two
securely encoded sub-matrices Ãi and B̃i which are encoded
and sent by a master as

Ã1 = RA + 1 · A, B̃1 = RB + 1 · B,

Ã2 = RA + 2 · A, B̃2 = RB + 2 · B,

Ã3 = RA + 3 · A, B̃3 = RB + 3 · B,

Ã4 = RA + 4 · A, B̃4 = RB + 4 · B,

Ã5 = RA + 5 · A, B̃5 = RB + 5 · B,

where Ãi and B̃i have the same size as A and B , respectively.
The two random matrices RA and RB are generated inde-
pendently of A and B by the master, and the elements of RA

and RB are uniformly drawn from independent and identically
distributed (i.i.d.) random variables over Fq . Workers have
no information about A and B since the randomly generated
matrices RA and RB are not known to workers.

Each worker Wi computes C̃i = ÃT
i B̃i and returns the

following result to the master.

C̃1 = ÃT
1 B̃1 = RT

A RB + 1 · AT RB + 1 · RT
A B + 12 · AT B,

C̃2 = ÃT
2 B̃2 = RT

A RB + 2 · AT RB + 2 · RT
A B + 22 · AT B,

C̃3 = ÃT
3 B̃3 = RT

A RB + 3 · AT RB + 3 · RT
A B + 32 · AT B,

C̃4 = ÃT
4 B̃4 = RT

A RB + 4 · AT RB + 4 · RT
A B + 42 · AT B,

C̃5 = ÃT
5 B̃5 = RT

A RB + 5 · AT RB + 5 · RT
A B + 52 · AT B.

These sub-products can be represented as
⎡
⎢⎢⎢⎢⎣

C̃1

C̃2

C̃3

C̃4

C̃5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

⎤
⎥⎥⎥⎥⎦

⎡
⎣

RT
A RB

AT RB + RT
A B

AT B

⎤
⎦. (13)

Since workers store the sub-matrices that have the same
size as A and B , i.e., m = 1 and n = 1, achievable recovery
threshold K of our scheme is K = 1 · 1 + 1 + 1 = 3.
This means that the master can recover the final product C
with any possible set of 3 sub-products C̃i from the fastest
three workers. The coefficient matrix of the sub-products from
workers (13) is a Vandermonde matrix. A square Vandermonde
matrix is invertible if all parameters are distinct, thus a sub-
matrix of the coefficient matrix of the sub-products with
any three rows is always invertible for a sufficiently large
finite field Fq . Consequently, the master can recover RT

A RB ,
AT RB + RT

A B , and AT B from any three sub-products from
the workers by matrix inversion. Let us assume that the master
receives sub-products from the fastest three workers W1, W2,
and W3. The master has

⎡
⎣

C̃1

C̃2

C̃3

⎤
⎦ =

⎡
⎣

10 11 12

20 21 22

30 31 32

⎤
⎦

⎡
⎣

RT
A RB

AT RB + RT
A B

AT B

⎤
⎦

⇒
⎡
⎣

RT
A RB

AT RB + RT
A B

AT B

⎤
⎦ =

⎡
⎣

10 11 12

20 21 22

30 31 32

⎤
⎦

−1 ⎡
⎣

C̃1

C̃2

C̃3

⎤
⎦ (14)
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Hence, the master can recover C = AT B by inverting the
equation (14).

On the other hand, the master can also recover the final
product by solving a polynomial interpolation problem, requir-
ing more efficient decoding process. Sub-products from work-
ers are the value of the 2nd-degree polynomial h(x) at point
x = i , where h(x) is given by

h(x) = RT
A RB + x(AT RB + RT

A B) + x2 AT B. (15)

Thus, the master can recover coefficients of h(x), RT
A RB ,

AT RB + RT
A B , and AT B , using any possible set of three sub-

products by interpolating h(x) given its values at 3 points.
Consequently, the master recovers the final product C = AT B .

B. General Description (Proof of Theorem 1)

We generalize the secure distributed computing scheme
using polynomial codes that achieves the upper bound on
optimum recovery threshold K ∗ in Theorem 1. We divide the
whole procedure of the secure distributed computing into three
steps: encoding at the master, computing at workers, and last,
decoding at the master.

1) Encoding: If we divide two input matrices A and B into
m and n fractions, respectively, A and B can be represented
as

A = [A1 A2 · · · Am], B = [B1 B2 · · · Bn].
The master securely encodes two inputs with the fractions

of them and randomly generated matrix RA ∈ F
s× r

m
q and

RB ∈ F
s× t

n
q consisting of the elements drawn from i.i.d.

random variables, each of which is generated independently
of A and B with the same size of the fractions of A and
B , respectively. Specifically, the master assigns the variables
xi , ∀i ∈ [1 : N] to each worker such that all xi ’s are
distinct in Fq (in the motivating example, xi = i is assigned
to worker Wi ), and generates the securely encoded sets Ã
and B̃ using polynomial codes on {RA, A1, . . . , Am} and
{RB, B1, . . . , Bn}, respectively. The securely encoded sub-
matrices Ãi and B̃i assigned to worker Wi are represented
as

Ãi = RAx0
i +

m∑
j=1

A j x
j
i ,

B̃i = RB x0
i +

n∑
k=1

Bkxk(m+1)−1
i , ∀i ∈ [1 : N]. (16)

The degrees of the polynomial code for two securely encoded
sets are carefully chosen to ensure that all the terms with
AT

j Bk,∀ j ∈ [1 : m],∀k ∈ [1 : n] in the sub-product

C̃i = ÃT
i B̃i have different exponents of xi . We can claim

that data security can be preserved from the workers when the
workers receive the encoded sub-matrices in (16).

Lemma 1: Workers obtain no information about input data
from the sub-matrices in (16), i.e., the data security constraint
in (1) is satisfied.

Proof: See Appendix.

2) Computing: After workers store securely encoded inputs
sent by the master, each worker Wi computes the sub-product

C̃i = ÃT
i B̃i = RT

A RB x0
i +

m∑
j=1

AT
j RB x j

i +
n∑

k=1

RT
A Bkxk(m+1)−1

i

+
m∑

j=1

n∑
k=1

AT
j Bkx j+k(m+1)−1

i , ∀i ∈ [1 : N], (17)

and returns it to the master. It should be noted that these
sub-products are the value of the (mn + m + n − 1)th-degree
polynomial h(x) at point x = xi , where h(x) is given by

h(x) = RT
A RB x0 +

m−1∑
j=1

AT
j RB x j + (AT

m RB + RT
A B1)xm

+
n∑

k=2

RT
A Bk xk(m+1)−1 +

m∑
j=1

n∑
k=1

AT
j Bk x j+k(m+1)−1.

(18)

3) Decoding: The master decodes the final product after
receiving the sub-products from the fastest mn+m+n workers.
It can recover all coefficients of h(x) in (18) using any possible
set of mn + m + n sub-products from the fastest mn + m + n
workers finishing their tasks by interpolating h(x) given its
values at mn + m + n points. It is worth mentioning that the
problem of polynomial interpolation for decoding polynomial
codes at the master can be solved efficiently by using existing
decoding algorithms for Reed-Solomon codes [26], [27]. From
the coefficients of h(x), the master gets the final output
C = AT B as

C = AT B =

⎡
⎢⎢⎢⎣

AT
1 B1 AT

1 B2 · · · AT
1 Bn

AT
2 B1 AT

2 B2 · · · AT
2 Bn

...
...

. . .
...

AT
m B1 AT

m B2 · · · AT
m Bn

⎤
⎥⎥⎥⎦. (19)

Note that the degrees of the sub-matrices assigned to workers
are carefully chosen to ensure that all terms with AT

j Bk,
∀ j ∈ [1 : m],∀k ∈ [1 : n] in the sub-product have different
exponents of xi , thus all the elements of the final product
matrix in (19) can be recovered at the master. The overall
procedure of the secure distributed computation using polyno-
mial codes for matrix multiplication is described in Fig. 3.

V. EXTENSION TO SECURE DISTRIBUTED

COMPUTING FOR CONVOLUTION

We dedicate this section to propose an extension of secure
distributed computation using polynomial codes for a con-
volution task. We consider a secure distributed convolution
scenario in which a master wants to perform a convolution
task c = a ∗ b using N workers on two confidential data
a ∈ F

tm
q and b ∈ F

tn
q . If we divide two input vectors into m

and n fractions, respectively, they can be represented as

a = [a1a2 · · · am], b = [b1b2 · · · bn],
where a j ∈ F

t
q , bk ∈ F

t
q for all i ∈ [1 : m] and k ∈ [1 : n].

To exploit inherent property of the convolution task in our
scheme, sub-vectors of a and b assigned to workers should
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Fig. 3. The overall procedure of secure distributed computation using
polynomial codes for matrix multiplication C = AT B: 1) Encoding at the
master, 2) Computing at workers, and 3) Decoding at the master. Worker
W2 represents one of the straggler nodes which is not included in the fastest
mn + m + n workers computing the assigned sub-tasks.

have the same size. We provide an achievable recovery thresh-
old on the secure distributed convolution scenario as follows.

Theorem 4: For secure distributed computing of convolu-
tion task c = a ∗ b using N workers, where each worker can
store 1

m fraction of a and 1
n fraction of b without information

about a and b, the optimal recovery threshold K ∗
conv is upper

bounded by

K ∗
conv ≤ max{m, n} + m + n. (20)

To achieve recovery threshold of max{m, n} + m + n for
a secure distributed convolution task, we modify distributed
computing strategy using polynomial codes for matrix multi-
plication in Section IV.

A. Encoding
The master randomly generates two vectors ra ∈ F

t
q and

rb ∈ F
t
q , that have the same size of the fractions of a and b.

With two random vectors ra and rb, and fractions of a and
b, the master generates securely encoded sets of a and b, and
assigns them to workers. Securely encoded sub-vectors ãi and
b̃i assigned to worker Wi are represented as

ãi =
m∑

j=1

a j x
j−1
i + ra xm+n−1

i ,

b̃i =
n∑

k=1

bk xk−1
i + rbxm+n−1

i , ∀i ∈ [1 : N]. (21)

Contrary to the secure distributed computing strategy for
matrix multiplication, degrees of the polynomial code for
fractions of a and b are carefully chosen for the convolution
terms a j−k ∗ bk to have the same exponent of xi (x j−2

i ),
to improve the recovery threshold by leveraging inherent
property of a convolution task. In addition, degrees of the
polynomial code m +n−1 for the randomly generated vectors
ra and rb are chosen to ensure the decodability of c = a∗b at
the master, provided that all the terms for the convolution of
the fractions of a and b in c̃i = ãi ∗ b̃i do not have the same
exponent of xi with the convolution terms including ra or rb.

B. Computing
Each worker Wi computes the sub-task c̃i = ãi ∗ b̃i from

the assigned vectors ãi and b̃i in (21) as

c̃i = ãi ∗ b̃i =
m∑

j=1

n∑
k=1

a j ∗ bk x j+k−2
i +

m∑
j=1

a j ∗ rbx j−1+m+n−1
i

+
n∑

k=1

ra ∗ bk xm+n−1+k−1
i + ra ∗ rbx2(m+n−1)

i . (22)

If the worker finishes its convolution task, it returns c̃i to the

master. Note that all the terms of xi in
m∑

j=1

n∑
k=1

a j ∗ bk x j+k−2
i

have different exponents of xi from the other terms including
ra or rb. These sub-vectors from workers are the value of the
(2m+2n−2)th-degree polynomial h(x) at point x = xi , where
h(x) is given by

h(x) =
m∑

j=1

n∑
k=1

a j ∗ bk x j+k−2 +
m∑

j=1

a j ∗ rbx j+m+n−2

+
n∑

k=1

ra ∗ bk xk+m+n−2 + ra ∗ rbx2(m+n−1). (23)

We note that the coefficients of xmax{m,n}+m+n−1, . . . ,
x2m+2n−3 are zero, thus all the coefficients of h(x) can be
recovered from the max{m, n} + m + n values of h(x).

C. Decoding

The master can recover all the coefficients of h(x) using
any possible set of max{m, n} + m + n sub-products from
the fastest max{m, n} + m + n workers finishing their tasks
by interpolating h(x) given its values at max{m, n} + m + n
points. The convolution terms of the fractions of a and b can
be represented as

m∑
j=1

n∑
k=1

a j ∗ bk x j+k−2 =
m+n∑
j=2

min{ j−1,n}∑
k=max{1, j−m}

a j−k ∗ bk x j−2.

(24)

From coefficients of these terms, the master can recover the
final output c = a ∗ b by adding them with proper shift by
zero-padding.

For example, let us consider a simple case of m = 2 and
n = 2, wherein workers are assigned 1

4 fractions of the whole
convolution task. In this case, workers return the value of h(x),
where h(x) is given by

h(x) =
2∑

j=1

2∑
k=1

a j ∗ bk x j+k−2 +
2∑

j=1

a j ∗ rbx j+2

+
2∑

k=1

ra ∗ bk xk+2 + ra ∗ rbx6

= a1 ∗ b1 x0 + (a2 ∗ b1 + a1 ∗ b2)x1 + a2 ∗ b2 x2

+ (a1 ∗ rb + ra ∗ b1)x3 + (a2 ∗ rb + ra ∗ b2)x4

+ ra ∗ rbx6.

By the six sub-products from the fastest six workers, the mas-
ter can recover the coefficients of h(x). Hence, the master gets
a1 ∗ b1, a2 ∗ b1 + a1 ∗ b2, and a2 ∗ b2. From these sub-results,
the master can recover the final product c = a ∗ b with proper
shift by zero-padding as illustrated in Fig. 4.

In addition, we reveal the order-optimality of the achievable
recovery threshold to the number of workers, and characterize
optimal recovery threshold K ∗

conv within a constant factor for
a secure distributed convolution task, as in a secure distributed
matrix multiplication task.
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Fig. 4. An illustration of the decoding process at the master in the distributed
convolution task for a simple case of m = 2 and n = 2.

Remark 4: According to Theorem 4, the achievable recov-
ery threshold of secure distributed convolution using polyno-
mial codes is also order-optimal to the number of workers,
as in the achievable recovery threshold of secure distributed
matrix multiplication in Remark 3.

Kconv, polynomial = max{m, n} + m + n = �(1). (25)
Theorem 5: For secure distributed computing of convolu-

tion task c = a ∗ b using N workers, where each worker
can store 1

m fraction of a and 1
n fraction of b without any

information about a and b, the optimum recovery threshold
K ∗

conv is characterized within a factor of 3, i.e.,

1

3
Kconv, polynomial < K ∗

conv ≤ Kconv, polynomial, (26)

where Kconv, polynomial = max{m, n}+m+n is the upper bound
on the recovery threshold K ∗

conv, which can be achieved by
polynomial codes.

Proof: See Appendix.

VI. DISCUSSION: OVERALL RUNTIME DISTRIBUTION

We dedicate this section to estimate overall runtime distrib-
ution to recover the final product at the master. We assume that
runtime for encoding and decoding process at the master are
deterministic, and we highlight the waiting time of returning
sub-products from workers at the master.

A. Encoding and Decoding Complexities

To estimate the encoding and decoding times at the master,
we compute the computational complexities for encoding and
decoding of our proposed scheme.

1) Encoding Complexity: To encode the sub-matrices Ãi for
each worker, the master adds m + 1 matrices of size s × r

m .
In terms of the sub-matrices B̃i , the master adds n+1 matrices
of size s× t

n . Thus, the computational complexity to encode the
sub-matrices for each worker is O

(
(m + 1) sr

m + (n + 1) st
n

) =
O (s(r + t)). The overall encoding complexity for N workers
is O (Ns(r + t)).

2) Decoding Complexity: To decode the final product C ,
the master solves a polynomial interpolation problem on a
(2m + 2n − 2)th-degree polynomial for rt

mn elements. Since
the polynomial interpolation algorithm has a complexity of
O

(
klog2k

)
for a kth-degree polynomial [28], the decoding

complexity at the master is O
( rt

mn (m + n)log2(m + n)
)
.

B. Waiting Time at Master

We compare waiting time distributions for three cases as
follows.

• Polynomial Codes: The master divides the sub-tasks
to workers by using polynomial codes proposed in
Section IV. Workers are assigned a size of 1

mn fraction of
the whole task to compute C = AT B . Thus, the master
needs to wait for the fastest mn + m + n workers.

• Lower Bound: We consider the ideal case wherein work-
ers are assigned a size of 1

mn fraction of the whole task,
and the master needs to wait for the fastest mn+1 workers
only, which is a lower bound.

• Minimum Load: We consider an ideal secure scheme in
terms of computation load at the workers, which is not
designed to mitigate the straggling effect. Assigned tasks
are encoded to preserve the security of the two inputs
from workers. In this case, the master should wait for all
the workers to recover the final product. According to the
information-theoretic lower bound given in Theorem 2,
the minimum computation load at each worker is 1

N−1
fraction of the whole task. Thus, each worker computes

1
N−1 fractions of the whole task in this scheme.

We denote the time spent to compute C = AT B as a random
variable TC . We assume that the computing time distribution
Pr(TC ≤ t) follows an exponential distribution [25], i.e.,

Pr(TC ≤ t) = 1 − e−μt , ∀t ≥ 0, (27)

where exponential rate μ is referred to as straggling para-
meter. If workers are assigned with L fraction of the whole
task, we denote the time spent at each worker as a random
variable TW . Computing time distribution at each worker is

Pr(TW ≤ t) = 1 − e− μ
L t , ∀t ≥ 0, (28)

We now calculate expected values of waiting time for three
cases. Note that expected value of the kth statistics of n
independent random variables with an exponential distribution
with rate μ

L is L(Hn−Hn−k)
μ , where Hn = ∑n

i=1
1
i 
 log n is the

nth harmonic sum [4]. In our scheme using polynomial codes,
the master needs to wait for the fastest mn + m + n workers
among N workers, each of which is assigned to compute

1
mn fraction of the whole computation task C = AT B . The
expected waiting time E[Tpoly] of our scheme for the fastest
mn + m + n workers among N workers to compute the final
product at the master is given by

E[Tpoly] = HN − HN−(mn+m+n)

μmn


 1

μmn
log

(
N

N − (mn + m + n)

)
. (29)

Using the same approach, we estimate expected waiting
time E[Tbound] for the ideal scheme that achieves the lower
bound as

E[Tbound] = HN − HN−(mn+1)

μmn


 1

μmn
log

(
N

N − (mn + 1)

)
. (30)
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Fig. 5. CDF of the waiting times when m = 3 and n = 3 with
N = 30 workers.

Fig. 6. CDF of the waiting times with N = 30 workers.

In addition, we can easily derive expected waiting time
E[Tminload] for the secure scheme with minimum computation
load as

E[Tminload] = HN

μ(N − 1)


 1

μ(N − 1)
logN. (31)

From the expected waiting times for the scheme using
polynomial codes and the secure scheme with minimum com-
putation load, it is not easy to reveal the effect of polynomial
codes to reduce waiting time by mitigating the straggling
effect (i.e., the coding gain is statistical). Thus, we compare
cumulative distribution functions (CDF) for specific problem
parameters. We consider that the master divides its task to
N = 30 workers. In the proposed scheme using polyno-
mial codes and the ideal scheme that achieves lower bound,
we assume that each worker is assigned with sub-matrices
which have 1

3 the size of A and B , respectively (m = 3, n = 3).
In the secure scheme with minimum computation load, each
worker is assigned with the sub-task which is a 1

30−1 = 1
29

fraction of the whole task. Fig. 5 shows the CDFs of waiting
times for three schemes. It is observed that the waiting time
at the master is reduced by using polynomial codes, that can
efficiently mitigate straggler effects than the secure scheme
with minimum computation load.

We compare waiting times of the proposed scheme with
different sub-task assignments. We consider the four cases
of the sizes of sub-tasks, the CDFs of which are given
in Fig. 6. If smaller sub-tasks are assigned to each worker,
workers can finish their sub-tasks faster, but the master should
wait for more workers to finish to recover the final product.
Conversely, if the larger sub-tasks are assigned, the master
waits for fewer workers to finish, but workers may finish
their sub-tasks at a slower pace. Waiting time at the master
depends on the straggling parameter μ and the number of
workers N according to the size of the sub-tasks. Thus, we can
optimize waiting time at the master by considering these
system parameters.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigated a secure distributed computing
problem wherein a master wants to hide information about
input data from workers. We proposed a secure distributed
computing scheme using polynomial codes for matrix mul-
tiplication and convolution tasks of two confidential inputs.
We demonstrated that our proposed scheme efficiently adresses
stragglers by using polynomial codes on the design of sub-
tasks assigned to workers. It was further derived that achiev-
able recovery threshold of our proposed scheme is order-
optimal to the number of workers. We derived lower bound
on the optimal recovery threshold, and by using results we
claimed that the optimal recovery threshold can be character-
ized within a constant multiplicative factor.

There are a few interesting future directions of this work.
1) Sharpening bounds: The upper and lower bounds on the

optimal recovery threshold are within a constant factor. Thus,
there is a room for further development of these bounds. For
example, in our scheme a master can also recover unnecessary
products of random matrices as well as products of input
matrices, thus better schemes with no redundancy could exist.

2) Weak data security: In the proposed scheme, data secu-
rity is preserved from workers to exploit suspicious but useful
workers for distributed computing. We referred to it as strong
data security. However, we can imagine a secure distributed
computing scheme from the network security perspective,
that preserves weak data security from an eavesdropper with
access to the link between the master and workers, under the
assumption that workers are trustworthy.

3) Practical issues on overall runtime: In section VI,
we estimate overall runtime distribution with emphasis on
waiting time of returning sub-products from workers at the
master. We need to further consider several issues to reduce
overall runtime to perform secure distributed computing. First,
encoding and decoding times at the master should be con-
sidered. By considering encoding and decoding complexities
of polynomial codes, we can reduce overall runtime with
modifications on the proposed scheme. Second, the commu-
nication load between the master and workers is a key metric
in distributed computing to determine overall runtime. In the
proposed scheme, the master allocates the sub-tasks to all
possible workers since the recovery threshold does not scale
with the number of workers. However, if the communication
load to allocate sub-tasks to workers is considered, there could
be another solution to reduce overall runtime.

4) Heterogeneous networks: We can also imagine several
heterogeneous networks. For example, workers could have dif-
ferent performance to compute sub-tasks or different memory
sizes to store assigned sub-matrices. In addition, the master
could require different level of data security to workers: data
security should be guarded against some workers, but it is not
required for the others.

APPENDIX

Proof of Theorem 2: We assume that the elements of the
two input matrices A and B are drawn from i.i.d. random vari-
ables. In addition, we would like to recall that either of the two
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inputs A and B is a tall matrix, i.e., s ≥ r or s ≥ t , to ensure
that C = AT B is a full-rank matrix. These two assumptions
are essentially needed for information-theoretic derivations on
the considered problem. Otherwise, the considered problem
could be degenerate.

Without loss of generality, let us consider that the master
can recover the final product C from sub-products of the K ∗
workers {Wi }K ∗

i=1. It can be represented as

H
(

C
∣∣∣C̃1, . . . , C̃K ∗

)
= 0. (32)

In addition, the mutual information between the final product
and each of the sub-products is given by

I
(

C; C̃i

)
= I

(
AT B; ÃT

i B̃i

)
(33)

= H
(

AT B
)

− H
(

AT B
∣∣∣ÃT

i B̃i

)
(34)

≤ H
(

AT B
)

− H
(

AT B
∣∣∣ÃT

i B̃i , Ãi , B̃i

)
(35)

= H
(

AT B
)

− H
(

AT B
∣∣∣Ãi , B̃i

)
(36)

= H
(

AT B
)

− I
(

AT B; A, B
∣∣∣Ãi , B̃i

)

− H
(

AT B
∣∣∣ Ãi , B̃i , A, B

)
(37)

= H
(

AT B
)

− I
(

AT B; A, B
∣∣∣Ãi , B̃i

)
(38)

= H
(

AT B
)

− H
(

A, B
∣∣∣ Ãi , B̃i

)

+ H
(

A, B
∣∣∣Ãi , B̃i , AT B

)
(39)

= H
(

AT B
)

− H (A, B) + H
(

A, B|AT B
)

(40)

= H
(

AT B
)

− I
(

AT B; A, B
)

(41)

= H
(

AT B|A, B
)

(42)

= 0 (43)

where (35) is due to the fact that conditioning reduces entropy,
(36) is due to the fact that ÃT

i B̃i is a deterministic function
of Ãi and B̃i , (38) and (43) are due to the fact that AT B
is a deterministic function of A and B , and (40) follows
from (1). According to the definition of the mutual informa-
tion [29], I

(
C; C̃i

)
,∀i ∈ [1 : K ∗] is not a negative value.

Hence, from (39),

I
(

C; C̃i

)
= 0. (44)

Finally, we have

H (C) = I
(

C; C̃1, . . . , C̃K ∗
)

+ H
(

C
∣∣∣C̃1, . . . , C̃K ∗

)
(45)

= I
(

C; C̃1, . . . , C̃K ∗
)

(46)

= H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃1, . . . , C̃K ∗
∣∣∣C

)
(47)

≤ H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃i

∣∣∣C
)

(48)

= H
(

C̃1, . . . , C̃K ∗
)

− H
(

C̃i

)
(49)

≤
(

1 − 1

K ∗

)
H

(
C̃1, . . . , C̃K ∗

)
(50)

≤
(

1 − 1

K ∗

) K ∗∑
i=1

H
(

C̃i

)
(51)

≤ 1

mn
(K ∗ − 1)H (C), (52)

for any i ∈ [1 : K ∗] where (46) follows from (32), (49)
follows from (44), (50) follows from Han’s inequality [29],
(51) is due to the fact that dropping conditioning does not
reduce entropy, and (52) follows from the fact that the size
of C̃i ,∀i ∈ [1 : K ∗] is 1

mn times smaller than the size of the
final product C . From (52), we have

K ∗ ≥ mn + 1. (53)

This completes the proof. �
Proof of Theorem 3: We prove Theorem 3 by using the

upper and the lower bounds in Theorems 1 and 2.

K ∗ ≥ mn + 1 (54)

≥ mn + 1 + m + n

2
(55)

>
mn + m + n

2
(56)

= 1

2
Kpolynomial. (57)

where (54) follows from Theorem 2, (55) is due to the fact
that mn +1 ≥ m +n when m ≥ 1 and n ≥ 1, and (57) follows
from Theorem 1. From (57) and Theorem 1, we have

1

2
Kpolynomial < K ∗ ≤ Kpolynomial. (58)

This completes the proof. �
Proof of Lemma 1: Without loss of generality, we prove

Lemma 1 for Wi , i ∈ [1 : N] and for the input A. It can be
simply generalized to any worker and the input B . From (16),

I
(

Ãi ; A
)

= H
(

Ãi

)
− H

(
Ãi

∣∣∣A
)

(59)

= H
(

Ãi

)
− H

(
Ãi

∣∣∣A
)

+ H
(

Ãi

∣∣∣A, RA

)
(60)

= H
(

Ãi

)
− I

(
RA; Ãi

∣∣∣A
)

(61)

= H
(

Ãi

)
− H

(
RA

∣∣∣A
)

+ H
(

RA

∣∣∣ Ãi , A
)

(62)

= H
(

Ãi

)
− H

(
RA

∣∣∣A
)

(63)

= H
(

Ãi

)
− H

(
RA

)
, (64)

where (60) and (63) follow from the fact that Ãi is a
deterministic fuction of A and RA. From (64), we can see
that I

(
Ãi ; A

)
= 0 if H

(
Ãi

)
= H

(
RA

)
. This implies that if

RA has the same size of Ãi , i.e., the size of RA is the same
as the fraction of A (A j , j ∈ [1 : m]), and RA is generated

in a finite field Fq , then I
(

Ãi ; A
)

= 0. This completes the
proof. �

Proof of Theorem 5: For a distributed convolution task
where each worker can store 1

m fraction of a and 1
n fraction

of b without security constraints, lower bound on optimal
recovery threshold is max{m, n} [8]. This bound can be also
applied to a secure distributed convolution task since the
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security constraint to workers does not lower the bound.
Hence, we have

K ∗
conv ≥ max{m, n} (65)

= 1

3
max{m, n} + 2

3
max{m, n} (66)

≥ 1

3
max{m, n} + 2

3

m + n

2
(67)

= max{m, n} + m + n

3
(68)

= 1

3
Kconv, polynomial. (69)

where (67) is due to the fact that the maximum of the two
values is not less than the mean of them, and (69) follows
from Theorem 4. From (69) and Theorem 4, we have

1

3
Kconv, polynomial < K ∗

conv ≤ Kconv, polynomial. (70)

This completes the proof. �
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