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Securing Network Coding Architectures against

Pollution Attacks with Band Codes
Attilio Fiandrotti, Member, IEEE, Rossano Gaeta, Marco Grangetto, Senior, IEEE

Abstract—During a pollution attack, malicious nodes purposely
transmit bogus data to the honest nodes to cripple the com-
munication. Securing the communication requires identifying
and isolating the malicious nodes. However, in Network Coding
(NC) architectures, random recombinations at the nodes increase
the probability that honest nodes relay polluted packets. So,
discriminating between honest and malicious nodes to isolate the
latter turns out to be challenging at best. Band Codes (BC) are a
family of rateless codes whose coding window size can be adjusted
to reduce the probability that honest nodes relay polluted packets.
We leverage such property to design a distributed scheme for
identifying the malicious nodes in the network. Each node counts
the number of times each neighbor has been involved in cases
of polluted data reception and exchanges such counts with its
neighbor nodes. Then, each node computes for each neighbor
a discriminative honest score estimating the probability that the
neighbor relays clean packets. We model such probability as a
function of the BC coding window size, showing its impact on the
accuracy and effectiveness of our distributed blacklisting scheme.
We experiment distributing a live video feed in a P2P NC system,
verifying the accuracy of our model and showing that our scheme
allows to secure the network against pollution attacks recovering
near pre-attack video quality.

Index Terms—Network coding, pollution attacks, secure video
communications, peer to peer, distributed scheme

I. INTRODUCTION

NETWORK Coding (NC) [1] has received a lot of atten-

tion lately because it increases the effective throughput

of a network. Moreover, random NC enables totally-push

packet scheduling schemes that simplifies the deployment of

peer-to-peer (P2P) content distribution architectures [2]. In

particular, content providers such as YouTube and NetFlix

already generate about 30% of the overall Internet traffic [3], a

figure expected to double by the end of the decade. Therefore,

NC-based P2P architectures are particularly appealing to the

end of distributing video contents to large user populations

by leveraging the users’ resources without deploying ad-hoc

infrastructures [4]. In a random NC-based video streaming

architecture, the video stream is subdivided into independently

encoded chunks called generations, where each generation is

further partitioned in k blocks of identical size. One source

node holds the original video and, for each generation, relays

random linear block combinations to the network nodes as

coded packets. The network nodes buffer the received packets
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and relay random linear combinations thereof to their peer

nodes. Once a node has collected enough packets, it recovers

the generation solving a system of equations.

NC-based architectures are particularly vulnerable to pollu-

tion attacks, where one or more malicious nodes attempt to

cripple the communication by injecting bogus data (polluted

packets) in the network. The recombinations at the nodes

increase the probability that an honest node relays a polluted

packet: if any of the recombined packets is polluted, the

recombined packet is polluted as well. With respect to other

applications, media distribution can tolerate the loss of a few

coding units, so perfect security of the communication may not

be necessary. However, malicious nodes may be able to cripple

the communication polluting just injecting a few packets due

to the recombinations in the network. Such evidence calls for

schemes suitable to distribute media contents with a sufficient

level of security against pollution attacks.

Traditional countermeasures to pollution attacks generally

build upon malicious nodes identification and blacklisting.

First, malicious nodes are identified, for example via ad-hoc

coding schemes or cryptographic approaches, e.g., [5], [6], [7],

[8], [9], [10], [11], [12], [13], [14], [15]. Second, malicious

nodes are inhibited from further polluting the network via, for

example, blacklisting by a central authority. With random NC,

it is challenging to tell whether the source of a polluted packet

is a malicious node that polluted it on purpose or an honest

node that accidentally relayed a polluted packet (assuming that

polluted packets could be identified in the first place). While

existing solutions to pollution attacks in NC are discussed in

Sec. II, many of them fall short with respect to designing

a video distribution scheme secure to pollution attacks. For

example, cryptographic and coding complexity represent a

drawback when dealing with mobile users. Similarly, the

requirements for a central authority become problematic when

distributing video contents to a large users population.

In our previous work [16] we leveraged Band Codes

(BC) [17] to achieve resilience to pollution attacks of limited

intensity by controlling the coding parameters. BCs are a

family of rateless codes originally devised to control the

decoding complexity as a function of the so-called coding

window size. With BC, the recombinations at the nodes are

constrained to blocks falling within a random window of size

W ≤ k (for W = k, BC resolve to random NC). We showed

that the probability that a node accidentally recombines a

polluted packet decreases with W . Thus, under the assumption

of a limited intensity pollution attack, BC enable the nodes

to decode clean generations without even identifying the

malicious nodes. However, if malicious nodes inject more
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polluted packets, the honest nodes relay enough polluted pack-

ets to make decoding of clean generation almost impossible.

Such shortcoming prompted us to investigate a solution for

identifying and blacklisting malicious nodes suitable for the

case of severe pollution intensity.

The original contribution of this work is a distributed

scheme to identify and blacklist malicious nodes in video

communications leveraging on multiple properties of Band

Codes (BC). By comparison, the goal of [16] was to address

the pollution attacks without identifying the malicious nodes.

Each node computes a honest score for each of its neighbors

as the ratio of clean packets received by the neighbor over all

packets received by the neighbor. Therefore, honest scores lie

in the [0, 1] interval for each neighbor and neighbors that score

closer to 1 are more likely to be honest. Let us associate each

node in the network with a Bernoulli random variable whose

parameter is sh (sp) for honest (malicious) nodes, respectively.

The values sh and sp correspond to the probability that all

the packets provided to the node by honest and malicious

neighbors enable the node to correctly recover a pollution-less

generation. With this in mind, we show that honest scores are

actually estimates for the parameters sh and sp, that each node

can compute for all its neighbors. We also analytically model

sh and sp as a function of the BC coding window W . The

model shows that sh > sp and that both tend to 1 as the coding

window size W of BC decreases, i.e. W < k. That is, with BC

the honest score estimator converges to the expected values sh
and sp faster than with random NC, i.e. W = k. Therefore,

as the number of observations available at a node increases,

the node estimates sh and sp with increased accuracy.

In detail, the key highlights of the scheme we propose in this

work are:

• it is totally distributed, so no central authority is needed;

• it is lightweight, since it requires no cryptographic com-

putations and enjoys the low decoding complexity of BC;

• its performance depends only on BC coding parameters

(i.e. generation size k and coding window size W );

• it is suitable for realtime communications to mobile

devices;

• its performance are described by an accurate and vali-

dated mathematical model;

• its expected performance is thoroughly validated in a fully

fledged P2P protocol;

• its ability to identify malicious nodes does not decrease

as the malicious nodes inject more polluted packets into

the network for the values of pollution intensity we

considered.

The paper is organized as follows: Sec. II discusses the

relevant literature whereas Sec. III overviews Band Codes

and our push-based P2P video streaming protocol ToroStream.

Sec. IV describes the attack model and the proposed malicious

nodes identification and blacklisting scheme, whereas Sec. V

contains an analytical model providing the theoretical support

for the proposed scheme. Sec. VI provides an experimental

evaluation of our malicious nodes identification scheme and

validates the relative model. Finally, Sec. VII draws the

conclusions of our work.

For the sake of readability, Tab. I summarizes the key

notation used throughout this paper.

BC parameters

k, k′ Generation size, num. pkts to decode (k′ ≥ k)
W Coding window size (W ≤ k)
f , l Coding window leading and trailing edges
xi i-th data block, i ∈ [1, k]

P i(yi, gi) i-th coded packet (payload, coding vector)
ǫc, Code overhead, ǫc = (k′ − k)/k

ToroStream architecture and attack model

N ; Nh,Nm Tot. num. of nodes; Num. of honest, malicious nodes
ppoll Pkt pollution probability at malicious nodes
Ns Neighborhood size

Proposed method

Si(S
m
i ) Set of (malicious) nodes seen by node Ni

nci,j , npi,j Num. of clean and polluted Ni generations using Nj pkts
ci,j , pi,j Num. of clean and polluted pkts from node Nj to Ni

cj , pj Total num. of clean and polluted pkts from node Nj

sij Honest score of neighbor Nj computed at node Ni

sh, sp Prob. provided pkts yield clean generation (honest, malicious)
tblack Time at which suspect neighbors are blacklisted
α Blacklisting precision-recall control parameter

Mathematical model

c∗←∗i,j , p∗←∗i,j model counterpart of counters ci,j and pi,j
c∗i,j , p

∗

i,j model counterpart of counters ci,j and pi,j
chj , p

h
j model counterpart of counters cj and pj (j honest)

cpj , p
p
j model counterpart of counters cj and pj (j malicious)

Experimental settings and variables

No Number of observations available at the nodes
to Duration of the nodes observations
ǫp Pollution overhead

TPR True Positives Rate in malicious nodes identification
CI Continuity Index of the video stream

TABLE I
KEY NOTATION USED IN THE PAPER.

II. RELATED WORKS

Approaches to pollution attacks in NC-based P2P systems

can be broadly classified in three categories.

Cryptographic or algebraic: works in [5], [6], [7], [8],

[9], [10], [11] propose the design of verification techniques

able to detect on-the-fly pollution of received packets. They

require a secure infrastructure to pre-distribute verification

keys and exhibit an high computational cost for verification

thus making them unfit for live (real-time) video streaming

scenarios as the one we consider in our experiments. The

work in [18] represents an improvement over these approaches

by exploiting a homomorphic signature function that enables

intermediate nodes to verify messages and create valid sig-

nature without the need of a secure channel for key pre-

distribution. Nevertheless, computational complexity remains

remarkable. Another improvement over existing approaches

is presented by [19] where the authors propose a lower

complexity tag encoding scheme to enable pollution detection.

Nevertheless, this approach still relies on key pre-distribution.

In [20] two improved key distribution schemes are proposed

and analyzed in terms of computation and communications

costs. The authors of [21] address a weakness of verification-

based techniques known as verification attack, whereby a large

amount of content to be checked is injected at high rate in a

named-data networking scenario.
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Error correction: articles [12], [13], [14] exploit error

correction to recover corrupted received packets. All these

methods add coding redundancy information that enable the

packet receivers to detect and automatically reconstruct the

original data. The price to be paid is a remarkable increase

in the coding overhead; furthermore, the effectiveness of

these approaches heavily depends on the amount of corrupted

information. In [15] the authors propose rateless codes that are

resilient to Byzantine attacks when the fraction of corrupted

packets is bounded above by 1/3. Unlike BC, codes in [15]

do not fully support NC; indeed, the sparsity of encoding

is not preserved when recombinations are performed at each

intermediate node.

Probabilistic: a third approach relies on the capability of

estimating the probability a node is malicious after collecting

several observations on the integrity of received packets and

the packets senders. In this context, [22] developed a dis-

tributed detection algorithm based on intersection operations

of the set of data uploaders to progressively isolate malicious

neighbors of a peer. The method is effective in a static scenario

where neighborhood of peers does not change in time but falls

short of when the overlay network topology is highly dynamic.

Approaches in [23], [24] overcome this limitation by casting

the problem of identifying malicious nodes as a statistical

inference that computes the probability of each peer to be

malicious or not. Nevertheless, since belief propagation is used

as a mean to compute these probabilities the computational

cost of this approach can be substantial. The work in [25]

abstracts from actual pollution defense mechanism and models

the interaction between attackers and defenders with a two-

player strategic game. The final goal is to optimize the resource

allocation to defenders when resources are limited in wireless

networks.

The present work falls in the last class of probabilistic

approaches. Probabilistic approaches are indeed less capable

of guaranteeing complete security against pollution attacks

(e.g., exact recovery of compromised data). However, the

loss-tolerant nature of video communications makes such

approaches fit to strike the performance-complexity trade-

off sufficient for reasonably securing video communications

against pollution attacks.

III. BACKGROUND

This section first overviews those aspects of Band Codes

(BC) [17] that are instrumental to understand the present work.

Then, we describe ToroStream [26] , our random-push NC-

based P2P protocol for low delay video delivery over random

overlays. In the following, we assume that network nodes are

connected by unicast wired links and all coding operations

take place at the application-level of the ISO (layer 5) or OSI

(layer 7) stack.

A. Encoding at the Source

Let us assume that one source node holding the original

video content organizes it into independently encoded and

decodable generations. For example, each generation accounts

for one self-decodable unit of the compressed video bitstream

(i.e., one Groups of Pictures - GOPs). Each generation is fur-

ther divided in k blocks (x1, ..., xk) of the same size, the block

size for example approaching the size of a network packet.

The parameter k defining the number of blocks per generation

(identical for all generations) is known as generation size.

In the following, for the sake of conciseness, we focus on

the encoding and distribution of a single generation of video

as each generation is independently encoded and decoded

following the same approach. Periodically, each node is given

a chance to transmit one packet to the network, which we call

transmission opportunity. At every transmission opportunity,

the source generates a random linear combination of the k
blocks computed as y =

∑k

i=1 gixi, where gi are binary

values and the summation corresponds to bit-wise XORs.

Vector g = (g1, ..., gk) is the coding vector: the number of

non zero elements of g, which corresponds to the number

of blocks encoded in the packet, is known as the packet

degree. The source transmits packets P (g, y) containing i) a

payload y consisting of the encoded blocks and ii) the coding

vector g used to encode y. Clearly, it is key that the coded

payload is received together with the relative coding vector

for the receiver to solve the associated system of equations

and recover the generation.

The blocks to be combined are selected within a random

coding window, i.e. a set of W adjacent blocks, where W ≤ k
(if W = k, we have random NC). In the following, we call the

first and last block spanned by a coding window the leading

edge and trailing edge of the window and we indicate them

as f and l, respectively. For W < k integer f is drawn from

the distribution

HD(f) =

{

W+1
2k if f = 0 or f = k −W
1
k

if 0 < f < k −W
(1)

such that blocks are equally likely to be encoded [17]. For

W = k, we have HD(f) = 1 only for f = 0. Next, each

block within the coding window is independently drawn such

that P{gi = 1} = 1
2 if f ≤ i ≤ l, gi = 0 otherwise. In the

following, a packet which belongs to a generation of size k
and whose coding vector elements are drawn according to a

coding window of size W as described above will be indicated

as BC(k,W ).

B. Recombinations at the Nodes

Every node in the network receives BC coded packets that

are stored into a separate input buffer for each generation. In

order to retain the ability to independently decode each gen-

eration, the recombination process is constrained within each

generation, i.e. only packets pertaining to the same generation

are recombined. In the following we describe the process to

recombine packets pertaining to the same generation at one

network node, the process being identical for all generations.

Let us assume that a node input buffer contains q packets

that are all BC(k,W ). We indicate the q buffered packets

as {P 1, . . . , P i, . . . , P q}, where the i-th packet is defined as

P i = (gi, yi). As for the source node, each network node

is periodically granted one transmission opportunity. When

one transmission opportunity arises, the node creates a novel

coded packet P r(gr, yr) as follows. First, the node draws the
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recombination window leading edge fr (and the corresponding

trailing edge lr = fr + W − 1) according to the same

probability in (1). Then, concerning the i-th packet P i in the

buffer, let si be the first non-null element of the coding vector

gi such that gi
si

= 1 and gij = 0 ∀j < si. Similarly, let ti

be the last non-null element of the coding vector gi such that

gi
ti

= 1 and gij = 0 ∀j > ti. Then, the node independently

draws each scalar ci ∈ {0, 1} such that P{ci = 1} = 1
2

if fr ≤ si ≤ ti ≤ lr, and ci = 0 otherwise. Finally, the

recombined packet P r coding vector gr is computed as the

linear combination of the coding vectors of the packets in the

input buffer as gr =
∑q

i=1 cig
i. Similarly, the corresponding

coded payload is computed as yr =
∑q

i=1 ciy
i. Such process

guarantees that P r is still a BC(k,W ), i.e. it preserves the

degree distribution imposed by the source and thus do not alter

the packet decoding complexity.

C. Decoding at the Receivers

The network nodes decode each received packet P (g, y) via

a Gaussian elimination-like algorithm. The algorithm solves a

system of k linear equations GX = Y , where G is the k × k
matrix holding the coding vectors of the received packets, Y
is the k × 1 vector holding the coded payloads and X is the

k × 1 vector holding the original blocks xi once recovered.

We use the notation Gi to indicate the i-th row of G and Gi,j

to indicate the j-th element of Gi. If Gi,j = 0, ∀j, we say that

the i-th row of G is empty and write Gi = ∅. The algorithm is

described in pseudo-code as Alg. 1 and is executed each time

the node receives a packet P (g, y), progressively filling matrix

G with linearly independent equations eventually allowing to

solve for the unknown X . We indicate with gs the first element

of g such that gs = 1 and gi = 0 ∀i < s. If Gs = ∅,
g is placed in the s-th row of G, y is placed in the s-th

row of Y and the algorithm terminates. If Gs is not empty

and if g = Gs, we say that a collision happens at line 8 of

the algorithm (we shall for now overlook lines 9 and 10). If

g = Gs (or, equivalently, y = Ys), then P (g, y) must be a

bitwise copy of (Gs, Ys), so P is dropped and the algorithm

ends at line 11. Otherwise an XOR between g and Gs and

an XOR between y and Ys is executed and the algorithm

is iterated until the resulting equation is placed into G or it

is recognized as linearly dependent on the rows of G, i.e. it

represents redundant or duplicate information. The algorithm

progressively inserts the coding vectors in G that is arranged

in an upper-triangular band matrix, with band equal to W
(hence the name of the BC).

Once k linearly independent packets have been received, i.e.

once the rank of G is equal to k, matrix G is made diagonal

via standard backward-substitution, such that the unknown X
can be determined. After the diagonalization the vector Y
contains the recovered blocks, i.e. Yi = xi, which eventually

allows to recover the generation payload. Due to the random

recombinations at the nodes, not all the packets received by a

node are innovative, i.e. linearly independent from the packets

the node has already collected. In practical applications, it

takes k′ > k packets to recover a generation.

Algorithm 1 Pollution detection provisioned triangularization

1: receive P (g, y).
2: while true do

3: s← position of leading one of g
4: if Gs = ∅ then

5: Gs ← g; Ys ← y
6: return

7: else

8: if g = Gs

9: if y 6= Ys

10: tpoll = tnow
11: return

12: g ← g ⊕Gs; y ← y ⊕ Ys

13: end if

14: end while

D. The ToroStream P2P Protocol

The network nodes exchange coded packets using the

ToroStream [26] P2P protocol. Such protocol is representative

of architectures such as [4], [27] where nodes are organized in

a random, non acyclic, overlay network. Mesh-based, random

overlays are especially sensitive to pollution attacks since a

malicious node could easily spread the pollution to the whole

network. Moreover, there is no easy way to pinpoint the source

of the pollution to a single node lacking any topological

hierarchy. For the above reasons, ToroStream is well suited to

stress the pollution resiliency capabilities of our architecture

designed around BC, which is the goal of the present work.

The overlay network is created under the coordination of

a centralized tracker as follows. A node joins the streaming

session issuing a join request to the tracker. The tracker

maintains a directory of the nodes in the overlay network

while ignoring the actual network topology. The tracker replies

to join requests with a list of node addresses drawn at

random. The joining node contacts the addresses in the list

and, after a handshake, starts exchanging coded packets with

them. Each node is allowed to exchange coded packet with

no more than Ns neighbors per time. If the number of

neighbors of a node exceeds Ns following a handshake, the

node gracefully disconnects from some neighbors selected at

random. Moreover, every node gracefully disconnects from

some neighbors at random and establishes novel connections

at random to guarantee node churning while keeping no more

than Ns neighbors. Such mechanism guarantees that, at any

time, each node has a number of neighbors approximately

equal to Ns. Finally, explicit signaling such as join/leave

requests and periodic keep-alive messages to the tracker make

the protocol robust to network or node failures.

IV. PROPOSED ARCHITECTURE

In this section, we first model how pollution propagates

after a pollution attack due to random packets recombinations.

Then, we review how a network node may exploit the BC

decoding process to detect pollution attacks and adjust the BC

coding window size to limit pollution propagation. Next, we

introduce a scheme where a node accumulates and exchanges
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periodic packet counts with its neighbors. Such counts allow

each node to compute a discriminative honest score for each

neighbor, blacklisting and isolating low-scoring nodes.

A. Pollution Attack and Propagation

Fig. 1. Simple network composed of Nh = 3 honest nodes and Nm = 1
malicious node. The malicious node Nj transmits a polluted packet to Nk

that relies a recombination thereof to Ni.

Let a network be composed of N nodes, where Nh nodes

are of the honest type and Nm nodes are of the malicious type,

where Nm+Nh = N . For example, in the network illustrated

in Fig.1, node Nj is malicious whereas all the other nodes are

honest, therefore Nh = 3, Nm = 1, N = 4.

Malicious nodes transmit fake linear combinations yp =
∑k

i=1 g
p
i x

p
i to the network, where gpi 6= gi and/or xp

i 6= xi in

the form of polluted packet P (g, yp). To the end of crippling

the communication, altering the payload or the coding vector is

equivalent. However, with BC the degree of the coding vectors

follows a specific distribution and altering it may deceive

the malicious nodes identity. So, we consider a pollution

attack model where at each transmission opportunity each

malicious node alters with probability ppoll the transmitted

packet by randomly flipping the bits of the coded payload. In

Fig.1 the malicious node Nj relays to the honest node Nk

a polluted packet P (g, yp) where the payload yp disagrees

with the encoding vector g. The value of ppoll along with

the number of malicious nodes Nm determines the amount of

polluted packets purposely injected in the network. We define

the pollution overhead ǫp as the ratio between the polluted

and correct packets flowing across the overlay.

The network nodes further propagate the pollution as they

do not know if a packet they received is polluted or not.

Each time a network node draws the received packets for

recombination, it is sufficient that just one of the recombined

packets is polluted for the relayed packet to be polluted as well.

For example, in Fig. 1 the honest node Nk accidentally relays

to Ni a packet which is polluted because Nk has received

a polluted packet from malicious Nj . Recombinations at the

nodes make it difficult to tell whether a node which has relayed

a polluted packet is malicious or is honest and has involuntarily

propagated the pollution.

B. Detecting Pollution Attacks

The network nodes independently detect pollution attacks

while decoding each received packet via Alg. 1. Let us assume

that node Ni in Fig. 1 receives a packet P (g, y) at time tnow.

Node Ni executes Alg. 1 to decode P (g, y), attempting to

insert the coding vector g and the coded payload y in the s-

th row of matrix G and vector Y respectively. If Gs is not

empty (Gs 6= ∅), a collision happens at line 8 and a chance

to detect an ongoing pollution attack arises. If the received

packet coding vector g and Gs are identical, the received

packet P (g, y) and (Gs, Ys) shall represent the same linear

combination of symbols. However, if y and Ys are not bitwise-

identical (line 9), at least one of the packets received so far

for the generation must be polluted. In this case, the algorithm

logs the time at which the pollution attack was detected as tpoll
(line 10) and returns a warning code.

The proposed pollution detection algorithm brings several

advantages. First, no additional complexity is entailed beside a

bitwise comparison between the coding vectors and the coded

payloads. Second, such scheme may enable a node to detect

a pollution attack even before the generation is recovered,

allowing for timely countermeasures. Third, there is a chance

to detect pollution attacks at each algorithm iteration, i.e. there

are multiple chances to detect a pollution attack for each

received packet.

Notice that such pollution detection scheme entails limitations

as well. First, pollution attacks are detected only on a proba-

bilistic basis, i.e. the reception of one or more polluted packets

may go unnoticed. Second, it is not possible to understand

which packet(s) is (are) polluted, so the node shall assume that

all the packets received so far for the generation are polluted.

Nevertheless, in the following we show how probabilistic pol-

lution detection is sufficient to precisely blacklist the malicious

nodes leveraging the properties of BC.

C. Coding to Limit Pollution Propagation

Upon detection of a pollution attack in Alg. 1, each node

adapts its own BC parameters to limit the chances to relay

polluted packets. In the case of Fig. 1, node Nj detects as

pollution attack and broadcasts a warning to its neighbors

including Ni. We indicate with tpoll the time at which node Ni

has either detected a pollution attack or has received a warning

from a neighbor. Let us assume that at time tnow > tpoll a

transmission opportunity arises for node Ni: the difference

tnow − tpoll represents the time since the last evidence of a

pollution attack.

If lots of time has passed since the last pollution evidence,

say tnow− tpoll > tback, Ni assumes that the attack has ended

or its intensity has decreased. Hence, Ni draws the packets to

recombine as detailed in Sec. III-B from a coding window of

size W = k.

If tnow − tpoll < tback, node Ni behaves conservatively

assuming that the last detected pollution attack may be still

going on. Hence, Ni draws the packets to recombine from

a random window of size W = ⌈ k
n
⌉, i.e. W < k, i.e.

Ni constrains the packet recombination to a subset of the

buffered packets. So, Ni decreases the probability to relay

a polluted packet with respect to the case where each packet

is recombined with identical probability as in random NC.

D. Counting Polluted Packets and Exchanging Observations

With reference to Fig. 1, node Ni has (or has had at some

point in time) node Nj among its neighbors: we say that Ni

has seen Nj . In the following, we indicate as Si the set of
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nodes seen by Ni and as Sm
i the set of malicious nodes seen

by Ni: clearly, Sm
i is a subset of Si and |Sm

i | indicates its

cardinality. For example, in the case in Fig. 1, we have Si =
{Nj ,Nk} and Sm

i = {Nj}.
We define as observation vector the vector indicating how

many clean and polluted packets a node has received from

each neighbor it has seen according to the output of Alg. 1.

We recall that the algorithm only detects pollution attacks on a

probabilistic basis. Namely, the algorithm flags a generation as

polluted only if the attack is actually detected and provides no

information on which packet(s) is (are) actually polluted. So, in

the following all packets received for a generation flagged as

polluted by Alg. 1 will be considered polluted to account for a

caution criteria. With reference to node Ni in Fig. 1, (ci,j , pi,j)
indicates the number of clean and polluted packets transmitted

by Nj to Ni. Note that similarly, with reference to node Nk,

(ck,j , pk,j) indicates the number of clean and polluted packets

transmitted by Nj to Nk. So, the whole observation vector of

Ni is Vi = {(ci,j , pi,j), (ci,k, pi,k)}. Node Nl does not appear

in Ni observation vector because in our example Ni has never

seen Nl.

We assume that the nodes are allowed exchange the respective

observation vectors on a periodic basis or on handshakes at

least. Depending on constraints such as bandwidth, nodes

may piggyback their observations to other messages or relay

differential descriptions of their observation vectors.

E. Distributed Identification and Blacklisting Scheme

The scheme that allows a network node to independently

identify and blacklist its malicious neighbors is as follows.

Let us assume that in the case of Fig. 1 Ni and Nk exchange

the respective observation vectors. At this point Ni has an

estimate of the total number of good and polluted packets

received from Nj and Nk. Let node Ni compute

cj = ci,j +
∑

Nq∈Si

cq,j , (2)

as the total number of clean packets transmitted by Nj to Ni

and all the nodes seen by Ni which have also seen Nj . In a

totally analogous way, let us define

pj = pi,j +
∑

Nq∈Si

pq,j . (3)

We define

sij =
cj

pj + cj
, j 6= i (4)

as the honest score of node Nj computed at node Ni. Such

score represents the fraction of clean packets transmitted by

Nj to Ni and all the nodes that exchanged their observations

with Ni. Node Ni may sort the computed scores in increasing

order, i.e. nodes that have uploaded more packets for polluted

generations are listed before the others.

After collecting enough observations, Ni proceeds to black-

listing neighbors with lower score as follows. Let us assume

that tblack seconds after detecting the pollution attack, node

Ni computes the relative score sij as defined above for

each neighbor Nj it has seen. Next, Ni computes the mean

neighbor score and the relative standard deviation as µ and σ,

respectively. Let us define as honest score threshold

θp = α σ + µ, (5)

where α is a factor that can be adjusted to regulate the tradeoff

between precision and recall in malicious nodes identification

as described below. If node Nj score sij is such that sij ≥ θp,

then Nj is considered honest. Otherwise, node Nj is to be

considered as malicious and is blacklisted in two steps as

follows.

As a first step, Ni immediately discards all the buffered pack-

ets received from Nj for any generation. Therefore, packets

received from Nj , more likely to be polluted, cannot be drawn

for recombination and relayed any further. Next, for each

generation, matrix G and vector Y are flushed and the buffered

packets that were not discarded are decoded again via Alg. 1.

This reduces the probability that the recovered generation

payload is corrupted due to the reception of polluted packets

from Nj .

As a second step, Nj is permanently isolated from Ni as

follows. First, Ni gracefully removes Nj from its neighbor-

hood. Second, Ni will reject any novel neighborhood request

that shall come from Nj in the future. That is, Ni will not

receive any coded packet directly from Nj for the rest of

the communication. Assuming that Nj is similarly blacklisted

by all the other nodes in the network, Nj will be isolated

from the rest of the network and will be unable to relay

polluted packets. Therefore, removal of blacklisted nodes from

the overlay becomes superfluous to the end of containing the

pollution attack.

F. Reference Centralized Scheme

Finally, we propose a reference centralized counterpart of

our distributed blacklisting scheme. On a periodic basis, the

nodes envoy their observations exclusively to the tracker, that

acts as a trusted central authority. After tblack seconds the

streaming session has begun, the tracker computes the overall

number of polluted and clean packets pj and cj contributed by

each j-th node in the network to each i-th node that provided

its observation vectors. Next, the tracker centrally computes a

score scj for each j-th node in the network according to (4) and

permanently blacklists nodes for which scj < θp. Namely, each

time a blacklisted node requires novel neighbor address(es) to

the tracker, the tracker ignores the request. Also, each time an

honest node requires novel neighbor address(es) to the tracker,

the tracker never forwards the address of blacklisted nodes.

Because all the nodes periodically drop parts of their neighbors

at random, malicious nodes are gradually isolated from the rest

of the network.

G. Why Does it Work?

Finally, we provide the theoretical ground required to un-

derstand how node Ni can discern malicious from honest

neighbors by thresholding scores. To this end, we associate

each network node with a Bernoulli random variable whose

parameter is sh for honest nodes and sp for malicious nodes.

We use sh (sp) to represent the probability that packets
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provided by the honest (malicious) neighbor Nj result in a

clean recovered generation at Ni. The honest score sij we

defined in (4) is the fraction of packets provided by Nj to Ni

that yield the decoding of a clean generation. Honest score

sij can thus be thought of Ni’s estimate of the probability sh
(sp) that Nj is a honest (malicious) neighbor. Thanks to the

homogeneity and regularity of the overlay network organized

by ToroStream, it follows that all sij computed by Ni for its

honest neighbors will converge in the long run to the same

value sh. Analogously, all sij computed by Ni for its malicious

neighbors will tend to sp.

To understand why the proposed score-based blacklist-

ing method is effective, we denote as nci,j and npi,j the

number of clean and polluted generations decoded by Ni

using at least one packet transmitted by Nj . Similarly to

the definition of cj , pj in Sec. IV-E, we can then define

ncj = nci,j +
∑

Nq∈Si
ncq,j as the number of clean gen-

erations contributed by Nj to all of its neighbors (similarly,

npj = npi,j +
∑

Nq∈Si
npq,j).

If we assume Nj is malicious, it is well known that for a

large sample size, i.e. if enough observations were collected,

the sample distribution of the honest score sij estimator can be

approximated asN (sp,
sp(1−sp)
ncj+npj

), i.e., as a Normal distribution

with mean value sp and variance equal to the scaled variance

of the Bernoulli random variable to estimate [28]. As the sam-

ple size ncj+npj gets larger, the probability sij ≥ θp decreases

with the variance sp(1 − sp). Furthermore, the convergence

rate depends on the variance that peaks its maximum for

sh = 0.5 (or sp = 0.5). That is, for infinitely long experiments

(i.e., infinite observations) the probability that sij ≥ θp (if

Nj is malicious) tends to 0 and Ni will correctly identify

all malicious neighbors. In the practical case of finite time

experiments, the rate of convergence of sij depends on how

distant sp is from 1.

The model we develop in Sec. V will reveal that i) both sh
and sp tend to 1 as W decreases, and ii) sh > sp. Such findings

suggest that for random NC (W = k), sh and sp are both

approximately 0.5, so more observations are required to avoid

sij ≥ θp ifNj is malicious, i.e., to avoid false negatives. On the

contrary, with BC (W < k) sh and sp get increasingly close

to 1 as W decreases. So, given the same experiment length,

BC will enable to identify malicious nodes more precisely than

random NC since higher variance increases the tail probability

that sij ≥ θp for the case Nj is malicious.

V. MATHEMATICAL MODEL FOR sh AND sp

In this section we develop a mathematical model aimed at

characterizing the values of sh and sp as a function of system

parameters. The model development is carried out in five steps:

• with reference to Sec. III-B we derive the probability psl
that one of the packets stored in a node input buffer for

a generation is selected for recombination (Sec. V-A);

• we then exploit psl to obtain the probability prp(q)
that a node creates a polluted recombined packet for a

generation when q BC(k,W ) packets are stored in its

input buffer (Sec. V-B);

• we consider a sequence of recombinations for a given

generation and from prp(q) we derive the average prob-

ability a node creates and relays a recombined polluted

packet prl (Sec. V-C);

• we focus on a generic node N and by exploiting prl
we derive and expression to describe the average number

of packets provided to N by one of its honest uploader

that result in clean and polluted decoded generation. We

further extend this derivation to one of the malicious

neighbors of N (Sec. V-D);

• finally, we focus on any pair of randomly chosen nodes

Ni and Nj and we consider all cases where Ni and

Nj can be honest or malicious in order to derive an

expression for the sh and sp (Sec. V-E). Please note that

the ToroStream protocol described in Sec.III-D lets us

view the overlay network as a regular random graph [29]

wherein the degree of all nodes is equal to Ns and where

all neighborhoods are completely randomly determined,

i.e., any peer can be connected to any other with the

same probability. This means that the overlay network is

symmetric since all nodes in the system are homogeneous

and statistically indistinguishable with respect to how

many and which neighbors are connected to it. Therefore,

the analytical expressions for sh and sp we derive do not

depend on a particular choice of nodes Ni and Nj since

any other pair of nodes would yield the same quantities.

In Sec. VI we numerically show that sh > sp and that smaller

BC coding windows W yield sh and sp values closer to 1. In

the sequel we denote as Bn,x
p =

(

n
x

)

px(1−p)n−x the binomial

probability distribution with parameters n, p computed in x.

Similarly, we denote as HN1,N2,...,Na
n1,n2,...,na

=
(N1
n1
)(N2

n2
)...(Na

na
)

(N1+N2+...+Na
n1+n2+...+na

)
the

multivariate hypergeometric distribution with a populations

whose sizes are N1, N2, . . . Na. Furthermore, to avoid clutter-

ing the notation we omit the explicit dependence of all derived

probabilities on k and W .

A. Probability of selecting a packet for recombination

We consider a generic nodeN ; as discussed in Sec. III-B,N
first draws the recombination window leading edge fr (and the

corresponding trailing edge lr = fr+W −1) according to (1).

Packet P i in the buffer is actually selected for recombination

with probability 1
2 only if fr ≤ si ≤ ti ≤ lr (we recall from

Sec. III-B that scalar ci ∈ {0, 1} is such that P{ci = 1} = 1
2

if fr ≤ si ≤ ti ≤ lr, and ci = 0 otherwise). The probability

that the structure of a BC(k,W ) packet P i satisfies fr ≤
si ≤ ti ≤ lr is

pst(fr, s
i, ti) =

{

2t
i
−si−1

2W−1
ti − si > 0

1
2W−1

ti − si = 0

This means that the probability packet P i is eligible for
recombination when a leading edge fd is drawn is

pel(fd) =

lr∑

si=fd

lr∑

ti=si

k−W∑

fr=0

HD(fr) · pst(fr, s
i
, t

i)

Thus, according to the recombination algorithm described in

Sec. III-B, the probability packet P i is actually selected by
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N for recombination is given by

psl =

k−W
∑

fd=0

HD(fd)pel(fd)

2
. (6)

B. Probability a node creates a polluted recombined packet

Here we derive the probability prp(q) node N creates a

recombined polluted packet for a given generation when it

has q packets in its input buffer. To this end, we consider a

scenario where:

• the number of neighbors of N is equal to Ns and all

neighbors upload packets for a generation;

• the neighborhood of N includes m malicious neighbors;

• node N input buffer contains q packets for the considered

generation that have been provided by its Ns neighbors.

We assume there are 0 ≤ qm ≤ q packets provided by the

m malicious neighbors and the remaining q−qm packets

provided by Ns −m honest neighbors;

• malicious neighbors of N may have modified packets

they transmitted with probability ppoll;
• the distance between node N and the video source is

equal to d hops (when N is a neighbor of the video

source d = 1);

• all neighbors of N may have relayed a polluted

BC(k,W ) packet they created with probability prl(d −
1). In Sec. V-C we derive a recursive expression for

prl(d).

In this scenario, the probability that all the selected packets

provided by the m malicious neighbors of N are clean is

pcp(qm, d) =

qm
∑

b=0

Bqm,b
psl

[(1− ppoll)(1− prl(d− 1))]b, (7)

i.e., none of the selected packets received by N from a mali-

cious neighbor has been voluntarily altered (factor (1−ppoll)b)

and none has been created and relayed as polluted (factor

(1−prl(d−1))
b). Similarly, the probability that all the packets

provided by honest neighbors selected by N are clean is

pch(qm, d) =

q−qm
∑

b=0

Bq−qm,b
psl

(1− prl(d− 1))b. (8)

In this case, honest nodes may have created and relayed a

recombined packet where at least one of the selected packets

was polluted. It follows that the probability node N creates a

recombined polluted packet when m out of its Ns neighbors

are malicious is obtained by averaging over all possible values

of qm and over the probability that the neighborhood of node

N includes m malicious neighbors as

prp(q, d)=

min(Nm,Ns)
∑

m=0

HNh,Nm

Ns−m,m

q
∑

qm=0

Bq,qm
m
Ns

[1−pcp(qm, d)pch(qm, d)].

(9)

This averaging is based on the assumption that the neighbor-

hood creation of a node is completely random and can thus

be modeled as a sampling without replacement of Ns nodes,

operated by the tracker, among all nodes in the system.

C. Average probability to recombine and relay a polluted

packet

The number of BC(k,W ) packets in the input buffer of

node N for a given generation increases as long as de-

coding does not occur. This means that N creates multiple

recombined packets for a given generation each time using a

different (increased) input buffer occupancy q. This also means

that the probability N creates a polluted recombined packet

prp(q, d) increases with time; it is thus a sensible choice to

define an average probability for a node to create and relay a

recombined polluted packet.

To achieve this goal we can represent this time-dependent

process by a recombination sequence q = (q1, q2, . . . qnr
)

where nr > 0 represents the number of recombination rounds

operated by node N for a given generation, with the con-

straints that q1 > 0, qnr
≥ k, and ∀i ∈ [1, nr − 1], qi < qi+1.

The definition of a recombination sequence can be further

restricted by considering that:

• the overall upload bandwidth of nodes is equal to Bu

Mbit/s;

• the size of a BC(k,W ) packet is equal to PS kbit;

• each node N uses a scheduler that is cyclically activated

each tsched seconds to create and upload recombined

packets to its neighbors. This means that a node runs
1

tsched
recombination rounds each second.

If we assume that each node equally shares its upload

bandwidth among its Ns neighbors then we find that the

overall download bandwidth of nodes is equal to Bu, as

well. This implies that each node fills its input buffer at a

rate equal to Bu

PS
packets/s that translates to δq = tschedBu

PS

packets/recombination round. This observation allows us to

further constraint the definition of a recombination sequence

q by imposing that ∀i ∈ [2, nr], qi = qi−1 + δq .

For a recombination sequence q we define two quantities:

• the average value of probability prp(q, d) defined as

prp(q, d) =
∑nr

i=1
prp(qi,d)

nr
;

• the weight associated to each q that we define as w(q) =

ξ(qnr
), where ξ(k′nr

) = 1 −
∑k′

nr

k′=1 τ(k
′) denotes the

probability that decoding has not occurred when k′nr

BC(k,W ) have been collected (here τ(k′) is the prob-

ability that a generation is decoded upon the receipt of

the k′−th packet). This also serve to model the fact that

creation of recombined packets stops after decoding.

It follows we can define the average probability node N
creates and relays a recombined polluted packet prl(d) by

computing the weighted average of prp(q, d) over all possible

recombination sequences q, that is

prl(d) =

∑

q w(q)prp(q, d)
∑

q w(q)
(10)

It can be noted that (10) recursively defines prl(d) since (7),

(8), and (9) all depend on prl(d − 1). We thus complete the

recursive definition of prl(d) with the base case prl(0) = 0,

i.e., nodes connected to the video source can only receive

polluted packets from polluter neighbors (besides the video
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source) that voluntarily alter packets with probability ppoll and

there is no honest node relaying polluted recombined packets.

D. Average number of packets to decode one generation

We consider a generic node N whose neighborhood in-

cludes m malicious neighbors. We focus on the generations

it decodes and we assume that q BC(k,W ) packets stored in

its input buffer allowed node N to decode a single reference

generation. In this setting, we can write the expression for the

average number of packets provided to N by one of its honest

neighbors when a single clean generation is decoded as

ch(m)=

∞
∑

q=k

τ(q)

q
∑

qm=0

Bq,qm
m
Ns

(1−ppoll)
qm(1−prl(d))

q

(

q − qm
Ns −m

)

.

(11)

Eq. 11 weights the average number of packets provided by

each honest uploader (factor q−qm
Ns−m

) by the probability that the

generation does not contain polluted packets (probability (1−
ppoll)

qm(1−prl(d))
q). It also averages over all possible values

of BC(k,W ) packets provided to N by malicious neighbors

and over all possible values of packets in the input buffer that

are required for decoding.

Similar reasonings allow one to derive an expression for

the average number of packets provided to N by one of

its honest neighbors when a single polluted generation is

recovered (denoted as ph(m)): it suffices to replace in (11)

the probability of clean decoding by its complement 1 −
(1 − ppoll)

qm(1 − prl(d))
q . In the same vein, two analogous

quantities for one of the malicious neighbors of N can be

derived: cp(m) can be obtained from (11) and pp(m) from

ph(m) by substituting factor q−qm
Ns−m

with qm
m

in both.

E. An expression for sh and sp

We now consider any two randomly chosen nodes Ni and

Nj to derive an expression for the honest score sij . Since

nodes are homogeneous and statistically indistinguishable with

respect to how many and which neighbors are connected to it,

the expression for sij we derive does not depend on a particular

choice of i and j and it can be used to characterize parameters

sh and sp. To this end, we first characterize the number of

clean and polluted packets transmitted by Nj to Ni for a single

generation.

We focus on the cases where Nj is in the neigh-

borhood of Ni and consider the composition of the re-

maining Ns − 1 nodes to properly average the values of

ch(m), ph(m), cp(m), pp(m).
We first consider Nj as an honest node that provides packets

to an honest Ni; in this case we define the number of clean

packets Nj provides to Ni as

ch←h
i,j =

min(Nm,Ns−1)
∑

m=0
HNh−2,Nm,1

Ns−m−1,m,1c
h(m)

min(Nm,Ns−1)
∑

m=0
HNh−2,Nm,1

Ns−m−1,m,1

(12)

Analogously, we derive ph←h
i,j (defined as the number of

polluted packets from Nj to Ni) by replacing ch(m) with

ph(m) in (12). Please note, that ch←h
i,j and ph←h

i,j are the model

counterpart of counters ci,j and pi,j defined in Sec.IV-D. If

Ni is malicious we obtain

cp←h
i,j =

min(Nm−1,Ns−1)
∑

m=0
HNh−1,Nm−1,1

Ns−m−1,m,1 ch(m)

min(Nm−1,Ns−1)
∑

m=0
HNh−1,Nm−1,1

Ns−m−1,m,1

(13)

and pp←h
i,j is computed by replacing ch(m) with ph(m) in (13).

The case where Nj is malicious is similar but with an

important difference: when averaging over all values of m
in the neighborhood the quantities to be averaged must be

computed for m+1 malicious neighbors and not for m since

Nj is malicious itself. So, when Ni is honest we obtain

ch←p
i,j =

min(Nm−1,Ns−1)
∑

m=0
HNh−1,Nm−1,1

Ns−m−1,m,1 cp(m+ 1)

min(Nm−1,Ns−1)
∑

m=0
HNh−1,Nm−1,1

Ns−m−1,m,1

. (14)

Again, pp(m+1) replaces cp(m+1) in the definition of ph←p
i,j

while if Ni is malicious we have

cp←p
i,j =

min(Nm−2,Ns−1)
∑

m=0
HNh,Nm−2,1

Ns−m−1,m,1c
p(m+ 1)

min(Nm−2,Ns−1)
∑

m=0
HNh,Nm−2,1

Ns−m−1,m,1

(15)

with pp←p
i,j obtained by substituting cp(m+ 1) by pp(m+ 1).

All previously defined quantities c∗←∗i,j and p∗←∗i,j are the

model counterpart of counters ci,j and pi,j defined in Sec.IV-D

for all possible honest/malicious combinations; they all must

be weighted for the relative population sizes to obtain the

overall number of clean and polluted packets as

chi,j = ch←h
i,j

Nh − 1

Nh +Nm − 1
+ cp←h

i,j

Nm

Nh +Nm − 1

cpi,j = ch←p
i,j

Nh

Nh +Nm − 1
+ cp←p

i,j

Nm − 1

Nh +Nm − 1

phi,j = ph←h
i,j

Nh − 1

Nh +Nm − 1
+ pp←h

i,j

Nm

Nh +Nm − 1

ppi,j = ph←p
i,j

Nh

Nh +Nm − 1
+ pp←p

i,j

Nm − 1

Nh +Nm − 1
(16)

According to the definitions (2) and (3) given in Sec. IV-E, we

define the total number of clean packets transmitted by Nj to

Ni and all the nodes seen by Ni (Nq ∈ Si) which have also

seen Nj : in the case node Nj is honest we obtain

chj = chi,j



nci,j + npi,j +
∑

Nq∈Si

(ncq,j + npq,j)



 , (17)

where ncx,j denotes the overall number of generations de-

coded by Nx when Nj uploaded packets to it as defined in

Sec. IV-G. Analogously, we define

phj = phi,j



nci,j + npi,j +
∑

Nq∈Si

(ncq,j + npq,j)



 . (18)
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To write (17) and (18) we exploited the homogeneity and

regularity properties of nodes in ToroStream, i.e., ∀Nq ∈ Si :
chi,j = chq,j ∧ phi,j = phq,j . Similar expressions can be written

for cpj and ppj in the case node Nj is malicious by replacing

chx,j and phx,j by cpx,j and ppx,j , respectively.

According to (4), we finally define the probability that

packets provided by Nj to Ni result in a clean recovered

generation when Nj is honest as

sij =
chj

chj + phj
=

chi,j
chi,j + phi,j

= sh (19)

Similarly, when Nj is a polluter we obtain

sij =
cpj

cpj + ppj
=

cpi,j
cpi,j + ppi,j

= sp. (20)

VI. EXPERIMENTS

In this section we first define the scenario we consider show-

ing how pollution propagates depending on BC parameters.

Afterwards, we exploit the model in Sec. V to predict the

performance of the proposed identification method. Finally,

we used the actual prototype to both validate the model

prediction and to analyze the effects of protocol parameters

on the accuracy of the identification technique.

A. Experimental scenario

We consider a network with N=1000 nodes where Nm =

20 are malicious and Nh = N − Nm = 980 are honest. The

neighborhood of each node is constrained to Ns = 25 nodes

and each malicious node alters the payload of each transmitted

packet with probability ppoll = 1%. We stream a live video by

means of the ToroStream P2P protocol described in Sec. III-D.

The protocol is implemented as a realtime multi-threaded C++

Linux application that we deploy over a 64-cores server with

128 GB of RAM and a fast array of RAID disks. Such

setup allows us to capture in realtime the complex interactions

between coding, packet scheduling and other aspects of a real

P2P live video distribution architecture.

We encode a video feed at a constant rate of 500 kbit/s

where each node can exploit an upload bandwidth up to

Bu = 1 Mbit/s. The video stream is divided in generations

of k blocks each, where each generation encompasses one

or more self-decodable Groups of Pictures (GoPs). At each

transmission opportunity, the server node encodes a packet as

described in Sec. III-A (with W = k at start-up) and uploads

it to a random peer node. The server seeds coded packets for

each generation of the video stream for an amount of time

corresponding to the generation playout duration. Periodically

(once every tsched = 100 ms) each peer node transmits a novel

BC packet out of its locally buffered packets to a neighbor

drawn at random. Whenever a transmission opportunity arises,

each malicious node randomly flips the bits of the coded

video payload with probability ppoll as described in Sec. IV;

otherwise, it behaves as an honest node. Each node decodes the

received packets using the pollution detection capable Alg. 1

and broadcasts a message to its neighbors whenever it detects

a polluted generation.

B. Pollution Propagation Analysis

As a first set of experiments, we investigate how the

pollution propagates through the network as a function of the

generation size k and coding window size W . Let us define

the pollution overhead ǫp as the fraction of relayed packets

that are polluted. The coding overhead ǫc = k′
−k
k

represents

instead the fraction of packets relayed by a node that are non-

innovative at the recipient. Fig. 2 (left) shows the attainable

ǫp - ǫc tradeoff as a function of W and k. Only 20 nodes

out of 1000 are malicious, and each malicious node pollutes

on average 1% of the transmitted packets, so the pollution

overhead due to the malicious nodes activity amounts to just

0.02% of the overall traffic. The RNC curve refers to a RNC

scheme where the nodes relay random linear combinations of

the received packets (i.e., W = k). The other three curves refer

to the BC-based scheme described in this work and account

for three different coding window sizes W ∈ { 2k3 , k
2 ,

k
3}. We

see that with BC the pollution overhead is about 10 times

lower than with RNC, and decreases with the window size W .

Most important, we observe that small W and k values yield

the sought conditions for correctly identifying the malicious

nodes. However, small k also impair the code efficiency be-

cause the nodes exchange fewer innovative packets increasing

the coding overhead (right figure). Therefore, in the rest of

our experiments we consider generations of 250 kbit (k=25

blocks, as each block accounts for 10 kbit of video payload)

and a packets size PS = 10 kbit as a reasonable tradeoff

between coding and pollution overhead.
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Fig. 2. Pollution overhead ǫp and coding overhead ǫc as a function of the
of the generation size k [kbit] and coding window size W [blocks].

C. Honest Score Model Exploitation

The model we developed in Sec. V, through (19) and (20),

allows us to predict the value of the honest score estimated by

each node. As already discussed this amounts at estimating the

system-wide parameters sh and sp. Table II (leftmost columns)

shows the values obtained with (19) and (20), computed by

setting the model parameters according to the scenario defined

in Secs. VI-A and VI-B. These evaluations depend on (10) and

(11) that require the knowledge of τ(k′), i.e. the decoding

probability of BC(k,W ). To the best of our knowledge there

is not an analytical expression for such probability. Therefore,

we numerically computed it by repeated decoding trials simu-

lation for a range of coding window sizes W ∈ {k, 2k
3 , k

2 ,
k
3}.

It can be noted that the model predicts that sh > sp for

all values of W we considered, thus suggesting that the

proposed identification mechanism is able to discern honest

from malicious in the long term. Furthermore, the model
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results also show that both sh and sp tend to 1 as W decreases;

according to the remarks in Sec. IV-G, this means that the rate

of convergence of the estimates increases as W decreases. In

particular, the model results show that for RNC (W = k),

sh and sp are both approximately 0.5, so more observations

are required to avoid that sij ≥ θp if Nj is malicious, i.e., to

reduce false negatives. On the contrary, with BC (W < k) sh
and sp get increasingly close to 1 as the coding window size

W is reduced.

Obviously, the proposed model must be validated against

real data obtained by running our prototype. To this end we

perform a 300 s long trial with our prototype; at the end ot the

experiment we collect and average the honest scores for all Nh

honest and Nm malicious nodes to obtain values comparable

with those from (19) and (20). The measured values are show

in the rightmost part of Table II. It can be noted that the model

prediction and the real data are in very good agreement. To

further support the model prediction, in Fig. 3 we show the

honest scores computed by a randomly chosen honest node for

RNC (W = k) and BC with W = k/2. The honest scores are

ordered on the x axis from the lowest to the highest and honest

scores corresponding to malicious nodes are represented with

a red circle. The dashed line represents the decision threshold

in (5) for α = 2.0. With RNC, on the average, honest scores

are lower as correctly predicted by our model (see Table II).

Moreover, the honest score of several malicious nodes are

higher than the decision threshold, i.e. honest scores do not

properly allow to discriminate between honest and malicious

nodes. This is a consequence of having both sh and sp very

close to 1
2 (sh = 0.511453 and sp = 0.47911). Conversely,

with BC the honest scores of malicious nodes are more clearly

clustered around values lower than those of honest nodes.

Such behavior is the key for blacklisting malicious nodes

in reasonable time, as we will experimentally prove in the

following.

W model sij (measured)

sp sh Malicious Honest
k
3

0.926249 0.948308 0.923849 0.95452
k
2

0.915887 0.935425 0.895789 0.927744
2k
3

0.886283 0.904738 0.852016 0.882849

k 0.463819 0.473402 0.47911 0.511453

TABLE II
HONEST SCORE PREDICTED BY (19) AND (20) (LEFT) AND VALUES

COMPUTED BY PROTOTYPE (RIGHT) FOR VARYING W .
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Fig. 3. Computed honest scores for different coding schemes (to = 300 s).

D. Malicious Nodes Identification

As a second experiment, we assess how precise is our

scheme in identifying the malicious nodes as the True Positives

Ratio (TPR) of the nodes identified as malicious. For each

i-th network node we define the TPR as the fraction of true

malicious nodes among the top-|Sm
i | nodes in the sorted scores

list, where |Sm
i | is the subset of malicious nodes actually

seen by the i-th node according to the ground truth (in the

following, we report the TPR averaged over all the network).

Namely, we study the effect of the nodes observation time to
and number of observations No available at a node.

First, after an observation time of to = 300 s , each node

Ni requests (No − 1) other random nodes their observation

vectors and computes a sorted list of suspected malicious

neighbors, albeit no node blacklisting is enforced not to bias

the malicious nodes identification process. Fig. 4 (left) shows

the TPR as a function of No (when No=1, a node relies

on its own observations only). As a general trend, malicious

nodes are identified with increasing precision (i.e., the TPR

increases) as No increases. However, the precision of the

RNC scheme increases linearly only with No: even with

No=200 observations available at each node, the TPR barely

exceeds 50%. With RNC, honest nodes relay a lot of polluted

packets, as Fig. 2 (left) shows. Thus, collected observations

are unreliable and useless to discriminate between the honest

and the malicious nodes. On the contrary, the BC schemes

precisely identify (TPR between 90% and 100%) the malicious

nodes with just about No = 100 observations. With BC, honest

nodes relay fewer polluted packets as Fig. 2 (left) shows. Thus,

observations are more reliable, enabling to precisely identify

malicious nodes.

Similarly, Fig. 4 (right) shows the TPR as a function of

the observation time to when No ≤ 75. With RNC, even

large to increases bring however modest TPR improvements

only. Fig. 2 (top) shows that honest nodes relay many polluted

packets with the RNC scheme, thus the observations are

unreliable. That is, with RNC it is difficult to identify the

malicious nodes even over long observation time because the

exchanged observations are not discriminative. Conversely,

with BC the malicious nodes are precisely identified over short

time (e.g.: with W = k/3, the TPR is equal to 97% after 300

seconds). Fig. 2 (top) shows in fact that the nodes relays a

limited number of polluted packets, therefore the exchanged

observations are reliable. That is, with BC the malicious nodes

are quickly identified because the exchanged observations are

highly discriminative.
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E. Malicious Nodes Blacklisting

As a third and last set of experiments, we assess the

effectiveness of our malicious nodes blacklisting scheme.

First, we evaluate to which extent blacklisting malicious

nodes improves the video quality. Each node computes the

score for each neighbor observed so far, tblack s after joining

the streaming session. Next, the node blacklists the neigh-

bors with lower score according to the criteria described in

Sec. IV-E. In all the following experiments, we set α =

2.0 in (5), which yields the score threshold corresponding

to the dashed line in Fig. 3. Such α value enables a rea-

sonable tradeoff between blacklisting recall and precision for

different coding parameters, as the figure suggests. We define

as Continuity Index (CI) the average fraction of generations

successfully recovered by all the nodes. Only generations

recovered entirely, prior to the respective decoding deadlines

and without polluted packets are successfully recovered. In the

considered video streaming application, the CI corresponds to

the inverse of the screen freezes frequency due to corrupted

generations of video data. Fig. 6 (left) shows the CI as

a function of the blacklisting time tblack and for different

encoding window sizes W . The reported CI is computed, for

each node, only over generations distributed by the server

after tblack, i.e. after the blacklisting has been enforced. The

case tblack=0 refers to the scenario where no blacklisting is

performed at all and serves as a baseline. With RNC, the

blacklisting mechanism does not allow to recover the full

video quality for any tblack. As shown in Fig. 4 (right),

even after collecting observations for 300 s the nodes cannot

properly discriminate between honest and malicious nodes.

Conversely, with BC the TPR increases together with tblack,

so the blacklisting mechanism is increasingly more precise

at excluding from the communication true malicious nodes.

By tblack = 250 s, the CI is steadily above 90%, and by

the end of the streaming session the malicious nodes are

correctly identified and blacklisted (W = k
2 ). The experiment

shows that packet counts observations collected with BC are

discriminative enough to enable a simple blacklisting scheme

to recover nearly-optimal video quality.

Second, we study the effect of an increase of the probability

ppoll that a malicious node injects a bogus packet. Fig. 5

(left) shows the precision in malicious identification (TPR)

as ppoll increases above 1%. As expected, the experiments

confirm that the honest nodes relay more polluted packets to

the network as ppoll increases. With RNC, the TPR drops

as ppoll increases: as malicious nodes inject more polluted

packets, the ambiguity between honest and malicious nodes

increases and collected observations are less discriminative to

identify the malicious nodes. On the contrary, with BC the

TPR increases as ppoll increases: malicious nodes are in fact

more likely to be correctly identified when they transmit more

polluted packets to the network.

Fig. 5 (right) shows the corresponding post-blacklisting CI

as a function of ppoll for tblack = 200s. As expected, the

CI for the RNC scheme drops quickly as ppoll increases,

i.e. the malicious nodes succeed in compromising the video

communication. Conversely, with BC the CI increases as

ppoll increases, with smaller window sizes W yielding better

performance. This experiment shows that, with our proposed

scheme, injecting more polluted packets in the network may

be counterproductive for malicious nodes as they are more

easily identified and isolated from the network.
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Fig. 5. Precision in malicious nodes identification (left) and video quality
(right) as a function of the packet pollution probability ppoll (tblack = 200
s).

Finally, in Fig. 6 (right) we experiment with the centralized

scheme in Sec. IV-F for W = k
2 and σp = 2. The centralized

scheme identifies the malicious nodes restoring near-perfect

video quality in only 200 s as the tracker collects observations

from the whole network The distributed scheme achieves the

same performance in about 300 s as network nodes can collects

observations only from seen nodes. We also experiment with

the malicious nodes attempting to throw blame on honest

nodes. For each transmitted observation, each of the Nm = 20
malicious nodes relays bogus observations by randomly al-

tering the observed nodes identifiers. The distributed scheme

performance worsens as tblack increases as bogus observations

cause the honest nodes scores to drop. Conversely, with our

centralized scheme the number of correct observations avail-

able at the tracker is such that the weight of bogus observations

is marginal only. Concluding, the centralized scheme secures

the network against pollution attacks in less time and is more

resilient to bogus observations in reason of the higher number

of available observations at the price of deploying a centralized

authority in the network.
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VII. CONCLUSIONS AND FUTURE WORKS

We proposed a distributed scheme for identifying and black-

listing malicious nodes on a probabilistic basis in pollution

attacks to Network Coding (NC)-based video communications.

Our approach scales with the network size because is to-

tally distributed and is lightweight because it does not entail

cryptographic primitives. We developed an analytical model

to characterize the probability a node provides packets that
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result in the decoding of a clean or a polluted generation as a

function of the BC coding window W to show its impact

on the accuracy and effectiveness of our scheme. We also

showed that our method allows each node to estimate this

probability for all other nodes. We experimented with P2P

video streaming, demonstrating that our model is accurate and

that our approach enables to precisely isolate the malicious

nodes and restore the security of a video communication in

reasonable time. Notably, the malicious nodes are more likely

to be correctly identified and isolated when they relay more

polluted packets to the network.
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