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Abstract—Face presentation attacks are main threats to face
recognition system, and many presentation attack detection
(PAD) methods have been proposed in recent few years. Although
these methods have achieved significant performance in some spe-
cific intrusion modes, difficulties still exist in addressing replayed
video attacks. Thats because replayed fake faces contain a variety
of aliveness signals such as eye blinking and facial expression
changes. Replayed video attacks occurred when attackers try
to invade biometric systems by presenting face videos in front
of cameras, and these videos are often launched by a liquid-
crystal display (LCD) screen. Due to the smearing effects and
movements of LCD, videos captured from real and replayed
fake faces present different motion blurs, which mainly reflected
in blur intensity variation and blur width. Based on these
descriptions, a motion blur analysis based method is proposed
to deal with replayed video attack problem. We first present a
1D convolutional neural network (CNN) for motion blur intensity
variation description in time domain, which consists of a serial of
1D convolutional and pooling filters. Then, a local similar pattern
(LSP) feature is introduced to extract blur width. Finally, features
extracted from 1D CNN and LSP are fused to detect replayed
video attacks. Extensive experiments on two standard face PAD
databases, i.e., Relay-Attack and OULU-NPU, indicate that our
proposed method based on motion blur analysis significantly
outperforms the state-of-the-art methods and show excellent
generalization capability.

Index Terms—Replayed Video Attack, Motion Blur Analysis,
1D CNN, Local Similar Pattern

I. INTRODUCTION

ITH the maturity of face recognition technology, it

has been widely applied to many biometric systems
[M], [7]. Although these biometric systems have achieved high
accuracy on recognizing customer faces, face PAD is still
an extensive problem [B], [4]. What is even worse, with
the popularity of Internet communication and social media,
criminals can easily access to people’s biological information,
such as face pictures and videos, and it is not difficult for
them to use the information to invade personal biometric
system. Therefore, considering this urgent security situation,
an effective and reliable face PAD method must be developed
for identifying such threats.
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Fig. 1. Samples of face presentation attacks. From left to right: printed face
photos, displayed face images or replayed videos, and 3D masks.

Based on different artefact models, four types of face
presentation attacks can be considered: (i) printed face photos,
(ii) displayed face images, (iii) replayed videos and (iv) 3D
masks. In printed face photo attacks, the attacker prints face
photos on paper and puts them in front of the camera. In both
displayed image and replayed video attacks, a digital screen
is used to show face images or videos. For 3D mask scenario,
the attacker uses a 3D mask of authorized person to fool the
system. Compared with replayed video attacks, the printed
photo attacks, displayed image attacks and 3D mask attacks
cannot exhibit facial aliveness signals (e.g. eye blinking, pulse
and facial expression changes). Hence, detecting replayed
video attacks and distinguishing them from real faces are
more challenging on common cameras. For instance, Li et
al. [8] proposed a 3D mask PAD method by computing
the pulse from face videos. Even though such method can
effectively detect 3D mask attacks, it will become ineffective
when replayed video attacks occur. Fig. [l shows an example
of different face presentation attacks.

In the last decade, many face PAD approaches have been
proposed [6], [IZ], [B], [9], [X0O], [TD], [T2], (D3], [X4], [T5],
[[&], [CZ]. However, most of them did not specifically analyze
the attributes of replayed video attacks but classified all differ-
ent attacks into a same category. Especially with the popular-
ization of high-definition screens, the overall analysis mode
cannot effectively detect replayed video attacks. Therefore,
Keyurkumar et al. [I8] detected the replayed video attacks
by analyzing moiré pattern, which is an optical phenomenon
and appears when the screen is close to the camera. Although
this method can achieve good detection performance, the
generation of moiré pattern needs some objective conditions,
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Fig. 2. The motion blur after video magnification. From left column to right
column: real face videos, replayed face videos showed by iPAD and replayed
face videos showed by iPhone 3GS. Compared with real faces, the motion
blurs of fake faces are more obvious, especially in the edge regions.

for instance, the camera cannot be too far away from the
screen. Galbally er al. [19] extracted different kinds of image
quality assessment features to describe the quality of real
and replayed fake faces. Even though this method can work
well in the case of coarse videos (e.g. low-resolution screen),
it will gradually become invalid as the screen resolution
increases. In another work, Bharadwaj et al. [20] computed
Histogram of Oriented Optical Flow (HOOF) [21]] features for
describing motion differences between the real and replayed
faces. Although some satisfactory results were obtained, the
generalization ability of their method is poor. Recently, Aziz
et al. [27] built a deep learning network and extracted features
from replayed video frames. In spite of the promising detection
results, like [T9], it can also be spoofed by a high-resolution
screen invasion.

For replayed video attacks, attackers usually use an LCD
screen to play face videos [U], [T6]. When a motion occurs, the
camera’s Charge-Coupled Device (CCD) of biometric system
can record the trace of the motion. In this process, caused by
the smearing effects and movements of LCD, the captured real
face video and replayed fake face video have different motion
blurs, which are mainly reflected in blur intensity variation
and blur width. Fig. @ shows an example of different motion
blurs. From the figure, we can clearly see that the motion blurs
produced by replay video attacks are different from that of real
faces.

Based on the differences of motion blurs between the real
faces and fake faces, we propose a new method for replayed
video attack detection. First, we preprocess the captured videos
based on motion magnification algorithm [3]. Then, 1D CNN
feature for motion blur intensity variation and LSP feature
for motion blur width are extracted. Finally, feature fusion
mechanisms and Support Vector Machine (SVM) [24] classi-
fier are used to identify replayed video attacks. We train and
test our proposed method on two public available databases:
Replay-Attack [A] and OULU-NPU [?5]. The experimental re-
sults demonstrate the effectiveness and excellent generalization
capabilities of the proposed method in replayed video attack
detection compared to the state-of-the-art approaches.

Among the significant contributions of this present paper,
we can cite:

1) While most previous works on face PAD are based on
analyzing only the visible cues (i.e. texture) of the face
images, we propose a novel and appealing approach
using motion blur analysis and demonstrate that the blur
intensity variation and blur width can be very useful in
discriminating replayed fake faces from genuine ones.

2) We exploit the intensity distribution histogram to describe
the brightness of face image and design a novel 1D CNN
for extracting intensity variation information from time
domain. Compared with other existing deep learning net-
works, our 1D CNN consists a series of 1D convolutional
filters and 1D pooling kernels, which can extract variation
features from intensity distribution histograms.

3) We utilize LSP feature to capture the width of motion
blur. Unlike traditional texture features that compare
the differences between image pixels, the LSP feature
encodes the pixels that have same brightness values and
counts the distribution of encoded results.

4) Two different fusion mechanisms (i.e. early fusion and
late fusion) are explored for 1D CNN and LSP features,
and the fused features significantly improve detection
performance compared to individual feature.

5) Extensive experimental analysis is conducted on the two
latest and challenging face PAD databases using their
pre-defined publicly well-defined experimental evaluation
protocols ensuring the reproducibility of the results and
a fair comparison with the state-of-the-art methods. Fur-
thermore, in our cross-database evaluation, the proposed
method shows promising generalization capabilities.

The remainder of the paper is organized as follows: Section
IT reviews the existing state-of-the-art methods of face pre-
sentation attack detection. Section III introduces the prelimi-
naries needed in our method. After that, our motion analysis
based detection method is described in Section IV. Section
V provides the details of experimental setup and Section VI
discusses the obtained results. Finally, in Section VII, we
conclude the paper and discuss some directions for future
research.

II. RELATED WORK

Since the early 2000s, many methods have been proposed
for addressing the problem of face PAD [6], [Z], [K], [9], [I0],
[D], [@2], [3], [14], [15], [I6]. Based on different clues,
we categorize these methods into four categories: (i) texture
analysis [6], [8], [9], (ii)) motion analysis [I0], [IT], [P6], (iii)
image quality analysis [I2], [I3], [I4], [05], [06], and (iv)
hardware based methods [[Z], [5], [IA], [277], [2X], [29].

1) Texture analysis based methods: Due to the limitations
of the printers and display devices, face PAD methods based
on texture analysis mainly analyze the printing failures, blur-
ring and other effects on fake faces. In these methods, the
analysis of micro-texture pattern descriptor is a mainstream.
For instance, Maatta et al. [B] computed the texture differences
between the real and fake faces in a multi-scale local binary
pattern (LBP) feature space. Chingovska et al. [6] utilized dif-
ferent variations of LBP features and classifiers to detect face
presentation attacks. Moreover, Akshay et al. [B0] extracted
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Haralick features [B1], a kind of textural features for image
classification, from video frames to detect the presented fake
faces. To capture the color differences in chrominance and lu-
minance caused by printing or displaying failures, Boulkenafet
et al. [9], [32] proposed a method by extracting LBP features
from different color spaces and analyzing those color-textures
in an SVM classifier. In another work [B3], Boulkenafet et al.
extracted multi-scale textural features from a Gaussian pyra-
mids and handled the key problem of the variation in the input
image quality and resolution in face PAD. With the recent
successes of deep learning in computer vision [B4], [B5], some
face PAD works have also begun to introduce deep texture
analysis into face PAD. Yang et al. [Bf] proposed an end-to-
end CNN model for face PAD and fed the model with different
scale face images for considering background information.
In [B7], [BR], the hand-crafted features were extracted from
convolutional feature maps to distinguish the real and fake
faces rather than invoking fully-connected layers. Instead of
using hand-crafted features, Li et al. [B9] proposed a novel
learnable LBP network for face spoofing detection, which
can significantly reduce the network parameters. Moreover,
in order to capture the temporal texture variations from a
video sequence, Xu et al. [40] proposed a long short memory
network (LSTM) and Li er al. [BT] designed a 3D CNN
to detect face presentation attack respectively. These texture
analysis based methods have good detection performances
when the artificial traces are obvious, such as rough face
texture. However, with the development of high-definition
screens (especially retina screens), their detection performance
for replayed video attacks and displayed face image attacks
tend to decrease drastically.

2) Motion analysis based methods: Apart from texture
variations, motion is also a vitally important clue for face
PAD, especially for the printed photo and displayed image
attacks. Due to the involuntary eye blinking typically occurs
in the interval of two to four seconds, Pan et al. [I0] tackled
face PAD task by detecting eyelid motion and realized it in
an undirected conditional random field framework. In another
work, Anjos et al. [26] computed the motion correlation
coefficient between face region and background and classified
the face image whose motion correlation coefficient is less than
the threshold into a presentation attack. Moreover, Pereira et
al. [62] and Phan et al. [43] extracted the features of LBP-TOP
[44] and LDP-TOP [49] to describe the texture motion in face
region and utilized a classifier to detect presentation attack.
Santosh et al. [A6] used the dynamic mode decomposition
(DMD) to capture the dynamics of movements. On the other
side, planar object movements can also be analyzed for face
PAD. Therefore, Bao et al. [A7] addressed the problem of
face PAD by analyzing the light differences in optical flow
fields generated by movements of two-dimensional presenta-
tion attacks and three-dimensional real faces. Tan et al. [I1]
utilized Difference-of-Gaussian (DoG) filters to extract the
differences in motion deformation patterns caused by different
object dimensions. Since there are no aliveness signals in 3D
mask attacks, Li et al. [S] proposed a 3D mask PAD method by
detecting the pulse from face videos. Although motion analysis
based methods are effective to static image attacks and 3D

mask attacks, these methods can still be easily deceived by
replayed video attacks. Therefore, it is necessary to request
the subject to perform specific movements [AX], [2Y].

3) Image quality analysis based methods: Since reproduced
face images and videos usually have lower quality in compar-
ison with the original ones, some methods took advantage of
high frequency components of the data to recognize fake faces.
For instance, in [[2] and [I3], the high frequency features
were extracted by the DOG filters and analyzed for face PAD.
Instead of directly using high frequency information, Li et
al. [T4] mapped this information into a more discriminative
feature space to classify the real and presented fake faces.
In another work, Wen et al. [?] connected four kinds of fea-
tures to describe the specular reflection, blurriness, chromatic
moment and color diversity caused by LCD screen. The low
quality of image or video display devices is another important
factor for face quality. So, Feng et al. [50] detected the fake
faces by invoking both advanced image-quality feature and
dense optical flow feature. Moreover, Pinto et al. [51] analyzed
the Fourier spectrum [B7] of the noise signature to obtain
the features that can distinguish the real faces from printed
fake faces. Such image quality analysis based approaches are
expected to work well for low-resolution printed photo attacks
or when using crude face masks, but are likely to fail for high
quality displayed images or replayed videos.

4) Hardware based methods: Apart from the analysis of
face images and videos, various advanced hardwares, e.g.,
depth, multi-spectral and light-field cameras, have also been
utilized for face PAD task. For instance, Erdogmus et al.
[7] used a Kinect camera to obtain the depth information
and effectively detected face presentation attacks by analyzing
the differences between the real and fake faces in the depth
information. The reason is that there is no any depth informa-
tion in the presentation attacks using 2D mediums. In order
to capture the differences in light reflection, Pavlidis et al.
[5] achieved it by computing the upper-band of near-infrared
(NIR) spectrum and Zhang et al. [T6] invoked two photodiodes
to receive the reflectance light instead of using intrinsic image
decomposition algorithms. More recently, light-field cameras
allow exploiting disparity and depth information from a single
capture. Therefore, Kim et al. [27], [28], [P9] introduced these
kinds of cameras into face PAD. Even though these hardware-
based methods can achieve good performances for replayed
video attacks, some of them might present operation restric-
tions in certain conditions. For instance, the sunlight can cause
severe perturbations for NIR and depth sensors; wearable 3D
masks are obviously challenging for those methods relying on
depth data.

III. BACKGROUND AND MOTIVATION

Before describing our method, we analyze the differences
of motion blur between the real face and replayed fake face
in a quantitative view. More specifically, we first describe
the smearing of LCD, which induces the differences in blur-
intensity variation. Then, the principle of motion blur gener-
ation is introduced and the reasons for blur-width differences
are explained.
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Fig. 3. Schematic drawing of the liquid crystal director configuration
with increasing voltage [54]. The amount of transmitted light is controlled
by different liquid crystal states. From left to right, the figure shows the
relationship between the three different brightness of the liquid crystal (i.e.
bright, grey and dark) and the TN cell voltage.

A. Screen Smearing

A liquid-crystal display (LCD) is a flat-panel display or
other electronically modulated optical device that uses the
light-modulating properties of liquid crystals. In LCD, the
twisted nematic (TN) mode is the basic existing mode of
liquid crystals. The liquid crystal does not emit lights directly.
Instead, it uses a backlight or reflector to produce images
in color or monochrome [53]. In this process, the states of
liquid crystals are changed from top to bottom substrate or
from bottom to top substrate under crossed polarizers and
vertical field. Fig. B shows an example of liquid-crystal state
change as the increasing of voltage in a TN cell. When the
used voltage (V) below the threshold (V;;) and the phase
retardation between the left (d;) and right (d2) is almost same,
the change brightness rate of the liquid crystal is about same
along azimuthal direction, resulting in symmetry in brightness.
However, when V' > Vy;, and 0; # do, the liquid crystal tilts
up in one direction that different along azimuthal direction.
In this case, the bright state of liquid crystal is changed into
the grey level. On the other hand, the liquid crystal changes
into dark state when a driving voltage (V,,,) for dark state is
applied.

However, in the process of state change, the LCD screen
needs a response time to change the state of liquid crystal
as shown in Fig. [55]. Compared to LCD, the real
facial movement is rapid and without delaying, shown in Fig.
E(®). Caused by the response time, the current-time video
frame often has similar intensity values with the previous one,
leading to the phenomenon of smearing.

B. Motion Blur

Caused by physical and technical limitations, the videos
captured by digital cameras are not perfect and have various
types of degradations. The motion blur is one of the frequent
degradations, which can be illustrated by Eq. 0 [56]

z(z,y) = /I(I — s,y —t)h(z — s,y —t;8,t)dsdt (1)
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Fig. 4. Different temporal responses of LCD panel [55] and real face motion.
When the brightness of the pixel changes, LCD requires a response time to
complete the state change of the liquid crystal, which is different from the
real face.

[ Camera System

LCD Screen

Fig. 5. The motion blur generated by a camera. When the camera captures a
moving target, motion blur is generated on the CCD sensor and affected by
the speed of the target motion.

where [ is the original image. For a biometric system, I is
the replayed fake face or real face. h is point-spread function,
and z is the blurred image. More specifically, the intensity
of blurred image is controlled by original fake face video or
real face and the degree of blur depends on the point-spread
function. In addition, both of them have a positive correlation
with the exposure time.

1) Intensity Difference: Since LCD requires a response
time to complete the state change of the liquid crystal, the
intensity variations of replayed face videos are different from
the real ones. As shown in Fig. B, the change in the brightness
of a replayed fake face is smoother than the real one. Conse-
quently, the intensity variations of replayed fake face and real
face are different. More specifically, in the exposure time, the
CCD sensor of camera in the biometric system accumulates
the intensity of f1(t) and f2(t), respectively. As a result, the
motion blur generated by replayed fake face and real face have
different intensity variations.
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Fig. 6. Flow chart of our proposed motion blur analysis based replayed video attacks detection method. First, the input face video is magnified for magnifying
motion blur in intensity and width. Then, the feature extraction module extracts two kinds of features from the magnified video. Finally, an SVM classifier
is invoked to classify whether the extracted features are extracted from a valid access or a face presentation attack.

2) Blur Difference: As aforementioned, attackers often use
LCD panels (e.g. mobile phones and tablets) to replay face
videos. Assuming the camera is stationary, there are two types
of motions during fake face attacks: the motion of the screen
(denoted as wv) and the face motion in the replayed video
(denoted as v’). However, for the real face, it includes only
the second kind of motion. When the camera captures the
motion in replayed video or real face, the motion blur will be
generated based on the point-spread function h and original
image I. Meanwhile, the point-spread function depends on
the speed of motion. Fig. B shows an example of motion blur
generated from a replayed video attack. During the camera’s
exposure, the CCD continuously collects outside light infor-
mation, which will record the trajectory of movement. The
width of the trajectory is illustrated in Eq. [

w = (ugy +uy) XT (2)

where 7 is the expose time of camera. u;, and u, are the
motion speed of a point in horizontal and vertical directions,
respectively.

For the motion speed of u, and u,, they depend on the
object’s speed and the distance between the object and camera
[67]. Taking a replayed video attack as an example, shown in
Fig. B, u, and u, can be calculated as Eq. B

Uy = —= X (Vg +v;)
d 3)

l /
Uy = _E X (Uy +vy)

where d and [ are the distances between the lens and object and
the distance between the lens and CCD sensor, respectively.
v is the motion speed of LCD medium and v’ is the motion
speed of replayed face. The subscripts « and y denote the
horizontal and vertical directions, respectively. Therefore, the
width of motion blur caused by replayed video attacks can be
calculated as Eq. 8

l ’ ’
Wrare = [I(=5 % (02 +00) + (0, + ) x 7l @

where || - ||1 is 1-norm operation. However, the real face has
only facial motion compared to replayed video attacks. Its blur
width is calculated as follows

l ’ ’
Wreal = H(_E X (Ua: +Uy)) X 7—||1 (5)

Comparing Eq. 8 with Eq. B, we can clearly conclude that
the widths of motion blurs caused by real-face and replayed-
video attacks are different. Fig. @ shows some examples of
motion blurs. In the figure, the motion blur widths of replayed
faces are different from the real ones.

IV. PROPOSED METHOD

In this part, we present the pipeline of our proposed
detection method for replayed video attacks. The proposed
method consists of three modules, i.e., video magnification,
feature extraction and SVM classification. The overall process
pipeline is shown in Fig. B. First, a captured face video is
processed by the video magnification algorithm, which can
magnify motion blur in intensity and width. After that, the
blur-intensity variation features and blur-width features are
extracted from a 1D CNN network and LSP mode respectively.
Finally, the feature fusion mechanisms and SVM classifier are
used to distinguish whether the processed video is a valid
access or a face presentation attack.

A. Video Magnification

Before feature extraction, we first perform motion ampli-
fication on the captured videos. In our proposed method,
we use Eulerian video magnification (EVM) algorithm [5¥]
to preprocess the captured face videos. This procedure is
able to amplify temporal changes of brightness and small
motions [23]. Given a video signal V, the frame changes
can be expressed as V(z,y,t) = f(x + 0,(t),y + dy(t)),
where V(z,y,0) = f(x,y) and 6,(t), d,(t) are variation
amplitudes in z and y directions respectively. The goal of
video magnification is to synthesize the signal

Viw,y,t) = flz+ (1+a)de(t),y + (1L +a)d, () (©)
where « is the amplification factor. Based on the first-order
Taylor-series expansion towards x and y, V(x,y,t) can be
expanded as

of of

V(z,y,t) = f(x,y) + Mﬂa + 6y(t)8fy (7)

To get the partial derivatives of f about x and y, a broadband
temporal bandpass filter B(z,y,t) is applied on V(x,y,t) at
every position (x,y). The filter is expressed as

Blant) = 805 +3,(0 5 ®
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Fig. 7. The architecture of CNN for intensity variation extraction. It includes two modules: histogram feature extraction and 1D CNN model. The former
is used to extract the intensity histograms of video sequence, and the latter is used to extract brightness variation feature. Conv layer is the abbreviation of

convolutional layer and FC layer is the abbreviation of fully connected layer.

Then Eq. [ can be represented as

V(z,y,t) = f(z,y) + aB(z,y,t) )

Combining Eqs. [, B and B, the magnified video frame will

be obtained based on [T
R of
Viz,y,t) = f(z,y) +

Oz

of

(L a)be(t) 50 +0,(0) 5]

+ 6y(t) (10)

B. ID CNN for Intensity Variation

Towards original magnified videos, we extract intensity his-
tograms to describe the brightness information. More specifi-
cally, given a video frame f(z,y), the distribution histograms
are calculated from R, G and B color channels denoted as
hgr, hg and hp, respectively. After that, hg, hg and hp
are concatenated into one histogram h; with the dimension
1 x 768.

In order to extract temporal information from brightness
changes in intensity histograms, we propose a novel convolu-
tional neural network. The main architecture of our proposed
network is shown in Fig. [. It includes two modules. First, we
intercept m successive video frames, extract their histograms
and concatenate the histograms into a histogram matrix, which
can be written as Eq. . Then, the histogram matrix with size
m x 768 will be fed into our proposed network. Following
the face PAD work [37] that capturing texture variations by
computing the feature descriptions within a time window of
three seconds, in this paper, we set m = 75.

hy,

H= (11)

D,
In our network, we use 1D operation to extract intensity

variation information in H. Compared with other deep net-
works [36], [8Y], our solution differs mainly in three aspects:

(1) 1D convolutional filters are adopted to extract the temporal
information of neighboring histograms; (ii) 1D pooling layers
are introduced and can effectively reduce the temporal dimen-
sion after convolutional layers; (iii) The receptive field size of
the output features is 75 corresponding to the number of video
frames and the output features do not fuse the information
between different brightness values.

The parameters of our proposed network are summarized
in Table 0. For all convolutional layers except the 16, layer,
the size of convolutional filters is set to 3 x 1. This means
the convolutional filter can extract the brightness variation in
three adjacent histograms and save network parameters as [b0].
After each convolutional layer, we use Rectified Linear Units
(ReLU) to activate the convolutional outputs [61]. Then the
pooling layers with size 2 x 1 are utilized to gradually down-
sample the results from ReLU layer. In the last pooling layesr,
the dimension of outputs is 1 x 768. Before feeding the outputs
of last pooling layer into a fully connected (FC) layer, we
introduce a transposition layer to reshape the size of outputs
into 768 x 1.

For face PAD, its essence is to classify whether the input is
a real face or a presented fake face. Therefore, after FC layer,
the most commonly used SoftM ax loss function is employed
to measure the classification error [62], [63]. In training stage,
the Softmax loss function can maximize the probability of
the right class and fine tune the network parameters based on
the algorithm of back propagation (BP) [64], as shown in Eq.
19

+e¥? 4+ eV") + i} (12)

= Zn:{log(ey“
i=1

where 7 is the index of training samples, and n is the number
of training samples. Y = [Y1,Y5, ..., Y;, ..., Y}, is the label set,
Y = [yi1, Yi2, - Yir, ---, Yix) is the predict vector of the i,
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TABLE I
THE CONFIGURATION PARAMETERS IN OUR PROPOSED 1D CNN MODEL. aPool 1S THE OPERATION OF AVERAGE POOLING AND Trans IS THE OPERATION
OF MATRIX TRANSPOSE.

layer 1 2 3 4 5 6 7 8 9 10 11

’ type ‘ Conv ‘ ReLU ‘ aPool ‘ Conv ‘ ReLU ‘ aPool ‘ Conv ‘ ReLU ‘ aPool ‘ Conv ‘ ReLU ‘
filt size [3,1] — — [3,1] — — [3,1] — — [3,1] —
filt dim 1 — - 64 — — 64 - — 64 —
num filts 64 — — 64 — — 64 — — 64 —
stride 1 1 [2,1] 1 1 [2,1] 1 1 [2,1] 1 1
pad [1,0] 0 0 [1,0] 0 0 [1,0] 0 0 [1,0] 0
layer 12 13 14 15 16 17 18 19 20 21 22

’ type ‘ aPool ‘ Conv ‘ ReLU ‘ aPool ‘ Conv ‘ ReLU ‘ Conv ‘ Trans ‘ FC ‘ SoftMax — ‘
filt size — [3,1] — — [2,1] — [1,1] — [1,1] — —
filt dim — 64 - — 64 — 64 - 64 — —
num filts — 64 — — 64 64 2 — —
stride [2,1] 1 1 [2,1] 1 1 1 1 1 1 —
pad 0 [1,0] 0 0 0 0 0 0 0 —
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(a) Real face histogram matrix.
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(b) Output of our network.

(c) Fake face histogram matrix. (d) Output of our network.

Fig. 8. The input and output of our proposed network. The first row is the
result of a real face video and the second row is the result of a fake face
video. To make the histogram matrix better visualized, we use lines colormap
in (a) and (c). (b) and (d) plot the envelope of the output of our 1D CNN
network.

training sample, y;, is the predict value of the s, class, and
v is the number of classes. In testing stage, we extract the
outputs of the last pooling layer as the finally features of H
denoted as C'y.

Fig. B shows the intensity histogram matrices and the
learned brightness variation features of real and replayed fake
face videos. From the distribution changes in Figs. and
B(c], we can find that the variation in the brightness of real
face video is more obvious than the replayed one. This also
verifies that our intensity variation hypothesis holds. Moreover,
the envelope lines of real and replayed fake faces also have
differences in amplitudes, which are shown in Figs. and

C. LSP for Motion Blur Width

Based on the differences of motion blur between the real
face and replayed fake face, a rotation invariant texture de-
scriptor is used to describe them. Motion blur often occurs at
the edge of a moving object and usually has same or closeness
brightness values. Local binary pattern (LBP) [b3] is the most
commonly used feature in texture analysis. The main idea of
LBP is to determine whether the value of the image pixel is
smaller than its neighboring pixels and encode the comparison
results. Inspired by this, we utilize the feature called local
similar pattern (LSP) [b66] to describe the width of motion
blur. Instead of comparing the value of the image pixel as
in LBP, we compare whether it is equal to the neighboring
pixels. The LSP pattern of a pixel extracted from the video
frame f(x,y) at band ¢ can be represented as follows:

P—1
LSPEh(x,y) = Y 8(ri) —rlD) x o7 (13)
p=0
where 6(z) = 1 if z = 0, otherwise 0. r. and r,(p = 0, ..., P—
1) denote the intensity values of central pixel (z,y) and its P
neighborhood pixels located at the circle of radius R(R > 0).
Fig.B shows an example of LSP feature extraction with P = 8.
After LSP encoding, we compute the statistical histograms
from the encoded maps. At end, the LSP feature of f(z,y)
can be defined by

1 M
Ly =LY ..Li)

where M is the channel number.

In Fig. [, we visualize some encoded LSP maps of real and
replayed face images. From these maps, we can clearly find
that regions with the same brightness have the same encoding
value. Therefore, our proposed LSP feature can be used to
describe the width of motion blur.

(14)

D. Implementation Details

For the filters in convolutional layers of 1D CNN network,
we initialize them based on [A7] as illustrated in Eq. [3.

rand(nc)
\ 2/77,0

where rand(-) samples from a zero mean, unit standard
derivation gaussian function, and n¢ is the channel number of

(15)

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895212, IEEE

Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

60 | 61 | 68 0 1 0
(10100010)2 :
61 57 > 1 0 |——> | i —
64 | 61 | 60 0 1 0 Coding b Histogram
Video Frame )\ _ Pixel Value Comparison

Fig. 9. Flow chart of LSP feature extraction. The LSP compares whether the center pixel is equal to the neighborhood pixels, rather than comparing whether

it is smaller than the neighborhood pixels.

Fig. 10. Exemplar Visualization of encoded maps of LSP. The first row shows
the results of a magnified real face video while the second row corresponds to
the magnified replayed face video. From left to right: magnified video frame,
R color channel maps, G color channel maps and B color channel maps.

the inputs in convolutional layer. This ensures that all neurons
in the network initially have the approximately same output
distribution and empirically improves the rate of convergence.
In training stage, the stochastic gradient descent (SGD) al-
gorithm [BY] is used to learn the network parameters. The
momentum is set to 0.9 and weight decay 0.0005. The learning
rate is set to 1073 and all mini-batches are traversed and re-
allocated randomly.

Before feature extraction, we magnify the face videos in
different frequencies with an interval of 20Hz and ranging
from O0Hz to 240H z. For motion blur width descriptor, we
extract LSP feature from RGB color space. After 1D CNN
and LSP features extraction, we fuse Cy and L; and use
an SVM classifier to predict whether the input face is a
real client. In our paper, we realize the 1D CNN and SVM
based on the toolboxes of MatConvNet with the version
1.0-beta20 T and liblinear with the version 1.96 2 [BY],
respectively. The code for this work can be downloaded at
https://github.com/lileiNPU/MotionBlurAnalysis.

V. EXPERIMENTAL SETUP
A. Experimental Data

We validate our proposed method on two publicly avail-
able face PAD databases: Replay-Attack [6] and OULU-NPU
[25]. Table O summarizes these two databases, and detailed
descriptions are given below.

1) Replay-Attack: The IDIAP Replay-Attack database © [6]
consists of 1300 video clips of real and attack and attempts
to 50 clients. These clients are divided into 3 subject-disjoint

Uhttp://www.vifeat.org/matconvnet/
Zhttps://www.csie.ntu.edu.tw/~cjlin/liblinear/
3https://www.idiap.ch/dataset/replayattack/download-proc

Fig. 11. Samples from Replay-Attack database. The first row presents images
taken from the controlled scenario, while the second row corresponds to the
images from the adverse scenario. From left column to right column: real
faces and the corresponding printed photo, displayed image and replayed video
attacks.

subsets for training, development and testing (15, 15 and 20,
respectively). The real face videos are recorded under two
different lighting conditions: controlled and adverse. Three
types of attacks are created: printed photos, displayed images
and replayed videos. In displayed image and replayed video
attacks, high quality images and videos of real clients are
replayed on iPhone 3GS and iPad display devices. For printed
photo attacks, high quality images were printed on A4 papers
and presented in front of the camera. Fig. [ shows some
examples of real and fake faces.

2) OULU-NPU: The OULU-NPU Database ? [?3] consists
of 4950 real access and attack videos and attempts 55 clients.
Similar to Replay-Attack database, all clients are divided into
3 subject-disjoint subsets for training, development and testing
(20, 15 and 20, respectively). These videos were recorded
using the front cameras of six mobile devices in three sessions
with different illumination conditions and background scenes.
Two types of fake faces are created: printed photo and replayed
video attacks. The attacks were created using two printers
and two display devices. For the replayed video attacks, the
original face videos were recorded by 6 different cell phones.
Fig. [ shows some examples of real and fake faces.

B. Evaluation Protocol

For performance evaluation, the results are reported in term
of recently standardized ISO/IEC 30107-3 metrics [[Z0]: Attack
Presentation Classification Error Rate (APCER) and Bona Fide
Presentation Classification Error Rate (BPCER). In principle,
these two metrics correspond to the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) commonly used in

“https://sites.google.com/site/oulunpudatabase/welcome
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TABLE II
A SUMMARY OF TWO PUBLIC-DOMAIN DATABASES.

[ Database [ Released year [ Lighting scenarios | Subjects | Attack type | Subject gender [ Subject age |
Printed photos
Replay-Attack 2012 2 50 Displayed images Male 86% 20 to 40 years
. Female 14%
Replayed videos
Printed photos Male 69%
OULU-NPU 2017 3 55 Replayed videos Female 31% 20 to 60 years

Fig. 12. Samples from OULU-NPU database. The first row presents images
taken from the first scenario, the second row corresponds to the images from
the second scenario, and the last row corresponds to the images from the third
scenario. From left column to right column: real faces and the corresponding
printed photo, printed photo, replayed video and replayed video attacks.

the PAD related literature. However, different with the FAR
and FRR, the attacker’s potential (such as expertise, resources
and motivation) in the worst case scenario are taken into
considered by APCER and BPCER. It is noted that the APCER
and BPCER depend on the decision threshold. Therefore, the
development set is used to fine tune the system parameters and
estimate the threshold value. To evaluate the overall system
performance in a single value, the BPCER20, which calculates
the BPCER when APCER is 5%, is employed in the following
experiments.

C. Network Selection

In the training stage of 1D CNN, we empirically iterate 100
epochs on all training data. Since Replay-Attack and OULU-
NPU also provide a development set, we select the network
with the lowest cost of the development set in the iteration of
100 epochs as the model in testing stage, instead of selecting
the network corresponding to the lowest cost of the training
set. This means that the number of iterations to get the optimal
network model at different frequencies may be different.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Due to the factors such as the liquid-crystal refresh frequen-
cy, the motion of the LCD screen and the external environment
(e.g. light), it is difficult to determine the motion frequency
at a fixed point. Therefore, in this section, we present and
discuss the detection results of different motion blur fea-
tures that obtained in the magnified frequencies from 0Hz
to 240H z. More specifically, we begin our experiments by
analyzing the performances of our proposed 1D CNN feature
and designed LSP feature. Then, we discuss how to fuse the
1D CNN and LSP features. Finally, the performance of our
method is compared against the state-of-the-art algorithms and
the generalization capabilities of the proposed approach are
evaluated by conducting cross-database experiments.

A. Effectiveness of ID CNN Feature

In this part, we present the performances of our 1D CNN
feature and compare them with original unlearned intensity
histogram feature on different magnified frequencies. For the
unlearned intensity histogram, we first extract the intensity his-
tograms from successive 75 frames of the video sequence and
then average them to get the final feature vector. The results
are shown in Table . It can be clearly seen that our proposed
1D CNN can effectively extract intensity variation information
from original intensity histogram matrix. More specifically, in
the magnified frequency from 180H z to 200H z, the APCER,
BPCER and BPCER20 of Replayed-Attack database are 0.3%,
0.3% and 0.0%, respectively. For OULU-NPU database, the
APCER is 18.7%, BPCER is 14.2%, and BPCER20 is 43.9%.
Although these indicators of OULU-NPU are not as good as
that obtained in Replay-Attack, the BPCER is still twice as
low as the original unlearned histograms. Moreover, we can
also find that the performance in the magnified frequency from
180H z to 200 H z is significantly better than other frequencies.
We conjecture that the reason may lie in that the network
models selected for evaluation are originated from different
training epochs. In the table, we also compare the detection
results of the original videos with the results of the videos that
been processed by EVM. By comparing the detection results,
we found that the EVM-processed face video can improve
the detection performance, while the detection performance is
degraded in some frequency ranges.

B. Effectiveness of LSP Feature

Table M provides the detection performance of our designed
LSP feature. From these results, we can find the best APCER,
BPCER and BPCER20 of Replay-Attack database are obtained
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TABLE III
COMPARE INTENSITY VARIATION FEATURES OF OUR PROPOSED 1D CNN WITH ORIGINAL UNLEARNED INTENSITY HISTOGRAMS.
Replay-Attack OULU-NPU
Frequency(Hz) Method APCER(%) [ BECI);R(%) [ BPCER20(%)| APCER(%) [ BPCER(%) [ BPCER20(%)
0-20 Unlearned Hist 5.1 4.3 4.4 31.8 28.3 71.5
ID CNN 1.6 2.1 0.1 21.5 26.4 51.0
20-40 Unlearned Hist 34 5.8 49 28.3 30.2 69.6
1D CNN 2.3 24 0.8 19.0 22.6 45.0
40-60 Unlearned Hist 4.2 6.7 6.4 26.5 35.3 68.6
1D CNN 3.0 4.6 4.3 21.3 29.8 55.6
60-80 Unlearned Hist 4.0 7.1 6.8 25.7 39.2 69.3
1D CNN 49 4.7 47 252 31.8 62.4
80-100 Unlearned Hist 4.0 7.2 6.7 26.2 40.8 69.8
1D CNN 3.2 5.3 5.1 23.0 34.5 59.9
100-120 Unlearned Hist 4.8 11.0 10.9 26.3 40.9 71.0
1D CNN 44 6.5 5.8 24.8 29.9 56.9
120-140 Unlearned Hist 4.6 11.5 11.2 26.4 40.1 69.4
1D CNN 3.9 5.1 5.0 20.7 17.3 52.8
140-160 Unlearned Hist 4.1 11.0 10.5 27.5 40.3 69.1
1D CNN 2.5 5.1 5.0 22.8 25.8 54.6
160-180 Unlearned Hist 33 10.9 10.4 27.7 39.9 69.2
ID CNN 2.7 5.1 5.0 243 33.9 60.0
180-200 Unlearned Hist 34 11.0 10.5 26.3 40.2 68.0
1D CNN 0.3 0.3 0.0 18.7 14.2 43.9
200-220 Unlearned Hist 2.8 11.7 10.9 26.5 40.3 67.3
1D CNN 0.6 3.9 34 26.5 374 64.9
220-240 Unlearned Hist 2.3 10.7 9.9 26.8 39.7 67.4
1D CNN 33 6.3 6.3 31.0 37.7 66.3
Original Video Unlearned Hist 2.6 9.0 8.9 27.3 38.6 63.5
1D CNN 1.7 3.8 3.8 24.6 33.1 58.3
TABLE IV
THE DETECTION RESULTS OF OUR DESIGNED LSP FEATURE.
Frequency(Hz) Replay-Attack OULU-NPU
APCER(%) [ BPCER(%) [ BPCER20(%)| APCER(%) [ BPCER(%) | BPCER20(%)
0-20 2.5 5.5 2.7 24.0 30.4 63.3
20-40 3.0 34 2.7 14.7 13.1 33.8
40-60 4.6 1.1 1.1 9.8 7.2 16.6
60-80 4.6 0.2 0.2 9.2 7.0 15.6
80-100 2.6 0.0 0.0 6.9 4.1 6.1
100-120 1.7 0.0 0.0 6.5 3.7 6.3
120-140 1.9 0.0 0.0 5.6 3.6 3.9
140-160 2.1 0.0 0.0 6.6 4.1 4.8
160-180 1.8 0.0 0.0 4.9 4.6 4.6
180-200 2.1 0.0 0.0 3.6 4.6 33
200-220 2.0 0.0 0.0 3.9 4.5 3.5
220-240 24 0.0 0.0 34 5.2 3.9
[ Original Video [ 4.0 [ 2.5 [ 2.5 [ 8.1 [ 6.7 [ 12.5 ]
TABLE V
THE DETECTION RESULTS OF EARLY FUSION OF 1D CNN AND LSP FEATURES.
Frequency(Hz) Replay-Attack OULU-NPU
APCER(%) [ BPCER(%) [ BPCER20(%)| APCER(%) [ BPCER(%) [ BPCER20(%)
0-20 0.0 32 0.0 12.1 16.1 25.2
20-40 0.2 0.9 0.3 9.0 5.7 9.7
40-60 0.3 1.0 0.2 10.0 2.9 7.7
60-80 0.0 5.0 0.1 8.8 1.6 4.9
80-100 0.0 5.0 0.0 9.6 1.7 6.1
100-120 0.0 32 0.0 10.8 14 4.1
120-140 0.0 1.7 0.0 10.0 1.6 3.6
140-160 0.0 1.6 0.0 10.0 1.3 2.4
160-180 0.1 1.1 0.0 9.3 0.9 1.5
180-200 0.1 1.0 0.0 9.0 0.7 1.3
200-220 0.1 0.8 0.0 8.7 0.8 1.1
220-240 0.1 0.8 0.0 8.1 0.6 1.0
[ Original Video [ 1.0 [ 1.0 [ 0.0 [ 7.4 [ 2.2 [ 3.8 ]
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TABLE VI
THE DETECTION RESULTS OF LATE FUSION OF 1D CNN AND LSP FEATURES.
Frequency(Hz) Replay-Attack OULU-NPU
APCER(%) [ BPCER(%) [ BPCER20(%)| APCER(%) [ BPCER(%) [ BPCER20(%)
0-20 0.4 0.5 0.1 12.2 13.8 334
20-40 0.2 0.4 0.2 11.4 10.2 24.8
40-60 0.1 0.2 0.0 8.0 7.4 13.8
60-80 0.2 0.1 0.0 9.5 6.9 14.5
80-100 0.2 0.1 0.0 8.1 54 9.1
100-120 0.0 0.0 0.0 7.2 5.0 7.8
120-140 0.1 0.0 0.0 6.0 5.7 7.1
140-160 0.0 0.0 0.0 6.0 53 6.1
160-180 0.0 0.0 0.0 5.9 5.2 6.7
180-200 0.0 0.0 0.0 5.8 6.1 7.1
200-220 0.0 0.0 0.0 5.3 4.7 5.3
220-240 0.0 0.0 0.0 5.7 4.8 5.8
[ Original Video | 0.4 [ 2.5 [ 2.5 [ 12.0 [ 12.0 [ 32.8 |
TABLE VII

COMPARISON BETWEEN OUR PROPOSED COUNTERMEASURE AND STATE-OF-THE-ART METHODS ON THE TWO BENCHMARK DATABASES USING THE
BASED EVALUATION.

Methods Replay-Attack OULU-NPU
APCER(%) [ BPCER(%) [ BPCER20(%)| APCER(%) [ BPCER(%) [ BPCER20(%)
Moiré Analysis[I8]f 15.6 12.9 29.9 20.0 12.3 56.8
Image Quality[19]] 139 136 258 26 242 7738
HOOF[20]f 7.3 6.8 10.4 38.8 45.7 88.0
RGB LBP[U] 5.3 3.8 4.1 16.1 16.7 40.8
YCbCr LBP[E]f 2.4 6.8 5.4 19.5 13.5 36.9
HSV LBP[E]f 6.4 6.8 7.8 20.6 13.5 50.1
Proposed Early Fusion 0.1 0.8 0.0 8.1 0.6 1.0
Proposed Late Fusion 0.0 0.0 0.0 5.3 4.7 53

t we tested the method on original replayed video set of Replay-Attack instead of recapturing the video data as [IS].
1 we retested the method on the replayed video set of Replay-Attack and OULU-NPU databases respectively.

in the frequency range from 100Hz to 120H z with APCER
= 1.7%, BPCER = 0.0% and BPCER20 = 0.0%. For OULU-
NPU database, the best detection results are obtained in the
frequency range from 180Hz to 200H z with BPCER20 =
3.3%. Similar to Replay-Attack, the best APCER and BPCER
are also obtained in different magnified frequencies. Compar-
ing Table M with Table IM, we can see that LSP feature
performs better than 1D CNN feature. We can also conclude
that the OULU-NPU database is more difficult than Replay-
Attack database due to more different replayed videos and
more complex external environment.

C. Fusion of 1D CNN and LSP Features

As can be seen in previous experiments, motion blur inten-
sity and motion blur width seem to be effectively for detecting
replayed video attacks. In order to benefit from both blur
intensity variation and blur width, we explore how to fuse
1D CNN and LSP features. In this part, we fuse the 1D CNN
feature extracted from 180H z to 200H z with the LSP feature
extracted from 0H z to 240H z in two different mechanisms:
early fusion and late fusion. For early fusion, the features are
concatenated into one feature vector and fed into an SVM
classifier. For late fusion, 1D CNN feature and LSP feature are
first fed into two different SVM classifiers. Then, the scores
from the SVMs are added together to get the final classification
score. Tables M and 1 show the results of early fusion and late
fusion respectively. From the two tables, we can see that early

fusion is more suitable to OULU-NPU database with APCER
= 8.1%, BPCER = 0.6% and BPCER = 1.0% and late fusion
is more suitable to Replay-Attack database with APCER =
0.0%, BPCER = 0.0% and BPCER20 = 0.0%. In addition,
by comparing Tables I, M and M, we can conclude that the
1D CNN and LSP features complement perfectly each other.
Finally, even though the average of APCER and BPCER of
fusion results for Replay-Attack are not better than 1D CNN
system and the APCER of fusion results for OULU-NPU are
not better than LSP system, the fusion is effective considering
both databases together.

D. Comparison with the State of the Art

In this part, we implement the Image Quality [T9], HOOF
[20] and Moiré Analysis [I8] based methods and compare our
APCER, BPCER and BPCER20 with them. The comparison
results are shown in Table V1. It can be seen that our proposed
motion blur analysis based method outperforms the-state-of-
the-art algorithms on Replay-Attack database. Especially for
the evaluation indicators, the APCER, BPCER and BPCER20
of our method are 0.0%. On OULU-NPU database, our
proposed method also significantly surpasses these baselines.
However, some samples of OULU-NPU database are still
incorrectly classified compared to Replay-Attack database.
Figure M3 visualizes some video sequences in the frequency
range from 220H z to 240H z that are classified incorrectly.
From these failed cases we can see that the background
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TABLE VIII
THE EARLY FUSION PERFORMANCE OF CROSS-DATABASE EVALUATION IN TERMS OF APCER(%), BPCER (%) AND BPCER20(%) ON REPLAY-ATTACK
AND OULU-NPU.

Train on: Replay-Attack Evaluate on: OULU-NPU
Frequency(Hz) Train Set Dev set Test set
APCER(%)] BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)
0-20 12.9 534 73.3 17.5 56.4 78.0 21.6 49.9 84.4
20-40 23.1 359 71.6 27.3 33.0 68.0 30.4 323 71.6
40-60 27.5 32.7 71.4 30.9 29.0 68.5 33.7 27.3 74.8
60-80 18.6 45.0 76.6 20.7 47.1 73.5 24.3 41.1 76.2
80-100 20.4 40.4 73.2 22.0 41.7 74.2 26.7 37.7 72.7
100-120 24.7 353 71.7 253 35.3 73.3 30.0 322 69.7
120-140 27.7 329 71.0 28.0 31.3 73.3 33.1 28.6 69.2
140-160 28.1 314 70.3 28.1 30.8 74.3 34.2 27.3 70.3
160-180 28.9 30.5 69.9 29.2 29.7 75.5 354 26.9 69.9
180-200 29.1 30.2 70.0 29.5 29.7 76.4 359 26.7 69.7
200-220 30.1 29.4 70.0 30.3 29.4 76.5 37.0 26.0 69.4
220-240 29.6 29.6 69.8 304 30.0 77.2 36.6 26.6 68.1
[ Original Video | 275 | 590 ] 90.1 [ 260 [ 628 ] 90.0 [ 357 [ 522 ] 90.7 |
Train on: OULU-NPU Evaluate on: Replay-Attack
Frequency(Hz) Train Set Dev set Test set
APCER(%)] BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)
0-20 5.5 33.3 335 6.0 38.9 40.0 6.8 51.0 54.4
20-40 8.0 13.0 16.5 4.7 13.6 13.4 6.8 13.7 15.6
40-60 23.0 8.5 25.5 19.1 4.3 25.7 26.8 7.0 20.0
60-80 30.0 10.6 27.7 21.9 4.6 24.4 35.3 6.6 21.3
80-100 38.1 10.3 40.6 38.6 2.9 38.8 47.7 6.8 36.7
100-120 423 13.6 38.2 43.7 22 38.1 53.8 6.2 39.6
120-140 472 12.7 62.0 49.6 1.4 58.4 57.2 6.4 55.6
140-160 51.0 11.4 73.7 53.1 4.5 76.7 60.8 6.3 70.3
160-180 53.8 10.2 71.9 56.2 5.1 79.3 62.8 6.8 71.0
180-200 54.3 9.2 79.3 56.4 5.2 80.0 63.4 6.7 76.5
200-220 56.0 7.3 80.0 58.8 4.8 80.0 65.4 6.4 71.9
220-240 56.5 8.4 80.0 59.7 4.3 80.1 65.6 6.3 78.3
[ Original Video | 662 ] 17.1 [ 80.0 [ 664 ] 148 ] 83.3 [ 703 [ 8.2 [ 85.0 |

illumination in these video frames is very strong. Therefore, and imaging quality) compared to the Replay-Attack database.
we speculate that the illumination interferes with the detection  Therefore, the model tuned for Replay-Attack has difficulties
accuracy of the proposed method. to perform well in the new acquisition conditions. In addition,
we also find that the classifier achieved the best results from
intra database test does not achieve the best cross-database
evaluation results. For instance, the best BPCER20 of intra
In real-world applications, face PAD techniques are operated OULU-NPU test is 1.0% while the averaged BPCER20 of
in open environments, where the conditions and attack scenari- cross database test is 79.5%. Finally, compared with the-state-
o are unknown. To gain insight into the generalization capabil- of-the-art methods, our proposed method is more stable as
ities of our motion blur analysis based detection method, we shown in Table XI.
conduct a cross-database evaluation. To be more specific, the Although our proposed algorithm can detect well replayed
countermeasure was trained and tuned on one of the databases video attacks, it is difficult to distinguish fake face intrusions
and then tested on another database. The obtained detection Wwith no brightness variation. This is due to the fact that
performances are summarized in Table MM and Table [XI. our detection algorithm is based on motion blur changes in
When the proposed late fusion countermeasure is trained on brightness. In addition to brightness variation, the movement
OULU-NPU and tested on Replay-Attack database, we notice Of the screen is also an important factor in the effectiveness
that the best averaged BPCER20 is got in the frequency from of our detection method. Specifically, when the screen is
20H z to 40H z with BPCER20 = 43.8%. However, the best completely stationary relative to the camera, our proposed
averaged BPCER20 of early fusion is close to the late fusion ~motion blur description feature may not be applicable. Since
with BPCER20 = 43.6%. When the proposed countermea- the proposed detection method needs to rely on the response
sure is trained on Replay-Attack and tested on OULU-NPU time of the liquid crystal, a screen with better contrast range
database, the best averaged BPCER20s of early fusion and late  and a higher frame rate or resolution would be harder to be
fusion are 71.2% and 65.8%, respectively. From these results, ~detected for the proposed system.
we observe that the model trained on Replay-Attack database
is not able to be generalized as good as the model trained VIL. CONCLUSION
on OULU-NPU. The reason behind this is that the OULU- In this article, we addressed the problem of replayed face
NPU contains more variations in the collected data (e.g., light PAD from the viewpoint of the motion blur analysis. We

E. Cross-Database Analysis

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895212, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

TABLE IX
THE LATE FUSION PERFORMANCE OF CROSS-DATABASE EVALUATION IN TERMS OF APCER(%), BPCER(%) AND BPCER20(%) ON REPLAY-ATTACK
AND OULU-NPU.

Train on: Replay-Attack Evaluate on: OULU-NPU
Frequency(Hz) Train Set Dev set Test set
APCER(%)] BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)
0-20 36.7 21.2 60.8 35.7 14.1 68.9 47.5 17.5 67.8
20-40 38.7 19.9 66.1 38.5 19.4 73.2 46.8 16.2 71.2
40-60 44.5 19.1 66.3 47.8 18.5 72.5 55.2 154 71.2
60-80 49.6 17.5 67.5 532 15.8 71.6 58.0 132 66.0
80-100 52.5 14.6 65.0 55.8 10.8 68.4 60.2 9.9 64.9
100-120 57.8 12.6 65.1 58.1 8.4 68.6 63.1 7.4 65.1
120-140 59.1 12.1 67.1 60.1 8.3 70.6 64.5 7.0 67.2
140-160 59.3 12.2 67.5 60.3 8.6 71.0 65.0 6.7 67.8
160-180 59.3 12.7 76.8 59.2 7.9 71.5 62.4 6.4 73.1
180-200 58.8 13.8 79.3 58.4 9.7 73.7 61.7 6.7 72.5
200-220 57.1 14.1 77.9 57.5 10.6 72.8 60.3 7.2 71.7
220-240 574 15.1 78.0 57.3 1.7 74.2 59.8 7.5 73.1
[ Original Video | 51.6 | 391 [ 92.4 [ 569 [ 269 ] 89.7 [ 607 [ 214 ] 92.6 |
Train on: OULU-NPU Evaluate on: Replay-Attack
Frequency(Hz) Train Set Dev set Test set
APCER(%)] BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)
0-20 7.1 30.8 36.5 5.4 32.4 32.7 4.4 46.0 44.6
20-40 9.0 5.6 9.4 7.8 10.7 17.1 8.8 12.9 24.6
40-60 16.9 10.2 24.7 135 20.3 37.4 19.7 19.3 36.8
60-80 34.4 14.7 37.7 30.2 22.6 48.1 43.1 21.3 49.1
80-100 50.7 10.9 55.3 55.1 19.4 61.5 60.0 14.8 70.9
100-120 60.0 11.4 61.1 64.6 14.0 67.4 68.5 13.2 81.3
120-140 66.3 16.9 90.1 69.8 19.9 87.2 72.6 17.4 96.8
140-160 74.6 6.3 85.2 77.6 3.1 80.1 80.1 9.5 98.8
160-180 78.3 13.4 100 84.6 20.0 99.2 83.9 134 100
180-200 81.8 15.9 100 87.0 20.8 100 88.0 16.9 100
200-220 82.8 10.3 99.7 85.4 14.5 99.9 86.9 12.7 100
220-240 84.1 8.8 98.1 87.5 12.8 100 87.7 10.2 100
[ Original Video | 515 | 616 ] 93.3 [ 555 [ 601 [ 91.3 [ 516 [ 587 ] 93.6 |
TABLE X

THE PERFORMANCE OF CROSS-DATABASE EXPERIMENT ON THE REPLAY-ATTACK AND OULU-NPU DATABASES COMPARED WITH BASELINE METHOD.

Train on: Replay-Attack Evaluate on: OULU-NPU
Methods Train Set Dev set Test set
APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)
Moiré Analysis[I=] 38.4 53.7 93.9 39.0 49.0 95.7 44.2 43.3 93.6
Image Quality[[Y] 41.5 423 86.6 322 48.5 89.0 41.0 43.9 90.3
HOOF[20] 28.8 64.2 93.6 25.7 63.2 92.9 33.6 68.4 95.9
RGB LBP[9] 47.2 279 90.3 36.5 35.2 91.4 39.7 32.5 92.0
YCbCr LBP[H] 78.7 3.4 88.4 68.4 5.0 88.6 70.5 3.6 87.4
HSV LBP[H] 15.9 61.3 85.3 17.7 64.1 92.3 20.2 60.1 86.8
Proposed Early Fusion 23.1 35.9 71.6 27.3 33.0 68.0 30.4 323 77.6
Proposed Late Fusion 38.7 19.9 66.1 38.5 19.4 73.2 46.8 16.2 71.2
Train on: OULU-NPU Evaluate on: Replay-Attack
Methods Train Set Dev set Test set
APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)| APCER(%) BPCER(%) BPCER20(%)

Moiré Analysis[IS] 52.4 38.6 91.2 41.1 50.9 99.2 44.1 46.4 94.7
Image Quality[LY] 51.4 2.4 50.8 47.9 2.7 47.1 57.7 1.5 55.0
HOOF[2a] 36.2 49.4 81.9 32.1 47.5 80.7 34.1 48.7 84.2
RGB LBP[H] 59.7 26.5 90.4 53.1 34.0 98.2 49.1 40.9 92.5
YCbCr LBP[H] 26.0 35.6 67.9 26.7 40.1 85.0 22.0 40.0 68.8
HSV LBP[H] 49.1 26.1 89.5 45.1 37.3 89.9 38.3 36.0 97.2
Proposed Early Fusion 8.0 13.0 16.5 4.7 13.6 134 6.8 13.7 15.6
Proposed Late Fusion 9.0 5.6 94 7.8 10.7 17.1 8.8 12.9 24.6

designed a new 1D CNN for motion blur intensity description and replayed fake ones. Extensive experiments on the two
and introduced a feature descriptor of LSP for motion blur latest and challenging face PAD databases (the Replay-Attack
width. Apart from that, we also investigated how to fuse database and OULU-NPU database) showed excellent results.
the 1D CNN feature and LSP feature for describing the On OULU-NPU database, the proposed motion blur represen-
intrinsic disparities in the motion blur between genuine faces tation based on the 1D CNN and LSP outperformed the state
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(b) The video sequences of fake faces that are classified incorrectly.

Fig. 13. Examples of video sequences in OULU-NPU database that are classified incorrectly.

of the art, while very competitive results were achieved on
Replay-Attack database. Furthermore, after feature fusion, our
proposed method showed promising detection performance,
thus suggesting that 1D CNN and LSP complement each other.

From the results on Replay-Attack and OULU-NPU
databases, we find that external-environment factors (e.g.
illumination) limit the effectiveness of our proposed detection
method. Thus, we will study how to eliminate the influence
of external environmental factors and improve the robustness
of our method. In addition, the best fusion mechanism of
Replay-Attack and OULU-NPU are different. Therefore, we
will also try to find an optimal fusion way for 1D CNN and
LSP features.
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